JP2012018323A - Luminous body - Google Patents

Luminous body Download PDF

Info

Publication number
JP2012018323A
JP2012018323A JP2010156094A JP2010156094A JP2012018323A JP 2012018323 A JP2012018323 A JP 2012018323A JP 2010156094 A JP2010156094 A JP 2010156094A JP 2010156094 A JP2010156094 A JP 2010156094A JP 2012018323 A JP2012018323 A JP 2012018323A
Authority
JP
Japan
Prior art keywords
light
particle size
scattering efficiency
emitting body
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010156094A
Other languages
Japanese (ja)
Other versions
JP5496799B2 (en
Inventor
Tatsuya Ueda
達也 植田
Yoji Ono
陽二 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2010156094A priority Critical patent/JP5496799B2/en
Publication of JP2012018323A publication Critical patent/JP2012018323A/en
Application granted granted Critical
Publication of JP5496799B2 publication Critical patent/JP5496799B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a luminous body being usable even if a combination of a diffusion material and a base material is apt to cause chromaticity change in the luminous body having the light diffusion material added therein and emitting light by a light guiding method.SOLUTION: In this luminous body, a light source is provided at an end portion, diffusion particles are included in a light guiding body base material, and a plane heading straight to the end portion emits light by the light guiding method. The diffusion particles include particles having a weight-average particle size of b, and the weight-average particle size bis defined to be outside of the range where a ratio ηB(b)/ηR(b) of a blue scattering efficiency to a red scattering efficiency, which corresponds to a phase delay amount φ (rad) of the diffusion particles, is 0.75 or more and 1.25 or less, and the light source is monochromatic.

Description

本発明は導光方式を用いて光が供給される発光体に関する。   The present invention relates to a light emitter to which light is supplied using a light guide system.

導光方式面発光体においては、液晶表示装置のバックライト光源装置に見られるように、導光板表面に凹凸やドット印刷等で散乱機能を付与する構成や、導光板に基材樹脂との屈折率差がある光拡散材を内添する構成がある。   In the light guide type surface light emitter, as seen in the backlight light source device of the liquid crystal display device, the light guide plate surface is provided with a scattering function by unevenness and dot printing, etc., and the light guide plate is refracted from the base resin. There is a configuration in which a light diffusing material having a rate difference is internally added.

また導光方式面発光体は各種遊戯機、玩具などの発光装飾品として使用することができる。   In addition, the light guide type surface light emitter can be used as a light emitting ornament such as various game machines and toys.

また近年、導光方式面発光体の光源としてLED(発光ダイオード)が広く用いられるようになっている。   In recent years, LEDs (light emitting diodes) have been widely used as light sources for light guide type surface light emitters.

光拡散材が内添されている導光板においては、光拡散材の粒径が小さい場合、もしくは光拡散材と基材樹脂との屈折率差が小さい場合には、導光板の光源入射側端面付近で観察される光とその反対面端面付近で観察される光で色度変化が起こる場合があることがこれまでに分かっている。   In the light guide plate in which the light diffusing material is internally added, when the particle size of the light diffusing material is small or the refractive index difference between the light diffusing material and the base resin is small, the light source incident side end face of the light guide plate It has been known so far that chromaticity changes may occur between light observed in the vicinity and light observed in the vicinity of the opposite end face.

色度変化はミー散乱理論の散乱効率を計算することで把握できる。光拡散材の粒径が小さいほど、かつ、光拡散材と基材樹脂との屈折率差が小さいほど、色度変化を起こさない光拡散材の粒径および屈折率差の取れる範囲が狭くなる。   The change in chromaticity can be grasped by calculating the scattering efficiency of the Mie scattering theory. The smaller the particle size of the light diffusing material and the smaller the difference in refractive index between the light diffusing material and the base resin, the narrower the particle size and refractive index difference range of the light diffusing material that does not cause chromaticity change. .

特許文献1に見られるように、色度変化を起こさないためには、粒径の大きい拡散材を使用するか、あるいは、ミー理論における散乱効率比(ηB(b)/ηR(b))が0.75〜1.25以内となる特定の粒径の拡散材を使用する必要があった。   As seen in Patent Document 1, in order not to cause a change in chromaticity, a diffusing material having a large particle size is used, or the scattering efficiency ratio (ηB (b) / ηR (b)) in Mie theory is used. It was necessary to use a diffusing material having a specific particle size within 0.75 to 1.25.

前記特許文献1に記載される理論に従えば、特定の粒径、あるいは特に大きな粒径を使用した場合に前期散乱効率比が0.75〜1.25以内となる。ところが、使用したい拡散材の材料(無機材料、樹脂材料)について、都合の良い粒径の拡散材が容易に入手できるとは限らない。また通常入手が困難な粒径の拡散材を特に希望する場合は、入手コストが高価になりがちである。また大きな粒径のものを使用した場合には、個々の粒子、あるいはその凝集体が輝点となって目立ち、品位を損なう場合がある。   According to the theory described in Patent Document 1, when a specific particle size or a particularly large particle size is used, the ratio of the early scattering efficiency is within 0.75 to 1.25. However, it is not always easy to obtain a diffusing material having a convenient particle size for the diffusing material (inorganic material, resin material) to be used. In addition, when a diffusion material having a particle size that is usually difficult to obtain is particularly desired, the acquisition cost tends to be expensive. In addition, when particles having a large particle size are used, individual particles or aggregates thereof may become conspicuous and impair quality.

また、前記特許文献1に記載される理論に従えば、基材と拡散材との屈折率差が特定の範囲、あるいは特に大きな屈折率差である場合に前期散乱効率比が0.75〜1.25以内となる。ところが、使用したい基材や拡散材の材料(無機材料、樹脂材料)について、透明性、加工性、価格、分散性などの点で、必ずしも前期散乱効率比が0.75〜1.25以内となるような基材と拡散材の組み合せを選べるとは限らない。   Further, according to the theory described in Patent Document 1, when the refractive index difference between the base material and the diffusing material is in a specific range or a particularly large refractive index difference, the previous scattering efficiency ratio is 0.75 to 1. Within 25. However, the base material and the material of the diffusing material (inorganic material, resin material) to be used, the ratio of the previous scattering efficiency is not more than 0.75 to 1.25 in terms of transparency, workability, price, dispersibility, etc. It is not always possible to select a combination of a base material and a diffusing material.

特許第3874222号公報Japanese Patent No. 3874222

本発明は、光拡散材が内部に添加された、導光方式により発光する発光体において、色度変化が起きやすい拡散材と基材の組み合せであっても使用可能な発光体を提供することを目的とする。   The present invention provides an illuminant that has a light diffusing material added therein and emits light by a light guide method, and can be used even when the chrominance is likely to change even when the diffusing material is combined with a base material. With the goal.

上記課題を解決するため、本発明に係る発光体の一態様は、
導光体の端部に光源を備え、
拡散粒子が導光体基材へ含有され、導光方式により前記端部に直交する面が発光する発光体であって、
前記拡散粒子は、重量平均粒径bであるものを含み、かつ、当該重量平均粒径bを、拡散粒子の位相遅延量φ(rad)に対応する青色散乱効率と赤色散乱効率の比ηB(b)/ηR(b)が0.75以上1.25以下の範囲外とし、
前記光源が単色であることを特徴とする。
In order to solve the above problems, one aspect of the light emitter according to the present invention is:
A light source is provided at the end of the light guide,
A diffusing particle is contained in the light guide base material, and the light emitting body emits light on a surface orthogonal to the end portion by a light guide method,
The diffusing particles include those having a weight average particle diameter b 0 , and the weight average particle diameter b 0 is defined as a ratio of the blue scattering efficiency and the red scattering efficiency corresponding to the phase delay amount φ (rad) of the diffusing particles. ηB (b 0 ) / ηR (b 0 ) is outside the range of 0.75 to 1.25,
The light source is monochromatic.

さらに本発明の発光体は、前記光源がLEDであることを特徴とする。   Furthermore, the light emitter of the present invention is characterized in that the light source is an LED.

さらに本発明の発光体は、単色画像表示装置のバックライトであることを特徴とする。   Furthermore, the light emitter of the present invention is a backlight of a monochrome image display device.

さらに本発明の発光体は、装飾用であることを特徴とする。   Furthermore, the light emitter of the present invention is for decoration.

本発明によれば、従来、色変化が生じて目立つとされる拡散粒子を用いた発光体であっても、色変化が目立たず使用することが可能になる。   According to the present invention, it is possible to use an illuminant that uses diffusion particles that are conventionally noticeable when a color change occurs and the color change is not noticeable.

本発明の実施形態にかかる面発光体の、位相遅延量の定義を示す図である。It is a figure which shows the definition of the amount of phase delays of the surface emitting body concerning embodiment of this invention. 本発明の実施形態にかかる面発光体の、散乱断面積の定義を示す図である。It is a figure which shows the definition of the scattering cross section of the surface emitting body concerning embodiment of this invention. 本発明の実施形態にかかる面発光体の、散乱効率η(φ)と位相遅延量φの関係の一例を示す図である。It is a figure which shows an example of the relationship between scattering efficiency (eta) ((phi)) and phase delay amount (phi) of the surface emitting body concerning embodiment of this invention. 本発明の実施形態にかかる面発光体の、散乱効率η(b)と拡散粒子直径bの関係の一例を示す図である。It is a figure which shows an example of the relationship between scattering efficiency (eta) (b) and the diffusion particle diameter b of the surface-emitting body concerning embodiment of this invention. 本発明の実施形態にかかる面発光体の、散乱効率比ηB(b)/ηR(b)の一例を示す図である。It is a figure which shows an example of scattering efficiency ratio (eta) B (b) / (eta) R (b) of the surface light-emitting body concerning embodiment of this invention.

<実施の形態1>
以下、図面を参照して本発明の実施の形態について説明する。本実施の形態では、面発光体を一例として説明する。
本発明では位相遅延量という指標を定義して散乱効率を計算する。従来考慮されるミー散乱理論によって散乱効率計算が行われた場合には、色目変化に影響を及ぼす2つのパラメータ、具体的には、光拡散材の粒径、光拡散材と基材樹脂(基材)との屈折率差の内どちらか1つを固定して計算する場合が多かった。この場合、同材質で光拡散材の粒径が小さくなった場合、あるいは、同粒径で屈折率が小さくなった場合の散乱効率の変化は理解しやすいが、材質と光拡散材の粒径が同時に変化した場合の散乱効率変化を理解するのは容易ではない。すなわち、屈折率差と粒径とが同時に変化した場合に、散乱効率の変化、または、実効散乱係数の変化を把握することは困難である。本発明で考慮する位相遅延量は、色目変化に影響を及ぼす2つのパラメータ(光拡散材の粒径、光拡散材と基材樹脂との屈折率差)双方を盛り込んでいるため、光拡散材の材質と粒径とが同時に変化した場合でも、散乱効率の変化を位相遅延量の大小を比較することにより容易に理解できる。
<Embodiment 1>
Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, a surface light emitter is described as an example.
In the present invention, the scattering efficiency is calculated by defining an index called a phase delay amount. When the scattering efficiency calculation is performed according to the Mie scattering theory considered in the past, two parameters affecting the color change, specifically, the particle size of the light diffusing material, the light diffusing material and the base resin (base In many cases, one of the differences in refractive index with the material) is fixed and calculated. In this case, if the particle size of the light diffusing material with the same material becomes smaller, or the scattering efficiency changes when the refractive index becomes smaller with the same particle size, the particle size of the material and the light diffusing material is easy to understand. It is not easy to understand the change in scattering efficiency when the values change simultaneously. That is, it is difficult to grasp the change in scattering efficiency or the change in effective scattering coefficient when the refractive index difference and the particle size change simultaneously. The phase delay amount considered in the present invention includes both of two parameters (particle size of the light diffusing material, difference in refractive index between the light diffusing material and the base resin) that affect the color change. Even when the material and the particle size of the material change at the same time, the change in the scattering efficiency can be easily understood by comparing the phase delay amount.

本発明における位相遅延量φ(rad)は、以下で定義される。   The phase delay amount φ (rad) in the present invention is defined as follows.

Figure 2012018323
Figure 2012018323

b(b>0)は光拡散材の粒子直径(μm)、Δnは光拡散材屈折率と基材屈折率との差、λ(μm)は光の波長である。以下、「光拡散材の粒子」を適宜、「拡散粒子」と称す。図1に示すとおり、位相遅延量φ(rad)は、波長λ(μm)の光において、基材1内に存在する光拡散材2の粒子中心を通過したものと、光拡散材2を通過しなかったものの光学距離差bΔnを波長λ(μm)の位相差で表したものである。
ここで、屈折率nの値として、空気がn=1、基材1がn=n、光拡散材2がn=nとする。また、屈折率差Δnを、光拡散材2の屈折率nから基材1の屈折率nを差し引いた値(n−n)とする。
b (b> 0) is the particle diameter (μm) of the light diffusing material, Δn is the difference between the refractive index of the light diffusing material and the refractive index of the substrate, and λ (μm) is the wavelength of light. Hereinafter, the “particles of the light diffusing material” are appropriately referred to as “diffusing particles”. As shown in FIG. 1, the phase delay amount φ (rad) passes through the particle center of the light diffusing material 2 existing in the base material 1 and the light diffusing material 2 in the light of the wavelength λ (μm). In this case, the optical distance difference bΔn is expressed by the phase difference of the wavelength λ (μm).
Here, as the value of the refractive index n, the air is n = 1, the substrate 1 is n = n 1, the light diffusing material 2 and n = n 2. Further, the refractive index difference [Delta] n, the value obtained by subtracting the refractive index n 1 of the substrate 1 from the refractive index n 2 of the light diffusing member 2 (n 2 -n 1).

散乱効率は以下の通り定義される。拡散粒子1個の散乱効率ηは散乱断面積A/見かけの円面積πaで表され、a(a>0)は粒子半径(μm)である。図2に散乱断面積の定義を示す。散乱断面積Aは粒子断面積πaを粒子に起因する光電界擾乱効果の2乗で加重積分したものとして定義され、従って式(2)で近似できることが判っている。この場合のφ(r)は光拡散材2の粒子の中心を通る光入射光軸からの距離rに入射した光に対する粒子の位相遅延量である。なお、位相遅延量φ(r)は式(1)により算出される。 Scattering efficiency is defined as follows. The scattering efficiency η of one diffusing particle is represented by scattering cross section A / apparent circular area πa 2 , and a (a> 0) is a particle radius (μm). FIG. 2 shows the definition of the scattering cross section. The scattering cross section A is defined as a weighted integral of the particle cross section πa 2 by the square of the optical electric field disturbance effect caused by the particles, and it has been found that it can be approximated by equation (2). In this case, φ (r) is the phase delay amount of the particles with respect to the light incident at a distance r from the light incident optical axis passing through the center of the particles of the light diffusing material 2. Note that the phase delay amount φ (r) is calculated by the equation (1).

Figure 2012018323
Figure 2012018323

散乱効率η(φ)を横軸の位相遅延量φに対して図示すると図3となる。この図の横軸を位相遅延量φ(rad)=2πΔnb/λから青、緑、赤の各波長に対応する粒子直径に変換すると、従来よく見られる散乱効率の関係に変換できる。逆に位相遅延量φを定義したことで、青、緑、赤の散乱効率を一つの曲線上で表すことが可能となっている。   FIG. 3 shows the scattering efficiency η (φ) with respect to the phase delay amount φ on the horizontal axis. If the horizontal axis of this figure is converted from the phase delay amount φ (rad) = 2πΔnb / λ to the particle diameter corresponding to each wavelength of blue, green, and red, it can be converted into the relationship of scattering efficiency often seen in the past. Conversely, by defining the phase delay amount φ, it is possible to represent the scattering efficiency of blue, green, and red on one curve.

図3の横軸位相遅延量φ(rad)=2πΔnb/λにおいて、屈折率差Δn=0.1と固定し、青色光λ=0.45(μm)、緑色光λ=0.55(μm)、赤色光λ=0.63(μm)に対するそれぞれの拡散粒子直径b(μm)を求め、それを横軸に取り直すと図4となる。   In the horizontal axis phase delay amount φ (rad) = 2πΔnb / λ in FIG. 3, the refractive index difference Δn = 0.1 is fixed, blue light λ = 0.45 (μm), green light λ = 0.55 (μm). ), The respective diffused particle diameters b (μm) with respect to the red light λ = 0.63 (μm) are obtained, and the result is taken on the horizontal axis to obtain FIG.

ここで、赤色光の位相遅延量φ_R(rad)は、式(1)より、
φ_R(rad)=2πΔn*b/λ=6.28*0.1*b/0.63≒b(μm)である。このことから、図3のη(φ)と図4のηR(b)はほぼ同値となる。
特定粒径の散乱効率の赤青比はηB(b)/ηR(b)で求められる。
Here, the phase delay amount φ_R (rad) of the red light is obtained from the equation (1):
φ_R (rad) = 2πΔn * b / λ = 6.28 * 0.1 * b / 0.63≈b (μm). Therefore, η (φ) in FIG. 3 and ηR (b) in FIG. 4 are almost the same value.
The red / blue ratio of the scattering efficiency of a specific particle size is obtained by ηB (b) / ηR (b).

本計算においてΔnは波長依存性を考慮していないが、それを考慮した場合においても同様の計算を行えば良い。
なおΔnが負の場合は位相遅延量φの値も負となるが、式(2)から判る通り散乱効率ηは位相遅延量φについて偶関数であり、Δnおよび位相遅延量φの値の正負に関わらず、その値は0または正の値となる。図3では位相遅延量φの値が0以上の場合についてのみ散乱効率ηの値を示したが、上記理由により位相遅延量φの値が負の場合における散乱効率ηはその図示を省略している。
In this calculation, Δn does not take wavelength dependency into consideration, but the same calculation may be performed even in consideration thereof.
When Δn is negative, the value of the phase delay amount φ is also negative. However, as can be seen from Equation (2), the scattering efficiency η is an even function with respect to the phase delay amount φ, and the values of Δn and the phase delay amount φ are positive or negative. Regardless, the value is 0 or a positive value. In FIG. 3, the value of the scattering efficiency η is shown only when the value of the phase delay amount φ is 0 or more, but the scattering efficiency η when the value of the phase delay amount φ is negative is omitted for the above reason. Yes.

ある光拡散材粒径の散乱効率の赤青比ηB(b)/ηR(b)が1であるということは、この特定粒径の光拡散材のみが内添されている導光板を作製した場合、両端面付近で観察される光の色度変化がないことを示している。同構成において、ηB(b)/ηR(b)が1以上とは、光源入射側端面付近で観察される光の色合いは青みを帯び、その反対面付近では、青色光成分が少なくなっていることから赤みを帯びることを示す。また、ηB(b)/ηR(b)が1以下とは、光源入射側端面付近で観察される光の色合いは赤みを帯び、その反対面付近では、赤色光成分が少なくなっていることから青みを帯びることを示す。   The fact that the red / blue ratio ηB (b) / ηR (b) of the scattering efficiency of a certain light diffusing material particle size is 1, produced a light guide plate in which only the light diffusing material having this specific particle size is internally added. In this case, there is no change in the chromaticity of light observed near both end faces. In the same configuration, when ηB (b) / ηR (b) is 1 or more, the hue of light observed near the light source incident side end surface is bluish, and the blue light component is reduced near the opposite surface. It shows that it is reddish. In addition, when ηB (b) / ηR (b) is 1 or less, the color of light observed near the end surface on the light source incident side is reddish, and the red light component is reduced near the opposite surface. Shows bluish.

図5において、粒径約3μm以下、約4〜6μm、および約7〜8.5μmのものは、散乱効率の青赤比ηB(b)/ηR(b)>1.25または<0.75となっている。このため、この該当粒径を含んだ導光板を作製すると、両端面付近で観察される光の色度変化が起きると予想される。   In FIG. 5, those having a particle size of about 3 μm or less, about 4 to 6 μm, and about 7 to 8.5 μm have a blue-red ratio ηB (b) / ηR (b)> 1.25 or <0.75 of the scattering efficiency. It has become. For this reason, when a light guide plate including this particle size is produced, it is expected that a change in chromaticity of light observed near both end faces will occur.

通常、光拡散材の粒径は一定の分布を有しているため、本発明における散乱効率の青赤比は、粒径bとして重量平均粒径bを用いたηB(b)/ηR(b)である。 Usually, since the particle size of the light diffusing material has a certain distribution, the blue-red ratio of the scattering efficiency in the present invention is ηB (b 0 ) / ηR using the weight average particle size b 0 as the particle size b. (B 0 ).

従来技術は光源が白色光であるという前提であり、特許文献1では、両端面付近で観察される光の色度変化を起こさないために該当粒径は使用しないとしている。
しかしながら、本発明では光源が単色であるため、色味の変化がほとんど目立たない。本発明において単色光源とは、スペクトルの半値幅が100nm以下のものをいう。
The prior art is based on the premise that the light source is white light, and in Patent Document 1, the corresponding particle size is not used in order not to cause a change in the chromaticity of light observed near both end faces.
However, in the present invention, since the light source is a single color, the color change is hardly noticeable. In the present invention, the monochromatic light source means one having a spectrum half width of 100 nm or less.

また本発明の発光体は色味の変化がほとんど目立たないため、単色画像表示装置のバックライトとして好適に使用することができる。   Moreover, since the light-emitting body of the present invention is hardly noticeable in color change, it can be suitably used as a backlight of a monochrome image display device.

また本発明の発光体は色味の変化がほとんど目立たないため、装飾用発光体として好適に使用することができる。   Further, since the color change of the light-emitting body of the present invention is hardly noticeable, it can be suitably used as a light-emitting body for decoration.

本発明でいうLEDとはレーザーダイオード(LD)を含む。   The LED referred to in the present invention includes a laser diode (LD).

本発明で言う単色のLEDとは、その発光スペクトルが線状であるものには限られず、光源のスペクトルの半値幅が100nm以下であるものをいう。一方、青色LED素子と蛍光剤を組み合せた、いわゆる擬似白色LEDのように、その発光スペクトルが明確に2つ以上のピークを有するものは本発明の単色光源には含まれない。   The monochromatic LED referred to in the present invention is not limited to one having an emission spectrum that is linear, and refers to an LED having a light source spectrum with a half-value width of 100 nm or less. On the other hand, the monochromatic light source of the present invention does not include a so-called pseudo white LED in which a blue LED element and a fluorescent agent are combined, and the emission spectrum of which has two or more peaks clearly.

また、例えば青色のLEDと赤色のLEDなど、複数の色の光源を同時に使用し、それぞれを点滅するなどし、いずれの時間においても1つの色だけが発光している場合は実質的に単色のLEDを使用しており、本発明を交互に使用していると見なすことができる。たとえば、赤、緑、青色3種のLEDを備え、これらLEDを交互に点滅していずれの時間においても1つの色だけを発光させるバックライトを作製してもよい。各色の散乱光率が異なることに起因する面の明るさの不均一性を、各色が発光しているタイミングに合わせて透過型液晶表示装置の透過率を変調することで、色ムラを抑えた表示装置が得られる。   In addition, for example, when a plurality of color light sources such as a blue LED and a red LED are used at the same time, and each of them is blinking, when only one color is emitted at any time, it is substantially monochromatic. Since LEDs are used, it can be considered that the present invention is used alternately. For example, a backlight that includes three types of LEDs of red, green, and blue and alternately blinks these LEDs to emit only one color at any time may be manufactured. Color unevenness was suppressed by modulating the transmittance of the transmissive liquid crystal display device according to the timing at which each color emits light, due to the uneven brightness of the surface caused by the difference in the scattered light rate of each color. A display device is obtained.

さらに、例えば長方形の導光板の一辺に青色のLEDを備え、対向する一辺に赤色のLEDを備え、同時に点灯した場合は、本発明を2つ同時に使っていると見なすことができる。   Furthermore, for example, when a blue LED is provided on one side of the rectangular light guide plate and a red LED is provided on the opposite side, and the LED is turned on at the same time, it can be considered that the present invention is used at the same time.

本発明で使用する発光体の基材は透明性、加工性などの点から、ポリカーボネート系樹脂、スチレン系樹脂、アクリル系樹脂などが好ましく用いられる。透明性の点から、特にアクリル系樹脂が好ましい。   The base material of the luminescent material used in the present invention is preferably a polycarbonate-based resin, a styrene-based resin, an acrylic-based resin or the like from the viewpoints of transparency and workability. An acrylic resin is particularly preferable from the viewpoint of transparency.

本発明で使用する光拡散材としては、例えば架橋アクリル系樹脂、架橋ポリスチレン系樹脂、無機ガラス、金属酸化物、各種顔料などを使用することができる。   As the light diffusing material used in the present invention, for example, a crosslinked acrylic resin, a crosslinked polystyrene resin, an inorganic glass, a metal oxide, various pigments, and the like can be used.

光拡散材の粒子径については、一般の白色光源を用いたバックライトでは、例えば10μm以下、特に5μm以下では色ムラが目立ちやすくなるが、本発明ではそのような粒径の光拡散材も好適に使用できる。   As for the particle size of the light diffusing material, in a backlight using a general white light source, for example, 10 μm or less, particularly 5 μm or less, color unevenness is easily noticeable, but in the present invention, a light diffusing material having such a particle size is also suitable. Can be used for

基材の屈折率と光拡散材の屈折率との差については、一般の白色光源を用いたバックライトでは例えば0.3以下、特に0.2以下では色ムラが目立ちやすくなるが、本発明ではそのような屈折率差があっても好適に使用できる。   Regarding the difference between the refractive index of the base material and the refractive index of the light diffusing material, the color unevenness tends to be noticeable when the backlight using a general white light source is, for example, 0.3 or less, particularly 0.2 or less. Then, even if there exists such a refractive index difference, it can be used conveniently.

光拡散材の濃度は、低濃度であれば色ムラは特に目立ちにくいため、例えば0.1質量%以下などとすることが好ましい。一方、0.00005質量%より少ないと、明るさが不足する場合がある。0.0001質量%以上0.05質量%以下とすることが好ましい。さらに、0.0002質量%以上0.01質量%以下とすることが好ましい。   If the concentration of the light diffusing material is low, color unevenness is particularly unnoticeable. For example, it is preferably 0.1% by mass or less. On the other hand, if it is less than 0.00005% by mass, the brightness may be insufficient. It is preferable to set it to 0.0001 mass% or more and 0.05 mass% or less. Furthermore, it is preferable to set it as 0.0002 mass% or more and 0.01 mass% or less.

<その他の実施の形態>
実施の形態1では、面発光体を一例として説明したが、本発明は、面発光体に限られることはなく、他の形状の発光体に適用することも可能である。例えば、円、楕円、波状などの曲面の断面(端面)を有する柱状、多角形の断面(端面)を有する柱状、あるいはこれらの外形を有する筒状など、他の形状であってもかまわない。
<Other embodiments>
In Embodiment 1, the surface light emitter has been described as an example, but the present invention is not limited to the surface light emitter, and can be applied to light emitters of other shapes. For example, other shapes such as a column shape having a curved cross section (end surface) such as a circle, an ellipse, and a wave shape, a column shape having a polygonal cross section (end surface), or a cylindrical shape having these outer shapes may be used.

なお、本発明における平均粒径とは、重量平均粒径であり、光散乱粒子計測法により測定することができる。   In addition, the average particle diameter in this invention is a weight average particle diameter, and can be measured by the light-scattering particle | grain measuring method.

<実施例>
基材樹脂としてアクリル樹脂(屈折率1.49)を使用し、光拡散材として平均粒径2μmの架橋ポリスチレン樹脂(屈折率1.59)を0.003質量%含むシートを押し出し成形した。シート厚みは5mmであった。
<Example>
An acrylic resin (refractive index 1.49) was used as the base resin, and a sheet containing 0.003% by mass of a crosslinked polystyrene resin (refractive index 1.59) having an average particle diameter of 2 μm was extruded as a light diffusing material. The sheet thickness was 5 mm.

上記シートを100mm×200mmの長方形に切断し、短辺側のシート端面に光源として青色LEDを設置して導光式発光板を作製した。   The said sheet | seat was cut | disconnected to the rectangle of 100 mm x 200 mm, and blue LED was installed as a light source in the sheet | seat end surface of the short side, and the light-guide type light-emitting plate was produced.

本実施例では、平均粒径は2μmであり、屈折率差は0.1である。図5から判る通り、散乱効率の青赤比ηB(b)/ηR(b)>1.25となっている。 In this example, the average particle size is 2 μm and the refractive index difference is 0.1. As can be seen from FIG. 5, the scattering efficiency blue-red ratio ηB (b 0 ) / ηR (b 0 )> 1.25.

<比較例>
光源として冷陰極管を設置した以外は実施例と同様にして導光式発光板を作製した。
<Comparative example>
A light-guiding type light emitting plate was produced in the same manner as in Example except that a cold cathode tube was installed as a light source.

実施例および比較例の導光式発光板の光源を点灯し、シートに垂直な面から目視観察した。その結果、実施例の発光板は明るく、また色目の変化が目立たなかったが、比較例の発光板は明るいが光源付近が青みを帯び、光源から離れるに従って黄味を帯びており、色目の変化が目立だった。     The light source of the light guide type light emitting plate of Examples and Comparative Examples was turned on and visually observed from a plane perpendicular to the sheet. As a result, the light-emitting plate of the example was bright and the color change was not noticeable, but the light-emitting plate of the comparative example was bright, but the vicinity of the light source was bluish and became yellowish as it moved away from the light source. Was conspicuous.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

1 基材、2 光拡散材   1 base material, 2 light diffusion material

Claims (4)

導光体の端部に光源を備え、
拡散粒子が導光体基材へ含有され、導光方式により前記端部に直行直交する面が発光する発光体であって、
前記拡散粒子は、重量平均粒径bであるものを含み、かつ、当該重量平均粒径bを、拡散粒子の位相遅延量φ(rad)に対応する青色散乱効率と赤色散乱効率の比ηB(b)/ηR(b)が0.75以上1.25以下の範囲外とし、
前記光源が単色であることを特徴とする発光体。
A light source is provided at the end of the light guide,
A diffusing particle is contained in the light guide base material, and a light emitting body that emits light in a direction perpendicular to the end portion by a light guide method,
The diffusing particles include those having a weight average particle diameter b 0 , and the weight average particle diameter b 0 is defined as a ratio of the blue scattering efficiency and the red scattering efficiency corresponding to the phase delay amount φ (rad) of the diffusing particles. ηB (b 0 ) / ηR (b 0 ) is outside the range of 0.75 to 1.25,
A light emitter, wherein the light source is monochromatic.
前記光源がLEDであることを特徴とする請求項1の発光体。   The light-emitting body according to claim 1, wherein the light source is an LED. 単色画像表示装置のバックライトとして用いられることを特徴とする請求項1または2の発光体。 The light-emitting body according to claim 1 or 2, wherein the light-emitting body is used as a backlight of a monochrome image display device. 装飾用として用いられることを特徴とする請求項1または2の発光体。 The light-emitting body according to claim 1 or 2, wherein the light-emitting body is used for decoration.
JP2010156094A 2010-07-08 2010-07-08 Luminous body Expired - Fee Related JP5496799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010156094A JP5496799B2 (en) 2010-07-08 2010-07-08 Luminous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010156094A JP5496799B2 (en) 2010-07-08 2010-07-08 Luminous body

Publications (2)

Publication Number Publication Date
JP2012018323A true JP2012018323A (en) 2012-01-26
JP5496799B2 JP5496799B2 (en) 2014-05-21

Family

ID=45603601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010156094A Expired - Fee Related JP5496799B2 (en) 2010-07-08 2010-07-08 Luminous body

Country Status (1)

Country Link
JP (1) JP5496799B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330822A (en) * 2000-03-14 2001-11-30 Seiko Epson Corp Liquid crystal display device and electronic equipment
JP2003043258A (en) * 2001-08-01 2003-02-13 Teijin Ltd Polymer film having scattering anisotropy and surface light source device using the same
JP2003257229A (en) * 2002-02-27 2003-09-12 Alps Electric Co Ltd Backlight, front light, and liquid crystal display device
JP2003271112A (en) * 2002-03-19 2003-09-25 Sharp Corp Liquid crystal display device
JP2004341446A (en) * 2003-05-19 2004-12-02 Nitto Jushi Kogyo Kk Light diffuser and optical member using the same and optical device
WO2007029679A1 (en) * 2005-09-06 2007-03-15 Kuraray Co., Ltd. Light-diffusive methacrylic resin light guide and surface light source device comprising the same
JP2008026618A (en) * 2006-07-21 2008-02-07 Toppan Printing Co Ltd Projection screen and image display apparatus using the same
JP2009117349A (en) * 2007-10-19 2009-05-28 Fujifilm Corp Planar lighting system
JP2010092755A (en) * 2008-10-09 2010-04-22 Sumitomo Chemical Co Ltd Light guide plate
JP2011187300A (en) * 2010-03-08 2011-09-22 Dainippon Printing Co Ltd Light guide plate, plane light source device, and liquid crystal display

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330822A (en) * 2000-03-14 2001-11-30 Seiko Epson Corp Liquid crystal display device and electronic equipment
JP2003043258A (en) * 2001-08-01 2003-02-13 Teijin Ltd Polymer film having scattering anisotropy and surface light source device using the same
JP2003257229A (en) * 2002-02-27 2003-09-12 Alps Electric Co Ltd Backlight, front light, and liquid crystal display device
JP2003271112A (en) * 2002-03-19 2003-09-25 Sharp Corp Liquid crystal display device
JP2004341446A (en) * 2003-05-19 2004-12-02 Nitto Jushi Kogyo Kk Light diffuser and optical member using the same and optical device
WO2007029679A1 (en) * 2005-09-06 2007-03-15 Kuraray Co., Ltd. Light-diffusive methacrylic resin light guide and surface light source device comprising the same
JP2008026618A (en) * 2006-07-21 2008-02-07 Toppan Printing Co Ltd Projection screen and image display apparatus using the same
JP2009117349A (en) * 2007-10-19 2009-05-28 Fujifilm Corp Planar lighting system
JP2010092755A (en) * 2008-10-09 2010-04-22 Sumitomo Chemical Co Ltd Light guide plate
JP2011187300A (en) * 2010-03-08 2011-09-22 Dainippon Printing Co Ltd Light guide plate, plane light source device, and liquid crystal display

Also Published As

Publication number Publication date
JP5496799B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
EP2067065B1 (en) Illumination system, luminaire and display device
US7223010B2 (en) Light guide panel of edge-light type backlight system and edge-light type backlight system employing the same
JP5323009B2 (en) Liquid crystal display
JP2009295501A (en) Light source module and electronic apparatus equipped with the same
CN106501888B (en) Optical film, and light-emitting device and display containing same
US9213131B2 (en) Back-plate structure of backlight, backlight and display device
JP4440062B2 (en) Lighting device
CN105319769B (en) Planar light source device and liquid crystal display device
KR101731762B1 (en) Manufacturing technique of diffuser plate that use luminous powder
JP2009026708A (en) Light source device
JP2013161626A (en) Strip-shaped lighting device
JP6391360B2 (en) Surface light source device and liquid crystal display device
JP2017138538A (en) Liquid crystal display device
JP2012146680A (en) Light source module
KR20110065053A (en) Front light unit using quantum dots
JP5496799B2 (en) Luminous body
JP2010086670A (en) Surface light source
US20170167697A1 (en) Housing for use with color converting material assembly and led
JP4017039B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE HAVING THE SAME
JP2010282908A (en) Lighting device
JP2005302659A (en) Illumination equipment and display apparatus provided with the same
JP5389717B2 (en) Front light device and liquid crystal display device
TWI464464B (en) Backlight module and light guide plate
TWI570465B (en) Front light module and display module
JP2011029006A (en) Luminous body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

R150 Certificate of patent or registration of utility model

Ref document number: 5496799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees