JP2012017246A - Method for manufacturing quartz glass crucible for raising silicon single crystal - Google Patents

Method for manufacturing quartz glass crucible for raising silicon single crystal Download PDF

Info

Publication number
JP2012017246A
JP2012017246A JP2010291578A JP2010291578A JP2012017246A JP 2012017246 A JP2012017246 A JP 2012017246A JP 2010291578 A JP2010291578 A JP 2010291578A JP 2010291578 A JP2010291578 A JP 2010291578A JP 2012017246 A JP2012017246 A JP 2012017246A
Authority
JP
Japan
Prior art keywords
quartz glass
material powder
raw material
crucible
natural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010291578A
Other languages
Japanese (ja)
Inventor
Satoshi Sato
智 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2010291578A priority Critical patent/JP2012017246A/en
Publication of JP2012017246A publication Critical patent/JP2012017246A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a quartz glass crucible for raising silicon single crystal which controls diffusion of heat from natural quartz glass material powder, and reduces power consumption by making it easy to melt the natural quartz glass material powder.SOLUTION: The method for manufacturing a quartz glass crucible for raising silicon single crystal comprises loading the natural quartz glass raw material powder into a crucible forming mold 11, further loading synthetic silica raw material powder on the inner surface, forming a quartz packed bed 20 of two layers of a crucible shape, heating the quartz packed bed 20 from the inside by turning on electricity to a carbon electrode 19, melting the natural quartz glass raw material powder and the synthetic silica raw material powder, then cooling to form a transparency quartz glass layer in the interior side and an opaque quartz glass layer in the external side, wherein natural quartz glass raw material powder in which the particle size is 10-500 μm and the specific surface area measured by a BET method is at least 20 m/g is used as the natural quartz glass raw material powder.

Description

本発明は、シリコン単結晶引上用石英ガラスルツボの製造方法に関し、該ルツボの製造にかかる消費電力量を削減できるシリコン単結晶引上用石英ガラスルツボの製造方法に関する。   The present invention relates to a method for producing a quartz glass crucible for pulling up a silicon single crystal, and relates to a method for producing a quartz glass crucible for pulling up a silicon single crystal that can reduce the amount of power consumed for producing the crucible.

半導体ディバイスの基板として用いられるシリコン単結晶は、主にチョクラルスキー(CZ法)により製造されている。この方法は、ルツボ内に多結晶シリコン原料を装填し、ルツボを周囲から加熱することによって多結晶シリコン原料を溶融させて、吊り下げられた種結晶をシリコン融液に浸して除々に引き上げることによって、シリコン単結晶インゴットを成長させるものである。   Silicon single crystals used as substrates for semiconductor devices are mainly manufactured by Czochralski (CZ method). In this method, a polycrystalline silicon raw material is loaded into a crucible, the polycrystalline silicon raw material is melted by heating the crucible from the surroundings, and the suspended seed crystal is immersed in a silicon melt and gradually pulled up. A silicon single crystal ingot is grown.

従来、前記したCZ法を実施するルツボとしては、図1に示すように内面側に透明石英ガラス層2を有し、この透明石英ガラス層2の外周に不透明石英ガラス層3を有する2層の石英ガラスルツボ1が多く用いられている。
この石英ガラスルツボ1の透明石英ガラス層2は、シリコン融液への浸食を極力低減し、さらに融液面の安定性を確保するなどのために、ルツボの内周側に配置された、気泡を実質的に皆無にした石英ガラス層である。また、前記不透明石英ガラス層3は、シリコン融液への均熱伝達を行うために、ルツボの外周側に配置された、多数の閉気孔を均一に分散させた石英ガラス層である。
Conventionally, as shown in FIG. 1, a crucible for carrying out the CZ method described above has a transparent quartz glass layer 2 on the inner surface side and a two-layered opaque quartz glass layer 3 on the outer periphery of the transparent quartz glass layer 2. Quartz glass crucible 1 is often used.
The transparent quartz glass layer 2 of the quartz glass crucible 1 is a bubble disposed on the inner peripheral side of the crucible in order to reduce the erosion to the silicon melt as much as possible and to ensure the stability of the melt surface. This is a quartz glass layer that substantially eliminates the above. The opaque quartz glass layer 3 is a quartz glass layer that is disposed on the outer peripheral side of the crucible and in which a large number of closed pores are uniformly dispersed in order to perform uniform heat transfer to the silicon melt.

この石英ガラスルツボの製造方法について、図2に基づいて説明する。図2に示す石英ガラスルツボ製造装置10のルツボ成形用型11は、例えば複数の貫通孔を穿設した金型、もしくは高純化処理した多孔質カーボン型などのガス透過性部材で構成されている内側部材12と、その外周に通気部13を設けて、前記内側部材12を保持する保持体14とから構成されている。   A method for manufacturing the quartz glass crucible will be described with reference to FIG. The crucible molding die 11 of the quartz glass crucible manufacturing apparatus 10 shown in FIG. 2 is composed of a gas permeable member such as a mold having a plurality of through holes or a highly purified porous carbon mold. The inner member 12 includes a ventilation portion 13 provided on the outer periphery thereof, and a holding body 14 that holds the inner member 12.

また、保持体14の下部には、図示しない回転手段と連結されている回転軸15が固着され、ルツボ成形用型11とともに回転可能に支持されている。また前記通気部13は、保持体14の下部に設けられた開口部16を介して、回転軸15の中央に設けられた排気口17と連結されている。この通気路13は、減圧機構18と連結されている。更に、内側部材12に対向する上部には、一対のアーク放電用のカーボン電極19が設けられている。   A rotating shaft 15 connected to a rotating means (not shown) is fixed to the lower portion of the holding body 14 and is rotatably supported together with the crucible forming die 11. The vent 13 is connected to an exhaust port 17 provided in the center of the rotary shaft 15 through an opening 16 provided in the lower part of the holding body 14. The air passage 13 is connected to a pressure reducing mechanism 18. Furthermore, a pair of carbon electrodes 19 for arc discharge are provided on the upper part facing the inner member 12.

そして、上記製造装置10を用いて、石英ガラスルツボ1の製造を行うには、まず図示しない回転駆動源を稼働して回転軸15を矢印の方向に、ルツボ成形用型11を高速で回転させつつ、ルツボ成形用型11内の上部から石英ガラス原料粉末を供給する。
回転されたルツボ成形用型11内に石英ガラス原料粉末を装填する際には、初めに例えば粗粒の天然石英ガラス原料粉末を装填し、さらにその内表面に例えば微粒の合成シリカ原料粉末を装填する。
In order to manufacture the quartz glass crucible 1 using the manufacturing apparatus 10, first, a rotational drive source (not shown) is operated to rotate the rotating shaft 15 in the direction of the arrow and to rotate the crucible molding die 11 at a high speed. Meanwhile, the quartz glass raw material powder is supplied from the upper part in the crucible molding die 11.
When the quartz glass raw material powder is loaded into the rotated crucible mold 11, first, for example, coarse natural quartz glass raw material powder is loaded, and further, for example, fine synthetic silica raw material powder is loaded on the inner surface thereof. To do.

ルツボ成形用型11内に供給された天然石英ガラス原料粉末は、遠心力によってルツボ成形用型11の内側部材12に押圧され、一つの層が形成される。
この天然石英ガラス原料粉末に続いて合成シリカ原料粉末がルツボ成形用型11内に供給され、合成シリカ原料粉末は、遠心力によって天然石英ガラス原料粉末の層に押圧され、一つの層が形成され、全体としてルツボ形状の2層の石英充填層20が形成される。
The natural quartz glass raw material powder supplied into the crucible molding die 11 is pressed against the inner member 12 of the crucible molding die 11 by centrifugal force to form one layer.
Following this natural quartz glass raw material powder, synthetic silica raw material powder is supplied into the crucible molding die 11, and the synthetic silica raw material powder is pressed against the natural quartz glass raw material powder layer by centrifugal force to form one layer. As a whole, a two-layered quartz filling layer 20 having a crucible shape is formed.

その後、大気雰囲気で、減圧機構18の作動による減圧とほぼ同時にカーボン電極19に通電して石英充填層20の内側から加熱し、石英充填層20を内側から順次溶融する。
その後、冷却することにより、内面側には極小の気泡だけの実質的に無気泡化状態の透明石英ガラス層2が形成され、外表側には多数の気泡が存在する不透明石英ガラス層3が形成された、2重層構造の石英ガラスルツボ1が製造される。
Thereafter, the carbon electrode 19 is energized and heated from the inside of the quartz filling layer 20 almost simultaneously with the decompression by the operation of the decompression mechanism 18 in the air atmosphere, and the quartz filling layer 20 is sequentially melted from the inside.
Thereafter, by cooling, the transparent quartz glass layer 2 having substantially no bubbles is formed on the inner surface side, and the opaque quartz glass layer 3 having many bubbles is formed on the outer surface side. Thus, the double-layered quartz glass crucible 1 is manufactured.

特開2000−169164号公報JP 2000-169164 A

ところで、前記したように石英ガラスルツボを製造する際、前記カーボン電極に通電し、天然石英ガラス原料粉末及び合成シリカ原料粉末を溶融することによって、ルツボを製造している。今日、このカーボン電極に通電に用いられる消費電力量について、省エネの観点から削減が求められている。   By the way, when manufacturing a quartz glass crucible as described above, the crucible is manufactured by energizing the carbon electrode and melting the natural quartz glass raw material powder and the synthetic silica raw material powder. Today, a reduction in power consumption used for energizing the carbon electrode is required from the viewpoint of energy saving.

本発明者らは、石英ガラスルツボ製造時における電力量を削減する方法を鋭意研究し、その結果、ルツボの外層を形成する天然石英ガラス原料粉末からの熱拡散を抑制し、この天然石英ガラス原料粉末を溶け易くすることで消費電力量を削減できることを知見し、本発明を想到したものである。   The inventors of the present invention diligently studied a method for reducing the amount of electric power during the production of the quartz glass crucible, and as a result, suppressed thermal diffusion from the natural quartz glass raw material powder forming the outer layer of the crucible, The inventors have found that the power consumption can be reduced by making the powder easy to melt, and the present invention has been conceived.

本発明は、上記事情に鑑みなされたものであり、天然石英ガラス原料粉末からの熱の拡散を抑制し、この天然石英ガラス原料粉末を溶け易くすることで電力量を削減したシリコン単結晶引上用石英ガラスルツボの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and suppresses the diffusion of heat from the natural quartz glass raw material powder, and makes it easy to melt the natural quartz glass raw material powder. An object of the present invention is to provide a method for producing a quartz glass crucible for use.

上述した目的を達成するため、本発明に係るシリコン単結晶引上用石英ガラスルツボの製造方法は、ルツボ成形用型内に天然石英ガラス原料粉末を装填し、さらにその内表面に合成シリカ原料粉末を装填し、ルツボ形状の2層の石英充填層を形成し、前記石英充填層に対して、カーボン電極に通電して内側から加熱し、前記天然石英ガラス原料粉末及び合成シリカ原料粉末を溶融し、その後、冷却し、内面側に透明石英ガラス層が形成され、外表側には不透明石英ガラス層が形成されるシリコン単結晶引上用石英ガラスルツボの製造方法において、前記天然石英ガラス原料粉末として、粒径が10〜500μmであって、BET法により測定した比表面積が20m/g以上である天然石英ガラス原料粉末が用いられることを特徴としている。 In order to achieve the above-described object, a method for producing a silica glass crucible for pulling a silicon single crystal according to the present invention comprises loading a natural silica glass raw material powder into a crucible molding die, and further providing a synthetic silica raw material powder on the inner surface thereof. To form a crucible-shaped two-layer quartz filling layer, and to the quartz filling layer, a carbon electrode is energized and heated from the inside to melt the natural quartz glass raw material powder and the synthetic silica raw material powder. Then, in the method for producing a quartz glass crucible for pulling a silicon single crystal in which a transparent quartz glass layer is formed on the inner surface side and an opaque quartz glass layer is formed on the outer surface side, the natural quartz glass raw material powder is cooled. A natural quartz glass raw material powder having a particle size of 10 to 500 μm and a specific surface area measured by the BET method of 20 m 2 / g or more is used. .

このように、天然石英ガラス原料粉末として、粒径が10〜500μmであって、BET法により測定した比表面積が20m/g以上である天然石英ガラス原料粉末が用いられるため、溶融時の熱の拡散を抑制でき、成形体の保温性を高めることができ、電力量を削減できる。
特に、ルツボの外表側の不透明石英ガラス層を形成する天然石英ガラス原料粉末を、上記透過率としているため、内側から加熱した際、熱の拡散を抑制でき、電力量を削減できる。
尚、上記BET法による測定は、JIS R1626に基づいて測定される。
Thus, natural quartz glass raw material powder having a particle size of 10 to 500 μm and a specific surface area measured by the BET method of 20 m 2 / g or more is used as the natural quartz glass raw material powder. Diffusion can be suppressed, the heat retention of the molded body can be improved, and the amount of power can be reduced.
In particular, since the natural quartz glass raw material powder forming the opaque quartz glass layer on the outer surface side of the crucible has the above transmittance, when heated from the inside, the diffusion of heat can be suppressed, and the amount of power can be reduced.
The measurement by the BET method is measured based on JIS R1626.

ここで、粒径が10〜500μmかつBET法により測定した比表面積が20m/g以上としたのは、20m/g未満だと熱線が透過し、保温性が低下し、熱が拡散するため、電力量を削減することができないためである。
尚、粒径が10〜500μmとしたのは、成形、溶融の条件を従来と同等にするためである。
Here, when the particle size is 10 to 500 μm and the specific surface area measured by the BET method is 20 m 2 / g or more, if it is less than 20 m 2 / g, the heat rays are transmitted, the heat retention is lowered, and the heat is diffused. This is because the amount of power cannot be reduced.
The reason why the particle size is 10 to 500 μm is to make the molding and melting conditions the same as those of the prior art.

また、前記天然石英ガラス原料粉末が、フッ酸により表面処理された天然石英ガラス原料粉末であることが望ましい。
このように、フッ酸により表面をエッチングすることにより、天然石英ガラス原料粉末の比表面積を増加させることができ、比表面積20m/g以上に容易になすことができる。
Moreover, it is desirable that the natural quartz glass raw material powder is a natural quartz glass raw material surface-treated with hydrofluoric acid.
Thus, by etching the surface with hydrofluoric acid, the specific surface area of the natural quartz glass raw material powder can be increased, and the specific surface area can be easily increased to 20 m 2 / g or more.

本発明によれば、天然石英ガラス原料粉末からの熱の拡散を抑制し、この天然石英ガラス原料粉末を溶け易くすることで電力量を削減したシリコン単結晶引上用石英ガラスルツボの製造方法を得ることができる。   According to the present invention, there is provided a method for producing a quartz glass crucible for pulling a silicon single crystal that suppresses the diffusion of heat from a natural quartz glass raw material powder and reduces the amount of electric power by making the natural quartz glass raw material powder easy to melt. Obtainable.

リコン単結晶引上用石英ガラスルツボの構成を示す概念図である。It is a conceptual diagram which shows the structure of the quartz glass crucible for recon single crystal pulling. リコン単結晶引上用石英ガラスルツボの製造装置を示す概略構成図である。It is a schematic block diagram which shows the manufacturing apparatus of the quartz glass crucible for recon single crystal pulling.

本発明にかかるシリコン単結晶引上用石英ガラスルツボの製造方法は、粒径が10〜500μmかつBET法により測定した比表面積が20m/g以上である天然石英ガラス原料粉末を用いる点に特徴があり、石英ガラスルツボの製造方法は従来の一般的な方法が用いられる。
即ち、図2に示すように、上記製造装置10を用いて、図示しない回転駆動源を稼働して回転軸15を矢印の方向に、ルツボ成形用型11を高速で回転させつつ、ルツボ成形用型11内の上部から、初めに特徴ある天然石英ガラス原料粉末を装填し、さらにその内表面に合成シリカ原料粉末を装填する。
The method for producing a quartz glass crucible for pulling a silicon single crystal according to the present invention is characterized in that a natural quartz glass raw material powder having a particle size of 10 to 500 μm and a specific surface area measured by the BET method of 20 m 2 / g or more is used. There is a conventional method for producing a quartz glass crucible.
That is, as shown in FIG. 2, the above-described manufacturing apparatus 10 is used to operate a rotational drive source (not shown) to rotate the rotating shaft 15 in the direction of the arrow and to rotate the crucible molding die 11 at a high speed, for crucible molding. From the upper part in the mold 11, a natural quartz glass raw material powder that is characteristic is initially charged, and further, a synthetic silica raw material powder is charged on the inner surface thereof.

この天然石英ガラス原料粉末として、前記したように粒径が10〜500μmかつBET法により測定した比表面積が20m/g以上である天然石英ガラス原料粉末が用いられる。供給された天然石英ガラス原料粉末は、遠心力によってルツボ成形用型11の内側部材12に押圧され、一つの層が形成される。
そして、この天然石英ガラス原料粉末に続いて合成シリカ原料粉末がルツボ成形用型11内に供給され、合成シリカ原料粉末は、遠心力によって天然石英ガラス原料粉末の層に押圧され一つの層が形成され、全体としてルツボ形状の2層の石英充填層20が形成される。
As this natural quartz glass raw material powder, a natural quartz glass raw material powder having a particle size of 10 to 500 μm and a specific surface area measured by the BET method of 20 m 2 / g or more as described above is used. The supplied natural quartz glass raw material powder is pressed against the inner member 12 of the crucible molding die 11 by centrifugal force to form one layer.
Then, following this natural quartz glass raw material powder, synthetic silica raw material powder is supplied into the crucible molding die 11, and the synthetic silica raw material powder is pressed against the natural quartz glass raw material powder layer by centrifugal force to form one layer. As a result, a two-layer quartz filling layer 20 having a crucible shape as a whole is formed.

その後、大気雰囲気で、減圧機構18の作動による減圧とほぼ同時にカーボン電極19に通電して石英充填層20の内側から加熱し、石英充填層20を内側から順次溶融する。
その後、冷却することにより、内面側には極小の気泡だけの実質的に無気泡化状態の透明石英ガラス層2が形成され、外表側には多数の気泡が存在する不透明石英ガラス層3が形成された、2重層構造の石英ガラスルツボ1が製造される。
Thereafter, the carbon electrode 19 is energized and heated from the inside of the quartz filling layer 20 almost simultaneously with the decompression by the operation of the decompression mechanism 18 in the air atmosphere, and the quartz filling layer 20 is sequentially melted from the inside.
Thereafter, by cooling, the transparent quartz glass layer 2 having substantially no bubbles is formed on the inner surface side, and the opaque quartz glass layer 3 having many bubbles is formed on the outer surface side. Thus, the double-layered quartz glass crucible 1 is manufactured.

このように、比表面積が大きい天然石英ガラス原料粉末を用いることにより、成形体の保温性が向上する。即ち、カーボン電極19による加熱の熱が成形型から外部に拡散するのを抑制することができ、結果としてカーボン電極19の通電に用いられる電力量を削減できる。
特に、天然石英ガラス原料粉末の溶融温度は、内層を形成する合成シリカ原料粉末の溶融温度よりも高いため、上記比表面積とすることにより、内側からカーボン電極によって加熱した際、熱の外方への拡散をより抑制し、容易に溶融させることができ、消費電力量を削減することができる。
また、ルツボの外表側に配置される不透明石英ガラス層を形成する天然石英ガラス原料粉末を上記比表面積とすることにより、熱の外方への拡散をより抑制でき、電力量を削減できる。
Thus, the heat retention of a molded object improves by using the natural quartz glass raw material powder with a large specific surface area. That is, the heat of heating by the carbon electrode 19 can be prevented from diffusing from the mold to the outside, and as a result, the amount of electric power used for energizing the carbon electrode 19 can be reduced.
In particular, since the melting temperature of the natural silica glass raw material powder is higher than the melting temperature of the synthetic silica raw material powder forming the inner layer, by setting the specific surface area, when heated by the carbon electrode from the inside, outward of the heat Can be more easily suppressed and melted easily, and the amount of power consumption can be reduced.
Moreover, by making the natural quartz glass raw material powder which forms the opaque quartz glass layer arrange | positioned in the outer surface side of a crucible into the said specific surface area, the spreading | diffusion of heat outside can be suppressed more and electric energy can be reduced.

次に、BET法により測定した比表面積が20m/g以上である天然石英ガラス原料粉末の製造方法について説明する。
天然石英ガラス原料粉末は、通常、BET法により測定した比表面積が20m/g未満である。そのため、比表面積を増大させるために、天然石英ガラス原料粉末に対して、フッ酸によりその表面をエッチングする。
Next, the manufacturing method of the natural quartz glass raw material powder whose specific surface area measured by BET method is 20 m < 2 > / g or more is demonstrated.
Natural quartz glass raw material powder usually has a specific surface area measured by the BET method of less than 20 m 2 / g. Therefore, in order to increase the specific surface area, the surface of natural quartz glass raw material powder is etched with hydrofluoric acid.

このフッ酸によるエッチング処理は、以下のように行われる。
まず、純水を用いて、天然石英ガラス原料粉末に含まれる水で除去可能な塵埃や不純物を除去する。次に、天然石英ガラス原料粉末に含まれる有機物を除去するため、オゾン水や界面活性剤を用いて洗浄する。前記洗浄後の天然石英ガラス原料粉末を濃度50wt%以上、温度40℃のフッ酸に2時間以上浸漬した。最後に純水を用いてリンス洗浄した。
The etching process using hydrofluoric acid is performed as follows.
First, pure water is used to remove dust and impurities that can be removed with water contained in the natural quartz glass raw material powder. Next, in order to remove the organic substance contained in the natural quartz glass raw material powder, it is cleaned using ozone water or a surfactant. The washed natural quartz glass raw material powder was immersed in hydrofluoric acid having a concentration of 50 wt% or more and a temperature of 40 ° C. for 2 hours or more. Finally, it was rinsed with pure water.

上記天然石英ガラス原料粉末のフッ酸によるエッチング処理によって、天然石英ガラス粒子の表面に微細な凹凸が形成される。この微細な凹凸によって光は乱反射し、透過率が低下する。しかも、この天然石英ガラス原料粉末はルツボの外側(ルツボ型側)に配置されるため、内側に配置された合成シリカ原料粉末を通過した熱を内方に反射し、熱の外方への拡散が抑制される。   Fine irregularities are formed on the surface of the natural quartz glass particles by the etching treatment of the natural quartz glass raw material powder with hydrofluoric acid. Light is diffusely reflected by the fine unevenness, and the transmittance is lowered. Moreover, since this natural quartz glass raw material powder is arranged outside the crucible (crucible type side), the heat that has passed through the synthetic silica raw material powder arranged inside is reflected inward, and the heat is diffused outward. Is suppressed.

(実施例1)
洗浄後の天然石英ガラス原料粉末を、濃度50wt%のフッ酸中に、2時間浸漬した。その後、天然石英ガラス原料粉末を洗浄し、比表面積測定装置を用いて窒素ガス吸着によるBET法で比表面積を測定した。
この測定の結果、BET法による比表面積が30m/gであった。
Example 1
The washed natural quartz glass raw material powder was immersed in hydrofluoric acid having a concentration of 50 wt% for 2 hours. Thereafter, the natural quartz glass raw material powder was washed, and the specific surface area was measured by a BET method by nitrogen gas adsorption using a specific surface area measuring device.
As a result of this measurement, the specific surface area by the BET method was 30 m 2 / g.

そして、図2に示した上記製造装置10を用いて、ルツボ成形用型11を高速で回転させつつ、ルツボ成形用型11内の上部から、初めに粗粒の天然石英ガラス原料粉末を装填し、さらにその内表面に微粒の合成シリカ原料粉末を装填し、ルツボ形状の2層の石英充填層20を形成した。その後、大気雰囲気で、減圧機構18の作動による減圧とほぼ同時にカーボン電極19に通電して石英充填層20の内側から加熱、溶融した。その後冷却し、内面側に透明石英ガラス層2、外表側に不透明石英ガラス層3が形成された、2重層構造の石英ガラスルツボ1を製造した。
この石英ガラスルツボを30個製造し、その時の平均消費電力量は352kwhであった。
Then, using the manufacturing apparatus 10 shown in FIG. 2, first, coarse natural quartz glass raw material powder is loaded from the upper part in the crucible forming die 11 while rotating the crucible forming die 11 at a high speed. Further, a fine synthetic silica raw material powder was loaded on the inner surface thereof to form two crucible-shaped quartz packed layers 20. Thereafter, the carbon electrode 19 was energized and heated and melted from the inside of the quartz packed layer 20 almost simultaneously with the decompression by the operation of the decompression mechanism 18 in the air atmosphere. Thereafter, it was cooled to produce a quartz glass crucible 1 having a double layer structure in which a transparent quartz glass layer 2 was formed on the inner surface side and an opaque quartz glass layer 3 was formed on the outer surface side.
Thirty quartz glass crucibles were produced, and the average power consumption at that time was 352 kwh.

(実施例2)
天然石英ガラス原料粉末を、濃度60wt%のフッ酸中に、3時間浸漬した。その後、天然石英ガラス原料粉末を洗浄し、比表面積測定装置を用いて比表面積を測定した。
この測定の結果、BET法による比表面積が50m/gであった。実施例1と同様な条件下で、2重層構造の石英ガラスルツボ1を製造した。
上記石英ガラスルツボを30個製造し、その時の平均消費電力量は343kwhであった。
(Example 2)
Natural quartz glass raw material powder was immersed in hydrofluoric acid having a concentration of 60 wt% for 3 hours. Thereafter, the natural quartz glass raw material powder was washed, and the specific surface area was measured using a specific surface area measuring device.
As a result of this measurement, the specific surface area determined by the BET method was 50 m 2 / g. A quartz glass crucible 1 having a double layer structure was produced under the same conditions as in Example 1.
Thirty quartz glass crucibles were produced, and the average power consumption at that time was 343 kwh.

(比較例1)
天然石英ガラス原料粉末の表面エッチング処理を施すことなく、比表面積測定装置を用いて比表面積を測定した。この測定の結果、比表面積は2m/gであった。
実施例1と同様な条件下で、2重層構造の石英ガラスルツボ1を製造した。
上記石英ガラスルツボを30個製造し、その時の平均消費電力量は365kwhであった。
(Comparative Example 1)
The specific surface area was measured using a specific surface area measuring apparatus without subjecting the natural quartz glass raw material powder to surface etching. As a result of this measurement, the specific surface area was 2 m 2 / g.
A quartz glass crucible 1 having a double layer structure was produced under the same conditions as in Example 1.
30 quartz glass crucibles were manufactured, and the average power consumption at that time was 365 kwh.

(比較例2)
天然石英ガラス原料粉末を、濃度50wt%のフッ酸中に、1時間浸漬した。その後、天然石英ガラス原料粉末を洗浄し、透過率測定装置を用いて光の透過率を測定した。
この測定の結果、比表面積が10m/gであった。実施例1と同様な条件下で、2重層構造の石英ガラスルツボ1を製造した。
上記石英ガラスルツボを30個製造し、その時の平均消費電力量は360kwhであった。
(Comparative Example 2)
Natural quartz glass raw material powder was immersed in hydrofluoric acid having a concentration of 50 wt% for 1 hour. Thereafter, the natural quartz glass raw material powder was washed, and the light transmittance was measured using a transmittance measuring device.
As a result of this measurement, the specific surface area was 10 m 2 / g. A quartz glass crucible 1 having a double layer structure was produced under the same conditions as in Example 1.
Thirty quartz glass crucibles were produced, and the average power consumption at that time was 360 kwh.

上記実施例1,2及び比較例1,2の結果からわかるように、使用電力量(消費電力量)を削減することができ、省エネ効果が確認された。   As can be seen from the results of Examples 1 and 2 and Comparative Examples 1 and 2, the amount of power used (power consumption) can be reduced, and the energy saving effect was confirmed.

1 石英ガラスルツボ
2 透明石英ガラス層
3 不透明石英ガラス層
10 石英ガラスルツボ製造装置
11 ルツボ成形用型
12 内側部材
13 通気部
14 保持体
15 回転軸
16 開口部
17 排気口
18 減圧機構
19 カーボン電極
20 石英充填層
DESCRIPTION OF SYMBOLS 1 Quartz glass crucible 2 Transparent quartz glass layer 3 Opaque quartz glass layer 10 Quartz glass crucible manufacturing apparatus 11 Crucible mold 12 Inner member 13 Ventilation part 14 Holding body 15 Rotating shaft 16 Opening part 17 Exhaust port 18 Decompression mechanism 19 Carbon electrode 20 Quartz packed bed

(比較例2)
天然石英ガラス原料粉末を、濃度50wt%のフッ酸中に、1時間浸漬した。その後、天然石英ガラス原料粉末を洗浄し、比表面積測定装置を用いて比表面積を測定した。
この測定の結果、比表面積が10m/gであった。実施例1と同様な条件下で、2重層構造の石英ガラスルツボ1を製造した。
上記石英ガラスルツボを30個製造し、その時の平均消費電力量は360kwhであった。
(Comparative Example 2)
Natural quartz glass raw material powder was immersed in hydrofluoric acid having a concentration of 50 wt% for 1 hour. Thereafter, the natural quartz glass raw material powder was washed, and the specific surface area was measured using a specific surface area measuring device.
As a result of this measurement, the specific surface area was 10 m 2 / g. A quartz glass crucible 1 having a double layer structure was produced under the same conditions as in Example 1.
Thirty quartz glass crucibles were produced, and the average power consumption at that time was 360 kwh.

Claims (2)

ルツボ成形用型内に天然石英ガラス原料粉末を装填し、さらにその内表面に合成シリカ原料粉末を装填し、ルツボ形状の2層の石英充填層を形成し、前記石英充填層に対して、カーボン電極に通電して内側から加熱し、前記天然石英ガラス原料粉末及び合成シリカ原料粉末を溶融し、その後、冷却し、内面側に透明石英ガラス層が形成され、外表側には不透明石英ガラス層が形成されるシリコン単結晶引上用石英ガラスルツボの製造方法において、
前記天然石英ガラス原料粉末として、粒径が10〜500μmかつBET法により測定した比表面積が20m/g以上である天然石英ガラス原料粉末が用いられることを特徴とするシリコン単結晶引上用石英ガラスルツボの製造方法。
Natural quartz glass raw material powder is loaded into a crucible molding die, and further, synthetic silica raw material powder is loaded on its inner surface to form two crucible-shaped quartz packed layers. The electrode is energized and heated from the inside, the natural quartz glass raw material powder and the synthetic silica raw material powder are melted, then cooled, a transparent quartz glass layer is formed on the inner surface side, and an opaque quartz glass layer is formed on the outer surface side. In the method for producing a quartz glass crucible for pulling up a silicon single crystal to be formed,
A quartz for pulling a silicon single crystal, characterized in that a natural quartz glass raw material powder having a particle size of 10 to 500 μm and a specific surface area measured by the BET method of 20 m 2 / g or more is used as the natural quartz glass raw material powder. A method for producing a glass crucible.
前記天然石英ガラス原料粉末が、フッ酸により表面処理された天然石英ガラス原料粉末であることを特徴とする請求項1記載のシリコン単結晶引上用石英ガラスルツボの製造方法。   2. The method for producing a quartz glass crucible for pulling a silicon single crystal according to claim 1, wherein the natural quartz glass raw material powder is a natural quartz glass raw material powder surface-treated with hydrofluoric acid.
JP2010291578A 2010-12-28 2010-12-28 Method for manufacturing quartz glass crucible for raising silicon single crystal Pending JP2012017246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010291578A JP2012017246A (en) 2010-12-28 2010-12-28 Method for manufacturing quartz glass crucible for raising silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010291578A JP2012017246A (en) 2010-12-28 2010-12-28 Method for manufacturing quartz glass crucible for raising silicon single crystal

Publications (1)

Publication Number Publication Date
JP2012017246A true JP2012017246A (en) 2012-01-26

Family

ID=45602773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010291578A Pending JP2012017246A (en) 2010-12-28 2010-12-28 Method for manufacturing quartz glass crucible for raising silicon single crystal

Country Status (1)

Country Link
JP (1) JP2012017246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826737A (en) * 2012-09-28 2012-12-19 常熟华融太阳能新型材料有限公司 Quartz ceramic crucible for producing high-efficiency polycrystals and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826737A (en) * 2012-09-28 2012-12-19 常熟华融太阳能新型材料有限公司 Quartz ceramic crucible for producing high-efficiency polycrystals and preparation method thereof
CN102826737B (en) * 2012-09-28 2015-04-22 常熟华融太阳能新型材料有限公司 Quartz ceramic crucible for producing high-efficiency polycrystals and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI460317B (en) Silicone container for single crystal silicon pulling and its manufacturing method
TWI405728B (en) Silica container and method of manufacturing the same
JP4907735B2 (en) Silica container and method for producing the same
US8915096B2 (en) Silica container and method for producing the same
KR20110114634A (en) Silica vessel and process for producing same
JP4398527B2 (en) Silica glass crucible for pulling silicon single crystals
TWI509117B (en) Silicone container for single crystal silicon pulling and its manufacturing method
JP4453954B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal and quartz glass crucible produced by the production method
JP2018104248A (en) Quartz glass crucible for pulling silicon single crystal
JP3625636B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
WO2009122936A1 (en) Quartz glass crucible and process for producing the same
JP5308594B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
JP5497247B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
JP2012017246A (en) Method for manufacturing quartz glass crucible for raising silicon single crystal
JPWO2013171955A1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
JP4549008B2 (en) Hydrogen-doped silica powder and quartz glass crucible for pulling silicon single crystal using the same
JP6812176B2 (en) Quartz glass crucible
JP6713382B2 (en) Quartz glass crucible manufacturing method and quartz glass crucible
JP2019048730A (en) Silicon single crystal pulling quartz glass crucible
JP6220772B2 (en) Method for producing quartz glass crucible
JP6659408B2 (en) Method for producing silica glass crucible for pulling silicon single crystal
JP2012017244A (en) Method for manufacturing quartz glass crucible
JP5608258B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
JPH04310530A (en) Production of synthetic quartz crucible