JP2012017285A - Silicone monomer, method of producing the same, monomer composition and polymer - Google Patents

Silicone monomer, method of producing the same, monomer composition and polymer Download PDF

Info

Publication number
JP2012017285A
JP2012017285A JP2010155105A JP2010155105A JP2012017285A JP 2012017285 A JP2012017285 A JP 2012017285A JP 2010155105 A JP2010155105 A JP 2010155105A JP 2010155105 A JP2010155105 A JP 2010155105A JP 2012017285 A JP2012017285 A JP 2012017285A
Authority
JP
Japan
Prior art keywords
monomer
silicone
formula
meth
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010155105A
Other languages
Japanese (ja)
Other versions
JP2012017285A5 (en
Inventor
Yosuke Matsuoka
陽介 松岡
Kiro Iwakiri
規郎 岩切
Nobuyuki Yoshioka
伸行 吉岡
Nobuyuki Sakamoto
伸行 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2010155105A priority Critical patent/JP2012017285A/en
Publication of JP2012017285A publication Critical patent/JP2012017285A/en
Publication of JP2012017285A5 publication Critical patent/JP2012017285A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide: a silicone monomer that has large silicone content, shows high transparency and high oxygen transmission rate when the monomer is copolymerized with a polymerizable monomer such as (meth)acrylic monomer and is suitable for human eyes; a method of producing the same; and a monomer composition and polymer using the monomer.SOLUTION: One example of the silicone monomer is listed in the following. The monomer is suitable for producing a device for eyes such as contact lens.

Description

本発明は、例えば、コンタクトレンズ、眼内レンズ、人工角膜等の眼科デバイスを製造する際に利用可能な、重合性を有するシリコーンモノマー、その製造方法、該シリコーンモノマーを用いた単量体組成物及び重合体に関する。   The present invention relates to a polymerizable silicone monomer that can be used for manufacturing ophthalmic devices such as contact lenses, intraocular lenses, and artificial corneas, a manufacturing method thereof, and a monomer composition using the silicone monomer. And a polymer.

生体用デバイスを含む種々の物品は、例えば、有機ケイ素化合物含有材料から形成されている。ソフトコンタクトレンズなどの生体用デバイスに有用な有機ケイ素化合物材料の一つにケイ素含有ヒドロゲル材料が挙げられる。一般に、ケイ素系の材料は、水よりも高い酸素透過性を有するので、より高い酸素透過性を有する物品が提供できる。
従来ハードコンタクトレンズに用いられている有機ケイ素化合物材料は、高酸素透過性であるが、ソフトコンタクトレンズに用いられる材料よりも硬い。また、このような有機ケイ素化合物材料は疎水性であるため、これを用いてレンズを製造するには、親水性表面を提供するための追加の処理を必要とする。
例えば、眼科デバイスに用いられる眼用のシリコーンモノマーとして、下記TRIS(3−[トリス(トリメチルシロキシ)シリル]プロピルメタクリレート)が知られている(特許文献1)。
Various articles including a biological device are formed from, for example, an organic silicon compound-containing material. One organosilicon compound material useful for biomedical devices such as soft contact lenses is a silicon-containing hydrogel material. In general, silicon-based materials have higher oxygen permeability than water, and therefore, articles having higher oxygen permeability can be provided.
Organosilicon compound materials conventionally used for hard contact lenses are highly oxygen permeable, but are harder than materials used for soft contact lenses. Also, since such organosilicon compound materials are hydrophobic, manufacturing lenses using them requires additional processing to provide a hydrophilic surface.
For example, the following TRIS (3- [tris (trimethylsiloxy) silyl] propyl methacrylate) is known as an ophthalmic silicone monomer used in ophthalmic devices (Patent Document 1).

Figure 2012017285
Figure 2012017285

TRISも疎水性のモノマーであるため、眼用レンズ素材として用いる場合には、例えば、親水性モノマーと共重合させることが考えられる。しかし、TRISは、HEMA(2−ヒドロキシエチルメタクリレート)のような親水性モノマーとの相溶性に劣り、このような親水性モノマーと共重合させた場合、透明ポリマーが得られず、レンズ素材として使用できないという欠点がある。また、N−ビニルピロリドンやN,N−ジメチルアクリルアミドなど、他の親水性モノマーとの組み合わせの多くは含水時に表面が強く撥水するために、TRISはソフトコンタクトレンズ用素材として使用しにくいことが知られている。
これを改善する目的で、特許文献2および特許文献3には、SiGMA(ジメチルジ(トリメチルシロキシ)シリルプロピルグリセロールメタクリレート)が提案され、シリコーンハイドロゲルコンタクトレンズ用途に相溶化剤モノマーとして使用されている。SiGMAは、適度な酸素透過性能を有するために酸素透過製剤としての役割も果たしている。該SiGMAは水酸基を有していることから良好な親水性を発現することが知られている。

Figure 2012017285
Since TRIS is also a hydrophobic monomer, when used as an ophthalmic lens material, for example, it may be copolymerized with a hydrophilic monomer. However, TRIS has poor compatibility with hydrophilic monomers such as HEMA (2-hydroxyethyl methacrylate). When copolymerized with such hydrophilic monomers, a transparent polymer cannot be obtained and used as a lens material. There is a disadvantage that it can not. In addition, many combinations with other hydrophilic monomers such as N-vinylpyrrolidone and N, N-dimethylacrylamide have a strong water repellency when containing water, so TRIS may be difficult to use as a soft contact lens material. Are known.
For the purpose of improving this, Patent Document 2 and Patent Document 3 propose SiGMA (dimethyldi (trimethylsiloxy) silylpropylglycerol methacrylate), which is used as a compatibilizer monomer in silicone hydrogel contact lens applications. Since SiGMA has an appropriate oxygen permeation performance, it also plays a role as an oxygen permeation preparation. Since this SiGMA has a hydroxyl group, it is known to express good hydrophilicity.
Figure 2012017285

また、レンズの装用感に悪影響を与えるオリゴマー架橋成分を低減する方法として、特許文献4に該モノマーの新たな製造方法も提案されている。しかしながら、モノマー1分子内のシロキサニル基が占める質量割合をシリコーン含量と定義したとき、SiGMAはシリコーン含量が52.4%(SiGMAの1分子中のシロキサニル基を構成する各原子の原子量の合計は221であり、SiGMAの分子量が422であるから、このときのシリコーン含量は、221/422×100=52.4%と計算できる。)であり、TRISのシリコーン含量72%と比較して、ケイ素含量が低いため、十分な酸素透過性を得ることが困難であった。   As a method for reducing oligomer crosslinking components that adversely affect the wearing feeling of the lens, Patent Document 4 proposes a new method for producing the monomer. However, when the mass ratio of the siloxanyl group in one monomer molecule is defined as the silicone content, the SiGMA has a silicone content of 52.4% (the total atomic weight of each atom constituting the siloxanyl group in one molecule of SiGMA is 221). Since the molecular weight of SiGMA is 422, the silicone content at this time can be calculated as 221/422 × 100 = 52.4%.) Compared with the silicone content of TRIS of 72%, the silicon content Therefore, it was difficult to obtain sufficient oxygen permeability.

特許文献5には分子内にアミド結合を有する下記式で示されるシリコーンモノマーTMSAAが提案されている。該シリコーンモノマーは、アミド基を有することからTRISと比較して親水性が向上している。
しかし、十分な親水性を得るには至っておらず、これを用いてソフトコンタクトレンズを調製した際にはレンズ表面が疎水性になり、表面の親水化処理等を行なう必要がある。そのため、製造工程が複雑になるという問題があった。

Figure 2012017285
Patent Document 5 proposes a silicone monomer TMSAA represented by the following formula having an amide bond in the molecule. Since the silicone monomer has an amide group, the hydrophilicity is improved as compared with TRIS.
However, sufficient hydrophilicity has not been obtained, and when a soft contact lens is prepared using this, the lens surface becomes hydrophobic, and it is necessary to perform a hydrophilic treatment on the surface. Therefore, there has been a problem that the manufacturing process becomes complicated.
Figure 2012017285

特許文献6には、メタクリル酸ハライドとオリゴエチレングリコール変性直鎖シリコーンとの反応による新たなモノマーが提案されている。オリゴエチレングリコールは、分子内のエーテル基と共に末端の遊離水酸基が大きく親水性に寄与するが、該モノマーの水酸基はエステル結合を形成しているため十分に機能せず、親水性を得るためには、エーテル構造の繰り返し単位を多くする必要がある。そのため、モノマー中のシリコーン含量は下がる傾向にあり、レンズの表面親水性と酸素透過性とを同時に満たすことは困難であった。   Patent Document 6 proposes a new monomer obtained by a reaction between a methacrylic acid halide and an oligoethylene glycol-modified linear silicone. Oligoethylene glycol has a large free hydroxyl group at the end together with the ether group in the molecule and contributes to hydrophilicity. However, the hydroxyl group of the monomer does not function sufficiently because it forms an ester bond, and in order to obtain hydrophilicity It is necessary to increase the number of repeating units having an ether structure. For this reason, the silicone content in the monomer tends to decrease, and it has been difficult to satisfy both the surface hydrophilicity and oxygen permeability of the lens.

特許文献7には、3級アミンとハロゲン化アルキルとの反応により得られる、式(3)で表される分子内に4級アンモニウムを有するシリコーンモノマーが提案されている。このモノマーは、重合によりレンズ表面の親水性は達成されるが、シリコーン含量は295/587=50.3%とSiGMAと同程度であり、酸素透過性を満足することが困難である。また該モノマーはカチオン性であるため、これを用いたレンズではタンパク質吸着など、レンズ表面の白濁汚れが懸念される。

Figure 2012017285
Patent Document 7 proposes a silicone monomer having a quaternary ammonium in the molecule represented by the formula (3), which is obtained by a reaction between a tertiary amine and an alkyl halide. This monomer achieves the hydrophilicity of the lens surface by polymerization, but the silicone content is 295/587 = 50.3%, which is similar to SiGMA, and it is difficult to satisfy oxygen permeability. Further, since the monomer is cationic, there is a concern that the lens surface using the monomer may cause white turbid contamination on the lens surface such as protein adsorption.
Figure 2012017285

以上の事情から、眼科デバイスに用いられる眼用のシリコーンモノマーの分野では、新たな分子構造の親水性を有するシリコーンモノマーであって、製造が容易で、一日使い捨てレンズのような安価な用途にも使用可能な、且つモノマー1分子内にシロキサニル基が占める割合(シリコーン含量)が大きいシリコーンモノマーの開発が求められている。   From the above circumstances, in the field of ophthalmic silicone monomers used in ophthalmic devices, it is a silicone monomer having a hydrophilicity with a new molecular structure, which is easy to manufacture and is inexpensive for daily disposable lenses. There is a need to develop a silicone monomer that can be used and has a large proportion (silicone content) of siloxanyl groups in one monomer molecule.

米国特許第3808178号明細書US Pat. No. 3,808,178 特開昭54−061126号公報JP 54-0661126 A 特開平11−310613号公報Japanese Patent Application Laid-Open No. 11-310613 特開2008−510817号公報JP 2008-510817 A 米国特許第4711943号明細書U.S. Pat. No. 4,711,943 特開2008−202060号公報JP 2008-202060 A 特開2009−521546号公報JP 2009-521546 A

本発明の課題は、シリコーン含量が大きく、(メタ)アクリル系モノマー等の重合性モノマーと共重合した際に、透明度及び酸素透過率が高いと想定される、眼に適用するのに好適なシリコーンモノマー、その製造方法、該シリコーンモノマーを用いた単量体組成物及び重合体を提供することにある。   An object of the present invention is a silicone suitable for application to the eye, which has a high silicone content and is assumed to have high transparency and high oxygen permeability when copolymerized with a polymerizable monomer such as a (meth) acrylic monomer. It is providing the monomer, its manufacturing method, the monomer composition and polymer using this silicone monomer.

本発明によれば、式(1)で表されるシリコーンモノマーが提供される。

Figure 2012017285
(式(1)中、Rは水素原子又はメチル基を示す。Xは式(2a)〜式(2f)から選ばれる基を示す。nは0または1を表す。)
Figure 2012017285
According to the present invention, a silicone monomer represented by the formula (1) is provided.
Figure 2012017285
(In formula (1), R represents a hydrogen atom or a methyl group. X represents a group selected from formulas (2a) to (2f). N represents 0 or 1)
Figure 2012017285

また本発明によれば、アミノ酸及び(メタ)アクリル酸を反応させてなるN−(メタ)アクリロイルアミノ酸と、ハロゲン化アルキル変性シリコーンとを反応させる工程を含む上記式(1)で示されるシリコーンモノマーの製造方法が提供される。
更に本発明によれば、上記シリコーンモノマー20〜60質量%と、2−ヒドロキシエチル(メタ)アクリレート、N−ビニルピロリドン、N,N−ジメチルアクリルアミドまたはこれら2種以上の混合物からなる群より選ばれる親水性モノマー40〜80質量%とを含む単量体組成物が提供される。
更にまた本発明によれば、上記単量体組成物を重合させて得た重合体が提供される。
Further, according to the present invention, the silicone monomer represented by the above formula (1) comprising a step of reacting an N- (meth) acryloylamino acid obtained by reacting an amino acid and (meth) acrylic acid with an alkyl halide-modified silicone. A manufacturing method is provided.
Furthermore, according to the present invention, the silicone monomer is selected from the group consisting of 20 to 60% by mass and 2-hydroxyethyl (meth) acrylate, N-vinylpyrrolidone, N, N-dimethylacrylamide or a mixture of two or more of these. A monomer composition containing 40 to 80% by mass of a hydrophilic monomer is provided.
Furthermore, according to the present invention, there is provided a polymer obtained by polymerizing the monomer composition.

本発明のシリコーンモノマーは、シリコーン含量が高く、また分子内に親水性アミノ酸に由来するアミド基、エステル基を有することから親水性が高く、他の(メタ)アクリル系モノマー等の重合性モノマーと相溶性が高いため、共重合させる目的で用いたとき、透明性と酸素透過性を同時に満足すると考えられ、眼科デバイスの原料に用いられるシリコーンモノマーとして有用である。また、本発明の単量体組成物及び重合体は、本発明のシリコーンモノマーを利用するので、透明性と酸素透過性を同時に満足するコンタクトレンズ等の眼科デバイスの製造に有用である。   The silicone monomer of the present invention has a high silicone content, and since it has an amide group or an ester group derived from a hydrophilic amino acid in the molecule, it is highly hydrophilic, and other polymerizable monomers such as (meth) acrylic monomers Because of its high compatibility, when used for the purpose of copolymerization, it is considered that both transparency and oxygen permeability are satisfied at the same time, and it is useful as a silicone monomer used as a raw material for ophthalmic devices. In addition, since the monomer composition and polymer of the present invention utilize the silicone monomer of the present invention, they are useful for the production of ophthalmic devices such as contact lenses that satisfy both transparency and oxygen permeability.

実施例1で調製したモノマーの1H−NMRスペクトルを示すチャートである。2 is a chart showing 1 H-NMR spectrum of the monomer prepared in Example 1. FIG. 実施例1で調製したモノマーのIRスペクトルを示すチャートである。2 is a chart showing the IR spectrum of the monomer prepared in Example 1. FIG. 実施例2で調製したモノマーの1H−NMRスペクトルを示すチャートである。2 is a chart showing 1 H-NMR spectrum of the monomer prepared in Example 2. FIG. 実施例2で調製したモノマーのIRスペクトルを示すチャートである。6 is a chart showing an IR spectrum of the monomer prepared in Example 2. 実施例3で調製したモノマーの1H−NMRスペクトルを示すチャートである。4 is a chart showing 1 H-NMR spectrum of a monomer prepared in Example 3. FIG. 実施例3で調製したモノマーのIRスペクトルを示すチャートである。4 is a chart showing an IR spectrum of a monomer prepared in Example 3. 実施例4で調製したモノマーの1H−NMRスペクトルを示すチャートである。6 is a chart showing 1 H-NMR spectrum of the monomer prepared in Example 4. FIG. 実施例4で調製したモノマーのIRスペクトルを示すチャートである。6 is a chart showing an IR spectrum of a monomer prepared in Example 4. 実施例5で調製したモノマーの1H−NMRスペクトルを示すチャートである。6 is a chart showing 1 H-NMR spectrum of the monomer prepared in Example 5. FIG. 実施例5で調製したモノマーのIRスペクトルを示すチャートである。6 is a chart showing an IR spectrum of a monomer prepared in Example 5. 実施例6で調製したモノマーの1H−NMRスペクトルを示すチャートである。6 is a chart showing 1 H-NMR spectrum of the monomer prepared in Example 6. FIG. 実施例6で調製したモノマーのIRスペクトルを示すチャートである。6 is a chart showing an IR spectrum of a monomer prepared in Example 6.

以下、本発明を更に詳細に説明する。
本発明のシリコーンモノマーは、上記式(1)で示されるアミノ酸誘導体のシリコーンモノマーであることを特徴とする。ここで、アミノ酸とは、アミノ基とカルボキシル基の両方の官能基を持つ有機化合物を意味する。該モノマーは具体的には、アミノ酸が有するアミンとカルボン酸により、アミド基とエステル基を介して不飽和重合性基とシロキサニル基が化学結合しているモノマーである。
式(1)中、Rは水素原子又はメチル基を示す。nは0または1を表す。
Hereinafter, the present invention will be described in more detail.
The silicone monomer of the present invention is a silicone monomer of an amino acid derivative represented by the above formula (1). Here, the amino acid means an organic compound having both amino group and carboxyl group functional groups. Specifically, the monomer is a monomer in which an unsaturated polymerizable group and a siloxanyl group are chemically bonded via an amide group and an ester group by an amine and a carboxylic acid of an amino acid.
In the formula (1), R represents a hydrogen atom or a methyl group. n represents 0 or 1.

式(1)中、Xは上記式(2a)〜(2f)から選ばれる基を示す。
本発明のシリコーンモノマーは、1分子中に占めるシロキサニル基の割合がなるべく大きい方が好ましく、この観点から、例えば、式(1)において、Xが式(2a)である化合物、式(1)において、Xが式(2c)である化合物、および式(1)において、Xが式(2d)である化合物が特に好ましく挙げられる。
式(1)において、Xが式(2a)であり、Rがメチル基、n=1で表される化合物は式(4a)で表される。
In formula (1), X represents a group selected from the above formulas (2a) to (2f).
In the silicone monomer of the present invention, it is preferable that the ratio of the siloxanyl group in one molecule is as large as possible. From this viewpoint, for example, in the formula (1), X is the formula (2a), in the formula (1) Particularly preferred are compounds wherein X is the formula (2c) and compounds wherein X is the formula (2d) in the formula (1).
In the formula (1), X is the formula (2a), R is a methyl group, and the compound represented by n = 1 is represented by the formula (4a).

Figure 2012017285
式(4a)で表されるモノマーの分子量は493であり、シロキサニル基を構成する各原子の原子量の合計は295であることから、このモノマーのシリコーン含量は295/493×100=59.8%である。
Figure 2012017285
Since the molecular weight of the monomer represented by the formula (4a) is 493 and the total atomic weight of each atom constituting the siloxanyl group is 295, the silicone content of this monomer is 295/493 × 100 = 59.8%. It is.

式(1)において、Xが式(2d)であり、Rが水素原子、n=1で表される化合物は式(4b)で表される。

Figure 2012017285
式(4b)で表されるモノマーの分子量は493であり、シロキサニル基を構成する各原子の原子量の合計は295であることから、このモノマーのシリコーン含量は295/493×100=59.8%である。 In the formula (1), X is the formula (2d), R is a hydrogen atom, and the compound represented by n = 1 is represented by the formula (4b).
Figure 2012017285
Since the molecular weight of the monomer represented by the formula (4b) is 493 and the total atomic weight of each atom constituting the siloxanyl group is 295, the silicone content of this monomer is 295/493 × 100 = 59.8%. It is.

式(4a)または式(4b)のシリコーンモノマーは、モノマー中のシリコーン含量の割合が約60%と高く、得られる共重合体の酸素透過性を効果的に高められると考えられ、眼科デバイスの中でもコンタクトレンズ用のシリコーンモノマーとしての利用が期待できる。   The silicone monomer of formula (4a) or formula (4b) has a high proportion of silicone content in the monomer of about 60%, which is considered to effectively increase the oxygen permeability of the resulting copolymer. Among them, it can be expected to be used as a silicone monomer for contact lenses.

本発明のシリコーンモノマーは、アミノ酸及び(メタ)アクリル酸ハロゲン化物、例えば、(メタ)アクリル酸クロライドを反応させてなるN−(メタ)アクリロイルアミノ酸(誘導体)と、ハロゲン化アルキル変性シリコーン、例えば、3−ヨードプロピル[トリス(トリメチル)シロキシ]シランとを反応させる本発明の製造方法等により得ることができる。
具体的には、式(5)(式(5)中、Rは水素原子又はメチル基を示す。Xは酸素原子又は窒素原子を含んでいても良い炭素数1〜6の2価の有機基を示す。)で表される(メタ)アクリロイルアミノ酸と、式(6)(式(6)中、Yはハロゲンであり、好ましくはBr、またはIである。nは0または1を表す。Yはハロゲンであり、好ましくはBr、またはIである。)で表されるシリコーン化合物とを反応させる方法により得られる。
The silicone monomer of the present invention includes an N- (meth) acryloyl amino acid (derivative) obtained by reacting an amino acid and a (meth) acrylic acid halide, for example, (meth) acrylic acid chloride, and a halogenated alkyl-modified silicone, for example, It can be obtained by the production method of the present invention in which 3-iodopropyl [tris (trimethyl) siloxy] silane is reacted.
Specifically, in the formula (5) (in the formula (5), R represents a hydrogen atom or a methyl group. X represents a divalent organic group having 1 to 6 carbon atoms which may contain an oxygen atom or a nitrogen atom. And (meth) acryloylamino acid represented by formula (6) (in formula (6), Y is halogen, preferably Br or I. n represents 0 or 1) Is a halogen, preferably Br or I.).

Figure 2012017285
Figure 2012017285

該反応は、例えば、式(5)で示される(メタ)アクリロイルアミノ酸5〜60質量%を含む有機溶媒中に、式(6)で示されるシリコーン化合物を式(5)で示される(メタ)アクリロイルアミノ酸のカルボン酸に対して、10モル%〜100モル%混合し、恒温槽中、20〜100℃の温度で行なうことが好ましい。
前記有機溶媒としては、N,N−ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル等の非プロトン性極性溶媒が好ましく挙げられる。
In the reaction, for example, a silicone compound represented by the formula (6) is represented by the formula (5) in an organic solvent containing 5 to 60% by mass of the (meth) acryloyl amino acid represented by the formula (5). It is preferable to mix 10 mol%-100 mol% with respect to the carboxylic acid of acryloyl amino acid, and to carry out at the temperature of 20-100 degreeC in a thermostat.
Preferred examples of the organic solvent include aprotic polar solvents such as N, N-dimethylformamide, dimethyl sulfoxide, and acetonitrile.

上記式(5)で示される(メタ)アクリロイルアミノ酸は、公知の方法により得られる。例えば、氷冷下、アミノ酸のナトリウム塩水溶液に塩化(メタ)アクリロイルを滴下することにより合成できる(Journal of Applied Polymer Science,24,1551,1979、米国特許第4172934号明細書)。
上記式(6)で示されるシリコーン化合物は、得られるシリコーンモノマーの純度に影響するので高純度品であることが好ましく、例えば、Dokl.Akad.Nauk,SSSR,1976,227,607〜610、J.Organomet.Chem.,1988,340,31〜36、特開2002−68930号公報に示される、トリアルコキシシランまたはトリクロロシランと、ヘキサメチルジシロキサンとから得ることができ、抽出や蒸留精製により高純度化することができる。
The (meth) acryloyl amino acid represented by the above formula (5) is obtained by a known method. For example, it can be synthesized by dropping (meth) acryloyl chloride into an aqueous sodium salt solution of an amino acid under ice cooling (Journal of Applied Polymer Science, 24, 1551, 1979, US Pat. No. 4,172,934).
Since the silicone compound represented by the above formula (6) affects the purity of the resulting silicone monomer, it is preferably a high-purity product, for example, see Dokl. Akad. Nauk, SSSR, 1976, 227, 607-610; Organomet. Chem. , 1988, 340, 31-36, JP-A-2002-68930, can be obtained from trialkoxysilane or trichlorosilane and hexamethyldisiloxane, and can be purified by extraction or distillation purification. it can.

上記反応は、反応速度を上げるために塩基の存在下行うことが好ましい。好ましい塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム等の無機塩基、トリエチルアミン、1,8−ジアザビシクロ[5,4,0]ウンデカ−7−エン(DBU)等の有機塩基が挙げられる。より好ましくは炭酸カリウム、トリエチルアミンが挙げられる。
前記塩基の使用量は、式(6)で示されるシリコーン化合物1モルに対して、1モル〜3モル程度である。
The above reaction is preferably performed in the presence of a base in order to increase the reaction rate. Preferred bases include, for example, inorganic bases such as potassium carbonate, sodium carbonate, sodium hydroxide, potassium hydroxide, and organic bases such as triethylamine and 1,8-diazabicyclo [5,4,0] undec-7-ene (DBU). A base. More preferably, potassium carbonate and triethylamine are mentioned.
The usage-amount of the said base is about 1 mol-3 mol with respect to 1 mol of silicone compounds shown by Formula (6).

反応に際しては、(メタ)アクリル基が重合しないように重合禁止剤を用いるのが好ましい。重合禁止剤としては、例えばヒドロキノンモノメチルエーテル、1,4−ジヒドロキシベンゼン、ジブチルヒドロキシトルエン等が挙げられる。上記禁止剤は、反応液へ100ppm〜10000ppm添加することが望ましい。   In the reaction, it is preferable to use a polymerization inhibitor so that the (meth) acrylic group is not polymerized. Examples of the polymerization inhibitor include hydroquinone monomethyl ether, 1,4-dihydroxybenzene, dibutylhydroxytoluene and the like. The inhibitor is preferably added to the reaction solution at 100 ppm to 10000 ppm.

反応後に得られるシリコーンモノマーは高沸点を有する液体であり、再結晶や蒸留操作の利用が困難であるため、分液洗浄、吸着剤処理等による精製が望ましい。
洗浄により精製する場合は、反応液をn−ヘキサン、シクロヘキサン、ヘプタン、オクタン等の炭化水素に溶解させて得られる溶液(疎水相)を、イオン交換水、アルカリ水溶液、アルコール水溶液等(親水相)で洗浄することが望ましい。この時用いるアルカリとしては水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウムが望ましい。アルコール水溶液に用いるアルコールとしては、分液状態を形成するために極性が高いメタノール、エタノール、1−プロパノール、2−プロパノールから選択されるもの又はこれらの混合物を水と混合して用いることが望ましい。
前記疎水相を形成するために、反応液に対して炭化水素を質量比で0.5〜3倍量加えるのが好ましい。0.5倍未満では分液させることが困難であり、3倍より多いと経済的に不利である。前記洗浄液の使用量は炭化水素と同程度が好ましい。
Since the silicone monomer obtained after the reaction is a liquid having a high boiling point and it is difficult to use recrystallization or distillation operation, purification by liquid separation washing, adsorbent treatment or the like is desirable.
When purifying by washing, a solution (hydrophobic phase) obtained by dissolving the reaction solution in a hydrocarbon such as n-hexane, cyclohexane, heptane, octane, etc., ion-exchanged water, aqueous alkali solution, aqueous alcohol solution, etc. (hydrophilic phase) It is desirable to wash with. The alkali used at this time is preferably sodium hydroxide, sodium carbonate, or sodium bicarbonate. As the alcohol used in the aqueous alcohol solution, it is desirable to use a mixture selected from methanol, ethanol, 1-propanol, 2-propanol having high polarity or a mixture thereof with water in order to form a liquid separation state.
In order to form the hydrophobic phase, it is preferable to add 0.5 to 3 times the amount of hydrocarbon by mass ratio to the reaction solution. If it is less than 0.5 times, it is difficult to separate the liquid, and if it exceeds 3 times, it is economically disadvantageous. The amount of the cleaning liquid used is preferably about the same as that of hydrocarbon.

上記洗浄後、無水硫酸ナトリウム、無水硫酸マグネシウム等の脱水剤を使用して、反応液中に含まれる少量の水を脱水し、固体をろ別した後、例えばエバポレータを使用して溶媒を除去することにより目的物を得ることができる。溶媒の除去は約50℃以下で行い、真空ポンプにより10mmHg以下で1時間程度行なうのが望ましい。   After the washing, using a dehydrating agent such as anhydrous sodium sulfate or anhydrous magnesium sulfate, a small amount of water contained in the reaction solution is dehydrated, and after filtering off the solid, the solvent is removed using, for example, an evaporator. Thus, the target product can be obtained. It is desirable to remove the solvent at about 50 ° C. or less and for about 1 hour with a vacuum pump at 10 mmHg or less.

本発明のシリコーンモノマーは、例えば、眼科デバイスを形成するポリマーの原料として使用することができる。該シリコーンモノマーを用いて眼科デバイスを製造するには、例えば、本発明のシリコーンモノマーと共重合可能な、(メタ)アクリロイル基、スチリル基、アリル基、ビニル基などの炭素−炭素不飽和結合を有する他のモノマー、好ましくは得られる重合体表面の十分な親水性がさらに改善される、水酸基、アミド基、両性イオン等の親水基を有する他のモノマーと混合し、重合させることにより得ることができる。
眼科デバイスを製造する際の本発明のシリコーンモノマーの使用量は、用いる他のモノマーの種類等により異なるが、得られる眼科デバイスの表面親水性の改善や、柔軟性をコントロールするために、原料モノマー中10〜80質量%が好ましい。
The silicone monomer of the present invention can be used, for example, as a raw material for polymers that form ophthalmic devices. In order to produce an ophthalmic device using the silicone monomer, for example, a carbon-carbon unsaturated bond such as a (meth) acryloyl group, a styryl group, an allyl group, or a vinyl group, which can be copolymerized with the silicone monomer of the present invention. It can be obtained by mixing and polymerizing with other monomers having a hydrophilic group such as a hydroxyl group, amide group, zwitterion, etc., in which sufficient hydrophilicity of the obtained polymer surface is further improved. it can.
The amount of the silicone monomer of the present invention used for producing an ophthalmic device varies depending on the type of other monomers used, but in order to improve the surface hydrophilicity of the obtained ophthalmic device and to control flexibility, the raw material monomer 10-80 mass% is preferable.

本発明の単量体組成物は、上述の本発明のシリコーンモノマーと、例えば、2−ヒドロキシエチル(メタ)アクリレート、N−ビニルピロリドン、N,N−ジメチルアクリルアミド、2−(メタクリロイルオキシエチル)−2−(トリメチルアンモニオエチル)ホスフェートまたはこれら2種以上の混合物からなる群より選ばれる親水性モノマーとを含み、例えば、コンタクトレンズ等の眼用デバイスの重合用組成物として用いることができる。
本発明の単量体組成物において、本発明のシリコーンモノマーの含有割合は、組成物全量基準で20〜60質量%であり、上記親水性モノマーの合計の含有割合は、組成物全量基準で40〜80質量%である。本発明のシリコーンモノマーの含有割合が20質量%未満では、重合して得られる重合体の酸素透過性が低い恐れがあり、60質量%を超える場合には重合して得られる重合体の表面濡れ性が低下する恐れがある。
The monomer composition of the present invention includes the above-described silicone monomer of the present invention and, for example, 2-hydroxyethyl (meth) acrylate, N-vinylpyrrolidone, N, N-dimethylacrylamide, 2- (methacryloyloxyethyl)- It contains a hydrophilic monomer selected from the group consisting of 2- (trimethylammonioethyl) phosphate or a mixture of two or more of these, and can be used as a composition for polymerization of ophthalmic devices such as contact lenses.
In the monomer composition of the present invention, the content of the silicone monomer of the present invention is 20 to 60% by mass based on the total amount of the composition, and the total content of the hydrophilic monomers is 40 based on the total amount of the composition. -80 mass%. If the content of the silicone monomer of the present invention is less than 20% by mass, the polymer obtained by polymerization may have low oxygen permeability, and if it exceeds 60% by mass, the surface wettability of the polymer obtained by polymerization May be reduced.

前記単量体組成物には、本発明のシリコーンモノマーの上記特性を損なわない範囲で、必要に応じて、他のモノマーを適宜含有させることもできる。他のモノマーとしては、例えば、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、グリセロール(メタ)クリレート、(メタ)アクリルアミド、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等の非イオン性単量体;(メタ)アクリル酸、(メタ)アクリロイルオキシエチルコハク酸、スチレンスルホン酸、(メタ)アクリロイルオキシホスホン酸等の酸を含有するアニオン性単量体;2−ヒドロキシ−3−(メタ)アクリロイルオキシプロピルトリメチルアンモニウムクロライド、アミノエチルメタクリレート、N,N−ジメチルアミノエチル(メタ)アクリレート等のアミノ基又はアンモニウム基を含有するカチオン性単量体;N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン、3−[[2−(メタクリロイルオキシ)エチル](ジメチル)アンモニオ]−1−プロパンスルホネート等の両性イオン単量体が挙げられ、これらの1種又は2種以上を用いることができる。
上記他のモノマーを用いる場合の含有割合は、本発明の所望の効果を損なわない範囲で、適宜決定することができるが、単量体組成物全量基準で、その合計量が、通常40質量%以下、好ましくは30質量%以下である。
In the monomer composition, other monomers can be appropriately contained as required within a range not impairing the above-described properties of the silicone monomer of the present invention. Examples of other monomers include 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerol (meth) acrylate, (meth) acrylamide, polyethylene glycol (meth) acrylate, and polypropylene glycol (meth) acrylate. Nonionic monomers such as (meth) acrylic acid, (meth) acryloyloxyethyl succinic acid, styrene sulfonic acid, (meth) acryloyloxyphosphonic acid and other anionic monomers; 2-hydroxy -Cationic monomer containing amino group or ammonium group such as 3- (meth) acryloyloxypropyltrimethylammonium chloride, aminoethyl methacrylate, N, N-dimethylaminoethyl (meth) acrylate; N-methacryloyloxyethyl Zwitterionic monomers such as -N, N-dimethylammonium-α-N-methylcarboxybetaine, 3-[[2- (methacryloyloxy) ethyl] (dimethyl) ammonio] -1-propanesulfonate, and the like. 1 type (s) or 2 or more types can be used.
The content ratio in the case of using the other monomer can be appropriately determined within the range not impairing the desired effect of the present invention, but the total amount is usually 40% by mass based on the total amount of the monomer composition. Hereinafter, it is preferably 30% by mass or less.

本発明の重合体は、本発明の単量体組成物を重合させて得られたものであり、例えば、コンタクトレンズ等の眼用デバイスの製造に利用することができる。
前記重合は、例えば、熱重合、光重合、モールド重合等の任意の重合方法を利用して、公知の条件や方法に準じて行うことができる。この際、重合法に応じて適宜公知の重合開始剤を用いることができる。
The polymer of the present invention is obtained by polymerizing the monomer composition of the present invention, and can be used, for example, for the production of ophthalmic devices such as contact lenses.
The said polymerization can be performed according to well-known conditions and methods using arbitrary polymerization methods, such as thermal polymerization, photopolymerization, mold polymerization, for example. At this time, a known polymerization initiator can be appropriately used depending on the polymerization method.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されない。
尚、例中の各測定は以下の機器等を用いて行った。
1)シリコーンモノマー純度測定法(GC法)
ガスクロマトグラフ:Agilent社製GC system 7890A、
キャピラリーカラム:J&W社 HP−1(0.53mm、30m、2.65μm)、
注入口温度:250℃、
昇温プログラム:80℃(0分)→20℃/分→250℃(20分)、
検出器:FID、250℃、キャリアガス:ヘリウム(5ml/分)、スプリット比: 5:1、注入量:2μl。
2)1H−NMR測定法
日本電子社製JNM−AL400、溶媒;CDCl3又はCD3OD (TMS基準)。
3)赤外線吸収(IR)測定法
測定法:液膜法、積算回数:16回
4)質量測定法(LC−MS法)
LC部:Waters社 2695 Separations Module、
MS部;Waters 2695 Q−micro、
LC溶離液条件:アセトニトリル/50mM酢酸アンモニウム水溶液(9/1)。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
In addition, each measurement in an example was performed using the following apparatuses.
1) Silicone monomer purity measurement method (GC method)
Gas chromatograph: GC system 7890A manufactured by Agilent,
Capillary column: J & W company HP-1 (0.53 mm, 30 m, 2.65 μm),
Inlet temperature: 250 ° C
Temperature rising program: 80 ° C. (0 minutes) → 20 ° C./minute→250° C. (20 minutes)
Detector: FID, 250 ° C., carrier gas: helium (5 ml / min), split ratio: 5: 1, injection volume: 2 μl.
2) 1 H-NMR measurement method JNM-AL400 manufactured by JEOL Ltd., solvent; CDCl 3 or CD 3 OD (TMS standard).
3) Infrared absorption (IR) measurement method Measurement method: liquid film method, integration number: 16 times 4) Mass measurement method (LC-MS method)
LC Department: Waters 2695 Separations Module,
MS department; Waters 2695 Q-micro,
LC eluent conditions: acetonitrile / 50 mM ammonium acetate aqueous solution (9/1).

実施例1−1
MAglyS(3−[トリス(トリメチルシロキシ)シリル]プロピル−N−メタクリロイルグリシネート)の合成(シリコーン含量59.8%)
1Lナスフラスコに、ジメチルスルホキシド701.7g、メタクリロイルグリシン55.4g(0.387モル)、p−メトキシフェノール(以下、MQと記す)0.35gを入れ攪拌した後、炭酸カリウム35.7g(0.258モル)を加え、反応液を40℃まで昇温した。さらに3−ヨードプロピルトリス(トリメチルシロキシ)シラン120.0g(0.258モル)を加え、40℃にて6時間攪拌を行った。冷却後、3L分液ロートへ反応液を移した後、ヘプタン700gで希釈し、ヘプタン相を、1%重曹水350g、続いて50%エタノール(w/w)水溶液700gで洗浄した。洗浄後、ヘプタン相へメタノール800gを混合してメタノール相へ抽出し、メタノールを減圧除去して透明液体101.8gを得た(収率82%)。GCによる得られたシリコーン化合物の純度は94%であった。各測定結果を以下、並びに図1及び図2に示す。
Example 1-1
Synthesis of MAglyS (3- [tris (trimethylsiloxy) silyl] propyl-N-methacryloyl glycinate) (silicone content 59.8%)
In a 1 L eggplant flask, 701.7 g of dimethyl sulfoxide, 55.4 g (0.387 mol) of methacryloylglycine and 0.35 g of p-methoxyphenol (hereinafter referred to as MQ) were added and stirred, and then 35.7 g (0 .258 mol) was added and the reaction was warmed to 40 ° C. Further, 120.0 g (0.258 mol) of 3-iodopropyltris (trimethylsiloxy) silane was added and stirred at 40 ° C. for 6 hours. After cooling, the reaction solution was transferred to a 3 L separatory funnel, diluted with 700 g of heptane, and the heptane phase was washed with 350 g of 1% sodium bicarbonate, followed by 700 g of 50% ethanol (w / w) aqueous solution. After washing, 800 g of methanol was mixed with the heptane phase and extracted into the methanol phase, and methanol was removed under reduced pressure to obtain 101.8 g of a transparent liquid (yield 82%). The purity of the silicone compound obtained by GC was 94%. Each measurement result is shown below and in FIG.1 and FIG.2.

1H−NMR測定
CH2=C−:5.78ppm(1H)、5.43ppm(1H)、−CH2−:4.92ppm(2H)、4.00ppm(2H)、1.70ppm(2H)、0.50ppm(2H)
−CH3:1.96ppm(3H)、0.10ppm(27H)。
IR測定結果
3345cm-1、3090cm-1、2960cm-1、1745cm-1、1670cm-1、1625cm-1、1455cm-1、1255cm-1、1065cm-1、840cm-1
LC−MSによる分子量測定の結果、分子量493であることから、上記式(4a)で表される化合物(MAglyS)であることが特定された。このモノマーのシリコーン含量は295/493×100=59.8%である。
1 H-NMR measurement CH 2 ═C—: 5.78 ppm (1H), 5.43 ppm (1H), —CH 2 —: 4.92 ppm (2H), 4.00 ppm (2H), 1.70 ppm (2H) 0.50ppm (2H)
-CH 3: 1.96ppm (3H), 0.10ppm (27H).
IR measurement results 3345 cm −1 , 3090 cm −1 , 2960 cm −1 , 1745 cm −1 , 1670 cm −1 , 1625 cm −1 , 1455 cm −1 , 1255 cm −1 , 1065 cm −1 , 840 cm −1 .
As a result of measuring the molecular weight by LC-MS, the molecular weight was 493. Thus, it was identified as the compound (MAglyS) represented by the above formula (4a). The silicone content of this monomer is 295/493 × 100 = 59.8%.

実施例1−2
MalaS(3−[トリス(トリメチルシロキシ)シリル]プロピル−N−メタクリロイルアラニネート)の合成(シリコーン含量58.2%)
1Lナスフラスコに、N,N−ジメチルホルムアミド701.7g、メタクリロイルアラニン60.87g(0.387モル)、MQ0.18gを入れ攪拌した後、炭酸カリウム35.7g(0.387モル)を加え、反応液を40℃まで昇温した。さらに3−ヨードプロピルトリス(トリメチルシロキシ)シラン120.0g(0.258モル)を加え、40℃にて6時間攪拌を行った。冷却後、3L分液ロートへ反応液を移した後、ヘプタン700gで希釈し、ヘプタン相を、1%重曹水700g、続いて50%エタノール(w/w)水溶液700gで洗浄した。洗浄後、ヘプタン相を減圧除去してMalaS108.0gを得た(収率85%)。GCによる該シリコーン化合物の純度は93%であった。各測定結果を以下、並びに図3及び図4に示す。
Example 1-2
Synthesis of MalaS (3- [tris (trimethylsiloxy) silyl] propyl-N-methacryloylalaninate) (silicone content 58.2%)
In a 1 L eggplant flask, 701.7 g of N, N-dimethylformamide, 60.87 g (0.387 mol) of methacryloylalanine and 0.18 g of MQ were added and stirred, and then 35.7 g (0.387 mol) of potassium carbonate was added. The reaction was warmed to 40 ° C. Further, 120.0 g (0.258 mol) of 3-iodopropyltris (trimethylsiloxy) silane was added and stirred at 40 ° C. for 6 hours. After cooling, the reaction solution was transferred to a 3 L separatory funnel, diluted with 700 g of heptane, and the heptane phase was washed with 700 g of 1% sodium bicarbonate, followed by 700 g of 50% ethanol (w / w) aqueous solution. After washing, the heptane phase was removed under reduced pressure to obtain 108.0 g of Mala S (yield 85%). The purity of the silicone compound by GC was 93%. Each measurement result is shown below and in FIG.3 and FIG.4.

1H−NMR測定
CH2=C−:5.75ppm(1H)、5.43ppm(1H)、

Figure 2012017285
−CH2−:4.09ppm(2H)、1.71ppm(2H)、0.51ppm(2H)、−CH3:1.96ppm(3H)、1.44ppm(3H)、0.13ppm(27H)。
IR測定結果
3335cm-1、3090cm-1、2960cm-1、1740cm-1、1660cm-1、1625cm-1、1550cm-1、1255cm-1、1065cm-1、840cm-1
LC−MSによる分子量測定の結果、分子量507であることから、MalaSは、式(7)で表されることが特定された。このモノマーのシリコーン含量は295/507×100=58.2%である。 1 H-NMR measurement CH 2 ═C—: 5.75 ppm (1H), 5.43 ppm (1H),
Figure 2012017285
-CH 2 -: 4.09ppm (2H) , 1.71ppm (2H), 0.51ppm (2H), - CH 3: 1.96ppm (3H), 1.44ppm (3H), 0.13ppm (27H) .
IR measurements 3335cm -1, 3090cm -1, 2960cm -1 , 1740cm -1, 1660cm -1, 1625cm -1, 1550cm -1, 1255cm -1, 1065cm -1, 840cm -1.
As a result of measuring the molecular weight by LC-MS, the molecular weight was 507, so that it was specified that MalaS was represented by the formula (7). The silicone content of this monomer is 295/507 × 100 = 58.2%.

Figure 2012017285
Figure 2012017285

実施例1−3
AbalS(3−[トリス(トリメチルシロキシ)シリル]プロピル−N−アクリロイル−β−アラニネート)の合成(シリコーン含量59.8%)
1Lナスフラスコに、ジメチルスルホキシド701.7g、アクリロイル−β−アラニン55.43g(0.387モル)、MQ0.18gを入れ攪拌した後、炭酸カリウム35.7g(0.387モル)を加え、反応液を40℃まで昇温した。さらに3−ヨードプロピルトリス(トリメチルシロキシ)シラン120.0g(0.258モル)を加え、40℃にて6時間攪拌を行った。冷却後、3L分液ロートへ反応液を移した後、ヘプタン700gで希釈し、ヘプタン相を、1%重曹水700g、続いて50%エタノール(w/w)水溶液700gで洗浄した。洗浄後、ヘプタン相を減圧除去してAbalS105.5gを得た(収率85%)。GCによる該シリコーン化合物の純度は93%であった。各測定結果を以下、並びに図5及び図6に示す。
Example 1-3
Synthesis of AbalS (3- [Tris (trimethylsiloxy) silyl] propyl-N-acryloyl-β-alaninate) (silicone content 59.8%)
To a 1 L eggplant flask, 701.7 g of dimethyl sulfoxide, 55.43 g (0.387 mol) of acryloyl-β-alanine, and 0.18 g of MQ were added and stirred, and then 35.7 g (0.387 mol) of potassium carbonate was added and reacted. The liquid was heated to 40 ° C. Further, 120.0 g (0.258 mol) of 3-iodopropyltris (trimethylsiloxy) silane was added and stirred at 40 ° C. for 6 hours. After cooling, the reaction solution was transferred to a 3 L separatory funnel, diluted with 700 g of heptane, and the heptane phase was washed with 700 g of 1% sodium bicarbonate, followed by 700 g of 50% ethanol (w / w) aqueous solution. After washing, the heptane phase was removed under reduced pressure to obtain 105.5 g of AbalS (yield 85%). The purity of the silicone compound by GC was 93%. Each measurement result is shown below, and in FIG.5 and FIG.6.

1H−NMR測定結果
CH2=CH−:6.21ppm(2H)、5.63ppm(1H)、−CH2−:4.04ppm(2H)、3.51ppm(2H)、2.58ppm(2H)、1.67ppm(2H)、0.48ppm(2H)、−CH3:0.11ppm(27H)。
IR測定結果
3290cm-1、3075cm-1、2955cm-1、1740cm-1、1680cm-1、1630cm-1、1440cm-1、1255cm-1、1065cm-1、840cm-1
LC−MSによる分子量測定の結果、分子量507であることから、上記式(4b)で表される化合物(AbalS)であることが特定された。このモノマーのシリコーン含量は295/493×100=59.8%である。
1 H-NMR measurement result CH 2 ═CH—: 6.21 ppm (2H), 5.63 ppm (1H), —CH 2 —: 4.04 ppm (2H), 3.51 ppm (2H), 2.58 ppm (2H) ), 1.67ppm (2H), 0.48ppm (2H), - CH 3: 0.11ppm (27H).
IR measurement result 3290cm -1, 3075cm -1, 2955cm -1 , 1740cm -1, 1680cm -1, 1630cm -1, 1440cm -1, 1255cm -1, 1065cm -1, 840cm -1
As a result of measuring the molecular weight by LC-MS, the molecular weight was 507, and thus the compound (AbalS) represented by the above formula (4b) was specified. The silicone content of this monomer is 295/493 × 100 = 59.8%.

実施例1−4
AglyglyS(N−[3−トリス(トリメチルシロキシ)シリルプロピル]アクリロイルグリシルグリシン)の合成(シリコーン含量56.5%)
300mLナスフラスコに、ジメチルスルホキシド65.6g、N−(N−アクリロイルグリシル)グリシン6.41g(0.0344モル)、MQ0.082gを入れ攪拌した後、炭酸カリウム2.97g(0.0215モル)を加え、反応液を40℃まで昇温した。さらに3−ヨードプロピルトリス(トリメチルシロキシ)シラン10.0g(0.0215モル)を加え、40℃にて6時間攪拌を行った。冷却後、3L分液ロートへ反応液を移した後、ヘプタン65.6gで希釈し、ヘプタン相を、1%重曹水65.6g、続いて30%エタノール(w/w)水溶液65.6gで洗浄した。洗浄後、ヘプタン相を減圧除去して白色固体6.8gを得た(収率60%)。GCによる該シリコーン化合物の純度は82%であった。各測定結果を以下、並びに図7及び図8に示す。
Example 1-4
Synthesis of AglylyS (N- [3-tris (trimethylsiloxy) silylpropyl] acryloylglycylglycine) (silicone content 56.5%)
In a 300 mL eggplant flask, 65.6 g of dimethyl sulfoxide, 6.41 g (0.0344 mol) of N- (N-acryloylglycyl) glycine and 0.082 g of MQ were added and stirred, and then 2.97 g (0.0215 mol) of potassium carbonate. ), And the temperature of the reaction solution was raised to 40 ° C. Further, 10.0 g (0.0215 mol) of 3-iodopropyltris (trimethylsiloxy) silane was added and stirred at 40 ° C. for 6 hours. After cooling, the reaction solution was transferred to a 3 L separatory funnel, diluted with 65.6 g of heptane, and the heptane phase was diluted with 65.6 g of 1% sodium bicarbonate water followed by 65.6 g of 30% ethanol (w / w) aqueous solution. Washed. After washing, the heptane phase was removed under reduced pressure to obtain 6.8 g of a white solid (yield 60%). The purity of the silicone compound by GC was 82%. Each measurement result is shown below and in FIG.7 and FIG.8.

1H−NMR測定
CH2=CH−:6.28ppm(2H)、5.69ppm(1H)、−CH2−:4.08ppm(2H)、3.97ppm(4H)、1.69ppm(2H)、0.49ppm(2H)、−CH3:0.11ppm(27H)。
IR測定結果
3295cm-1、3080cm-1、2960cm-1、1745cm-1、1665cm-1、1630cm-1、1440cm-1、1255cm-1、1052cm-1、840cm-1
LC−MSによる構造特定の結果、分子量507であることから、式(8)で表されるAglyglySであることが特定された。このモノマーのシリコーン含量は295/522×100=56.5%である。
1 H-NMR measurement CH 2 ═CH—: 6.28 ppm (2H), 5.69 ppm (1H), —CH 2 —: 4.08 ppm (2H), 3.97 ppm (4H), 1.69 ppm (2H) , 0.49ppm (2H), - CH 3: 0.11ppm (27H).
IR measurements 3295cm -1, 3080cm -1, 2960cm -1 , 1745cm -1, 1665cm -1, 1630cm -1, 1440cm -1, 1255cm -1, 1052cm -1, 840cm -1.
As a result of the structure identification by LC-MS, the molecular weight was 507, and thus it was identified as AglylyS represented by the formula (8). The silicone content of this monomer is 295/522 × 100 = 56.5%.

Figure 2012017285
Figure 2012017285

実施例1−5
MAserS(N−[3−トリス(トリメチルシロキシ)シリルプロピル]メタクリロイルセリン)の合成(シリコーン含量58.0%)
1Lナスフラスコに、ジメチルスルホキシド96.1g、N−メタクリロイルセリン8.38g(0.0484モル)、MQ0.012gを入れ攪拌した後、炭酸カリウム4.46g(0.0323モル)を加え、反応液を40℃まで昇温した。さらに3−ヨードプロピルトリス(トリメチルシロキシ)シラン15.0g(0.0323モル)を加え、40℃にて6時間攪拌を行った。冷却後、3L分液ロートへ反応液を移した後、ヘプタン120gで希釈し、ヘプタン相を、1%重曹水120g、続いて50%エタノール(w/w)水溶液120gで洗浄した。洗浄後、ヘプタン相を減圧除去して粘調性液体13.2gを得た(収率80%)。GCによる該シリコーン化合物の純度は90%であった。各測定結果を以下、並びに図9及び図10に示す。
Example 1-5
Synthesis of MAserS (N- [3-tris (trimethylsiloxy) silylpropyl] methacryloylserine) (silicone content 58.0%)
To a 1 L eggplant flask, 96.1 g of dimethyl sulfoxide, 8.38 g (0.0484 mol) of N-methacryloylserine and 0.012 g of MQ were added and stirred, and then 4.46 g (0.0323 mol) of potassium carbonate was added and the reaction solution was added. The temperature was raised to 40 ° C. Further, 15.0 g (0.0323 mol) of 3-iodopropyltris (trimethylsiloxy) silane was added, and the mixture was stirred at 40 ° C. for 6 hours. After cooling, the reaction solution was transferred to a 3 L separatory funnel, diluted with 120 g of heptane, and the heptane phase was washed with 120 g of 1% aqueous sodium bicarbonate followed by 120 g of 50% ethanol (w / w) aqueous solution. After washing, the heptane phase was removed under reduced pressure to obtain 13.2 g of viscous liquid (yield 80%). The purity of the silicone compound by GC was 90%. Each measurement result is shown below, and in FIG.9 and FIG.10.

1H−NMR測定
CH2=CH−:5.81ppm(2H)、5.46ppm(1H)、−CH−:4.50ppm(1H)、4.32ppm(1H)、−CH2−:4.11ppm(2H)、1.71ppm(2H)、0.51ppm(2H)、−CH3:1.99ppm(3H)、1.20ppm(3H)、0.11ppm(27H)。
IR測定結果
3435cm-1、3090cm-1、2955cm-1、1740cm-1、1680cm-1、1625cm-1、1455cm-1、1255cm-1、1060cm-1、840cm-1
LC−MSによる構造特定の結果、分子量509であることから、式(9)で表されるMAserSであることが特定された。このモノマーのシリコーン含量は295/509×100=58.0%である。
1 H-NMR measurement CH 2 ═CH—: 5.81 ppm (2H), 5.46 ppm (1H), —CH—: 4.50 ppm (1H), 4.32 ppm (1H), —CH 2 —: 4. 11ppm (2H), 1.71ppm (2H ), 0.51ppm (2H), - CH 3: 1.99ppm (3H), 1.20ppm (3H), 0.11ppm (27H).
IR measurements 3435cm -1, 3090cm -1, 2955cm -1 , 1740cm -1, 1680cm -1, 1625cm -1, 1455cm -1, 1255cm -1, 1060cm -1, 840cm -1.
As a result of the structure identification by LC-MS, the molecular weight was 509, so that it was identified as MAserS represented by the formula (9). The silicone content of this monomer is 295/509 × 100 = 58.0%.

Figure 2012017285
Figure 2012017285

実施例1−6
MAthrS(N−[3−トリス(トリメチルシロキシ)シリルプロピル]メタクリロイルトレオニン)の合成(シリコーン含量56.4%)
1Lナスフラスコに、ジメチルスルホキシド96.1g、メタクリロイル−DL−トレオニン9.06g(0.0484モル)、MQ0.012gを入れ攪拌した後、炭酸カリウム4.46g(0.0323モル)を加え、反応液を40℃まで昇温した。さらに3−ヨードプロピルトリス(トリメチルシロキシ)シラン120.0g(0.0323モル)を加え、40℃にて6時間攪拌を行った。冷却後、3L分液ロートへ反応液を移した後、ヘプタン96gで希釈し、ヘプタン相を、イオン交換水96g、続いて50%エタノール(w/w)水溶液96gで洗浄した。洗浄後、ヘプタン相を減圧除去して粘調性液体13.5gを得た(収率80%)。GCによる該シリコーン化合物の純度は92%であった。各測定結果を以下、並びに図11及び図12に示す。
Example 1-6
Synthesis of MAthrS (N- [3-tris (trimethylsiloxy) silylpropyl] methacryloyl threonine) (silicone content 56.4%)
To a 1 L eggplant flask, 96.1 g of dimethyl sulfoxide, 9.06 g (0.0484 mol) of methacryloyl-DL-threonine and 0.012 g of MQ were added and stirred, and then 4.46 g (0.0323 mol) of potassium carbonate was added and reacted. The liquid was heated to 40 ° C. Further, 120.0 g (0.0323 mol) of 3-iodopropyltris (trimethylsiloxy) silane was added and stirred at 40 ° C. for 6 hours. After cooling, the reaction solution was transferred to a 3 L separatory funnel and diluted with 96 g of heptane. After washing, the heptane phase was removed under reduced pressure to obtain 13.5 g of viscous liquid (yield 80%). The purity of the silicone compound by GC was 92%. Each measurement result is shown below, and in FIG.11 and FIG.12.

1H−NMR測定
CH2=CH−:5.81ppm(2H)、5.46ppm(1H)、−CH−:4.50ppm(1H)、4.32ppm(1H)、−CH2−:4.11ppm(2H)、1.71ppm(2H)、0.51ppm(2H)、−CH3:1.99ppm(3H)、1.20ppm(3H)、0.11ppm(27H)。
IR測定結果
3440cm-1、3085cm-1、2960cm-1、1740cm-1、1680cm-1、1625cm-1、1455cm-1、1255cm-1、1065cm-1、840cm-1
LC−MSによる構造特定の結果、分子量523であることから、式(10)で表されるMAthrSであることが特定された。このモノマーのシリコーン含量は295/523×100=56.4%である。
1 H-NMR measurement CH 2 ═CH—: 5.81 ppm (2H), 5.46 ppm (1H), —CH—: 4.50 ppm (1H), 4.32 ppm (1H), —CH 2 —: 4. 11ppm (2H), 1.71ppm (2H ), 0.51ppm (2H), - CH 3: 1.99ppm (3H), 1.20ppm (3H), 0.11ppm (27H).
IR measurements 3440cm -1, 3085cm -1, 2960cm -1 , 1740cm -1, 1680cm -1, 1625cm -1, 1455cm -1, 1255cm -1, 1065cm -1, 840cm -1.
As a result of structure identification by LC-MS, the molecular weight was 523, and therefore, it was identified as MAthrS represented by the formula (10). The silicone content of this monomer is 295/523 × 100 = 56.4%.

Figure 2012017285
Figure 2012017285

実施例2−1
ヒドロキシエチルメタクリレート(HEMA)60質量部と、実施例1−1で調製した式(4a)で表される化合物(MAglyS)40質量部、エチレングリコールジメタクリレート(EDMA)0.27質量部、アゾビスイソブチロニトリル(AIBN)0.04質量部を混合し、均一溶解させた。厚さ1mmのポリエチレンテレフタレートシートをスペーサーとしてポリプロピレン板で挟んで作製したセルに混合物を流し込み、窒素置換したオーブン内で100℃、2時間放置することにより重合体を得た。得られた重合体を生理食塩水へ浸漬し、膨潤させ、透明なゲル状重合体を得た。得られた重合体について以下の評価及び測定を行った。結果を表1に示す。
Example 2-1
60 parts by mass of hydroxyethyl methacrylate (HEMA), 40 parts by mass of the compound represented by the formula (4a) prepared in Example 1-1 (MAGlyS), 0.27 parts by mass of ethylene glycol dimethacrylate (EDMA), azobis 0.04 parts by mass of isobutyronitrile (AIBN) was mixed and dissolved uniformly. The mixture was poured into a cell prepared by sandwiching a polyethylene terephthalate sheet having a thickness of 1 mm with a polypropylene plate as a spacer, and left in an oven purged with nitrogen at 100 ° C. for 2 hours to obtain a polymer. The obtained polymer was immersed in physiological saline and swollen to obtain a transparent gel polymer. The following evaluation and measurement were performed on the obtained polymer. The results are shown in Table 1.

[配合物均一性確認方法]
重合前の混合物を無色透明な容器へ入れ、以下の評価基準で目視確認を行なった。
○:透明、×:白濁又は沈殿。
[透明性評価方法]
膨潤させて得られたゲル状の重合体の透明性を以下の評価基準で目視確認した。
○:透明、△:微濁、×:白濁。
[表面濡れ性]
膨潤させて得られたゲル状の重合体を生理食塩水から引き上げ、表面の水膜が切れるまでの時間を計測した。判断基準を以下に示す。
○:30秒以上、×:30秒未満。
[酸素透過性測定方法]
酸素透過率測定装置(201T、Rehder社)の平面電極セルを使用して、ISO18369−4(FATT法)に定められている方法により酸素透過係数(Dk)を測定した。
[Method of confirming uniformity of compound]
The mixture before polymerization was put into a colorless and transparent container and visually confirmed according to the following evaluation criteria.
○: Transparent, x: cloudiness or precipitation.
[Transparency evaluation method]
The transparency of the gel-like polymer obtained by swelling was visually confirmed according to the following evaluation criteria.
○: Transparent, Δ: Slightly turbid, ×: White turbidity.
[Surface wettability]
The gel-like polymer obtained by swelling was pulled up from the physiological saline, and the time until the water film on the surface was cut was measured. Judgment criteria are shown below.
○: 30 seconds or more, ×: less than 30 seconds.
[Oxygen permeability measurement method]
An oxygen transmission coefficient (Dk) was measured by a method defined in ISO18369-4 (FATT method) using a planar electrode cell of an oxygen transmission rate measuring apparatus (201T, Rehder).

実施例2−2〜2−5
実施例2−1と同様の方法で重合し、生理食塩水へ浸漬させることで透明なゲル状重合体を得た。各モノマーの配合比率を表1に示す。
Examples 2-2 to 2-5
It polymerized by the method similar to Example 2-1, and the transparent gel-like polymer was obtained by being immersed in the physiological saline. Table 1 shows the blending ratio of each monomer.

比較例1
ヒドロキシエチルメタクリレート(HEMA)30質量部と式(4a)で表される化合物(MAglyS)70質量部、エチレングリコールジメタクリレート(EDMA)0.27質量部、アゾビスイソブチロニトリル(AIBN)0.04質量部を混合し、均一溶解させた。厚さ1mmのポリエチレンテレフタレートシートをスペーサーとしてポリプロピレン板で挟んで作製したセルに混合物を流し込み、窒素置換したオーブン内で100℃、2時間放置することにより重合体を得た。得られた重合体を生理食塩水へ浸漬し、膨潤させ、透明なゲル状重合体を得た。この重合体は十分な表面親水性を得られなかった。
Comparative Example 1
30 parts by mass of hydroxyethyl methacrylate (HEMA), 70 parts by mass of a compound represented by the formula (4a) (MAGlyS), 0.27 parts by mass of ethylene glycol dimethacrylate (EDMA), 0. azobisisobutyronitrile (AIBN) 04 parts by mass were mixed and uniformly dissolved. The mixture was poured into a cell prepared by sandwiching a polyethylene terephthalate sheet having a thickness of 1 mm with a polypropylene plate as a spacer, and left in an oven purged with nitrogen at 100 ° C. for 2 hours to obtain a polymer. The obtained polymer was immersed in physiological saline and swollen to obtain a transparent gel polymer. This polymer could not obtain sufficient surface hydrophilicity.

比較例2
N−ビニルピロリドン(Vp)90質量部と式(4a)で表される化合物(MAglyS)90質量部、エチレングリコールジメタクリレート(EDMA)0.04質量部、アゾビスイソブチロニトリル(AIBN)0.04質量部を混合し、均一溶解させた。厚さ1mmのポリエチレンテレフタレートシートをスペーサーとしてポリプロピレン板で挟んで作製したセルに混合物を流し込み、窒素置換したオーブン内で100℃、2時間放置することにより重合体を得た。得られた重合体を生理食塩水へ浸漬し、膨潤させたが、得られたゲル状重合体は白濁していた。
Comparative Example 2
90 parts by mass of N-vinylpyrrolidone (Vp) and 90 parts by mass of the compound represented by the formula (4a) (MAGlyS), 0.04 parts by mass of ethylene glycol dimethacrylate (EDMA), 0 of azobisisobutyronitrile (AIBN) .04 parts by mass were mixed and uniformly dissolved. The mixture was poured into a cell prepared by sandwiching a polyethylene terephthalate sheet having a thickness of 1 mm with a polypropylene plate as a spacer, and left in an oven purged with nitrogen at 100 ° C. for 2 hours to obtain a polymer. Although the obtained polymer was immersed in physiological saline and swollen, the obtained gel polymer was cloudy.

比較例3
式(4a)で表される化合物(MAglyS)の替わりに3−[トリス(トリメチルシロキシ)シリル]プロピルメタクリレートを使用した以外は実施例2−1と同様にモノマーを混合したが、均一溶解しなかった。
Comparative Example 3
A monomer was mixed in the same manner as in Example 2-1 except that 3- [tris (trimethylsiloxy) silyl] propyl methacrylate was used instead of the compound represented by the formula (4a) (MAGlyS), but it was not uniformly dissolved. It was.

Figure 2012017285
MAglyS:式(4a)で表される化合物、
TRIS:3−[トリス(トリメチルシロキシ)シリル]プロピルメタクリレート、
DMA:N,N−ジメチルアクリルアミド、
HEA:ヒドロキシエチルアクリレート、
Vp:N−ビニルピロリドン、
EDMA:エチレングリコールジメタクリレート、
AIBN:α,α'‐アゾビスイソブチロニトリル、
DK:酸素透過係数(単位は、×10-11 (cm2/sec)・(mlO2/ml×mmHg))。
Figure 2012017285
MAglyS: a compound represented by the formula (4a),
TRIS: 3- [Tris (trimethylsiloxy) silyl] propyl methacrylate,
DMA: N, N-dimethylacrylamide,
HEA: hydroxyethyl acrylate,
Vp: N-vinylpyrrolidone,
EDMA: ethylene glycol dimethacrylate,
AIBN: α, α′-azobisisobutyronitrile,
DK: Oxygen permeability coefficient (unit: × 10 -11 (cm 2 / sec) · (mlO 2 / ml × mmHg)).

本発明のシリコーンモノマー、単量体組成物及び重合体は、コンタクトレンズ等の眼用デバイスの製造に好適に使用される。   The silicone monomer, monomer composition and polymer of the present invention are suitably used for the production of ophthalmic devices such as contact lenses.

Claims (4)

式(1)で表されるシリコーンモノマー。
Figure 2012017285
(式(1)中、Rは水素原子又はメチル基を示す。Xは式(2a)〜式(2f)から選ばれる基を示す。nは0または1を示す。)
Figure 2012017285
A silicone monomer represented by the formula (1).
Figure 2012017285
(In Formula (1), R represents a hydrogen atom or a methyl group. X represents a group selected from Formula (2a) to Formula (2f). N represents 0 or 1)
Figure 2012017285
アミノ酸及び(メタ)アクリル酸クロライドを反応させてなるN−(メタ)アクリロイルアミノ酸と、ハロゲン化アルキル変性シリコーンとを反応させる工程を含む請求項1記載の式(1)で示されるシリコーンモノマーの製造方法。   The production of a silicone monomer represented by formula (1) according to claim 1, comprising a step of reacting an N- (meth) acryloylamino acid obtained by reacting an amino acid and (meth) acrylic acid chloride with an alkyl halide-modified silicone. Method. 請求項1に記載のシリコーンモノマー20〜60質量%と、2−ヒドロキシエチル(メタ)アクリレート、N−ビニルピロリドン、N,N−ジメチルアクリルアミド、2−(メタクリロイルオキシエチル)−2−(トリメチルアンモニオエチル)ホスフェートまたはこれら2種以上の混合物からなる群より選ばれる親水性モノマー40〜80質量%とを含む単量体組成物。   20 to 60% by mass of the silicone monomer according to claim 1, 2-hydroxyethyl (meth) acrylate, N-vinylpyrrolidone, N, N-dimethylacrylamide, 2- (methacryloyloxyethyl) -2- (trimethylammonio) A monomer composition comprising 40-80% by weight of a hydrophilic monomer selected from the group consisting of ethyl) phosphate or a mixture of two or more of these. 請求項3に記載の単量体組成物を重合させて得た重合体。   A polymer obtained by polymerizing the monomer composition according to claim 3.
JP2010155105A 2010-07-07 2010-07-07 Silicone monomer, method of producing the same, monomer composition and polymer Withdrawn JP2012017285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010155105A JP2012017285A (en) 2010-07-07 2010-07-07 Silicone monomer, method of producing the same, monomer composition and polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010155105A JP2012017285A (en) 2010-07-07 2010-07-07 Silicone monomer, method of producing the same, monomer composition and polymer

Publications (2)

Publication Number Publication Date
JP2012017285A true JP2012017285A (en) 2012-01-26
JP2012017285A5 JP2012017285A5 (en) 2013-07-18

Family

ID=45602802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010155105A Withdrawn JP2012017285A (en) 2010-07-07 2010-07-07 Silicone monomer, method of producing the same, monomer composition and polymer

Country Status (1)

Country Link
JP (1) JP2012017285A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013098966A1 (en) * 2011-12-27 2013-07-04 日油株式会社 Silicone monomer and method for producing same
WO2014093751A3 (en) * 2012-12-14 2014-08-28 Novartis Ag Amphiphilic siloxane-containing vinylic monomers and uses thereof
JP2015063484A (en) * 2013-09-25 2015-04-09 信越化学工業株式会社 Radical-polymerizable group-containing silicone compound and method of producing the same
CN111803854A (en) * 2020-07-21 2020-10-23 中国矿业大学 Nano-polymer aerogel fire extinguishing material for preventing and treating high-temperature coal fire and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013098966A1 (en) * 2011-12-27 2013-07-04 日油株式会社 Silicone monomer and method for producing same
WO2014093751A3 (en) * 2012-12-14 2014-08-28 Novartis Ag Amphiphilic siloxane-containing vinylic monomers and uses thereof
US9103965B2 (en) 2012-12-14 2015-08-11 Novartis Ag Amphiphilic siloxane-containing vinylic monomers and uses thereof
JP2016508165A (en) * 2012-12-14 2016-03-17 ノバルティス アーゲー Amphiphilic siloxane-containing vinyl monomers and their use
US9541676B2 (en) 2012-12-14 2017-01-10 Novartis Ag Amphiphilic siloxane-containing vinylic monomers and uses thereof
JP2015063484A (en) * 2013-09-25 2015-04-09 信越化学工業株式会社 Radical-polymerizable group-containing silicone compound and method of producing the same
CN111803854A (en) * 2020-07-21 2020-10-23 中国矿业大学 Nano-polymer aerogel fire extinguishing material for preventing and treating high-temperature coal fire and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1968986B1 (en) Process for making cationic hydrophilic siloxanyl monomers
JP5699931B2 (en) Silicone monomer
US20120245249A1 (en) Siloxane monomers containing hydrolysis resistance carbosiloxane linkage, process for their preparation and thin films containing the same for contact lens application
EP2688892B1 (en) Siloxane monomers containing hydrolysis resistance carbosiloxane linkage and thin films containing the same for contact lens application
EP3663302A1 (en) Siloxane compound and production method for same
WO2009006285A1 (en) Soluble silicone prepolymers
CN101589091A (en) Improved synthesis of cationic siloxane prepolymers
JPWO2019194264A1 (en) Phosphorylcholine group-containing polysiloxane monomer
JP2012017285A (en) Silicone monomer, method of producing the same, monomer composition and polymer
JP5505313B2 (en) Silicone monomer
EP4083111A1 (en) Phosphorylcholine group-containing polysiloxane monomer
WO2013098966A1 (en) Silicone monomer and method for producing same
JPH09221530A (en) Ophthalmic lens material
JP5526845B2 (en) Silicone monomer
JP5402934B2 (en) Silicone monomer, its production method and use
EP2955208B1 (en) Silicone compound and a use thereof
JP2020200365A (en) Siloxane and method for producing the same
TW201326187A (en) Silicone monomer, preparation method thereof, monomer composition and polymer
JP2008137918A (en) Method for producing silicone monomer, method for producing its intermediate and molded article thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130604

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140421