JP2012018102A - Analyzer - Google Patents

Analyzer Download PDF

Info

Publication number
JP2012018102A
JP2012018102A JP2010156307A JP2010156307A JP2012018102A JP 2012018102 A JP2012018102 A JP 2012018102A JP 2010156307 A JP2010156307 A JP 2010156307A JP 2010156307 A JP2010156307 A JP 2010156307A JP 2012018102 A JP2012018102 A JP 2012018102A
Authority
JP
Japan
Prior art keywords
light
light emitting
led
emitting element
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010156307A
Other languages
Japanese (ja)
Inventor
So Yamazaki
創 山崎
Keiko Yoshikawa
惠子 吉川
Takuo Tamura
太久夫 田村
Akihisa Makino
彰久 牧野
Sakuichiro Adachi
作一郎 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010156307A priority Critical patent/JP2012018102A/en
Publication of JP2012018102A publication Critical patent/JP2012018102A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce locality of a light source without reducing an amount of light in an analyzer using light.SOLUTION: An analyzer comprises a luminous element, an optical path for guiding light from the luminous element to a reactor vessel for holding a reaction liquid and a light receiving element for receiving light transmitted through the reaction vessel and is equipped with a luminous element operating mechanism for moving the luminous element during measuring the reaction in the reaction vessel using at least the luminous element. The transmitted light or the scattered light intensity is preferably measured by rotating the luminous element around the optical axis in this constitution.

Description

本発明は試料に含まれる成分量を光を用いて分析する分析装置に関する。   The present invention relates to an analyzer for analyzing the amount of components contained in a sample using light.

試料に含まれる成分量を分析する分析装置として、光源からの光を、試料、または試料と試薬とが混合した反応液に照射し、その結果得られる単一または複数の測定波長の透過光または散乱光を受光素子にて測定して吸光度または散乱光強度を算出し、吸光度または散乱光強度と濃度の関係から成分量を割り出す分析装置が広く用いられている(例えば特許文献1)。   As an analytical device for analyzing the amount of components contained in a sample, light from a light source is irradiated onto a sample or a reaction mixture in which a sample and a reagent are mixed, and transmitted light having a single or a plurality of measurement wavelengths obtained as a result or 2. Description of the Related Art An analyzer that measures scattered light with a light receiving element to calculate absorbance or scattered light intensity, and calculates the component amount from the relationship between absorbance or scattered light intensity and concentration is widely used (for example, Patent Document 1).

米国特許第4451433号公報U.S. Pat. No. 4,451,433

これらの装置においては、光源としてハロゲンランプや発光ダイオード(以下LED)が用いられているが、いずれも発光体は有限の大きさと形状を有している。   In these devices, a halogen lamp or a light emitting diode (hereinafter referred to as LED) is used as a light source, and the light emitters have a finite size and shape.

光を用いた分析装置における理想的な光源は点光源であり、対象物へ照射する光線は均一であることが理想であるが、実際の光源は有限の大きさを有しており点光源にはならない。よって分析装置の光源としてはレンズなどの形状も考慮すると完全な円形を成し、かつ面内においては光量が均一であること即ちローカリティがないことが望ましい。   The ideal light source in an analyzer using light is a point light source, and ideally the light beam to irradiate the object is ideal, but the actual light source has a finite size and is a point light source. Must not. Therefore, it is desirable that the light source of the analyzer is perfectly circular considering the shape of a lens or the like, and that the amount of light is uniform within the surface, that is, has no locality.

しかしながら実際の光源はより複雑な形状をしている。例として一般的なLEDの素子部分を図1に示す。LEDは半導体材料上に矩形に形成された発光部1が主として光を発するが、同じ半導体材料上に反射板2が形成されており、側方へ照射される光を前方へ反射させて光量を稼いでいる。また発光部1に電流を供給するための配線3も同一半導体材料上に形成されており、反射板2や発光部1の一部を占有して影を作る場合もあり、結果としてLEDの発光部分の形状としては非常に複雑な形となっている。またハロゲンランプの発光部はコイル状に形成されている発光体であり、円形の光源ましてや点光源とは程遠い形状であり、光源のローカリティは非常に大きい。   However, the actual light source has a more complicated shape. As an example, an element portion of a general LED is shown in FIG. In the LED, a light emitting unit 1 formed in a rectangular shape on a semiconductor material mainly emits light, but a reflecting plate 2 is formed on the same semiconductor material, and the light irradiated to the side is reflected forward to reduce the amount of light. I earn. Further, the wiring 3 for supplying current to the light emitting unit 1 is also formed on the same semiconductor material, and may occupy a part of the reflector 2 and the light emitting unit 1 to make a shadow, resulting in the light emission of the LED. The shape of the part is very complicated. Further, the light emitting part of the halogen lamp is a light emitter formed in a coil shape, which is far from a circular light source or a point light source, and the locality of the light source is very large.

この問題を解決する手段の一案として、図2に示すように照射側および受光側に積分球を使う方法が考えられる。図2は、LED光源で透過光の減衰を調べることにより所望の成分の定量を行う分析装置を想定しており、4は反応容器であり、内容物5は試料と試薬の混合液で測定対象である。6は光源であるLEDであり、ここから照射された光は、積分球7内で反射を繰り返し、反応容器4および反応液5を透過して、積分球8に入り、この中で反射を繰り返して受光素子9にて検知される。   As a proposal for solving this problem, a method of using integrating spheres on the irradiation side and the light receiving side as shown in FIG. 2 can be considered. FIG. 2 assumes an analyzer that quantifies a desired component by examining the attenuation of transmitted light with an LED light source, 4 is a reaction vessel, and content 5 is a mixture of a sample and a reagent to be measured. It is. Reference numeral 6 denotes an LED as a light source. Light emitted from the LED is repeatedly reflected in the integrating sphere 7, passes through the reaction vessel 4 and the reaction solution 5, enters the integrating sphere 8, and is repeatedly reflected therein. Is detected by the light receiving element 9.

このように、積分球を用いることで光源のローカリティをなくす方法だと、光の減衰が発生し、照射側では実際の光源からの発光量に対し試料に照射される光量は大きく低下し、同様に受光側でも実際に積分球入口に届いた光に対し受光素子が受け取る光量は大きく低下してしまう。結果として分析装置の基本性能である検出感度は下がるため、商品価値は大きく失われる。また積分球の製造は、その形状と精度が高いレベルで要求されるばかりか内面の反射コーティングが高価なことから、コストおよび製造の容易さという点において、デメリットは非常に大きい。   In this way, the method of eliminating the locality of the light source by using an integrating sphere causes light attenuation, and on the irradiation side, the amount of light irradiated to the sample is greatly reduced relative to the amount of light emitted from the actual light source. Even on the light receiving side, the amount of light received by the light receiving element with respect to the light actually reaching the integrating sphere entrance is greatly reduced. As a result, since the detection sensitivity, which is the basic performance of the analyzer, decreases, the commercial value is greatly lost. Further, the manufacture of the integrating sphere is not only required for its shape and accuracy at a high level, but also because the reflective coating on the inner surface is expensive, the disadvantages are very great in terms of cost and ease of manufacture.

また上記の他の本課題の解決策として、顕微鏡などに用いられるケーラー照明を使用する手法も考えられるが、この案も光源のローカリティは少なくなるが光量の低下は避けられず、検出感度などの性能に大きく影響してしまう。本発明が解決しようとする課題は、光を用いた分析装置において、光量を低下させることなく、光源のローカリティを軽減することにある。   As another solution to the above problem, a method using Koehler illumination used in a microscope or the like is also conceivable, but this proposal also reduces the locality of the light source, but the reduction in the amount of light is inevitable, and the detection sensitivity, etc. The performance will be greatly affected. The problem to be solved by the present invention is to reduce the locality of a light source without reducing the amount of light in an analyzer using light.

上記目的を達成するための本発明の構成は以下の通りである。   The configuration of the present invention for achieving the above object is as follows.

発光素子と、該発光素子からの光を、反応液を保持する反応容器に導く光路と、該反応容器を透過した光を受光する受光素子と、を備えた分析装置であって、少なくとも前記受光素子を用いて前記反応容器での反応を測定している間は、前記発光素子を、動かすための、発光素子動作機構を備えた分析装置。この構成で、発光素子を光軸回りに回転させて、透過光または散乱光強度の測定を行うことが好ましい。   An analyzer comprising: a light emitting element; an optical path for guiding light from the light emitting element to a reaction container that holds a reaction solution; and a light receiving element that receives light transmitted through the reaction container. An analyzer equipped with a light emitting element operating mechanism for moving the light emitting element while measuring the reaction in the reaction vessel using the element. In this configuration, it is preferable to measure the intensity of transmitted light or scattered light by rotating the light emitting element around the optical axis.

本発明による光源を用いれば、光量を低下させることなく、光源のローカリティを軽減することが可能になる。   When the light source according to the present invention is used, the locality of the light source can be reduced without reducing the amount of light.

LED光源の例。An example of an LED light source. 本発明が解決しようとする課題の別の解決方法。Another solution of the problem to be solved by the present invention. 本発明による分析装置の構成を示す簡略図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a simplified diagram showing a configuration of an analyzer according to the present invention. 本発明による駆動部付光源の例。The example of the light source with a drive part by this invention. 本発明による光源のローカリティ比較図。The locality comparison figure of the light source by this invention. 本発明による光源のローカリティ比較図。The locality comparison figure of the light source by this invention. 発光領域を最大にしたときの実施例。An example when the light emitting area is maximized.

以下、図面を参照して本発明の実施の形態を説明する。図3は、本発明による分析装置の構成を示す一例であり、光源をLEDと想定し、透過光もしくは散乱光を測定する分析装置を想定している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is an example showing the configuration of the analyzer according to the present invention, and assumes an analyzer that measures transmitted light or scattered light, assuming that the light source is an LED.

反応容器4の一方にはLEDが設けられているが、これはLED素子を光軸回りに回転させる機構を有する回転駆動機構付LED10である。反応容器4のもう一方には透過光を測定するための透過光測定用受光素子11が設けられており、吸光度を測定して対象物の濃度を定量する。また場合によっては光軸に対してある角度を有する位置に散乱光測定用受光素子12を設けてもよく、この場合は散乱光強度を測定することで、対象物の濃度を定量する。また場合によっては、透過光測定用受光素子11と散乱光測定用受光素子12を同時に設けてもよく、散乱光測定用受光素子12は角度を変えて複数個設置してもよいし、光軸に対して上下左右方向いずれの方向でもよい。   One of the reaction vessels 4 is provided with an LED, which is an LED 10 with a rotation drive mechanism having a mechanism for rotating the LED element around the optical axis. The other side of the reaction vessel 4 is provided with a light receiving element 11 for measuring transmitted light for measuring transmitted light, and measures the absorbance to quantify the concentration of the object. In some cases, the scattered light measuring light receiving element 12 may be provided at a position having an angle with respect to the optical axis. In this case, the concentration of the target is quantified by measuring the scattered light intensity. In some cases, the light receiving element 11 for measuring transmitted light and the light receiving element 12 for measuring scattered light may be provided at the same time, and a plurality of light receiving elements 12 for measuring scattered light may be installed at different angles, or the optical axis. The direction may be any of up, down, left and right directions.

図4に本発明による回転駆動機構付LED10を詳細に説明する。13は光源であるLEDであり、LED保持具14にて保持されており、LED保持具14の一部には被動歯車15が設けてある。16はモータであり、軸先端には駆動歯車17が設けられている。駆動歯車17は被動歯車15とかみ合っており、モータの回転をLED保持具14に伝え、光源であるLED13を光軸まわりに回転させる。LED13の端子には、両極それぞれに金属性のスリップリング18が設けられており、スリップリング18に押し付けるようにしてばね状金属板であるスリッププレート19が設けられ、LED13がLED保持具14ともども回転していても、スリッププレート19およびスリップリング18を介してLED13に電流が供給される構造となっている。   FIG. 4 illustrates the LED 10 with a rotation drive mechanism according to the present invention in detail. Reference numeral 13 denotes an LED as a light source, which is held by an LED holder 14, and a driven gear 15 is provided on a part of the LED holder 14. Reference numeral 16 denotes a motor, and a drive gear 17 is provided at the end of the shaft. The drive gear 17 meshes with the driven gear 15 and transmits the rotation of the motor to the LED holder 14 to rotate the LED 13 as the light source around the optical axis. The terminal of the LED 13 is provided with a metallic slip ring 18 on each of both poles, and a slip plate 19 which is a spring-like metal plate is provided so as to press against the slip ring 18, and the LED 13 rotates together with the LED holder 14. Even so, a current is supplied to the LED 13 through the slip plate 19 and the slip ring 18.

本発明による効果を説明する。図5(a)に示すように、LED光源は正面から見ると複雑な形状をしており、発光領域は発光部1と反射板2の部分だけで、加えて両者の間には発光していない部分もあるので、光源としてのローカリティが非常に大きい。その一方で、図5(b)に示すように、この光源を回転させた場合の発光領域20は、反射板の最外径で決まり、光源が1回転するのに要する時間より測光時の積分時間を長くすることで、LEDが停止している場合に比べて発光領域20の内部のローカリティは格段に小さくなることは自明である。また本例の場合、反射板の最内径21は、発光部の最外径22よりも小さいため、発光部1と反射板2の間にあった発光していない部分はなくなるので、さらにローカリティは小さくなる。   The effect by this invention is demonstrated. As shown in FIG. 5 (a), the LED light source has a complicated shape when viewed from the front, and the light emitting region is only the light emitting portion 1 and the reflecting plate 2, and light is emitted between the two. Since there is no part, the locality as a light source is very large. On the other hand, as shown in FIG. 5B, the light emitting area 20 when this light source is rotated is determined by the outermost diameter of the reflector, and the integration at the time of photometry is determined from the time required for one rotation of the light source. It is self-evident that by increasing the time, the locality inside the light emitting region 20 becomes much smaller than when the LED is stopped. In the case of this example, since the innermost diameter 21 of the reflecting plate is smaller than the outermost diameter 22 of the light emitting portion, the portion that does not emit light between the light emitting portion 1 and the reflecting plate 2 is eliminated, and the locality is further reduced. .

また図5ではLEDの回転中心を発光領域の図心と合わせた案を記載したが、発光領域内であれば回転中心はどこでもよい。その一例として発光領域の最外点を中心と外径にとった例を図6に示す。この場合、単位面積あたりの光量は落ちるが発光領域は最大となる。なお、LED保持具はアンバランスになるので実際の設計の際はカウンターウェイトが必要になる。また、発光素子の大きさによっては、発光素子を直線的に往復動作させることによりローカリティを低減することもできるし、円周状の経路に沿って、動かす(発光素子自体は回転しない)ようにしても良い。   Further, in FIG. 5, a proposal is described in which the rotation center of the LED is aligned with the centroid of the light emitting region, but the rotation center may be anywhere within the light emitting region. As an example, FIG. 6 shows an example in which the outermost point of the light emitting region is taken as the center and the outer diameter. In this case, the amount of light per unit area is reduced, but the light emitting area is maximized. Since the LED holder is unbalanced, a counterweight is required for actual design. In addition, depending on the size of the light emitting element, locality can be reduced by reciprocating the light emitting element linearly, and it can be moved along a circular path (the light emitting element itself does not rotate). May be.

1 発光部
2 反射板
3 配線
4 反応容器
5 反応液
6 発光素子(LED)
7 照射側積分球
8 受光側積分球
9 受光素子
10 回転駆動機構付LED
11 透過光測定用受光素子
12 散乱光測定用受光素子
13 LED
14 LED保持具
15 被動歯車
16 駆動モータ
17 駆動歯車
18 スリップリング
19 スリッププレート
20 LED回転時の発光領域
21 LED回転時の反射板の最内径
22 LED回転時の発光部の最外径
23 発光領域の最外点のひとつを中心
24 発光領域の最外点の対角点を最外点
DESCRIPTION OF SYMBOLS 1 Light emission part 2 Reflector 3 Wiring 4 Reaction container 5 Reaction liquid 6 Light emitting element (LED)
7 Irradiation side integrating sphere 8 Light receiving side integrating sphere 9 Light receiving element 10 LED with rotation drive mechanism
11 Light-receiving element for transmitted light measurement 12 Light-receiving element for scattered light measurement 13 LED
14 LED holder 15 Driven gear 16 Drive motor 17 Drive gear 18 Slip ring 19 Slip plate 20 Light-emitting area 21 during LED rotation The innermost diameter 22 of the reflector during LED rotation The outermost diameter 23 of the light-emitting part during LED rotation Light-emitting area Centered on one of the outermost points of the light 24 The diagonal point of the outermost point of the light emitting area is the outermost point

Claims (3)

発光素子と、
該発光素子からの光を、反応液を保持する反応容器に導く光路と、
該反応容器を透過した光を受光する受光素子と、
を備えた分析装置であって、
少なくとも前記受光素子を用いて前記反応容器での反応を測定している間は、前記発光素子を、動かすための、発光素子動作機構を備えたことを特徴とする分析装置。
A light emitting element;
An optical path for guiding light from the light-emitting element to a reaction vessel holding a reaction solution;
A light receiving element that receives light transmitted through the reaction vessel;
An analysis device comprising:
An analyzer comprising a light emitting element operating mechanism for moving the light emitting element while measuring the reaction in the reaction vessel using at least the light receiving element.
請求項1記載の分析装置において、
前記発光素子動作機構は、回転中心軸が発光素子の発光面内にあるように回転動作させることを特徴とする分析装置。
The analyzer according to claim 1,
The analysis device characterized in that the light emitting element operating mechanism is rotated so that a rotation center axis is in a light emitting surface of the light emitting element.
請求項2記載の分析装置において、
前記発光素子動作機構は、前記発光素子が測定時間内に1回転以上することを特徴とする分析装置。
The analyzer according to claim 2, wherein
The light emitting element operation mechanism is characterized in that the light emitting element makes one rotation or more within a measurement time.
JP2010156307A 2010-07-09 2010-07-09 Analyzer Pending JP2012018102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010156307A JP2012018102A (en) 2010-07-09 2010-07-09 Analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010156307A JP2012018102A (en) 2010-07-09 2010-07-09 Analyzer

Publications (1)

Publication Number Publication Date
JP2012018102A true JP2012018102A (en) 2012-01-26

Family

ID=45603453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010156307A Pending JP2012018102A (en) 2010-07-09 2010-07-09 Analyzer

Country Status (1)

Country Link
JP (1) JP2012018102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10691809B2 (en) 2015-03-02 2020-06-23 Canon Kabushiki Kaisha Information processing apparatus and method for controlling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10691809B2 (en) 2015-03-02 2020-06-23 Canon Kabushiki Kaisha Information processing apparatus and method for controlling the same

Similar Documents

Publication Publication Date Title
TWI354778B (en) Quantum efficiency measurement apparatus and quant
KR100972719B1 (en) Integrating photometer for measuring total flux of light generated from light source to be measured, and method for measuring total flux of light through use of the same
JP5486692B2 (en) Integrating sphere photometer and measuring method thereof
CN105738339B (en) A kind of fluorescent powder quantum efficiency measuring device
JP2005270979A5 (en)
CA2964020C (en) Optical gas sensor comprising an led emitter for the emission of light of a narrow bandwidth
CN104880450A (en) Line focusing detection system for immunofluorescence reagent card
US20080062424A1 (en) Compact Ringlight
JP5519303B2 (en) Wavelength conversion unit and lighting device including the same
JP2010217109A (en) Light emitting element measurement device
JP2013003061A (en) Light source inspection apparatus
JP6043916B2 (en) Optical measuring device
US20220136960A1 (en) Illumination unit with multiple light sources for generating a uniform illumination spot
JP6500474B2 (en) Optical analyzer
JP5541033B2 (en) Simple measuring method and apparatus for chemical conversion coverage in vehicle steel plate
JP2012018102A (en) Analyzer
KR101210899B1 (en) portable fluorescence detection system
JP2014134497A (en) Apparatus and method for measuring optical characteristic of led chip
JP2016125826A (en) Analysis device
JPH0835926A (en) Sample cell
JP6287195B2 (en) Fluorescence measuring device
JP2005055199A (en) Led lighting system
CN207882141U (en) A kind of light source transmitting and signal collection system for spectrum analysis
JP4856266B1 (en) Light source device and pseudo-sunlight irradiation device including the same
US20110109908A1 (en) Detection apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120517