JP2012017954A - Cooler - Google Patents

Cooler Download PDF

Info

Publication number
JP2012017954A
JP2012017954A JP2010157055A JP2010157055A JP2012017954A JP 2012017954 A JP2012017954 A JP 2012017954A JP 2010157055 A JP2010157055 A JP 2010157055A JP 2010157055 A JP2010157055 A JP 2010157055A JP 2012017954 A JP2012017954 A JP 2012017954A
Authority
JP
Japan
Prior art keywords
cooler
cooling
aluminum
partition plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010157055A
Other languages
Japanese (ja)
Inventor
Tatsuhiro Kubo
達博 久保
Atsushi Kurobe
淳 黒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2010157055A priority Critical patent/JP2012017954A/en
Publication of JP2012017954A publication Critical patent/JP2012017954A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooler improved in loading performance to keep heat transferring performance even when a dimension is reduced, with respect to the cooler for cooling a heating element incorporated in a power control unit of a hybrid automobile.SOLUTION: In this cooler including a plurality of cooling tubes 6, refrigerant supply tubes 7 for supplying a cooling medium into the cooling tubes, and refrigerant discharge tubes 7' for discharging the cooling medium to the outside of the cooling tubes, the cooling tubes are respectively constituted of a partitioning plate 3, a pair of outer packaging members 2, 4 disposed in opposition to the partitioning plate, and a refrigerant flow channel 5 formed by disposing wave-like members 1 respectively between the partitioning plate and the outer packaging members, and at least the partitioning plate and the pair of outer packaging members are made of aluminized steel plate, and integrated by brazing.

Description

本発明は、ハイブリッド自動車に搭載されるパワーコントロールユニット等に用いられる発熱体を冷却するための冷却器に関する。 The present invention relates to a cooler for cooling a heating element used in a power control unit or the like mounted on a hybrid vehicle.

自動車のエンジンや精密機器等には、発熱するエンジンや部品を冷却するための冷却器が設置されており、それらの冷却器は発熱体に直接冷媒体を接触させない間接的な冷却システムとして使用されている。各種の装置に組み込まれている冷却器は、装置の長期的な性能安定を保つ上で欠かせないものとなっている。特に自動車分野においては、近年の地球温暖化対策として従来のガソリンをエネルギーとした内燃機関のみのシステムから、ハイブリッド自動車や電気自動車のようなモーターとの併用あるいはモーターのみのエンジンシステムに切り替える傾向が強くなっている。 Automotive engines and precision equipment are equipped with coolers for cooling the engine and components that generate heat, and these coolers are used as an indirect cooling system that does not directly contact the refrigerant with the heating element. ing. The cooler incorporated in various apparatuses is indispensable for maintaining long-term performance stability of the apparatus. In the automotive field in particular, there is a strong tendency to switch from conventional gasoline-powered internal combustion engine-only systems to combined use with motors such as hybrid cars and electric cars, or motor-only engine systems as a countermeasure against global warming in recent years. It has become.

ハイブリッド自動車や電気自動車では、モーターを駆動させるために直流電力と交流電力との間で双方向変換する大容量のインバータを備えたパワーコントロールユニットが設置されている。このパワーコントロールユニットは、特許文献1に示されているように変換機能を持つ半導体ユニットが発熱するために、半導体ユニットの両面に冷却管を設置・接触させて、半導体ユニットを間接的に冷却する機構となっている。この冷却管は、素材として銅やアルミニウムを用いており、図1に示すように、これらの素材を波状に加工した波状部材1と外装部材2、4と仕切り板3をろう付けしている。この波状加工した凹凸部が、冷媒体を流動させる流路5となっている。また、冷媒体はその冷却管6の両側に接合させた冷媒供給管7から供給して、冷却管を経由して冷媒排出管7´より排出しており、流路を流動する冷媒体との熱交換により半導体ユニットを冷却するしくみとなっている。 In a hybrid vehicle and an electric vehicle, a power control unit including a large-capacity inverter that performs bidirectional conversion between direct current power and alternating current power is installed to drive a motor. In this power control unit, since the semiconductor unit having the conversion function generates heat as shown in Patent Document 1, the semiconductor unit is indirectly cooled by installing and contacting cooling pipes on both sides of the semiconductor unit. It is a mechanism. This cooling pipe uses copper or aluminum as a material, and as shown in FIG. 1, a corrugated member 1, exterior members 2, 4 and a partition plate 3 obtained by processing these materials into a corrugated shape are brazed. This corrugated uneven portion serves as a flow path 5 through which the refrigerant body flows. Further, the refrigerant body is supplied from the refrigerant supply pipe 7 joined to both sides of the cooling pipe 6 and discharged from the refrigerant discharge pipe 7 ′ via the cooling pipe, The semiconductor unit is cooled by heat exchange.

このような機構のパワーコントロールユニットであるが、搭載性をより一層向上させるために小型化することが望まれており、これによって冷却器の小型化も必要となってきている。冷却器を小型化する方法としては、冷却管を形成している仕切り板の板厚を低減することが考えられる。しかし、現状品の素材である銅やアルミニウムを薄肉化した場合は、冷却管の製造工程である、ろう付けにおいて問題が発生してしまう。このろう付けは、図2に示すように、波状部材1と外装部材2、4と仕切り板3との間にろう材8を塗布し、仕切り板3と一対の外装部材2、4との間に二個の波状部材1を設置するとともに、上側の外装部材2に重石9を載せた状態で加熱・空冷する方法が取られている。このろう付け工程において、銅やアルミニウムを薄肉化すると剛性が低下するために、ろう付け時に仕切り板3と外装部材2,4が変形してしまうという懸念がある。また、銅については、レアメタルであるため価格が変動しやすく、コスト面で使いにくいという問題もある。 Although it is a power control unit of such a mechanism, it is desired to reduce the size in order to further improve the mountability, and accordingly, the size of the cooler is also required to be reduced. As a method for reducing the size of the cooler, it can be considered to reduce the thickness of the partition plate forming the cooling pipe. However, when copper or aluminum, which is a material of the current product, is thinned, a problem occurs in brazing, which is a manufacturing process of a cooling pipe. As shown in FIG. 2, this brazing is performed by applying a brazing material 8 between the corrugated member 1, the exterior members 2, 4 and the partition plate 3, and between the partition plate 3 and the pair of exterior members 2, 4. In addition, two corrugated members 1 are installed, and heating and air cooling are performed in a state where the weight 9 is placed on the upper exterior member 2. In this brazing process, if copper or aluminum is thinned, the rigidity is lowered, and there is a concern that the partition plate 3 and the exterior members 2 and 4 are deformed during brazing. In addition, since copper is a rare metal, the price is likely to fluctuate and it is difficult to use in terms of cost.

特開2009−261125号JP 2009-261125 A

本発明は、このような問題点を解消するために案出されたものであり、冷却器を製造するろう付け工程において、冷却管の仕切り板および外装部材が変形することなく、流路を形成できるような素材を用いた冷却器を提供することを目的とする。 The present invention has been devised to solve such problems, and in the brazing process for manufacturing the cooler, the flow path is formed without deformation of the partition plate and the exterior member of the cooling pipe. An object is to provide a cooler using such a material.

本発明の冷却器は、その目的を達成するために、複数の冷却管と、該冷却管の内部に冷却媒体を供給するための冷媒供給管と、該冷却管の外部に冷却媒体を排出するための冷媒排出管とからなる冷却器において、前記冷却管は、仕切り板と、該仕切り板に対向して配置される一対の外装部材と、仕切り板と外装部材との間に波状部材を配置して形成される冷媒流路で構成され、少なくとも前記仕切り板と前記一対の外装部材はアルミ系めっき鋼板からなり、ろう付けにより一体化されていることを特徴とする。 また、前記アルミ系めっき鋼板は、普通鋼(SPCC等)にアルミ系めっきを行なったものでもよいし、ステンレス鋼にアルミ系めっきを行なったものであってもよい。 In order to achieve the object of the cooler of the present invention, a plurality of cooling pipes, a refrigerant supply pipe for supplying a cooling medium to the inside of the cooling pipe, and the cooling medium are discharged to the outside of the cooling pipe. The cooling pipe includes a partition plate, a pair of exterior members disposed to face the partition plate, and a corrugated member between the partition plate and the exterior member. And at least the partition plate and the pair of exterior members are made of an aluminum-based plated steel plate and are integrated by brazing. Further, the aluminum-plated steel sheet may be obtained by performing aluminum-based plating on ordinary steel (SPCC or the like), or may be obtained by performing aluminum-based plating on stainless steel.

本発明の冷却器においては、構成する仕切り板や外装部材及び波状部材の素材に、銅やアルミニウムよりも高温時において降伏応力が高い普通鋼やステンレス鋼などにアルミ系めっきを行なったアルミ系めっき鋼板を用いているため、ろう付け時において仕切り板や外装部材が変形することがない。また、波状部材もアルミ系めっきを行なった普通鋼やステンレス鋼を用いることで、より一層仕切り板の変形を防止することが可能となる。さらに、表面にアルミ系めっきを行っていることから、現行のアルミニウムを素材とした冷却器の製造に用いられるろう材と同じものを使用することができるため、流通性のない特殊なろう材を用意することがないことからコスト上昇に繋がることもない。 これらの効果から、所定寸法の流路を確保することが可能であり、冷却器を安定して製造することができる。 なお、アルミ系めっき鋼板に用いるステンレス鋼は、オーステナイト系ステンレス鋼でもフェライト系ステンレス鋼でも良いが、コスト面に優れるフェライト系ステンレス鋼を用いるのが好ましい。ステンレス鋼を用いることで、耐食性に優れた冷却器が得られる。 In the cooler of the present invention, aluminum-based plating obtained by performing aluminum-based plating on plain steel, stainless steel, or the like, which has higher yield stress at higher temperatures than copper or aluminum, on the constituent partition plate, exterior member, and corrugated member. Since a steel plate is used, the partition plate and the exterior member do not deform during brazing. In addition, it is possible to further prevent the partition plate from being deformed by using ordinary steel or stainless steel plated with aluminum as the corrugated member. In addition, because the surface is plated with aluminum, the same brazing material used for manufacturing coolers made of current aluminum can be used, so a special brazing material with no flowability can be used. Since there is no preparation, there is no increase in cost. From these effects, it is possible to secure a flow path of a predetermined dimension, and the cooler can be manufactured stably. The stainless steel used for the aluminum-based plated steel sheet may be an austenitic stainless steel or a ferritic stainless steel, but it is preferable to use a ferritic stainless steel that is excellent in cost. By using stainless steel, a cooler with excellent corrosion resistance can be obtained.

パワーコントロールユニットに用いられる冷却器に関して、(a)全体構成と、(b)冷却管の流路の構造を示す概略図((a)のA−A断面)Concerning the cooler used in the power control unit, (a) overall configuration and (b) schematic diagram showing the structure of the flow path of the cooling pipe (cross section AA in (a)) 冷却器の流路の組み立て工程を示す図The figure which shows the assembly process of the channel of a cooler 本実施例における冷却器の流路構造の概略図Schematic of the channel structure of the cooler in the present embodiment

本発明者等は、冷却器の小型化を図るために、仕切り板、外装部材及び波状部材の板厚を薄くすることを主眼として種々検討を重ねた。 現状の冷却器の仕切り板、外装部材及び波状部材は、銅やアルミニウムを素材としているが、それらの部品を薄肉化した場合には、剛性が低下するためにろう付け時に仕切り板、外装部材及び波状部材が変形して所定寸法の流路を確保することが難しい状態となる。そのため、ろう付けの高温下においても降伏応力を比較的高い状態が維持でき、なおかつ、ろう付けでの接合安定性を考慮してめっき鋼板で検討し、その鋼板の原板としては普通鋼やフェライト系ステンレス鋼とした。この検討においては、パワーコントロールユニットの冷却器として比較的多く使用されているアルミニウムを素材としたものと比較して進めた。 In order to reduce the size of the cooler, the present inventors have made various studies focusing on reducing the thickness of the partition plate, the exterior member, and the corrugated member. The partition plate, exterior member, and corrugated member of the current cooler are made of copper or aluminum, but when those parts are thinned, the partition plate, exterior member and It becomes difficult for the corrugated member to deform and to secure a flow path having a predetermined dimension. For this reason, the yield stress can be maintained at a relatively high level even under high temperatures of brazing, and the steel sheet is studied with a plated steel sheet in consideration of the bonding stability in brazing. Stainless steel was used. In this study, we proceeded in comparison with a material made of aluminum, which is relatively used as a cooler for power control units.

アルミ系めっき鋼板をろう付けする場合は、ろう材もアルミ系の品種が使用されるためろう材の融点としては、600℃程度となる。アルミ系めっき鋼板の原板である普通鋼やフェライト系ステンレス鋼は、600℃の高温下においてもアルミニウムと比較して約10倍以上の降伏応力を維持していることから、剛性だけを考慮すれば現行冷却器の仕切り板、外装部材及び波状部材の板厚の約1/10まで薄肉化することが可能であり、十分に薄肉化することができる。 しかし、普通鋼やフェライト系ステンレス鋼の場合は、アルミニウムの熱伝導率と比べて各々約1/3と約1/6であり、冷却器の冷却能力、つまりは伝熱性能を考慮すると、現行アルミニウムの板厚に対して約1/3以下に薄肉化する必要がある。そのため、普通鋼やフェライト系ステンレス鋼の薄肉化の制限は、伝熱性能に左右されることになる。 When brazing an aluminum-plated steel sheet, since the brazing material is an aluminum type, the melting point of the brazing material is about 600 ° C. Since plain steel and ferritic stainless steel, which are the base plates of aluminum-based plated steel sheets, maintain a yield stress of about 10 times or more compared to aluminum even at a high temperature of 600 ° C, if only rigidity is considered It is possible to reduce the thickness to about 1/10 of the thickness of the partition plate, exterior member, and corrugated member of the current cooler, and the thickness can be sufficiently reduced. However, in the case of ordinary steel and ferritic stainless steel, the heat conductivity of aluminum is about 1/3 and about 1/6 respectively, and considering the cooling capacity of the cooler, that is, heat transfer performance, It is necessary to reduce the thickness to about 1/3 or less of the aluminum plate thickness. Therefore, the limitation of thinning of ordinary steel and ferritic stainless steel depends on the heat transfer performance.

伝熱性能を考慮した普通鋼やステンレス鋼の板厚を検討するため、各々の素材で流路を形成して伝熱性能を比較した。詳細は、実施例において記載するが、現行のアルミニウムの板厚に対して普通鋼で1/3、フェライト系ステンレス鋼で1/6にすることによりほぼ同等の伝熱性能を得ることが分かった。また、ろう付け時の変形も発生せず、所定寸法の流路を確保できた。 In order to examine the thickness of ordinary steel and stainless steel considering heat transfer performance, we compared the heat transfer performance by forming a channel with each material. Details will be described in the examples, but it has been found that the heat transfer performance is almost equivalent to 1/3 of ordinary steel and 1/6 of ferritic stainless steel with respect to the current thickness of aluminum. . Further, deformation during brazing did not occur, and a flow path with a predetermined dimension was secured.

表面にアルミ系めっきした普通鋼やステンレス鋼を素材として冷却器を製造する場合には、仕切り板、外装部材及び波状部材を先ず用意する。波状部材1は、板状やコイル状の素材をプレスや圧延等で所定寸法の波状に塑性加工した後に、必要長さに切断していく。また、仕切り板3、外装部材2、4も、板状やコイル状の素材を所定形状・寸法にプレス等で成形して、切断機等で所定の長さに切断して得ることができる。次に、図2に示したように、二個の波状部材1と仕切り板3、外装部材2、4の間にろう材8を塗布し、その状態で上側の外装部材2に重石9を載せて固定する。その状態で加熱炉に入れて所定のろう付け条件で加熱、空冷することによって製造することができる。 When a cooler is manufactured using plain steel or stainless steel with aluminum plating on the surface, a partition plate, an exterior member, and a corrugated member are first prepared. The corrugated member 1 is cut into a required length after plastic processing of a plate-like or coil-like material into a corrugated shape of a predetermined size by pressing or rolling. The partition plate 3 and the exterior members 2 and 4 can also be obtained by forming a plate-shaped or coil-shaped material into a predetermined shape and size with a press or the like and cutting it into a predetermined length with a cutting machine or the like. Next, as shown in FIG. 2, a brazing material 8 is applied between the two corrugated members 1, the partition plate 3, and the exterior members 2, 4, and the weight 9 is placed on the upper exterior member 2 in this state. And fix. In that state, it can be produced by placing it in a heating furnace and heating and air cooling under predetermined brazing conditions.

アルミ系めっき鋼板の表面にめっきされているめっき層の膜厚は、原板が普通鋼やステンレス鋼の何れの場合も、特に限定するものではないが、耐食性やろう付け性を考慮して片面で5μm以上にすることが望ましい。 The film thickness of the plating layer plated on the surface of the aluminum-based plated steel sheet is not particularly limited when the original plate is made of ordinary steel or stainless steel, but it can be used on one side in consideration of corrosion resistance and brazing. It is desirable to make it 5 μm or more.

また、アルミ系めっき鋼板の原板である普通鋼やステンレス鋼の鋼種も特に限定するものでなく、波状に加工できる変形抵抗となる成分、機械的性質のものであれば、何れの鋼種でも使用することができる。 In addition, the steel grades of ordinary steel and stainless steel, which are the base plates of the aluminum-based plated steel sheet, are not particularly limited, and any steel grade can be used as long as it has a deformation resistance component and mechanical properties that can be processed into a wave shape. be able to.

供試材としては、表面にアルミニウムをめっきした普通鋼とフェライト系ステンレス鋼で、各々の板厚を0.1mmと0.07mmとした素材を用い、それらの素材を使った冷却器にて伝熱性能とろう付け時の変形状態を確認した。素材のめっき膜厚は、片面で5μmである。冷却管6の流路5としては、図3に示すように矩形断面の形状とし、高さHpが2mm、幅wpを1mmとした。この流路形状、寸法となるように、各々の素材をプレス加工し、所定に寸法に切断した。冷却器の全体寸法は、表1に示す通りである。ここで長さLは、図1に示したように冷媒供給管7と冷媒排出管7´の中心間の距離である。波状部材1と仕切り板3と外装部材2、4の接合は、仕切り板3と外装部材2、4にAl−Si−Mg系のろう材を厚さ0.1mmで塗布し、上側の外装部材2の上に質量5kgの重石を載せて固定した。この状態で真空加熱炉に投入して表2に示す条件でろう付けを行った。 冷却器の伝熱性能については、冷却器に流動させる冷媒体として温度20℃の水を用い、速度0.1m/sで供給するとともに、仕切り板3と外装部材2、4の両面から全面に渡って温度100℃一定で加熱して、流動する水の温度変化を測定して抜熱量を算出した。 比較として現行のパワーコントロールユニットで使用されている素材の一例としてAl−Mn系アルミニウムを用い、それを素材とした場合についても冷却器を製作して性能を評価した。板厚としては、0.4mmと0.1mmとし、冷却器の製作方法および伝熱性能の評価はアルミめっき鋼板の場合と同じとした。 The test materials used were normal steel and ferritic stainless steel with aluminum plated on the surface, and the thickness of each plate was 0.1 mm and 0.07 mm. Thermal performance and deformation state during brazing were confirmed. The plating film thickness of the material is 5 μm on one side. As shown in FIG. 3, the flow path 5 of the cooling pipe 6 has a rectangular cross-sectional shape, a height Hp of 2 mm, and a width wp of 1 mm. Each material was pressed so as to have this flow path shape and dimensions, and cut into predetermined dimensions. The overall dimensions of the cooler are as shown in Table 1. Here, the length L is the distance between the centers of the refrigerant supply pipe 7 and the refrigerant discharge pipe 7 'as shown in FIG. The corrugated member 1, the partition plate 3, and the exterior members 2, 4 are joined by applying an Al—Si—Mg based brazing material to the partition plate 3, the exterior members 2, 4 to a thickness of 0.1 mm. A weight of 5 kg was placed on 2 and fixed. In this state, it was put into a vacuum heating furnace and brazed under the conditions shown in Table 2. Regarding the heat transfer performance of the cooler, water at a temperature of 20 ° C. is used as the coolant flowing in the cooler, and the water is supplied at a speed of 0.1 m / s, and from both sides of the partition plate 3 and the exterior members 2 and 4 to the entire surface. Heating was performed at a constant temperature of 100 ° C., and the temperature change of flowing water was measured to calculate the amount of heat removal. As a comparison, Al-Mn-based aluminum was used as an example of a material used in the current power control unit, and a cooler was also manufactured and evaluated for performance. The plate thickness was 0.4 mm and 0.1 mm, and the manufacturing method of the cooler and the evaluation of the heat transfer performance were the same as in the case of the aluminum plated steel plate.

Figure 2012017954
Figure 2012017954

Figure 2012017954
Figure 2012017954

冷却器を製作した結果、アルミめっき鋼板を素材とした場合には、原板が普通鋼やフェライト系ステンレス鋼の何れの場合も、ろう付け時に変形を起こすことなく所定寸法の流路を得ることができた。 しかし、Al−Mn系アルミニウムを素材とした場合は、板厚0.4mmではろう付け時で変形は起こさなかったが、板厚が0.1mmでは変形してしまい所定寸法の流路を得ることができなかった。 As a result of manufacturing the cooler, when using an aluminum-plated steel sheet as a raw material, it is possible to obtain a flow path of a predetermined dimension without causing deformation during brazing, regardless of whether the original sheet is plain steel or ferritic stainless steel. did it. However, when Al—Mn-based aluminum is used as a raw material, deformation did not occur at the time of brazing at a plate thickness of 0.4 mm, but deformation occurred at a plate thickness of 0.1 mm to obtain a flow path of a predetermined dimension. I could not.

伝熱性能については、板厚0.4mmのAl−Mn系アルミニウムを素材した場合と普通鋼やフェライト系ステンレス鋼を原板としたアルミめっき鋼板を素材とした場合とで、抜熱量がほとんど同じであり、アルミめっき鋼板を素材とした場合でも板厚を薄肉化することによって伝熱性能も維持できることが分かった。 About heat transfer performance, the amount of heat removal is almost the same when using Al-Mn aluminum with a thickness of 0.4 mm and when using aluminum-plated steel sheet with plain steel or ferritic stainless steel as the raw material. It was also found that heat transfer performance can be maintained by reducing the plate thickness even when an aluminum-plated steel plate is used.

Claims (2)

複数の冷却管と、該冷却管の内部に冷却媒体を供給するための冷媒供給管と、該冷却管の外部に冷却媒体を排出するための冷媒排出管とからなる冷却器において、前記冷却管は、仕切り板と、該仕切り板に対向して配置される一対の外装部材と、仕切り板と外装部材との間に波状部材を配置して形成される冷媒流路で構成され、少なくとも前記仕切り板と前記一対の外装部材はアルミ系めっき鋼板からなり、ろう付けにより
一体化されていることを特徴とする冷却器。
In the cooler comprising a plurality of cooling pipes, a refrigerant supply pipe for supplying a cooling medium to the inside of the cooling pipe, and a refrigerant discharge pipe for discharging the cooling medium to the outside of the cooling pipe, the cooling pipe Is composed of a partition plate, a pair of exterior members disposed to face the partition plate, and a refrigerant flow path formed by arranging a wave-like member between the partition plate and the exterior member, and at least the partition The cooler, wherein the plate and the pair of exterior members are made of an aluminum-plated steel plate and are integrated by brazing.
前記アルミ系めっき鋼板は、ステンレス鋼にアルミ系めっきを行なったものであることを特徴とする請求項1記載の冷却器。 The cooler according to claim 1, wherein the aluminum-based plated steel sheet is obtained by performing aluminum-based plating on stainless steel.
JP2010157055A 2010-07-09 2010-07-09 Cooler Withdrawn JP2012017954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157055A JP2012017954A (en) 2010-07-09 2010-07-09 Cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010157055A JP2012017954A (en) 2010-07-09 2010-07-09 Cooler

Publications (1)

Publication Number Publication Date
JP2012017954A true JP2012017954A (en) 2012-01-26

Family

ID=45603338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157055A Withdrawn JP2012017954A (en) 2010-07-09 2010-07-09 Cooler

Country Status (1)

Country Link
JP (1) JP2012017954A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017013108A (en) * 2015-07-03 2017-01-19 株式会社豊田中央研究所 Manufacturing method for brazing structure
WO2022244568A1 (en) 2021-05-20 2022-11-24 日本製鉄株式会社 Cooling structure, battery unit, and manufacturing method for cooling structure
WO2022244570A1 (en) 2021-05-20 2022-11-24 日本製鉄株式会社 Cooling structure, battery unit, and cooling structure manufacturing method
WO2022244569A1 (en) 2021-05-20 2022-11-24 日本製鉄株式会社 Cooling structure, battery unit, and manufacturing method for cooling structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017013108A (en) * 2015-07-03 2017-01-19 株式会社豊田中央研究所 Manufacturing method for brazing structure
WO2022244568A1 (en) 2021-05-20 2022-11-24 日本製鉄株式会社 Cooling structure, battery unit, and manufacturing method for cooling structure
WO2022244570A1 (en) 2021-05-20 2022-11-24 日本製鉄株式会社 Cooling structure, battery unit, and cooling structure manufacturing method
WO2022244569A1 (en) 2021-05-20 2022-11-24 日本製鉄株式会社 Cooling structure, battery unit, and manufacturing method for cooling structure
KR20230172024A (en) 2021-05-20 2023-12-21 닛폰세이테츠 가부시키가이샤 Cooling structure, battery unit, and method of manufacturing the cooling structure
KR20230172535A (en) 2021-05-20 2023-12-22 닛폰세이테츠 가부시키가이샤 Cooling structure, battery unit, and method of manufacturing the cooling structure
KR20230173707A (en) 2021-05-20 2023-12-27 닛폰세이테츠 가부시키가이샤 Cooling structure, battery unit, and method of manufacturing the cooling structure

Similar Documents

Publication Publication Date Title
US10547093B2 (en) Battery pack
Cao et al. Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery
US11867471B2 (en) Heat exchanger
EP3578410B1 (en) Thermal systems for battery electric vehicles
US11938782B2 (en) Heat exchanger with integrated electrical heating element
JP6582058B2 (en) Heat exchanger and heat management equipment for battery of electric vehicle or hybrid vehicle
EP2472667B1 (en) Battery module and method for cooling the battery module
US20130014923A1 (en) Battery cooler
JP5157681B2 (en) Stacked cooler
CN103575140A (en) Compact type aluminum heat exchanger with welding pipe for power electronic equipment and battery cooling
JP4265509B2 (en) Stacked cooler
JP2012017954A (en) Cooler
JP2018147607A (en) Heat transfer device for battery pack
KR20220024043A (en) cooling system
JP2011183862A (en) Temperature controller of battery for vehicle running
JP2012512983A (en) Exhaust gas cooler for internal combustion engine
JPS62293086A (en) Laminated type heat exchanger
JP2014091463A (en) Battery support structure of vehicle
US11788794B2 (en) Heat exchanger and inner fin thereof
JP2015530552A (en) Small aluminum heat exchanger with welded tube for power electronics and battery cooling
JP2009248169A (en) Manufacturing method of cold plate
JP7221136B2 (en) Heat exchanger
JP2010165714A (en) Apparatus for cooling semiconductor module
JP2008221951A (en) Cooling system of electronic parts for automobile
WO2016100640A1 (en) Aluminum alloy finned heat exchanger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131001