JP2012018870A - Oxide superconductor base material, oxide superconductor using the material, and method for manufacturing the material and the superconductor - Google Patents

Oxide superconductor base material, oxide superconductor using the material, and method for manufacturing the material and the superconductor Download PDF

Info

Publication number
JP2012018870A
JP2012018870A JP2010156652A JP2010156652A JP2012018870A JP 2012018870 A JP2012018870 A JP 2012018870A JP 2010156652 A JP2010156652 A JP 2010156652A JP 2010156652 A JP2010156652 A JP 2010156652A JP 2012018870 A JP2012018870 A JP 2012018870A
Authority
JP
Japan
Prior art keywords
base material
layer
oxide superconducting
intermediate layer
surface portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010156652A
Other languages
Japanese (ja)
Inventor
Satoshi Hanyu
智 羽生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2010156652A priority Critical patent/JP2012018870A/en
Publication of JP2012018870A publication Critical patent/JP2012018870A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide: an oxide superconductor base material having a cross section preferable for the application to a superconducting coil or the like; an oxide superconductor using the material; and a method for manufacturing the material and the superconductor.SOLUTION: An oxide superconductor base material comprises: a long base material having a columnar shape including a flat portion in at least one part of an outer circumferential part in a circumferential direction and a circumferential surface portion in at least the other part of the outer circumferential part in the circumferential direction, with the flat portion and the circumferential surface portion being continuously formed over an entire length; and an intermediate layer having a good crystalline orientation, being laminated on the circumferential surface of the base material so as to cover at least one of the flat portion and the circumferential surface portion, by an ion beam assist deposition method.

Description

本発明は、円形状に類似する断面形状の基材の周面に配向性の良好な中間層を備えた酸化物超電導導体用基材と該基材を備えた酸化物超電導導体およびそれらの製造方法に関する。   The present invention relates to a substrate for an oxide superconducting conductor having an intermediate layer with good orientation on the peripheral surface of a substrate having a cross-sectional shape similar to a circular shape, an oxide superconducting conductor having the substrate, and production thereof Regarding the method.

希土類系の酸化物超電導体(REBaCu7−X:REは希土類元素)は、液体窒素温度で超電導性を示すことから実用上極めて有望な素材とされており、これを線材に加工して電力供給用の導体として用いることが要望されている。中でも、Y系酸化物超電導体(YBaCu7−X)を用いた超電導線材は、外部磁界に対して強く、強磁界内でも高い電流密度を維持することができるため、超電導コイル用導体としての利用、あるいは電力供給用ケーブルとしての利用の他、超電導限流器用の導体などとしての研究開発が進められている。
これら研究開発用途のいずれにおいても、希土類系酸化物超電導導体の作製には、配向基材を使用する必要があり、配向基材を作製できる方法の一例として、イオンビームアシスト成膜法(IBAD法:Ion-Beam-Assisted Deposition)が知られている。
Rare earth oxide superconductors (REBa 2 Cu 3 O 7-X, where RE is a rare earth element) are super promising materials at liquid nitrogen temperatures and are considered to be extremely promising materials for practical use. Therefore, it is desired to be used as a power supply conductor. Among them, a superconducting wire using a Y-based oxide superconductor (YBa 2 Cu 3 O 7-X ) is strong against an external magnetic field and can maintain a high current density even in a strong magnetic field. In addition to its use as a conductor or a power supply cable, research and development as a conductor for a superconducting fault current limiter is underway.
In any of these research and development applications, it is necessary to use an alignment substrate for the production of rare earth oxide superconducting conductors. As an example of a method for preparing an alignment substrate, an ion beam assisted film formation method (IBAD method) is used. : Ion-Beam-Assisted Deposition).

希土類系酸化物超電導導体の一構造例として、テープ状の金属基材と、その上にベッド層や拡散防止層を介しIBAD法によって成膜された中間層と、その上に成膜されたキャップ層と酸化物超電導層とを具備した酸化物超電導線材が知られている(例えば、特許文献1参照)。
この種の希土類系酸化物超電導体は、配向基材上に2軸配向させることで高い超電導特性を示すことが知られており、希土類系酸化物超電導体の結晶配向度が高い程、臨界電流、臨界磁場、臨界温度等の超電導特性においてより優れたものが得られる。
As one structural example of a rare earth oxide superconducting conductor, a tape-shaped metal substrate, an intermediate layer formed thereon by an IBAD method through a bed layer or a diffusion prevention layer, and a cap formed thereon An oxide superconducting wire comprising a layer and an oxide superconducting layer is known (see, for example, Patent Document 1).
This type of rare earth oxide superconductor is known to exhibit high superconducting properties by being biaxially oriented on an oriented substrate. The higher the crystal orientation of the rare earth oxide superconductor, the higher the critical current. Further, superconducting properties such as critical magnetic field and critical temperature can be obtained.

前述のIBAD法に従い、テープ状の金属基材上に中間層を形成し、その上に酸化物超電導層を積層してなる酸化物超電導導体の一例として図8に示す構造が知られている。
図8に示す酸化物超電導導体Tは、Ni系の耐熱合金テープからなる基材100の上に、Alからなる拡散防止層101と、Yからなるベッド層102と、IBAD法によるMgOあるいはGdZrからなる中間層103と、CeOからなるキャップ層104と、希土類系の酸化物超電導層105と、Agからなる安定化基層106と、Cuからなる安定化層107が積層された構造とされている。
A structure shown in FIG. 8 is known as an example of an oxide superconducting conductor in which an intermediate layer is formed on a tape-like metal substrate and an oxide superconducting layer is laminated thereon according to the IBAD method described above.
The oxide superconducting conductor T shown in FIG. 8 has a diffusion prevention layer 101 made of Al 2 O 3 , a bed layer 102 made of Y 2 O 3 , an IBAD on a base material 100 made of a Ni-based heat-resistant alloy tape. An intermediate layer 103 made of MgO or Gd 2 Zr 2 O 7 by a method, a cap layer 104 made of CeO 2 , a rare earth-based oxide superconducting layer 105, a stabilizing base layer 106 made of Ag, and a stabilization made of Cu The layer 107 is stacked.

特開2004−71359号公報JP 2004-71359 A

前記構造の酸化物超電導導体Tを製造する場合、IBAD法により中間層103の結晶配向性を整えることは重要な技術であり、中間層103の結晶配向度の指標とされる面内方向結晶軸分散の半値幅(Δφ)の値を20゜以下にすることで、その上に成膜するキャップ層104を自己配向させてΔφの値を4〜10゜程度とすることができ、このキャップ層104上に酸化物超電導層105をエピタキシャル成膜することで優れた超電導特性を発揮する酸化物超電導導体Tを得ることが可能となる。   When manufacturing the oxide superconducting conductor T having the above-described structure, it is an important technique to adjust the crystal orientation of the intermediate layer 103 by the IBAD method, and the in-plane direction crystal axis used as an index of the crystal orientation degree of the intermediate layer 103 By setting the value of the half width of dispersion (Δφ) to 20 ° or less, the cap layer 104 formed thereon can be self-oriented to make the value of Δφ about 4 to 10 °. By forming an oxide superconducting layer 105 epitaxially on 104, an oxide superconducting conductor T exhibiting excellent superconducting properties can be obtained.

ところで、酸化物超電導導体Tを電力、エネルギー関連の種々の電気機器用の導体として利用する試みがなされており、有力な開発用途として、超電導マグネット、超電導限流器、超電導変圧器、超電導発電機などが検討されている。また、これらの超電導機器に適用するための超電導コイルの構造においては、巻き胴に長尺の超電導導体を巻回した構造、あるいは、円盤状の基板に超電導巻線回路を形成した構造などが知られ、それぞれ研究開発が進められている。
これらの背景において図8に示すような酸化物超電導導体Tを巻き胴に巻回して超電導コイルを構成しようとした場合、基材100は薄型のテープ状であり、その上に各種の膜を成膜したとしても各膜の膜厚は数10nm〜1μm程度であるので、得られた酸化物超電導導体Tは全体として薄型のテープ形状に形成される。
By the way, attempts have been made to use the oxide superconducting conductor T as a conductor for various electric and energy-related electrical equipment, and as a potential development application, a superconducting magnet, a superconducting current limiter, a superconducting transformer, a superconducting generator. Etc. are being considered. In addition, the structure of superconducting coils to be applied to these superconducting devices is known to have a structure in which a long superconducting conductor is wound around a winding drum or a structure in which a superconducting winding circuit is formed on a disk-shaped substrate. Research and development are underway.
In these backgrounds, when an oxide superconducting conductor T as shown in FIG. 8 is wound around a winding drum to form a superconducting coil, the substrate 100 has a thin tape shape, and various films are formed thereon. Even if the film is formed, the film thickness of each film is about several tens of nm to 1 μm, so that the obtained oxide superconducting conductor T is formed in a thin tape shape as a whole.

このため、この種の酸化物超電導導体Tを巻き胴に巻き付けるためには、テープ状の酸化物超電導導体Tの基材100側を巻き胴の周面に沿わせて巻き胴の下層側から上層側に順次巻き付けて積層する作業が必要となるが、薄型のテープ状の酸化物超電導導体Tである限り、巻き胴の周面に多層巻きすることは容易ではない問題がある。即ち、テープ状の酸化物超電導導体Tの場合、曲げることができる方向は制限されるので、巻き胴に整列巻きすることが難しく、テープ状である限り、自由な形状への加工は困難な問題がある。
また、薄型のテープ状の酸化物超電導導体Tであると、交流用超電導機器としての利用を想定した場合、交流損失の発生も問題となり易い傾向がある。例えば、交流用のために撚線構造や転移構造を採用しようとしてとも、薄型のテープ状の酸化物超電導導体Tを撚り合わることは難しく、仮に撚線化ができたとしてもそのピッチを小さくすることはできないので、交流損失低減のための撚線構造や転移構造を簡単には採用できない問題がある。
For this reason, in order to wind this kind of oxide superconducting conductor T around the winding drum, the base material 100 side of the tape-shaped oxide superconducting conductor T is placed along the circumferential surface of the winding drum, and the upper layer from the lower layer side of the winding drum. However, as long as the thin tape-shaped oxide superconducting conductor T is used, it is not easy to perform multi-layer winding on the circumferential surface of the winding drum. That is, in the case of the tape-shaped oxide superconducting conductor T, the direction in which it can be bent is limited, so that it is difficult to align and wind around the winding cylinder, and as long as it is tape-shaped, processing into a free shape is difficult. There is.
Further, if the thin tape-shaped oxide superconducting conductor T is used as an AC superconducting device, the occurrence of AC loss tends to be a problem. For example, it is difficult to twist a thin tape-shaped superconducting conductor T even if it is going to adopt a twisted wire structure or a transition structure for alternating current use. Therefore, there is a problem that a twisted wire structure or a transition structure for reducing AC loss cannot be easily adopted.

前記酸化物超電導導体Tがテープ状であることの理由の1つについて考察すると、IBAD法により結晶配向性の良好な中間層を形成するためには、スパッタ法などの成膜法により基材100の成膜面上に中間層を構成する粒子の堆積を行っている間、成膜面の法線に対し斜め方向、例えば45゜あるいは55゜などの特定の方向から、入射角度を±10゜程度の狭い範囲に保ってアシストイオンビームを照射する必要があり、基材100の成膜面として平面が望ましく、長尺の超電導導体を製造するためには、テープ状の基材100を選択することが自然であることに起因している。
しかし、前述の超電導コイルへの応用、交流用途などを考慮すると、テープ状の酸化物超電導導体Tではなく、IBAD法を利用した結晶配向性の良好な中間層を備えた上で、巻き胴などへの巻き付けに好適な形状の酸化物超電導導体の提供が望まれている。また、交流損失低減の面から見て薄型のテープ状ではない形状であって、撚線構造や転移構造を採用可能な他の形状の酸化物超電導導体の提供が望まれている。
Considering one of the reasons why the oxide superconducting conductor T is in the form of a tape, in order to form an intermediate layer having a good crystal orientation by the IBAD method, the substrate 100 is formed by a film forming method such as a sputtering method. While the particles constituting the intermediate layer are deposited on the film forming surface, the incident angle is ± 10 ° from a specific direction such as 45 ° or 55 ° obliquely to the normal of the film forming surface. It is necessary to irradiate the assist ion beam in a narrow range, and a flat surface is desirable as the film formation surface of the base material 100. In order to manufacture a long superconductor, the tape-shaped base material 100 is selected. This is because it is natural.
However, in consideration of application to the above-described superconducting coil, AC use, etc., it is not a tape-shaped oxide superconducting conductor T, but an intermediate layer with good crystal orientation using the IBAD method, and a winding drum, etc. It is desired to provide an oxide superconducting conductor having a shape suitable for winding on a metal. In addition, it is desired to provide an oxide superconducting conductor having a shape that is not a thin tape shape from the viewpoint of reducing AC loss and that can adopt a twisted wire structure or a transition structure.

本願発明は、IBAD法による結晶配向性に優れた中間層を備えた上に、超電導コイルとしての適用や交流用途を想定した場合などにおいて、薄型のテープ状の酸化物超電導導体よりも取り扱い易く、巻き胴などに巻回する作業がし易く、また、交流損失の発生を抑制し易い構造の酸化物超電導導体を提供できる酸化物超電導導体用基材の提供を目的とする。
また、本願発明はそのような優れた酸化物超電導導体用基材を備えた酸化物超電導導体とそれらの製造方法の提供を目的とする。
The present invention has an intermediate layer excellent in crystal orientation by the IBAD method, and is easier to handle than a thin tape-shaped oxide superconducting conductor in the case of application as a superconducting coil or assuming an AC application, An object of the present invention is to provide a base material for an oxide superconducting conductor that can provide an oxide superconducting conductor having a structure that can be easily wound around a winding drum and that can easily suppress the occurrence of AC loss.
Another object of the present invention is to provide an oxide superconducting conductor having such an excellent base material for oxide superconducting conductors and a method for producing them.

本発明の酸化物超電導導体用基材は、外周部の周方向の少なくとも一部分に平面部を有し外周部の周方向の少なくとも他の部分に円周面部を有する柱状であるとともに、前記平面部と円周面部が全長に渡り連続形成された長尺の基材と、該基材の外周面に前記平面部と円周面部の少なくとも一方を覆ってイオンビームアシスト成膜法により積層された結晶配向性の良好な中間層とを具備してなることを特徴とする。
本発明の酸化物超電導導体用基材は、前記イオンビームアシスト成膜法により積層された中間層の面内方向結晶軸分散の半値幅(Δφ)の値が16゜以下であることを特徴とする。
本発明の酸化物超電導導体用基材は、前記中間層が前記基材上に、ベッド層と拡散防止層の少なくとも1層を介し積層されてなることを特徴とする。
The base material for an oxide superconducting conductor of the present invention is a columnar shape having a flat surface portion in at least a part in the circumferential direction of the outer peripheral portion and a circumferential surface portion in at least another portion in the circumferential direction of the outer peripheral portion. And a long base material in which the circumferential surface portion is continuously formed over the entire length, and a crystal laminated on the outer peripheral surface of the base material by at least one of the planar portion and the circumferential surface portion by an ion beam assisted film formation method And an intermediate layer with good orientation.
The base material for an oxide superconducting conductor of the present invention is characterized in that the half-value width (Δφ) of in-plane direction crystal axis dispersion of the intermediate layer laminated by the ion beam assisted film-forming method is 16 ° or less. To do.
The base material for an oxide superconducting conductor according to the present invention is characterized in that the intermediate layer is laminated on the base material through at least one of a bed layer and a diffusion prevention layer.

本発明の酸化物超電導導体用基材は、前記基材の外周部がその周方向に平面部と円周面部を交互に配してなる横断面略多角形状に形成されてなることを特徴とする。
本発明の酸化物超電導導体は、先に記載の酸化物超電導導体用基材の中間層上に、キャップ層と酸化物超電導層とが積層されてなることを特徴とする。
The base material for an oxide superconducting conductor according to the present invention is characterized in that the outer peripheral portion of the base material is formed in a substantially polygonal cross section in which a plane portion and a circumferential surface portion are alternately arranged in the circumferential direction. To do.
The oxide superconductor of the present invention is characterized in that a cap layer and an oxide superconductor layer are laminated on the intermediate layer of the base material for an oxide superconductor described above.

本発明の酸化物超電導導体用基材の製造方法は、外周部の周方向の少なくとも一部に平面部を有し外周部の周方向の少なくとも他の部分に円周面部を有する柱状であるとともに、前記平面部と円周面部が全長に渡り連続形成された長尺の基材と、該基材の外周面に前記平面部と円周面部の少なくとも一方を覆ってイオンビームアシスト成膜法により積層された結晶配向性の良好な中間層を具備してなる酸化物超電導導体用基材を製造するに際し、前記基材を一方のリールから繰り出し、他方のリールに巻き取る間に、中間層の構成粒子を堆積させて中間層を成膜する成膜領域を通過させ、前記基材が成膜領域を通過する間に、前記粒子の堆積と同時にアシストイオンビームを特定の方向から前記基材に対し照射するイオンビームアシスト成膜法を実施して中間層を形成するとともに、前記イオンビームアシスト成膜法を実施して中間層を形成する際、前記基材よりも細いスリット状の通過孔を備えたシールド板を用い、前記通過孔を前記リール間に繰り出されている基材の延在方向中心部に沿って配置し、前記リール間に繰り出されている基材の幅方向両側部分を覆い隠しながら前記中間層の構成粒子の堆積を行うとともに、前記イオンビームアシスト成膜法を実施して中間層を形成する際、前記基材をその周回りに所定角度ずつ回転させながら前記シールド板の通過孔を介し中間層の構成粒子を堆積させる位置を基材の周方向に順次変更しつつ前記基材の平面部あるいは円周面部に成膜することを特徴とする。   The method for manufacturing a base material for an oxide superconducting conductor according to the present invention is a columnar shape having a flat surface portion at least in a circumferential direction of an outer peripheral portion and a circumferential surface portion in at least another portion in the circumferential direction of the outer peripheral portion. A long base material in which the flat surface portion and the circumferential surface portion are continuously formed over the entire length, and at least one of the flat surface portion and the circumferential surface portion is covered on the outer peripheral surface of the base material by an ion beam assisted film formation method. In producing a base material for an oxide superconducting conductor comprising an intermediate layer having a good crystal orientation, the intermediate layer is rolled out from one reel and wound around the other reel. The constituent particles are deposited to pass through a film formation region in which an intermediate layer is formed, and while the substrate passes through the film formation region, an assist ion beam is applied to the substrate from a specific direction simultaneously with the deposition of the particles. Ion beam assisted deposition for irradiation To form an intermediate layer, and when forming the intermediate layer by performing the ion beam assisted film formation method, using a shield plate having a slit-shaped passage hole narrower than the substrate, the passage A hole is disposed along the center in the extending direction of the base material fed between the reels, and covers the both side portions in the width direction of the base material fed between the reels. When depositing and forming the intermediate layer by performing the ion beam assisted film formation method, the constituent particles of the intermediate layer are passed through the passage holes of the shield plate while rotating the base material by a predetermined angle around its circumference. The film is deposited on the flat surface portion or the circumferential surface portion of the base material while sequentially changing the position where the metal is deposited in the circumferential direction of the base material.

本発明の酸化物超電導導体用基材の製造方法は、前記スリット状の通過孔を介し前記基材の円周面部に前記中間層の構成粒子を堆積させて成膜する際、前記スリット状の通過孔の幅方向端縁を前記基材の円周面部に投影させた位置において規定される前記円周面部の接線の傾斜角度を前記通過孔を含むシールド板の表面に対する傾斜角度として30゜以下に設定して成膜することを特徴とする。
本発明の酸化物超電導導体用基材の製造方法は、前記スリット状の通過孔の幅について、該通過孔を介し前記基材の円周面部に対し斜め方向から入射するアシストイオンビームの入射角度が、前記円周面部に対するアシストイオンビームの照射範囲内のいずれの位置であっても、前記特定のアシストイオンビームの入射角度に対し±10゜の範囲に収まるような幅に設定して成膜することにより中間層を形成することを特徴とする。
In the method for manufacturing a base material for an oxide superconducting conductor according to the present invention, when forming the film by depositing the constituent particles of the intermediate layer on the circumferential surface portion of the base material through the slit-shaped passage hole, The inclination angle of the tangent line of the circumferential surface portion defined at the position where the edge in the width direction of the passage hole is projected onto the circumferential surface portion of the substrate is 30 ° or less as the inclination angle with respect to the surface of the shield plate including the passage hole. It is characterized in that film formation is performed.
In the method for manufacturing a base material for an oxide superconducting conductor according to the present invention, with respect to the width of the slit-shaped passage hole, the incident angle of an assist ion beam incident from an oblique direction on the circumferential surface portion of the base material through the passage hole However, at any position within the irradiation range of the assist ion beam with respect to the circumferential surface portion, the film is formed so as to have a width within a range of ± 10 ° with respect to the incident angle of the specific assist ion beam. Thus, an intermediate layer is formed.

本発明の酸化物超電導導体用基材の製造方法は、前記中間層を前記基材上に、ベッド層と拡散防止層の少なくとも1層を介し積層することを特徴とする。
本発明の酸化物超電導導体用基材の製造方法は、前記基材として、その外周部にその周方向に平面部と円周面部を交互に配してなる横断面略多角形状の基材を用いることを特徴とする。
本発明の酸化物超電導導体の製造方法は、先のいずれか1項に記載の中間層上にキャップ層と酸化物超電導層を積層することを特徴とする。
The method for producing a base material for an oxide superconducting conductor according to the present invention is characterized in that the intermediate layer is laminated on the base material through at least one of a bed layer and a diffusion prevention layer.
The method for producing a base material for an oxide superconducting conductor according to the present invention includes a base material having a substantially polygonal cross section in which a planar portion and a circumferential surface portion are alternately arranged in the circumferential direction on the outer peripheral portion as the base material. It is characterized by using.
The method for producing an oxide superconducting conductor of the present invention is characterized in that a cap layer and an oxide superconducting layer are laminated on the intermediate layer described in any one of the preceding items.

外周部の少なくとも一部分に平面部を他の部分に円周面部を有する柱状の長尺の基材にイオンビームアシスト成膜法による結晶配向性の良好な中間層を備えるているので、中間層上に酸化物超電導層を形成することで、良好な超電導特性の酸化物超電導導体を得ることができるとともに、超電導コイルなどの用途のためにコイル加工する場合、テープ状の基材を用いた酸化物超電導導体に比較し、曲げ加工できる方向の自由度が向上しているので、コイル加工が容易になる効果がある。従って、本発明に係る基材を適用してなる酸化物超電導導体であるならば、超電導マグネット、超電導限流器、超電導変圧器、超電導発電機などに適用される超電導コイルの製造が容易となり、テープ状の酸化物超電導導体を用いた構造に比べて交流損失の低減も可能となる。
中間層の面内方向結晶軸分散の半値幅Δφの値を16゜以下とすることで、その上にキャップ層を介し酸化物超電導層を形成した構造とするならば、超電導特性の優れた酸化物超電導層を平面部上あるいは円周面部上に備えた構造の酸化物超電導導体を提供することができる。
Since an intermediate layer with a good crystal orientation by an ion beam assisted film formation method is provided on a column-shaped long base material having a flat surface part at least at a part of the outer peripheral part and a circumferential surface part at the other part, By forming an oxide superconducting layer on the surface, an oxide superconducting conductor with good superconducting characteristics can be obtained, and when coiling for applications such as superconducting coils, an oxide using a tape-like substrate Compared to a superconducting conductor, the degree of freedom in the direction in which bending can be performed is improved, so that there is an effect that coil processing is facilitated. Therefore, if it is an oxide superconducting conductor to which the substrate according to the present invention is applied, it becomes easy to manufacture a superconducting coil applied to a superconducting magnet, a superconducting current limiter, a superconducting transformer, a superconducting generator, etc. The AC loss can be reduced as compared with a structure using a tape-shaped oxide superconducting conductor.
Oxidation with excellent superconducting properties can be achieved by setting the value of the half-value width Δφ of the in-plane direction crystal axis dispersion of the intermediate layer to 16 ° or less so that an oxide superconducting layer is formed thereon via a cap layer. It is possible to provide an oxide superconducting conductor having a structure in which an object superconducting layer is provided on a plane portion or a circumferential surface portion.

外周部の少なくとも一部分に平面部を他の部分に円周面部を有する柱状の長尺の基材にイオンビームアシスト成膜法を適用し、通過孔を有するシールド板を利用して基材外周部の必要な領域のみに適正入射角度のアシストイオンビームを照射しつつ中間層の粒子堆積を行って結晶配向性の良好な中間層を形成するので、円周面部上であっても結晶配向性の良好な中間層を形成できる。よって、円周面部を備えた柱状の基材であっても結晶配向性に優れた中間層を有した酸化物超電導導体用基材を得ることができ、この基材の利用によって、超電導特性の優れた酸化物超電導導体を得ることができる。
前記基材の円周面部にイオンビームアシスト成膜法により結晶配向性の優れた中間層を形成するには、シールド板のスリット状の通過孔の幅が重要であり、通過孔の端縁を基材の円周面部に投影した位置を通過する接線の傾きを30゜以下とすることにより、通過孔を通過して円周面部に達するアシストイオンビームの入射角度を許容範囲内とすることができ、これにより結晶配向性の良好な中間層を円周面部に備えた酸化物超電導導体用基材を提供できる。
Applying the ion beam assisted film-forming method to a columnar long base material having a flat surface part at least in the outer peripheral part and a circumferential surface part in the other part, and utilizing the shield plate having a through hole, the outer peripheral part of the base material The intermediate layer with good crystal orientation is formed by depositing particles in the intermediate layer while irradiating the assist ion beam with the appropriate incident angle only to the necessary area of the crystal. A good intermediate layer can be formed. Therefore, it is possible to obtain a substrate for an oxide superconducting conductor having an intermediate layer excellent in crystal orientation even if it is a columnar substrate having a circumferential surface portion. An excellent oxide superconductor can be obtained.
In order to form an intermediate layer having excellent crystal orientation by the ion beam assisted film formation method on the circumferential surface portion of the base material, the width of the slit-shaped passage hole of the shield plate is important, and the edge of the passage hole is By making the inclination of the tangent passing through the position projected on the circumferential surface portion of the base material to be 30 ° or less, the incident angle of the assist ion beam passing through the through hole and reaching the circumferential surface portion can be within an allowable range. Thus, a base material for an oxide superconducting conductor provided with an intermediate layer having a good crystal orientation on the circumferential surface portion can be provided.

本発明に係る酸化物超電導導体用基材の第1実施形態を備えた酸化物超電導導体の一例を示す構成図。The block diagram which shows an example of the oxide superconducting conductor provided with 1st Embodiment of the base material for oxide superconducting conductors which concerns on this invention. イオンビームアシストスパッタ法を実施するために用いる成膜装置の一例を示す斜視図。The perspective view which shows an example of the film-forming apparatus used in order to implement an ion beam assist sputtering method. 図2に示す成膜装置に設けられるイオン源の一例構造を示す概略図。Schematic which shows an example structure of the ion source provided in the film-forming apparatus shown in FIG. 図2に示す成膜装置を用いて第1実施形態の酸化物超電導導体用基材を製造する工程の一例を示す工程説明図。Process explanatory drawing which shows an example of the process of manufacturing the base material for oxide superconducting conductors of 1st Embodiment using the film-forming apparatus shown in FIG. 図4に示す工程を実施する場合の要部拡大断面図。The principal part expanded sectional view in the case of implementing the process shown in FIG. 本発明に係る酸化物超電導導体用基材の第2実施形態を備えた酸化物超電導導体の一例を示す構成図。The block diagram which shows an example of the oxide superconducting conductor provided with 2nd Embodiment of the base material for oxide superconducting conductors which concerns on this invention. 本発明に係る酸化物超電導導体用基材の第3実施形態を備えた酸化物超電導導体の一例を示す構成図。The block diagram which shows an example of the oxide superconductor provided with 3rd Embodiment of the base material for oxide superconductors which concerns on this invention. IBAD法に基づいて得られる中間層を備えた酸化物超電導導体の従来構造の一例を示す説明図。Explanatory drawing which shows an example of the conventional structure of the oxide superconducting conductor provided with the intermediate | middle layer obtained based on IBAD method.

図1は本発明に係る第1実施形態の酸化物超電導導体用基材を備えた酸化物超電導導体の一例を模式的に示す部分断面図である。
この実施形態の酸化物超電導導体Aは、横断面略円形状の長尺の金属製基材1の外周面に、Alなどからなる拡散防止層2と、Yなどからなるベッド層3と、IBAD法による中間層4と、CeOなどからなるキャップ層5と、希土類系などの酸化物超電導層6と、Agなどからなる安定化基層7と、Cuなどからなる安定化層8とを順次積層して構成されている。本実施形態において、基材1上に拡散防止層2とベッド層3と中間層4を積層することによって酸化物超電導導体用基材9が構成されている。
なお、前記酸化物超電導導体用基材9の構成において、拡散防止層2とベッド層3は必須の構成ではなく、どちらか一方あるいは両方を略する構成とすることもできる。
FIG. 1 is a partial cross-sectional view schematically showing an example of an oxide superconducting conductor including a base material for an oxide superconducting conductor according to the first embodiment of the present invention.
The oxide superconducting conductor A of this embodiment is composed of a diffusion preventing layer 2 made of Al 2 O 3 and the like, Y 2 O 3 and the like on the outer peripheral surface of a long metal base 1 having a substantially circular cross section. Bed layer 3, intermediate layer 4 by IBAD method, cap layer 5 made of CeO 2 , oxide superconducting layer 6 made of rare earth or the like, stabilization base layer 7 made of Ag, etc., stabilization made of Cu, etc. The layer 8 is sequentially laminated. In this embodiment, the base material 9 for oxide superconducting conductors is configured by laminating the diffusion preventing layer 2, the bed layer 3, and the intermediate layer 4 on the base material 1.
In addition, in the structure of the base material 9 for the oxide superconducting conductor, the diffusion prevention layer 2 and the bed layer 3 are not essential structures, and one or both may be omitted.

基材1は、横断面円形状の丸線の外周部の周方向の少なくとも一部に平面部1Aを有し、外周部の周方向の残りの部分を円周面部1Bとしてなる概略円形断面構造とされ、平面部1Aは基材1の全長に連続形成されている。
酸化物超電導導体用基材Aに適用できる基材1は、通常の超電導線材の基材として使用することができ、高強度かつ耐熱性であれば良く、長尺の超電導ケーブル用途、超電導コイル用途であることが好ましく、耐熱性の面から見て金属からなるものが好ましい。例えば、ステンレス鋼、銅合金あるいはニッケル合金等の各種耐熱金属材料、もしくはこれら各種金属材料上にセラミックスを配したもの、等が挙げられる。各種耐熱性の金属の中でも、ニッケル合金が好ましく、市販品であれば、ハステロイ(米国ヘインズ社製商品名)が好適であり、ハステロイとして、モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。
The base material 1 has a substantially circular cross-sectional structure in which a flat portion 1A is provided at least in the circumferential direction of the outer peripheral portion of a circular wire having a circular cross section, and the remaining portion in the circumferential direction of the outer peripheral portion serves as a circumferential surface portion 1B. The flat portion 1A is continuously formed over the entire length of the substrate 1.
The base material 1 applicable to the base material A for oxide superconducting conductors can be used as a base material for ordinary superconducting wires and has only to be high strength and heat resistance, and is used for long superconducting cables and superconducting coils. In view of heat resistance, those made of metal are preferable. For example, various heat-resistant metal materials such as stainless steel, copper alloy or nickel alloy, or those in which ceramics are arranged on these various metal materials can be used. Among various heat-resistant metals, nickel alloys are preferable, and if it is a commercial product, Hastelloy (trade name manufactured by Haynes, USA) is suitable, and the amount of components such as molybdenum, chromium, iron, cobalt, etc. is different as Hastelloy. Any kind of Hastelloy B, C, G, N, W, etc. can be used.

拡散防止層2は、基材1の構成元素拡散を防止する目的で形成されたもので、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)、あるいは、GZO(GdZr)等から構成され、その厚さは例えば10〜400nmである。
拡散防止層2の厚さが10nm未満となると、基材1の構成元素の拡散を十分に防止できなくなる虞がある。一方、拡散防止層2の厚さが400nmを超えると、拡散防止層2の内部応力が増大し、これにより、他の層を含めて全体が基材2から剥離しやすくなる傾向がある。また、拡散防止層2の結晶性は特に問われないので、通常のスパッタ法等の成膜法により形成すればよい。
The diffusion prevention layer 2 is formed for the purpose of preventing the diffusion of the constituent elements of the base material 1, and silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), or consists GZO (Gd 2 Zr 2 O 7 ) or the like, a thickness of 10~400nm example.
If the thickness of the diffusion preventing layer 2 is less than 10 nm, there is a possibility that the diffusion of the constituent elements of the substrate 1 cannot be sufficiently prevented. On the other hand, when the thickness of the diffusion preventing layer 2 exceeds 400 nm, the internal stress of the diffusion preventing layer 2 increases, and this tends to cause the whole including the other layers to be easily peeled off from the substrate 2. Further, since the crystallinity of the diffusion preventing layer 2 is not particularly limited, it may be formed by a film forming method such as a normal sputtering method.

ベッド層3は、耐熱性が高く、界面反応性を低減するためのものであり、その上に配される膜の配向性を得るために用いる。このようなベッド層3は、例えば、イットリア(Y)などの希土類酸化物であり、組成式(α2x(β(1−x)で示されるものが例示できる。より具体的には、Er、CeO、Dy、Er、Eu、Ho、La等を例示することができる。このベッド層3は、例えばスパッタリング法等の成膜法により形成され、その厚さは例えば10〜200nmである。 The bed layer 3 has high heat resistance and is used for reducing interfacial reactivity, and is used for obtaining the orientation of a film disposed thereon. Such a bed layer 3 is, for example, a rare earth oxide such as yttria (Y 2 O 3 ), and is represented by a composition formula (α 1 O 2 ) 2x2 O 3 ) (1-x). It can be illustrated. More specifically, Er 2 O 3, CeO 2 , Dy 2 O 3, Er 2 O 3, Eu 2 O 3, Ho 2 O 3, can be exemplified La 2 O 3 and the like. The bed layer 3 is formed by a film forming method such as a sputtering method, and has a thickness of 10 to 200 nm, for example.

中間層4は、単層構造あるいは複層構造のいずれでも良く、その上に積層されるキャップ層5などの結晶配向性を制御するために2軸配向する物質から形成される。中間層4として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物などを選択することができる。
この中間層4をIBAD法により良好な結晶配向性(例えば結晶配向度16゜以下)で成膜するならば、その上に形成するキャップ層5の結晶配向性を良好な値(例えばキャップ層において結晶配向度5゜前後)とすることができ、これによりキャップ層5の上に成膜する酸化物超電導層6の結晶配向性を良好なものとして優れた超電導特性を発揮できる酸化物超電導層を備えた酸化物超電導導体Aを得るようにすることができる。
The intermediate layer 4 may have either a single layer structure or a multi-layer structure, and is formed of a biaxially oriented material for controlling crystal orientation such as a cap layer 5 laminated thereon. Specific examples of the intermediate layer 4 include Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Metal oxides such as Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 can be selected.
If the intermediate layer 4 is formed with a good crystal orientation (for example, a crystal orientation of 16 ° or less) by the IBAD method, the crystal orientation of the cap layer 5 formed thereon has a good value (for example, in the cap layer). An oxide superconducting layer capable of exhibiting excellent superconducting properties with a good crystal orientation of the oxide superconducting layer 6 formed on the cap layer 5. The provided oxide superconducting conductor A can be obtained.

中間層4の厚さは、目的に応じて適宜調整すれば良いが、通常は、5〜300nmの範囲とすることができる。
中間層4は、イオンビームアシストスパッタ法(IBAD法)で積層する。このIBAD法で形成された中間層4は、結晶配向性が高く、酸化物超電導層6やキャップ層5の結晶配向性を制御する効果が高い点で好ましい。IBAD法とは、先にも説明した如く成膜時に、下地の成膜面に対して所定の角度でイオンビームをアシスト照射することにより、目的の薄膜の結晶軸を配向させる方法である。通常は、アシストイオンビームとして、アルゴン(Ar)イオンビームを使用する。例えば、MgOあるいはGdZrからなる中間層4は、IBAD法における結晶配向度を表す指標である結晶軸分散の半値幅ΔΦ(FWHM:半値全幅)の値を小さくできるため、特に好適である。
The thickness of the intermediate layer 4 may be appropriately adjusted according to the purpose, but can usually be in the range of 5 to 300 nm.
The intermediate layer 4 is laminated by an ion beam assisted sputtering method (IBAD method). The intermediate layer 4 formed by the IBAD method is preferable in that it has a high crystal orientation and a high effect of controlling the crystal orientation of the oxide superconducting layer 6 and the cap layer 5. The IBAD method is a method of orienting a crystal axis of a target thin film by assisting irradiation of an ion beam at a predetermined angle with respect to a base film-forming surface during film formation as described above. Usually, an argon (Ar) ion beam is used as the assist ion beam. For example, the intermediate layer 4 made of MgO or Gd 2 Zr 2 O 7 is particularly preferable because the value of the half-value width ΔΦ (FWHM: full width at half maximum) of crystal axis dispersion, which is an index representing the degree of crystal orientation in the IBAD method, can be reduced. It is.

キャップ層5は、前記中間層4の表面に対してエピタキシャル成長し、その後、横方向(面方向)に粒成長(オーバーグロース)して、結晶粒が面内方向に選択成長するという過程を経て形成されたものが好ましい。このようなキャップ層5は、前記金属酸化物層からなる中間層4よりも高い面内配向度が得られる。
キャップ層5の材質は、上記機能を発現し得るものであれば特に限定されないが、好ましいものとして具体的には、CeO、Y、Al、Gd、Zr、Ho、Nd等が例示できる。キャップ層5の材質がCeOである場合、キャップ層5は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。
The cap layer 5 is formed through a process of epitaxial growth with respect to the surface of the intermediate layer 4 and then grain growth (overgrowth) in the lateral direction (plane direction) and selective growth of crystal grains in the in-plane direction. The ones made are preferred. Such a cap layer 5 has a higher in-plane orientation degree than the intermediate layer 4 made of the metal oxide layer.
The material of the cap layer 5 is not particularly limited as long as it can exhibit the above functions, but specific examples of preferable materials include CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , and Zr 2. Examples thereof include O 3 , Ho 2 O 3 and Nd 2 O 3 . When the material of the cap layer 5 is CeO 2 , the cap layer 5 may include a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.

このCeOのキャップ層5は、PLD法(パルスレーザ蒸着法)、スパッタリング法等で成膜することができるが、大きな成膜速度を得られる点でPLD法を用いることが望ましい。PLD法によるCeOのキャップ層の成膜条件としては、基材温度約500〜1000℃、約0.6〜100Paの酸素ガス雰囲気中で行うことができる。
CeOのキャップ層5の膜厚は、50nm以上であればよいが、十分な配向性を得るには100nm以上が好ましい。但し、厚すぎると結晶配向性が悪くなるので、50〜5000nmの範囲、より好ましくは100〜5000nmの範囲とすることができる。
The CeO 2 cap layer 5 can be formed by a PLD method (pulse laser deposition method), a sputtering method, or the like, but it is desirable to use the PLD method in that a high film formation rate can be obtained. The film formation conditions for the CeO 2 cap layer by the PLD method can be performed in an oxygen gas atmosphere at a substrate temperature of about 500 to 1000 ° C. and about 0.6 to 100 Pa.
The thickness of the CeO 2 cap layer 5 may be 50 nm or more, but is preferably 100 nm or more in order to obtain sufficient orientation. However, if it is too thick, the crystal orientation deteriorates, so that it can be in the range of 50 to 5000 nm, more preferably in the range of 100 to 5000 nm.

酸化物超電導層6は公知のもので良く、具体的には、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のものを例示できる。この酸化物超電導層6として、Y123系(YBaCu7−X)又はGd123系(GdBaCu7−X)などを例示することができる。
酸化物超電導層6は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、化学気相成長法(CVD法)等の物理的蒸着法;熱塗布分解法(MOD法)等で積層することができ、なかでも生産性の観点から、TFA−MOD法(トリフルオロ酢酸塩を用いた有機金属堆積法、塗布熱分解法)、PLD法又はCVD法を用いることが好ましい。
このMOD法は、金属有機酸塩を塗布後熱分解させるもので、金属成分の有機化合物を均一に溶解した溶液を基材上に塗布した後、これを加熱して熱分解させることにより基材上に薄膜を形成する方法であり、真空プロセスを必要とせず、低コストで高速成膜が可能であるため長尺のテープ状酸化物超電導導体の製造に適している。
The oxide superconducting layer 6 may be a known one, and specifically, a material made of REBa 2 Cu 3 O y (RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd) is exemplified. it can. Examples of the oxide superconducting layer 6 include Y123 (YBa 2 Cu 3 O 7-X ) or Gd123 (GdBa 2 Cu 3 O 7-X ).
The oxide superconducting layer 6 is laminated by a physical vapor deposition method such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, chemical vapor deposition (CVD), or thermal coating decomposition (MOD). In particular, from the viewpoint of productivity, it is preferable to use the TFA-MOD method (organic metal deposition method using trifluoroacetate, coating pyrolysis method), PLD method or CVD method.
This MOD method is a method in which a metal organic acid salt is applied and then thermally decomposed. After a solution in which a metal component organic compound is uniformly dissolved is applied onto a substrate, the substrate is heated and thermally decomposed. This is a method of forming a thin film on top, and is suitable for the production of a long tape-shaped oxide superconducting conductor because it does not require a vacuum process and enables high-speed film formation at low cost.

前記酸化物超電導層6の上に積層されている安定化基層7はAgなどの良電導性かつ酸化物超電導層6と接触抵抗が低くなじみの良い金属材料からなる層として形成され、更にCuなどの良電導性金属材料の安定化層8を複合した積層構造とされている。前記安定化基層7はスパッタ法などの成膜法により形成することができ、安定化層8はメッキ法や箔の貼り付け法などにより形成することができる。   The stabilizing base layer 7 laminated on the oxide superconducting layer 6 is formed as a layer made of a metal material having good conductivity such as Ag and low contact resistance with the oxide superconducting layer 6 and is compatible with Cu. It is set as the laminated structure which compounded the stabilization layer 8 of the highly conductive metal material of this. The stabilizing base layer 7 can be formed by a film forming method such as sputtering, and the stabilizing layer 8 can be formed by a plating method or a foil attaching method.

図2は前述のIBAD法を実施するための成膜装置の一構造例を示す。
図2に示すイオンビームアシストスパッタ装置50は、長尺の基材1を配置する成膜領域Kに下向きに面するようにターゲット52がターゲットホルダ55に支持された状態で成膜室51に配置され、このターゲット52に対して斜め方向に対向するようにスパッタイオンソース源54が配置されるとともに、成膜領域Kに設置されている基材1の設置面の法線に対し所定の入射角度で(例えば入射角度θ=45゜など)斜め方向から対向するようにアシストイオンソース源53を配置し構成されている。
この例のイオンビームアシストスパッタ装置50は、真空チャンバが構成する成膜室51に各種機器が設けられる成膜装置であり、基材が長尺の基材1である場合、対向配置された第1のリール60から第2のリール61側に繰り出すように移動されて成膜領域Kを基材1が水平移動できるように構成されている。
この実施形態において適用されるイオンソース源53、54は、図3に示す如く容器56の内部に、引出電極57とフィラメント58を備え、容器56の外部にArガス等の導入管59を備えて構成され、容器56の先端からイオンをビーム状に平行に照射できるものである。
FIG. 2 shows an example of the structure of a film forming apparatus for carrying out the above-described IBAD method.
The ion beam assisted sputtering apparatus 50 shown in FIG. 2 is arranged in the film forming chamber 51 in a state where the target 52 is supported by the target holder 55 so as to face downward to the film forming region K where the long base material 1 is arranged. The sputter ion source source 54 is disposed so as to face the target 52 in an oblique direction, and a predetermined incident angle with respect to the normal of the installation surface of the substrate 1 installed in the film formation region K. (For example, the incident angle θ = 45 °), the assist ion source source 53 is arranged so as to face each other from an oblique direction.
The ion beam assisted sputtering apparatus 50 of this example is a film forming apparatus in which various devices are provided in a film forming chamber 51 that constitutes a vacuum chamber. When the base material is a long base material 1, The substrate 1 is moved so as to be fed out from one reel 60 to the second reel 61 side so that the substrate 1 can move horizontally in the film formation region K.
The ion source sources 53 and 54 applied in this embodiment include an extraction electrode 57 and a filament 58 inside a container 56 as shown in FIG. 3, and an introduction tube 59 such as Ar gas outside the container 56. It is comprised and can irradiate ion from the front-end | tip of the container 56 parallel to a beam form.

本実施形態で用いるイオンビームアシストスパッタ装置50を構成する真空チャンバは、外部と成膜空間とを仕切る容器であり、気密性を有するとともに、内部が高真空状態とされるため耐圧性を有するものとされる。この真空チャンバには、真空チャンバ内にキャリアガス及び反応ガスを導入するガス供給手段と、真空チャンバ内のガスを排気する排気手段が接続されているが、図2ではこれら供給手段と排気手段を略し、各装置の配置関係のみを示している。ここで用いるターゲット52とは、前述の中間層4を構成する材料に見合った組成のターゲットとすることができる。   The vacuum chamber constituting the ion beam assisted sputtering apparatus 50 used in the present embodiment is a container that partitions the outside and the film formation space, and has airtightness and pressure resistance because the inside is in a high vacuum state. It is said. The vacuum chamber is connected to a gas supply means for introducing a carrier gas and a reactive gas into the vacuum chamber, and an exhaust means for exhausting the gas in the vacuum chamber. In FIG. For brevity, only the arrangement relationship of each device is shown. The target 52 used here can be a target having a composition commensurate with the material constituting the intermediate layer 4 described above.

前記イオンビームアシストスパッタ装置50において、ターゲット52及びイオンソース源53と成膜空間Kとの間の位置に長方形状のシールド板62が前記リール60、61間に繰り出されている基材1を覆うように水平に配置されている。このシールド板62は、JIS規定SUS304(ステンレス鋼)などの金属製の長方形状の板材からなり、リール60、61の間の成膜空間Kをほぼカバーできる幅と長さに形成されており、その幅方向中央部には基材1よりも若干幅狭のスリット状の通過孔62aが形成されている。   In the ion beam assisted sputtering apparatus 50, a rectangular shield plate 62 covers the substrate 1 fed between the reels 60 and 61 at a position between the target 52 and the ion source source 53 and the film formation space K. Are arranged horizontally. The shield plate 62 is made of a metal rectangular plate material such as JIS standard SUS304 (stainless steel), and is formed to have a width and length that can substantially cover the film formation space K between the reels 60 and 61. A slit-shaped passage hole 62 a that is slightly narrower than the base material 1 is formed at the center in the width direction.

前記シールド板62の通過孔62aは、図5に示す如く、基材1を通過孔62aの下に水平に配置し、基材1の円周面部1Bの最上部1Cを通過孔62aの中央側に配置した状態とし、前記スリット状の通過孔62aの幅方向端縁62bを前記基材1の円周面部1Bに投影した位置において規定される前記円周面部1Bの接線Sの傾斜角度θ(前記シールド板62の表面に対する傾斜角度θ)が30゜以下、例えば5〜30゜の範囲になるように設定されている。また、この30゜以下の条件については、シールド板62の表面に対し、アシストイオンビームの入射角度θ2が45゜の場合の設定例の1つである。
ここで上述の傾斜角度θを30゜以下としたのは、イオンビームに対する基材表面の角度が適切な角度からずれた部分(領域)にイオンビームが当たるのを防ぐためでありる。
As shown in FIG. 5, the passage hole 62a of the shield plate 62 arranges the base material 1 horizontally below the passage hole 62a, and the uppermost portion 1C of the circumferential surface portion 1B of the base material 1 is located on the center side of the passage hole 62a. And the angle of inclination θ of the tangent S of the circumferential surface portion 1B defined at a position where the edge 62b in the width direction of the slit-shaped passage hole 62a is projected onto the circumferential surface portion 1B of the substrate 1. The inclination angle θ) with respect to the surface of the shield plate 62 is set to be 30 ° or less, for example, 5 to 30 °. The condition of 30 ° or less is one of setting examples when the incident angle θ2 of the assist ion beam with respect to the surface of the shield plate 62 is 45 °.
The reason why the inclination angle θ is set to 30 ° or less is to prevent the ion beam from hitting a portion (region) where the angle of the substrate surface with respect to the ion beam deviates from an appropriate angle.

また、前記スリット状の通過孔62aのより好ましい幅として、該通過孔62aを介し前記基材1の円周面部1Bに対し斜め方向から入射するアシストイオンビームが、前記円周面部1Bに対するアシストイオンビームの照射範囲内のいずれの位置であっても、前記特定のアシストイオンビームの入射角度に対し±15゜の範囲に収まるような幅に設定されていることが好ましい。
ただし、傾斜角度を小さくし過ぎるとシールド板の通過孔の幅が小さくなり過ぎ、基材1を回転させてその周方向に中間層を順次成膜する際の工程数が不要に増加することも加味すると、実用的な傾斜角度θの範囲は15〜20゜の範囲が好ましい。
Further, as a more preferable width of the slit-shaped passage hole 62a, an assist ion beam incident from an oblique direction to the circumferential surface portion 1B of the substrate 1 through the passage hole 62a is assisted ions with respect to the circumferential surface portion 1B. It is preferable that the width is set to be within a range of ± 15 ° with respect to the incident angle of the specific assist ion beam at any position within the beam irradiation range.
However, if the inclination angle is too small, the width of the passage hole of the shield plate becomes too small, and the number of steps when the intermediate layer is sequentially formed in the circumferential direction by rotating the substrate 1 may increase unnecessarily. Considering this, the range of the practical inclination angle θ is preferably in the range of 15 to 20 °.

なお、図2に示すイオンビームアシストスパッタ装置50において、基材1を回転するための機構として、リール60、61の中心軸Cを軸支する機構に回転機構が組み込まれ、リール60、61とこれらの間に繰り出されている基材1をまとめて図2の矢印E、Eの方向に回転できる構成とされている。回転機構の一例として、リール60、61の中心軸Cの両端を軸支するC字型やY字型の軸支部材を同期回転するように構成すれば、リール60、61間に繰り出されている基材1をその周回りに回転することができる。 In the ion beam assisted sputtering apparatus 50 shown in FIG. 2, as a mechanism for rotating the substrate 1, a rotation mechanism is incorporated in a mechanism that supports the central axis C of the reels 60 and 61. collectively substrate 1 which is fed between them are configured to be rotated in the direction of arrow E 1, E 2 of Figure 2. As an example of the rotation mechanism, if a C-shaped or Y-shaped shaft support member that supports both ends of the central axis C of the reels 60 and 61 is configured to rotate synchronously, the reels 60 and 61 are extended between the reels 60 and 61. The substrate 1 can be rotated around its circumference.

図2に示す構造のイオンビームアシストスパッタ装置50を用いることでIBAD法を実施し、基材1の外周面に目的の中間層4を成膜することができる。
IBAD法により中間層4を成膜する場合、図2に示すターゲット52、イオンソース源53、54及び基材1を収容している真空チャンバには、Arガスや酸素ガスなどのソースガスを導入できるように構成されており、内部を例えば目的の真空度に調整した上でAr:O=9:1などの混合ガス雰囲気(ソースガス雰囲気)に調整できるように構成されている。
本実施形態で用いる真空チャンバでは、真空ポンプを用いた減圧雰囲気に、例えば背圧でもって、0.008Pa〜0.00008Paの範囲の所望の真空度に調節できるようになっている。この範囲の真空度には、真空ポンプによる減圧に要する時間を適宜調整することで到達することができる。
By using the ion beam assisted sputtering apparatus 50 having the structure shown in FIG. 2, the IBAD method can be performed, and the target intermediate layer 4 can be formed on the outer peripheral surface of the substrate 1.
When the intermediate layer 4 is formed by the IBAD method, a source gas such as Ar gas or oxygen gas is introduced into the vacuum chamber containing the target 52, the ion source sources 53 and 54, and the substrate 1 shown in FIG. For example, the inside is adjusted to a desired degree of vacuum and then adjusted to a mixed gas atmosphere (source gas atmosphere) such as Ar: O 2 = 9: 1.
The vacuum chamber used in the present embodiment can be adjusted to a desired degree of vacuum in the range of 0.008 Pa to 0.00008 Pa in a reduced pressure atmosphere using a vacuum pump, for example, with back pressure. The degree of vacuum in this range can be reached by appropriately adjusting the time required for pressure reduction by the vacuum pump.

そして、基材1のベッド層3上に中間層4を成膜するには、真空ポンプにより減圧する際の成膜雰囲気の背圧を目的の値に設定した後、前記ソースガスを導入し、スパッタイオン源54からターゲット52にイオンビームを照射してターゲット粒子の叩き出しや放出を行い、ベッド層3上に中間層4の粒子堆積を行うと同時に、ベッド層3の成膜面に対し斜め45゜方向からアシストイオン源53からのイオンビーム照射を行いつつ成膜するイオンビームアシストスパッタ法を実施する。イオンビームアシストスパッタ法を実施する際の成膜温度は常温で差し支えない。   And in order to form the intermediate | middle layer 4 on the bed layer 3 of the base material 1, after setting the back pressure of the film-forming atmosphere at the time of pressure reduction with a vacuum pump to the target value, the said source gas is introduce | transduced, The target 52 is irradiated with an ion beam from the sputter ion source 54 to eject and eject target particles, and the particles of the intermediate layer 4 are deposited on the bed layer 3 and at the same time oblique to the film formation surface of the bed layer 3. An ion beam assisted sputtering method for forming a film while irradiating an ion beam from the assist ion source 53 from the 45 ° direction is performed. The film forming temperature at the time of performing the ion beam assisted sputtering method may be normal temperature.

イオンビームアシストスパッタ法を実施して基材1の外周部の全面に中間層4を形成するためには、図4(A)に示す如く基材1の幅方向両端側をシールド板62で覆い隠しながら中間層の構成粒子堆積を行うと、ターゲット52から飛来するとともに通過孔62aの部分を通過したスパッタ粒子のみが例えば斜め方向45゜からのアシストイオンビームの照射を受けながら堆積されて通過孔62aの下側領域の円周面部1Bにのみ中間層4が成膜される。ここで、前述の傾斜角度θを30゜以下としているので、斜め方向45゜の入射角度で照射されるアシストイオンビームは通過孔62aの下側に位置する基材1の円周面部1Bに対し適正な許容範囲の入射角度で入射される結果、通過孔62aの下側の円周面部1Bに成膜される中間層4の結晶配向性が整った状態となり、目的の結晶配向性の中間層4を円周面部1Bに形成できる。   In order to form the intermediate layer 4 on the entire outer peripheral portion of the substrate 1 by performing the ion beam assisted sputtering method, as shown in FIG. When depositing the constituent particles of the intermediate layer while concealing, only the sputtered particles that fly from the target 52 and pass through the passage hole 62a are deposited while being irradiated with an assist ion beam from an oblique direction of 45 °, for example. The intermediate layer 4 is formed only on the circumferential surface portion 1B in the lower region of 62a. Here, since the aforementioned inclination angle θ is set to 30 ° or less, the assist ion beam irradiated at an incident angle of 45 ° in the oblique direction is directed to the circumferential surface portion 1B of the base material 1 positioned below the passage hole 62a. As a result of being incident at an incident angle of an appropriate allowable range, the intermediate layer 4 formed on the circumferential surface portion 1B on the lower side of the passage hole 62a is in a state where the crystal orientation is in order, and the intermediate layer having the target crystal orientation is obtained. 4 can be formed on the circumferential surface portion 1B.

目的の膜厚の中間層4を基材1の円周面部1B上に成膜したならば、図4(A)に示す状態から基材1を図4(B)に示す如く所定角度右回りに回転させて所定時間保持すると、基材1の円周面部1B上の他の位置に通過孔62aを介し粒子が堆積されて先に形成した中間層4に隣接する位置に中間層4を形成できる。この粒子堆積処理を図4(B)〜図4(E)に示す如く所定角度毎に行うと、基材1の円周面部1Bの外周部にその周方向に沿って順次中間層4を形成できるので、更に粒子堆積と基材1の回転操作を順次行うことで基材1の円周面部1Bと平面部1Aを含めた全周に対し中間層4を形成できる。なお、図4(A)〜(E)には基材1の円周面部1Bに対し最初に成膜した領域を矢印Fで示しており、図4(A)〜(E)において基材1を回転した際の回転角度が分かり易いように表示している。   If the intermediate layer 4 having a desired film thickness is formed on the circumferential surface portion 1B of the base material 1, the base material 1 is turned clockwise by a predetermined angle as shown in FIG. 4 (B) from the state shown in FIG. 4 (A). When the intermediate layer 4 is rotated and held for a predetermined time, the intermediate layer 4 is formed at a position adjacent to the previously formed intermediate layer 4 by depositing particles through the passage holes 62a at other positions on the circumferential surface portion 1B of the base material 1. it can. When this particle deposition process is performed at predetermined angles as shown in FIGS. 4B to 4E, the intermediate layer 4 is sequentially formed along the circumferential direction on the outer peripheral portion of the circumferential surface portion 1B of the substrate 1. Therefore, the intermediate layer 4 can be formed on the entire circumference including the circumferential surface portion 1B and the flat surface portion 1A of the substrate 1 by sequentially performing the particle deposition and the rotation operation of the substrate 1. 4 (A) to 4 (E), an area where the film is first formed on the circumferential surface portion 1B of the base material 1 is indicated by an arrow F. In FIGS. 4 (A) to (E), the base material 1 is shown. It is displayed so that the rotation angle when rotating can be easily understood.

基材1の外周部に形成した平面部1Aについては、図4(A)〜(E)に示す如く所定角度基材1を回転する場合の回転角度の目印として利用できる。本実施形態では、平面部1Aについても通過孔62aの下に位置させた状態で中間層4を成膜する面とする。なお、平面部1A上への中間層4の堆積を略して基材1の円周面部1Bの全周面にのみ中間層4の堆積を行うようにしても良い。
基材1の全周面に中間層4を形成したならば、シールド板62の下方に位置させて中間層4を成膜した部分の基材1をリール61側に移動させてリール60側から中間層未形成の基材1を繰り出し、中間層未形成の基材1をシールド板62の通過孔62aの下に位置させた後、再度、図4(A)〜(E)に示す如く基材1を回転させながらその全周面に中間層4を成膜する操作を行う。この基材1の回転操作とリール60側からリール61側への基材1の繰り出し操作を繰り返し行うことにより、基材1の全長にわたりその全周に中間層4を成膜することができる。
About the plane part 1A formed in the outer peripheral part of the base material 1, as shown to FIG. 4 (A)-(E), it can utilize as a mark of the rotation angle in the case of rotating the base material 1 by a predetermined angle. In the present embodiment, the planar portion 1A is also a surface on which the intermediate layer 4 is formed in a state where the planar portion 1A is positioned below the passage hole 62a. The intermediate layer 4 may be deposited only on the entire peripheral surface of the circumferential surface portion 1B of the substrate 1 by omitting the deposition of the intermediate layer 4 on the flat surface portion 1A.
If the intermediate layer 4 is formed on the entire peripheral surface of the base material 1, the part of the base material 1 where the intermediate layer 4 is formed by being positioned below the shield plate 62 is moved to the reel 61 side to start from the reel 60 side. After the base material 1 without the intermediate layer is fed out and the base material 1 without the intermediate layer is positioned below the passage hole 62a of the shield plate 62, the base material 1 is again formed as shown in FIGS. While rotating the material 1, an operation for forming the intermediate layer 4 on the entire circumferential surface is performed. By repeatedly performing the rotation operation of the base material 1 and the operation of feeding the base material 1 from the reel 60 side to the reel 61 side, the intermediate layer 4 can be formed over the entire circumference of the base material 1.

基材1の全長および全周面に中間層4を形成したならば、基材1の中間層4の上に上述したPLD法あるいはスパッタ法などに従い、キャップ層5を成膜する。キャップ層5を基材1の全周面に形成する場合、PLD法で成膜する場合は、その成膜装置内に、スパッタリング法で成膜する場合はその成膜装置内に、上述したリール60、61と同等の機構を組み込み、基材1を回転させながら順次成膜し、基材1を長さ方向に一方のリールから他方のリール側に繰り出して基材1の中間層4上にキャップ層5を成膜すればよい。
このキャップ層5は上述の材料からなる層として成膜すると、自己配向効果により中間層4の結晶配向性よりも更に良好な結晶配向性を示すようになり、例えば、Δφの値において5゜程度の良好な結晶配向性を得ることができる。
When the intermediate layer 4 is formed on the entire length and the entire peripheral surface of the base material 1, the cap layer 5 is formed on the intermediate layer 4 of the base material 1 according to the PLD method or the sputtering method described above. When the cap layer 5 is formed on the entire peripheral surface of the substrate 1, the reel described above is formed in the film forming apparatus when the film is formed by the PLD method, and in the film forming apparatus when the film is formed by the sputtering method. A mechanism equivalent to 60 and 61 is incorporated, and the base material 1 is sequentially formed while rotating, and the base material 1 is drawn out from one reel to the other reel in the length direction on the intermediate layer 4 of the base material 1. The cap layer 5 may be formed.
When the cap layer 5 is formed as a layer made of the above-mentioned material, it exhibits a better crystal orientation than the crystal orientation of the intermediate layer 4 due to the self-orientation effect. For example, the value of Δφ is about 5 °. Excellent crystal orientation can be obtained.

その後、基材1のキャップ層5上に酸化物超電導層6を形成する。ここで図1に示す構造のように、良好な配向性を有するキャップ層5上に酸化物超電導層6を形成すると、このキャップ層5上に積層される酸化物超電導層6もキャップ層5の配向性に整合するように結晶化する。酸化物超電導層6の成膜時においてもキャップ層5の成膜と同様に、成膜装置内に設けた一方のリールから他方のリール側に基材1を繰り出し、回転させながら成膜することで基材1の全周に酸化物超電導層6を成膜できる。
前記キャップ層5上に形成された酸化物超電導層6は、結晶配向性に乱れが殆どなく、この酸化物超電導層6を構成する結晶粒の1つ1つにおいては、基材1の径方向に電気を流しにくいc軸が配向し、基材1の長さ方向にa軸どうしあるいはb軸どうしが2軸配向している。従って得られた酸化物超電導層6は、結晶粒界における量子的結合性に優れ、結晶粒界における超電導特性の劣化が殆どないので、基材1の長さ方向に電気を流し易くなり、十分に高い臨界電流密度を示す外径円形断面構造の酸化物超電導導体Aが得られる。
Thereafter, the oxide superconducting layer 6 is formed on the cap layer 5 of the substrate 1. Here, when the oxide superconducting layer 6 is formed on the cap layer 5 having good orientation as in the structure shown in FIG. 1, the oxide superconducting layer 6 laminated on the cap layer 5 is also formed of the cap layer 5. Crystallize to match the orientation. When the oxide superconducting layer 6 is formed, similarly to the formation of the cap layer 5, the substrate 1 is fed from one reel provided in the film forming apparatus to the other reel side and is formed while rotating. Thus, the oxide superconducting layer 6 can be formed on the entire circumference of the substrate 1.
The oxide superconducting layer 6 formed on the cap layer 5 has almost no disorder in the crystal orientation. In each of the crystal grains constituting the oxide superconducting layer 6, the radial direction of the base material 1 is used. The c-axis is difficult to pass electricity to, and the a-axis or the b-axis is biaxially oriented in the length direction of the substrate 1. Therefore, the obtained oxide superconducting layer 6 is excellent in quantum connectivity at the crystal grain boundary, and hardly deteriorates in the superconducting characteristics at the crystal grain boundary. An oxide superconducting conductor A having an outer diameter circular cross-sectional structure exhibiting a very high critical current density is obtained.

図1に示す構造の酸化物超電導導体Aであるならば、円形断面に近い基材1の外周面に酸化物超電導層6を有し、酸化物超電導導体Aの全体として円形断面に類似する導体形状とされるので、従来のテープ状の酸化物超電導導体と異なり、曲げ加工の自由度が高いので、巻き胴に巻回して超電導コイルを構成する場合の作業性が向上する。また、巻き胴に巻回する場合、巻き胴周面側に平面部1Aを向けるように巻き付けることで巻き付け方向の目安とすることができる。更に、断面略円形状の基材1の外周面に酸化物超電導層6を備えた導体構造であるならば、酸化物超電導導体Aを巻き胴に巻回して超電導コイルとした場合に交流損失の抑制に寄与する。
なお、外周面全部に酸化物超電導層6を有する構造であるならば、超電導コイルとした場合、磁場の方向性による影響を受け難い特徴がある。即ち、超電導コイルが発生させた磁場のベクトル成分が酸化物超電導層6に対して直角向きとなる領域では、その領域の超電導特性が磁場の影響で劣化するおそれを有するが、基材1の外周面の全体に酸化物超電導層6が形成されていると、基材1の周方向の一部の領域で磁場の影響を受けてその領域の超電導特性が部分的に劣化することが生じても、基材1の周方向の他の領域の酸化物超電導層6が超電導特性を維持するので、酸化物超電導導体Aの全体として見た場合に超電導特性劣化を少なくすることができる。
この点において、仮に、基材1の外周面の一部分のみに沿って帯状の酸化物超電導層を有した構造の酸化物超電導導体を用いて超電導コイルを形成した場合、超電導コイルが磁場を発生させると、長尺の酸化物超電導導体の長さ方向のいずれかの部位における酸化物超電導層全体が特性劣化するおそれがあり、これが原因となって超電導特性劣化につながるおそれがある。従って上述の構成の酸化物超電導導体Aであるならば、コイル化した場合の特性劣化を抑制できる効果がある。
In the case of the oxide superconducting conductor A having the structure shown in FIG. 1, the oxide superconducting layer 6 is provided on the outer peripheral surface of the substrate 1 close to a circular cross section, and the oxide superconducting conductor A as a whole is similar to the circular cross section. Since it has a shape, unlike the conventional tape-shaped oxide superconducting conductor, it has a high degree of freedom in bending, so that workability in the case of forming a superconducting coil by winding it around a winding drum is improved. Moreover, when winding around a winding drum, it can be set as the standard of a winding direction by winding so that the plane part 1A may face the winding drum surrounding surface side. Further, if the conductor structure has the oxide superconducting layer 6 on the outer peripheral surface of the substrate 1 having a substantially circular cross section, when the oxide superconducting conductor A is wound around a winding drum to form a superconducting coil, the AC loss is reduced. Contributes to suppression.
In addition, if it is a structure which has the oxide superconducting layer 6 in the whole outer peripheral surface, when it is set as a superconducting coil, there exists the characteristic which is hard to be influenced by the directionality of a magnetic field. That is, in the region where the vector component of the magnetic field generated by the superconducting coil is perpendicular to the oxide superconducting layer 6, the superconducting characteristics of that region may deteriorate due to the influence of the magnetic field. If the oxide superconducting layer 6 is formed on the entire surface, even if the superconducting property of the region is partially deteriorated due to the influence of the magnetic field in a region of the substrate 1 in the circumferential direction. Since the oxide superconducting layer 6 in other regions in the circumferential direction of the substrate 1 maintains the superconducting characteristics, deterioration of the superconducting characteristics can be reduced when viewed as a whole of the oxide superconducting conductor A.
In this regard, if a superconducting coil is formed using an oxide superconducting conductor having a structure having a band-shaped oxide superconducting layer along only a part of the outer peripheral surface of the substrate 1, the superconducting coil generates a magnetic field. In addition, there is a possibility that the entire oxide superconducting layer at any part in the length direction of the long oxide superconducting conductor may deteriorate in characteristics, which may lead to deterioration in superconducting characteristics. Therefore, the oxide superconducting conductor A having the above-described configuration has an effect of suppressing deterioration of characteristics when coiled.

図6は本発明に係る第2実施形態の酸化物超電導導体用基材を備えた酸化物超電導導体の一例を模式的に示す部分断面図である。
この実施形態の酸化物超電導導体Bは、横断面略4角形状の長尺の金属製基材11の外周面に、拡散防止層12と、ベッド層13と、IBAD法による中間層14と、キャップ層15と、酸化物超電導層16と、安定化基層17と、安定化層18とを順次積層して構成されている。本実施形態において、基材11上に拡散防止層12とベッド層13と中間層14を積層することによって酸化物超電導導体用基材19が構成されている。
前記金属基材11は、その周方向に平面部11Aと円周面部11Bとが交互に4つ配置されてなる略4角形状とされている。よって、酸化物超電導導体Bは全体として略4角形状に形成されている。
FIG. 6 is a partial cross-sectional view schematically showing an example of an oxide superconducting conductor provided with the base material for oxide superconducting conductor according to the second embodiment of the present invention.
The oxide superconducting conductor B of this embodiment has a diffusion prevention layer 12, a bed layer 13, an intermediate layer 14 by IBAD method on the outer peripheral surface of a long metal base 11 having a substantially rectangular cross section, The cap layer 15, the oxide superconducting layer 16, the stabilization base layer 17, and the stabilization layer 18 are sequentially stacked. In this embodiment, the base material 19 for oxide superconducting conductors is configured by laminating the diffusion prevention layer 12, the bed layer 13, and the intermediate layer 14 on the base material 11.
The metal base 11 has a substantially quadrangular shape in which four planar portions 11A and four circumferential surface portions 11B are alternately arranged in the circumferential direction. Therefore, the oxide superconducting conductor B is formed in a substantially quadrangular shape as a whole.

この実施形態の酸化物超電導導体Bにあっても、先の第1実施形態の酸化物超電導導体Aと同様に通過孔62aを有するシールド板62を用いて円周面部11Bの部分に酸化物超電導層16を成膜できる。なお、円周面部11Bの部分について成膜する場合は、シールド板62の通過孔62aの幅を円周面部11Bの幅より若干狭く形成しておき、円周面部11Bに成膜している場合にその両側の平面部11A上に成膜がなされないようにすることが好ましい。
更に、平面部11Aの部分について成膜する場合は、シールド板62の通過孔62aの幅を平面部11Aの幅より若干狭く形成しておき、平面部11Aに成膜している場合に隣接する円周面部11B上に成膜がなされないようにすることがより好ましい。また、シールド板62の通過孔62aの幅については、先の第1実施形態の場合と同様に、アシストイオンビームが通過孔62aを介して円周面部11Bのいずれの位置に入射されても許容範囲のイオンビームの入射角となるように設定する点については同様である。
Even in the oxide superconducting conductor B of this embodiment, the oxide superconducting material is formed on the circumferential surface portion 11B by using the shield plate 62 having the passage hole 62a as in the oxide superconducting conductor A of the first embodiment. Layer 16 can be deposited. When the film is formed on the circumferential surface portion 11B, the width of the passage hole 62a of the shield plate 62 is slightly narrower than the width of the circumferential surface portion 11B, and the film is formed on the circumferential surface portion 11B. In addition, it is preferable that no film is formed on the planar portions 11A on both sides.
Further, when the film is formed on the portion of the flat portion 11A, the width of the passage hole 62a of the shield plate 62 is slightly narrower than the width of the flat portion 11A, and adjacent to the case where the film is formed on the flat portion 11A. More preferably, no film is formed on the circumferential surface portion 11B. Further, the width of the passage hole 62a of the shield plate 62 is allowable regardless of the position of the circumferential surface portion 11B through the passage hole 62a, as in the case of the first embodiment. The same is true for setting the incident angle of the ion beam within a range.

図6に示す断面構造の酸化物超電導導体Bにあっても、第1実施形態の酸化物超電導導体Aと同様の作用効果を得ることができる。   Even in the oxide superconducting conductor B having the cross-sectional structure shown in FIG. 6, it is possible to obtain the same effects as the oxide superconducting conductor A of the first embodiment.

図7は本発明に係る第3実施形態の酸化物超電導導体用基材を備えた酸化物超電導導体の一例を模式的に示す部分断面図である。
この実施形態の酸化物超電導導体Cは、横断面略4角形状でかつその各周面が全長に渡り所定のピッチで螺旋状に旋回された柱状の長尺の金属製基材11の外周面に、拡散防止層22と、ベッド層23と、IBAD法による中間層24と、キャップ層25と、酸化物超電導層26と、安定化基層27と、安定化層28とを順次積層し構成されている。本実施形態において、基材21上に拡散防止層22とベッド層23と中間層24を積層することによって酸化物超電導導体用基材29が構成されている。
前記金属製の基材21は、その周方向に平面部21Aと円周面部21Bとが交互に4つずつ配置されてなる略4角形状とされ、それら4つの平面部21Aと円周面部21Bとが基材21の全長に渡り所定のピッチで螺旋状に形成されている。
図7に示す断面構造の酸化物超電導導体Cにあっても、第1実施形態の酸化物超電導導体Aと同様の作用効果を得ることができる。
FIG. 7 is a partial cross-sectional view schematically showing an example of an oxide superconducting conductor provided with the base material for an oxide superconducting conductor according to the third embodiment of the present invention.
The oxide superconducting conductor C of this embodiment has a substantially rectangular cross section and each outer peripheral surface of the columnar long metal substrate 11 spirally swung at a predetermined pitch over the entire length. Further, the diffusion prevention layer 22, the bed layer 23, the intermediate layer 24 by the IBAD method, the cap layer 25, the oxide superconducting layer 26, the stabilization base layer 27, and the stabilization layer 28 are sequentially laminated. ing. In this embodiment, the base material 29 for oxide superconducting conductors is configured by laminating the diffusion prevention layer 22, the bed layer 23, and the intermediate layer 24 on the base material 21.
The metal base material 21 has a substantially quadrangular shape in which four plane portions 21A and four circumferential surface portions 21B are alternately arranged in the circumferential direction, and the four planar portions 21A and the circumferential surface portion 21B. Are formed in a spiral shape at a predetermined pitch over the entire length of the substrate 21.
Even in the oxide superconducting conductor C having the cross-sectional structure shown in FIG. 7, it is possible to obtain the same effects as the oxide superconducting conductor A of the first embodiment.

この実施形態の酸化物超電導導体Cを製造するには、平面部21Aが基材21の長さ方向に所定のピッチで螺旋状に旋回するように形成されているので、成膜装置の成膜領域に配置するシールド板に設ける通過孔62cについて基材21の所定長さの平面部21Aに対応した幅と長さの形状とする。ここでの通過孔62cの所定長さと幅とは、基材21の所定の長さ範囲の平面部21に対し、アシストイオンビームの入射角度の許容範囲が先の実施形態の場合と同様に確保される所定長さを意味し、その他の部分はシールド板が覆い隠すことができる構成としてシールド板を構成する。   In order to manufacture the oxide superconducting conductor C of this embodiment, the planar portion 21A is formed so as to spirally spiral at a predetermined pitch in the length direction of the substrate 21, so that the film formation of the film forming apparatus is performed. The passage hole 62c provided in the shield plate disposed in the region has a width and length shape corresponding to the planar portion 21A having a predetermined length of the base material 21. Here, the predetermined length and width of the passage hole 62c ensure the allowable range of the incident angle of the assist ion beam with respect to the plane portion 21 of the predetermined length range of the base material 21 as in the previous embodiment. The shield plate is configured as a configuration that can be concealed by the shield plate.

このシールド板の通過孔62cを基材21の所定長さ範囲の平面部21Aに対向させた状態で基材21をその周回りに少しずつ回転させながら基材21の長手方向に一方のリールから他方のリールに基材21を移動させつつ成膜することで、基材21の長さ方向に所定のピッチで螺旋状に配置される1つの連続した平面部21Aに対し中間層24を成膜できるので、残り3つの平面部21Aに対し順次成膜してゆくことで、基材21の全長に渡り螺旋状に配置された、4つの平面部21Aに対しそれぞれ中間層24を成膜できる。
図7に一例としてシールド板の通過孔62cの輪郭を2点鎖線にて示すが、この通過孔62cに沿って粒子が堆積される範囲を基材21の長さ方向に基材21を所定角度ずつ回転させながら移動させることで、螺旋状の所定ピッチの平面部21Aに対応した中間層24の成膜ができる。
While the passage hole 62c of the shield plate is opposed to the flat surface portion 21A of the predetermined length range of the base material 21, the base material 21 is rotated little by little around its circumference from the one reel in the longitudinal direction of the base material 21. By forming the film while moving the base material 21 to the other reel, the intermediate layer 24 is formed on one continuous plane portion 21A spirally arranged at a predetermined pitch in the length direction of the base material 21. Therefore, by sequentially forming the film on the remaining three flat portions 21A, the intermediate layer 24 can be formed on each of the four flat portions 21A arranged in a spiral shape over the entire length of the base material 21.
As an example, the outline of the passage hole 62c of the shield plate is shown by a two-dot chain line in FIG. 7, and the range in which particles are deposited along the passage hole 62c is set at a predetermined angle in the length direction of the base material 21. The intermediate layer 24 corresponding to the planar portion 21A having a predetermined spiral pitch can be formed by moving while rotating each time.

なお、基材21の円周面部21Bに沿って所定ピッチの螺旋状の範囲に成膜するには、図7の2点鎖線で囲む通過孔62dを備えたシールド板を用いて基材21の長さ方向に基材21を移動させながら所定角度ずつ回転させることで、螺旋状の所定ピッチの円周面部21Bに対応した中間層24の成膜ができる。   In addition, in order to form a film in a spiral range of a predetermined pitch along the circumferential surface portion 21B of the base material 21, a shield plate provided with a passage hole 62d surrounded by a two-dot chain line in FIG. By rotating the base material 21 by a predetermined angle while moving the base material 21 in the length direction, it is possible to form the intermediate layer 24 corresponding to the circumferential surface portion 21B having a predetermined spiral shape.

なおまた、本実施形態の酸化物超電導導体Cにおいては、円周面部21Bに中間層24を形成することなく、平面部21Aに沿ってのみ中間層24を形成し、その中間層24の上のみキャップ層25と酸化物超電導層26と安定化基層27と安定化層28を構成しても良い。その場合、円周面部21Bには酸化物超電導層26が形成されないので、基材21の周面には4本の酸化物超電導層26が所定のピッチで螺旋状に形成された撚線構造の酸化物超電導導体を得ることができる。
この例の酸化物超電導導体であるならば、酸化物超電導層を基材21の外周面に撚線構造(螺旋構造)として設けることができるので、撚線状あるいは転移構造の酸化物超電導導体を得ることができる。この構造の酸化物超電導導体であるならば、交流損失を抑制できる酸化物超電導導体を得ることができる効果がある。
In the oxide superconducting conductor C of the present embodiment, the intermediate layer 24 is formed only along the plane portion 21A without forming the intermediate layer 24 on the circumferential surface portion 21B, and only on the intermediate layer 24. The cap layer 25, the oxide superconducting layer 26, the stabilizing base layer 27, and the stabilizing layer 28 may be configured. In that case, since the oxide superconducting layer 26 is not formed on the circumferential surface portion 21B, a stranded wire structure in which four oxide superconducting layers 26 are spirally formed at a predetermined pitch on the circumferential surface of the base material 21. An oxide superconductor can be obtained.
In the case of the oxide superconducting conductor of this example, the oxide superconducting layer can be provided on the outer peripheral surface of the substrate 21 as a twisted wire structure (spiral structure). Obtainable. If it is an oxide superconducting conductor of this structure, there exists an effect which can obtain the oxide superconducting conductor which can suppress an alternating current loss.

以上、本発明に係る酸化物超電導導体用基材A、B、Cの各実施形態について説明したが、これらの実施形態において、超電導導体を構成する各部は一例であって、本発明の範囲を逸脱しない範囲で適宜変更することができる。
例えば、基材の断面形状は、先の形態の形状に限らず、断面楕円形状の少なくとも1カ所に平面部を設けた略楕円形状の基材、多角形状の基材の角部に円周面部を設けた略多角形状の基材などに本発明を適用できるのは勿論である。
As mentioned above, although each embodiment of the base materials A, B, and C for oxide superconducting conductors according to the present invention has been described, in these embodiments, each part constituting the superconducting conductor is an example, and the scope of the present invention is within the scope of the present invention. Changes can be made as appropriate without departing from the scope.
For example, the cross-sectional shape of the base material is not limited to the shape of the previous form, but a substantially elliptical base material in which a flat surface portion is provided in at least one place of the elliptical cross-sectional shape, a circumferential surface portion at a corner of the polygonal base material Needless to say, the present invention can be applied to a substantially polygonal base material provided with the.

以下に、本発明の具体的実施例について説明するが、本願発明はこれらの実施例に限定されるものではない。
直径10mmの円形断面を有し、外周面に幅2mmの平面部をその全長20mに有する長尺のハステロイC276(米国ヘインズ社商品名)からなる図1に示す略円形断面形状の基材上に、スパッタ法によりAlの拡散防止層(厚さ150nm)とYのベッド層(厚さ20nm)をスパッタ法により積層した。基材の全外周面に拡散防止層とベッド層を形成するには、これらの層を形成する際に用いたスパッタ装置の内部において基材を回転させながら成膜することで全周面に成膜した。
この積層体に対して図2に示す成膜装置を用いてイオンビームアシストスパッタ法によりMgOの中間層を形成した。
イオンビームアシストスパッタ法を実施するにあたり、前記基材を一方のリール部材に巻き付け、基材の他方端を他方のリール部材に巻き掛け、両方のリール間に基材を繰り出し図2に示す構成の成膜装置の成膜空間に配置した。
Specific examples of the present invention will be described below, but the present invention is not limited to these examples.
On a base material having a substantially circular cross section shown in FIG. 1, which is made of a long Hastelloy C276 (trade name of US Haynes Co., Ltd.) having a circular cross section with a diameter of 10 mm and a flat portion with a width of 2 mm on the outer peripheral surface with a total length of 20 m. Then, an Al 2 O 3 diffusion prevention layer (thickness 150 nm) and a Y 2 O 3 bed layer (thickness 20 nm) were laminated by sputtering. In order to form the diffusion prevention layer and the bed layer on the entire outer peripheral surface of the base material, the film is formed on the entire peripheral surface by rotating the base material inside the sputtering apparatus used to form these layers. Filmed.
An intermediate layer of MgO was formed on this laminate by ion beam assisted sputtering using the film forming apparatus shown in FIG.
In carrying out the ion beam assisted sputtering method, the base material is wound around one reel member, the other end of the base material is wound around the other reel member, and the base material is fed between both reels. It was arranged in the film forming space of the film forming apparatus.

基材の幅よりも小さい幅5mmのスリット状の通過孔を有するステンレス鋼(SUS304)製の幅300mmの長方形板状のシールド板を基材に沿って配置し、リール部材間に繰り出した基材の幅方向両端側を覆い隠すようにした。この状態において両方のリール間に位置する基材をMgOのターゲットに対し露出させ、この状態でイオンビームアシストスパッタ法を実施してMgO中間層の成膜を行った。
前記シールド板の通過孔において、その幅方向端縁部をその下方の基材の円周面部に投影した位置における円周面部に対する接線の傾斜角度θは15゜である。
A base plate in which a rectangular plate shield plate made of stainless steel (SUS304) made of stainless steel (SUS304) having a slit-like passage hole having a width of 5 mm smaller than the width of the base material is arranged along the base material, and is drawn out between the reel members. The width direction both ends were covered up. In this state, the base material positioned between both reels was exposed to the MgO target, and in this state, an ion beam assisted sputtering method was performed to form a MgO intermediate layer.
In the passage hole of the shield plate, the inclination angle θ of the tangent to the circumferential surface portion at a position where the edge in the width direction is projected onto the circumferential surface portion of the base material below is 15 °.

イオンビームアシストスパッタ法の実施に当たり、図2に示す構成の成膜装置を用い、アシストイオンビームの入射方向をシールド板表面の法線に対し45゜傾斜した方向にセットし、成膜温度を30℃(室温)、成膜雰囲気のソースガスはArガス:Oガス=9:1の混合ガスを使用し、MgOのターゲットを用いてイオンビームアシストスパッタ法を実施した。アシストイオンビームの加速電圧を1400V、電流密度を90μA/cmに設定し、成膜雰囲気の背圧を0.00008Paに設定して成膜した。 In carrying out the ion beam assisted sputtering method, a film forming apparatus having the structure shown in FIG. 2 is used, and the incident direction of the assist ion beam is set in a direction inclined by 45 ° with respect to the normal of the shield plate surface, and the film forming temperature is set to 30 An ion beam assisted sputtering method was performed using a mixed gas of Ar gas: O 2 gas = 9: 1 as a source gas in a film formation atmosphere at a temperature of 0 ° C. (room temperature) and using an MgO target. The film was formed by setting the acceleration voltage of the assist ion beam to 1400 V, the current density to 90 μA / cm 2, and the back pressure of the film formation atmosphere to 0.00008 Pa.

イオンビームアシストスパッタ法を実施し、基材上にMgO中間層を厚さ約20nm成膜後、図2に示す如く対になるリールとリール間に繰り出した基材を共に15゜ずつ回転させて24回成膜することにより、基材の全周面にMgO中間層を厚さ約20nm成膜後、対になるリール間に成膜を施していない基材を繰り出し、再度全周に成膜するという操作を基材の全長に渡り順次繰り返して基材の全長に渡りMgO中間層を厚さ約20nm成膜した。   After performing ion beam assisted sputtering and forming a MgO intermediate layer with a thickness of about 20 nm on the base material, both the pair of reels and the base material fed between the reels are rotated by 15 ° as shown in FIG. By depositing the film 24 times, after depositing an MgO intermediate layer with a thickness of about 20 nm on the entire circumference of the substrate, the substrate that has not been deposited between the pair of reels is fed out and formed again on the entire circumference. This operation was sequentially repeated over the entire length of the substrate to form a MgO intermediate layer with a thickness of about 20 nm over the entire length of the substrate.

次に、アシストイオンビームの照射を停止してイオンビームスパッタ法に切り替え、成膜温度300℃で膜厚約400nmのエピタキシャルMgO層(Epi-MgO)を基材の長さ方向一端側に積層した。この膜厚約400nmのエピタキシャルMgO層はX線測定を行ってIBAD−MgO中間層の結晶配向度を調べるために成膜するものである。厚さ20nmのMgO中間層では膜自体が薄すぎてX線測定が困難か、あるいは不可能なために、エピタキシャルMgO層を成膜後に成膜部分の基材を切り出し、基材の周方向4箇所においてX線測定によりMgO(220)正極点測定を行い、結晶配向性の指標である結晶軸分散の半値幅Δφの平均値を求めたところ、Δφ=8゜の優れた値を示した。   Next, the irradiation of the assist ion beam was stopped and switched to the ion beam sputtering method, and an epitaxial MgO layer (Epi-MgO) having a film thickness of about 400 nm and a film thickness of 300 ° C. was laminated on one end in the length direction of the substrate. . This epitaxial MgO layer having a thickness of about 400 nm is formed in order to measure the crystal orientation of the IBAD-MgO intermediate layer by performing X-ray measurement. Since the MgO intermediate layer having a thickness of 20 nm is too thin and X-ray measurement is difficult or impossible, after the epitaxial MgO layer is formed, the base material in the film forming portion is cut out, and the circumferential direction of the base material 4 An MgO (220) positive electrode point measurement was performed by X-ray measurement at the location, and the average value of the half-value width Δφ of the crystal axis dispersion, which is an index of crystal orientation, was obtained.

なお、IBAD法により形成した厚さ20nmのMgO中間層の配向性に倣うようにエピタキシャルMgO層が配向するので、エピタキシャルMgO層のΔφが優れることはその下地のIBAD法によるMgO層も同等に優れた配向性であることを意味する。この測定結果から、IBAD法により断面円形状の基材上に成膜したMgO層は良好な結晶配向性を示すことが判明した。   Since the epitaxial MgO layer is oriented so as to follow the orientation of the 20 nm thick MgO intermediate layer formed by the IBAD method, the excellent Δφ of the epitaxial MgO layer is equivalent to the MgO layer of the underlying IBAD method as well. It means that it has a good orientation. From this measurement result, it was found that an MgO layer formed on a substrate having a circular cross section by the IBAD method exhibits good crystal orientation.

前記基材のほぼ全長に成膜したIBAD−MgO層の上に、パルスレーザー蒸着法(PLD法)により800℃で膜厚500nmのCeOのキャップ層を成膜した。このキャップ層の成膜についてもレーザー蒸着装置内部で基材を回転させて基材の全周に成膜した。このキャップ層の基材周面4カ所においてΔφを測定したところ、平均Δφは5゜となり、良好な配向性を示した。
次いでこのキャップ層上にパルスレーザー蒸着法により膜厚1.0μmのRE123系の酸化物超電導層を成膜し、さらに、この酸化物超電導層上に厚さ10μmのAg(安定化層)をスパッタにより成膜し、次いで0.1mm厚の銅層(安定化層)を積層して酸化物超電導導体を作製した。なお、酸化物超電導層の成膜は、GdBaCu(GdBCO)の粉末を焼結させたターゲットを使用し、温度800℃、圧力80Pa、レーザ出力180W、酸素80%雰囲気下にて行った。この酸化物超電導層の成膜についてもレーザー蒸着装置内部で基材を回転させて基材の全周に成膜した。
A CeO 2 cap layer having a film thickness of 500 nm was formed at 800 ° C. on the IBAD-MgO layer formed over almost the entire length of the substrate by a pulse laser deposition method (PLD method). The cap layer was also formed on the entire circumference of the substrate by rotating the substrate inside the laser deposition apparatus. When Δφ was measured at four locations on the peripheral surface of the base material of the cap layer, the average Δφ was 5 °, indicating good orientation.
Next, a RE123-based oxide superconducting layer having a thickness of 1.0 μm is formed on the cap layer by pulse laser deposition, and further, Ag (stabilizing layer) having a thickness of 10 μm is sputtered on the oxide superconducting layer. Then, a 0.1 mm thick copper layer (stabilization layer) was laminated to produce an oxide superconducting conductor. The oxide superconducting layer was formed using a target obtained by sintering a powder of GdBa 2 Cu 3 O y (GdBCO) at a temperature of 800 ° C., a pressure of 80 Pa, a laser output of 180 W, and an oxygen of 80%. went. Regarding the formation of this oxide superconducting layer, the substrate was rotated inside the laser vapor deposition apparatus to form a film on the entire circumference of the substrate.

得られた酸化物超電導導体を液体窒素に浸漬して超電導特性を測定したところ、臨界電流は100Aを示した。これにより、横断面円形状に近い基材の外周部の全面に良好な結晶配向性を有する超電導特性の優れた酸化物超電導層を備えた酸化物超電導線材を得ることができた。   When the obtained superconducting oxide was immersed in liquid nitrogen and the superconducting characteristics were measured, the critical current was 100A. As a result, an oxide superconducting wire having an oxide superconducting layer with excellent superconducting properties having good crystal orientation on the entire surface of the outer peripheral portion of the substrate close to a circular cross section could be obtained.

次に、前記シールド板の通過孔において、その幅方向端縁部をその下方の基材の円周面部に投影した位置における円周面部に対する接線の傾斜角度θを35゜、25゜、20゜、15゜に設定してそれぞれ中間層を形成し酸化物超電導導体用基材を得るとともに、各基材に上記と同等のキャップ層、酸化物超電導層、安定化基層、安定化層を積層して酸化物超電導導体を作製し、各超電導導体の臨界電流値を測定した。その結果、傾斜角度θ=35゜の場合、臨界電流値60A、傾斜角度θ=25゜の場合、臨界電流値68A、傾斜角度θ=20゜の場合、臨界電流値74A、傾斜角度θ=15゜の場合、臨界電流値100Aを示した。
このことから、傾斜角度θを30゜以下とすることが望ましいが、15゜以下とすることがより好ましい範囲であると思われる。ただし、傾斜角度を小さくし過ぎるとシールド板の通過孔の幅が小さくなり過ぎるため、基材を回転させてその周方向に中間層を順次成膜する際の工程数が不要に増加するので、15〜20゜の範囲が実用的には好ましい。
Next, in the passage hole of the shield plate, the inclination angle θ of the tangent to the circumferential surface portion at a position where the edge in the width direction is projected onto the circumferential surface portion of the lower substrate is 35 °, 25 °, 20 °. The intermediate layer is formed at 15 ° to obtain base materials for oxide superconducting conductors, and the same cap layer, oxide superconducting layer, stabilizing base layer, and stabilizing layer are laminated on each base material. An oxide superconductor was prepared, and the critical current value of each superconductor was measured. As a result, when the tilt angle θ = 35 °, the critical current value 60A, when the tilt angle θ = 25 °, the critical current value 68A, when the tilt angle θ = 20 °, the critical current value 74A, the tilt angle θ = 15. In the case of °, a critical current value of 100 A was shown.
For this reason, it is desirable that the inclination angle θ is 30 ° or less, but it is considered that a preferable range is 15 ° or less. However, if the inclination angle is too small, the width of the passage hole of the shield plate becomes too small, so the number of steps when the intermediate layer is sequentially formed in the circumferential direction by rotating the substrate is unnecessarily increased. A range of 15 to 20 ° is practically preferable.

A、B…酸化物超電導導体、K…成膜領域、S…接線、θ…入射角、1、11…基材、1A…平面部、1B…円周面部、2、12…拡散防止層、3、13…ベッド層、4、14…中間層、5、15…キャップ層、6、16…酸化物超電導層、7、17…安定化基層、8、18…安定化層、50…成膜装置、51…成膜室、52…ターゲット、53、54…イオン源、60、61…リール、62…シールド板、62a…通過孔、62b…端縁。   A, B: oxide superconducting conductor, K: film forming region, S: tangential, θ: incident angle, 1, 11: base material, 1A ... plane portion, 1B ... circumferential surface portion, 2, 12 ... diffusion preventing layer, 3, 13 ... Bed layer, 4, 14 ... Intermediate layer, 5, 15 ... Cap layer, 6, 16 ... Oxide superconducting layer, 7, 17 ... Stabilizing base layer, 8, 18 ... Stabilizing layer, 50 ... Film formation Equipment: 51 ... Film formation chamber, 52 ... Target, 53, 54 ... Ion source, 60, 61 ... Reel, 62 ... Shield plate, 62a ... Pass-through hole, 62b ... Edge.

Claims (11)

外周部の周方向の少なくとも一部分に平面部を有し外周部の周方向の少なくとも他の部分に円周面部を有する柱状であるとともに、前記平面部と円周面部が全長に渡り連続形成された長尺の基材と、該基材の外周面に前記平面部と円周面部の少なくとも一方を覆ってイオンビームアシスト成膜法により積層された結晶配向性の良好な中間層とを具備してなることを特徴とする酸化物超電導導体用基材。   The flat portion and the circumferential surface portion are continuously formed over the entire length, with a columnar shape having a planar portion at least in the circumferential direction of the outer circumferential portion and a circumferential surface portion in at least another portion of the circumferential direction of the outer circumferential portion. A long base material, and an intermediate layer having a good crystal orientation, which is laminated on the outer peripheral surface of the base material by at least one of the planar portion and the peripheral surface portion and laminated by an ion beam assisted film forming method. A base material for an oxide superconducting conductor. 前記イオンビームアシスト成膜法により積層された中間層の面内方向結晶軸分散の半値幅(Δφ)の値が16゜以下であることを特徴とする請求項1に記載の酸化物超電導導体用基材。   2. The oxide superconducting conductor according to claim 1, wherein a half-value width (Δφ) of in-plane direction crystal axis dispersion of the intermediate layer laminated by the ion beam assisted deposition method is 16 ° or less. Base material. 前記中間層が前記基材上に、ベッド層と拡散防止層の少なくとも1層を介し積層されてなることを特徴とする請求項1または2に記載の酸化物超電導導体用基材。   The base material for an oxide superconducting conductor according to claim 1 or 2, wherein the intermediate layer is laminated on the base material via at least one of a bed layer and a diffusion prevention layer. 前記基材の外周部がその周方向に平面部と円周面部を交互に配してなる横断面略多角形状に形成されてなることを特徴とする請求項1〜3のいずれか1項に記載の酸化物超電導導体用基材。   The outer peripheral part of the said base material is formed in the cross-sectional substantially polygonal shape formed by alternately arranging a plane part and a circumferential surface part in the circumferential direction, The any one of Claims 1-3 characterized by the above-mentioned. The base material for oxide superconducting conductors as described. 請求項1〜4のいずれか1項に記載の酸化物超電導導体用基材の中間層上に、キャップ層と酸化物超電導層とが積層されてなることを特徴とする酸化物超電導導体。   An oxide superconducting conductor comprising a cap layer and an oxide superconducting layer laminated on an intermediate layer of the base material for an oxide superconducting conductor according to claim 1. 外周部の周方向の少なくとも一部に平面部を有し外周部の周方向の少なくとも他の部分に円周面部を有する柱状であるとともに、前記平面部と円周面部が全長に渡り連続形成された長尺の基材と、該基材の外周面に前記平面部と円周面部の少なくとも一方を覆ってイオンビームアシスト成膜法により積層された結晶配向性の良好な中間層を具備してなる酸化物超電導導体用基材を製造するに際し、
前記基材を一方のリールから繰り出し、他方のリールに巻き取る間に、中間層の構成粒子を堆積させて中間層を成膜する成膜領域を通過させ、前記基材が成膜領域を通過する間に、前記粒子の堆積と同時にアシストイオンビームを特定の方向から前記基材に対し照射するイオンビームアシスト成膜法を実施して中間層を形成するとともに、
前記イオンビームアシスト成膜法を実施して中間層を形成する際、前記基材よりも細いスリット状の通過孔を備えたシールド板を用い、前記通過孔を前記リール間に繰り出されている基材の延在方向中心部に沿って配置し、前記リール間に繰り出されている基材の幅方向両側部分を覆い隠しながら前記中間層の構成粒子の堆積を行うとともに、
前記イオンビームアシスト成膜法を実施して中間層を形成する際、前記基材をその周回りに所定角度ずつ回転させながら前記シールド板の通過孔を介し中間層の構成粒子を堆積させる位置を基材の周方向に順次変更しつつ前記基材の平面部あるいは円周面部に成膜することを特徴とする酸化物超電導導体用基材の製造方法。
It is a columnar shape having a flat portion at least in the circumferential direction of the outer peripheral portion and a circumferential surface portion in at least another portion of the outer peripheral portion in the circumferential direction, and the flat portion and the circumferential surface portion are continuously formed over the entire length. A long base material, and an intermediate layer having a good crystal orientation, which is laminated on the outer peripheral surface of the base material by covering the at least one of the flat surface portion and the peripheral surface portion by an ion beam assisted film formation method. When manufacturing a substrate for an oxide superconducting conductor,
While the base material is fed from one reel and wound on the other reel, the constituent particles of the intermediate layer are deposited to pass through the film formation region where the intermediate layer is formed, and the base material passes through the film formation region. While performing the ion beam assisted film formation method of irradiating the substrate with an assist ion beam from a specific direction simultaneously with the deposition of the particles, forming an intermediate layer,
When forming the intermediate layer by performing the ion beam assisted film forming method, a shield plate having a slit-like passage hole narrower than the substrate is used, and the passage hole is drawn out between the reels. The material is deposited along the center of the extending direction of the material, and the particles constituting the intermediate layer are deposited while covering both sides in the width direction of the base material fed between the reels.
When the intermediate layer is formed by performing the ion beam assisted film formation method, a position where the constituent particles of the intermediate layer are deposited through the passage hole of the shield plate while rotating the base material by a predetermined angle around the circumference thereof. A method for producing a base material for an oxide superconducting conductor, comprising forming a film on a flat surface portion or a circumferential surface portion of the base material while sequentially changing in a circumferential direction of the base material.
前記スリット状の通過孔を介し前記基材の円周面部に前記中間層の構成粒子を堆積させて成膜する際、前記スリット状の通過孔の幅方向端縁を前記基材の円周面部に投影させた位置において規定される前記円周面部の接線の傾斜角度を前記通過孔を含むシールド板の表面に対する傾斜角度として30゜以下に設定して成膜することを特徴とする請求項6に記載の酸化物超電導導体用基材の製造方法。   When forming the film by depositing the constituent particles of the intermediate layer on the circumferential surface portion of the base material through the slit-shaped passage hole, the edge in the width direction of the slit-shaped passage hole is defined as the circumferential surface portion of the base material. 7. The film is formed by setting an inclination angle of a tangential line of the circumferential surface portion defined at a position projected onto the surface to 30 ° or less as an inclination angle with respect to the surface of the shield plate including the passage hole. The manufacturing method of the base material for oxide superconducting conductors of description. 前記スリット状の通過孔の幅について、該通過孔を介し前記基材の円周面部に対し斜め方向から入射するアシストイオンビームの入射角度が、前記円周面部に対するアシストイオンビームの照射範囲内のいずれの位置であっても、前記特定のアシストイオンビームの入射角度に対し±10゜の範囲に収まるような幅に設定して成膜することにより中間層を形成することを特徴とする請求項6または7に記載の酸化物超電導導体用基材の製造方法。   Regarding the width of the slit-shaped passage hole, the incident angle of the assist ion beam incident from the oblique direction with respect to the circumferential surface portion of the base material through the passage hole is within the irradiation range of the assist ion beam with respect to the circumferential surface portion. The intermediate layer is formed by forming a film so as to have a width within a range of ± 10 ° with respect to an incident angle of the specific assist ion beam at any position. 8. A method for producing a base material for an oxide superconducting conductor according to 6 or 7. 前記中間層を前記基材上に、ベッド層と拡散防止層の少なくとも1層を介し積層することを特徴とする請求項6〜8のいずれか1項に記載の酸化物超電導導体用基材の製造方法。   The base material for an oxide superconducting conductor according to any one of claims 6 to 8, wherein the intermediate layer is laminated on the base material through at least one of a bed layer and a diffusion prevention layer. Production method. 前記基材として、その外周部にその周方向に平面部と円周面部を交互に配してなる横断面略多角形状の基材を用いることを特徴とする請求項6〜9のいずれか1項に記載の酸化物超電導導体用基材の製造方法。   The base material according to any one of claims 6 to 9, wherein a base material having a substantially polygonal cross section formed by alternately arranging a flat surface portion and a circumferential surface portion in the circumferential direction is used as the base material. The manufacturing method of the base material for oxide superconductors as described in an item. 請求項6〜10のいずれか1項に記載の中間層上にキャップ層と酸化物超電導層を積層することを特徴とする酸化物超電導導体の製造方法。   A method for producing an oxide superconducting conductor comprising laminating a cap layer and an oxide superconducting layer on the intermediate layer according to any one of claims 6 to 10.
JP2010156652A 2010-07-09 2010-07-09 Oxide superconductor base material, oxide superconductor using the material, and method for manufacturing the material and the superconductor Pending JP2012018870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010156652A JP2012018870A (en) 2010-07-09 2010-07-09 Oxide superconductor base material, oxide superconductor using the material, and method for manufacturing the material and the superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010156652A JP2012018870A (en) 2010-07-09 2010-07-09 Oxide superconductor base material, oxide superconductor using the material, and method for manufacturing the material and the superconductor

Publications (1)

Publication Number Publication Date
JP2012018870A true JP2012018870A (en) 2012-01-26

Family

ID=45603977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010156652A Pending JP2012018870A (en) 2010-07-09 2010-07-09 Oxide superconductor base material, oxide superconductor using the material, and method for manufacturing the material and the superconductor

Country Status (1)

Country Link
JP (1) JP2012018870A (en)

Similar Documents

Publication Publication Date Title
RU2414769C2 (en) Superconducting wire
US7763343B2 (en) Mesh-type stabilizer for filamentary coated superconductors
JP4268645B2 (en) Rare earth tape oxide superconductor and composite substrate used therefor
JP4602911B2 (en) Rare earth tape oxide superconductor
JP5513154B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
JP5634166B2 (en) Oxide superconducting wire and method for producing the same
RU2386732C1 (en) Method of obtaining two-sided superconductor of second generation
JP2008310986A (en) Tape shape oxide superconductor
WO2013002372A1 (en) Re-123 superconducting wire and method for manufacturing same
JP2010238634A (en) Oxide superconducting wire, method of manufacturing the same, and manufacturing device of substrate used for the same
JP5736522B2 (en) RE123-based superconducting wire and method for producing the same
JP5597511B2 (en) Oxide superconducting wire and method for producing the same
JP5939995B2 (en) Superconducting wire and method of manufacturing superconducting wire
JP2011076750A (en) Oxide superconducting cable and method of manufacturing the same
JP2012022882A (en) Base material for oxide superconducting conductor and method of manufacturing the same, and oxide superconducting conductor and method of manufacturing the same
JP2012018870A (en) Oxide superconductor base material, oxide superconductor using the material, and method for manufacturing the material and the superconductor
WO2013015328A1 (en) Base material for superconducting thin film, superconducting thin film, and method for manufacturing superconducting thin film
JP5894907B2 (en) Oxide superconducting wire and method for producing the same
JP2012212571A (en) Oxide superconductor
JP5597516B2 (en) Superconducting wire manufacturing method
JP2012150914A (en) High-resistance material composite oxide superconducting wire material
JP6404556B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP5986871B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP2016143516A (en) Oxide superconducting wire and manufacturing method therefor
JP2011249162A (en) Method for manufacturing superconducting wire rod