JP2012016227A - Start control method and start control device of coil type induction machine - Google Patents

Start control method and start control device of coil type induction machine Download PDF

Info

Publication number
JP2012016227A
JP2012016227A JP2010152600A JP2010152600A JP2012016227A JP 2012016227 A JP2012016227 A JP 2012016227A JP 2010152600 A JP2010152600 A JP 2010152600A JP 2010152600 A JP2010152600 A JP 2010152600A JP 2012016227 A JP2012016227 A JP 2012016227A
Authority
JP
Japan
Prior art keywords
induction machine
stator winding
winding
supply system
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010152600A
Other languages
Japanese (ja)
Other versions
JP5696381B2 (en
Inventor
Ryuta Yasuki
隆太 安木
Hiroshi Osawa
博 大沢
Ikuya Sato
以久也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010152600A priority Critical patent/JP5696381B2/en
Publication of JP2012016227A publication Critical patent/JP2012016227A/en
Application granted granted Critical
Publication of JP5696381B2 publication Critical patent/JP5696381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a start control method and a start control device which can improve a start torque of a coil type induction machine while allowing for the whole device to be small, light and reducing cost.SOLUTION: A first synchronization input mode, in which first and second opening and shutting means 31 and 32 which are connected to a first power source system 21 and a second power source system 22 of low voltage are turned off and a stator coil 11 is released to apply voltage to a rotor coil 12 by a power converter 34 and the inductive voltage of the stator coil 11 and the voltage of the power source system 22 are synchronized and the opening and shutting mean 32 is turned on to connect the power source system 22 to the stator coil 11, and a first acceleration mode, in which an induction machine 10 is accelerated by the power converter to a prescribed speed, and then the opening and shutting means 32 is turned off to release the stator coil 11, and a second synchronization input mode, in which the inductive voltage of the stator coil 11 and the voltage of the power source system 21 are synchronized and then the opening and shutting means 31 is turned on to connect the power source system 21 to the stator coil 11, are carried out sequentially to start the induction machine 10.

Description

本発明は、回転子巻線に接続された電力変換器により巻線形誘導機の入出力電力を制御可能とした巻線形誘導機の始動制御方法、及び、この方法を実施するための始動制御装置に関するものである。   The present invention relates to a start control method for a wire-wound induction machine capable of controlling input / output power of the wire-wound induction machine by a power converter connected to a rotor winding, and a start control device for carrying out this method. It is about.

巻線形誘導機の回転子巻線に入出力される電力は、電源系統に接続された固定子巻線に入出力される電力と誘導機のすべりとの積にほぼ比例する特性がある。このため、巻線形誘導機をすべりが小さな範囲で可変速制御する用途では、回転子巻線に接続された小容量の電力変換器により、可変速制御するための大きな電力を制御できるという特徴がある。しかるに、このためには巻線形誘導機をすべりが小さな速度、すなわち同期速度近傍まで加速するための始動手段が別途、必要になる。   The power input / output to / from the rotor winding of the winding induction machine has a characteristic that is approximately proportional to the product of the power input / output to / from the stator winding connected to the power supply system and the slip of the induction machine. For this reason, in applications where variable speed control is performed on a winding induction machine within a small slip range, a large capacity power converter for variable speed control can be controlled by a small capacity power converter connected to the rotor winding. is there. However, this requires a separate starting means for accelerating the winding induction machine to a small speed, that is, near the synchronous speed.

このような巻線形誘導機の始動制御方法として、特許文献1には、[従来の技術]として、巻線形誘導機の固定子巻線を短絡し、回転子巻線に接続された電力変換器を用いて巻線形誘導機をかご形誘導機として始動する方法が記載されており、更に、回転子座標上の直交2軸量に変換した電源系統の電圧に固定子巻線端子電圧の振幅、位相、周波数を一致させて固定子巻線を電源系統に同期投入する方法が開示されている。   As a starting control method for such a winding induction machine, Patent Document 1 discloses, as [Prior Art], a power converter in which a stator winding of a winding induction machine is short-circuited and connected to the rotor winding. Is used to start the wire-wound induction machine as a squirrel-cage induction machine, and further, the amplitude of the stator winding terminal voltage is converted into the voltage of the power supply system converted into the orthogonal two-axis amount on the rotor coordinates, A method is disclosed in which the stator windings are synchronously input to the power supply system by matching the phase and frequency.

また、特許文献2には、ブースタトランスと称する変圧器を回転子巻線と2台の電力変換器との間に接続し、これらの電力変換器を運転して回転子巻線の電圧を上昇させる方法が記載されている。以下、この従来技術について詳述する。   In Patent Document 2, a transformer called a booster transformer is connected between a rotor winding and two power converters, and these power converters are operated to increase the voltage of the rotor winding. Is described. Hereinafter, this conventional technique will be described in detail.

図9は、この従来技術に係る巻線形誘導機の始動制御装置を示している。図9において、50は巻線形誘導機(巻線形誘導発電電動機)であり、51は遮断器61を介して電源系統60に接続された固定子巻線、52は回転子巻線である。
回転子巻線52は、遮断器71,73を介して電力変換器76,77にそれぞれ接続されている。また、回転子巻線52は、ブースタトランス75及び遮断器72を介して前記電力変換器76に接続されると共に、ブースタトランス75及び遮断器74を介して前記電力変換器77に接続されている。
なお、78は交流出力電力変換装置、79,80,81は電源系統60と電力変換装置78との間に接続されたトランス、91は誘導機50の回転子に取り付けられた回転位相角検出器、92は同じく回転速度検出器、101は遮断器、102は誘導機50の固定子巻線51を短絡するための三相短絡器である。
FIG. 9 shows a start-up control device for a wire-wound induction machine according to this prior art. In FIG. 9, 50 is a winding type induction machine (winding type induction generator motor), 51 is a stator winding connected to the power supply system 60 via a circuit breaker 61, and 52 is a rotor winding.
The rotor winding 52 is connected to power converters 76 and 77 via circuit breakers 71 and 73, respectively. The rotor winding 52 is connected to the power converter 76 via a booster transformer 75 and a circuit breaker 72, and is connected to the power converter 77 via a booster transformer 75 and a circuit breaker 74. .
78 is an AC output power converter, 79, 80, 81 are transformers connected between the power supply system 60 and the power converter 78, and 91 is a rotational phase angle detector attached to the rotor of the induction machine 50. , 92 is a rotational speed detector, 101 is a circuit breaker, and 102 is a three-phase short circuit for short-circuiting the stator winding 51 of the induction machine 50.

この動作を説明すると、誘導機50の始動時に三相短絡器102により固定子巻線51を短絡した状態において、遮断器71,73をオフし、遮断器72,74をオンすることによって電力変換器76,77をブースタトランス75に接続する。この状態で、電力変換器76,77をベクトル制御等の方法により運転する。
これにより、回転子巻線52には電力変換器76の出力電圧と電力変換器77の出力電圧とが重畳して印加されるため、特許文献1記載の従来技術に比べて出力電圧が増加する。従って、誘導機50からは高速運転時に大きな始動トルクを得ることができ、例えば発電機水車の水中始動に適した始動制御装置を実現することができる。
Explaining this operation, in the state where the stator winding 51 is short-circuited by the three-phase short circuit 102 at the start of the induction machine 50, the circuit breakers 71 and 73 are turned off and the circuit breakers 72 and 74 are turned on to convert the power. Devices 76 and 77 are connected to booster transformer 75. In this state, the power converters 76 and 77 are operated by a method such as vector control.
Thereby, since the output voltage of the power converter 76 and the output voltage of the power converter 77 are superimposed and applied to the rotor winding 52, the output voltage is increased as compared with the prior art described in Patent Document 1. . Therefore, a large starting torque can be obtained from the induction machine 50 during high-speed operation, and for example, a starting control device suitable for underwater starting of a generator turbine can be realized.

特開平1−198297号公報(第1頁右下欄第6行〜第3頁左上欄第8行、第2図,第3図等)JP-A-1-198297 (page 1, lower right column, line 6 to page 3, upper left column, line 8, FIG. 2, FIG. 3, etc.) 特開平7−7995号公報(段落[0019]〜[0021]、図2等)JP-A-7-7995 (paragraphs [0019] to [0021], FIG. 2 etc.)

特許文献1、特許文献2に記載された従来技術は、巻線形誘導機を起動する方法として、何れも固定子巻線を短絡し、回転子巻線に接続された比較的小容量の電力変換器により巻線形誘導機をかご形誘導機として始動する点で一致する。
一方、巻線形誘導機では、固定子巻線の巻数と回転子巻線の巻数との比(巻数比)がほぼ1に設計されることが多い。この場合、すべりが0.1程度の範囲で可変速制御する場合、電源系統の電圧が例えば3.3[kV]であるとすると、回転子巻線の電圧は最大で約330[V]となり、標準的な400[V]定格の電力変換器を回転子巻線に接続して使用することができる。すなわち、電力変換器の定格電圧は低くてよいため、電力変換器の必要容量も小さくて済むという特徴がある。
The prior art described in Patent Document 1 and Patent Document 2 is a method for starting a wound-type induction machine, in which both the stator windings are short-circuited and a relatively small capacity power conversion connected to the rotor windings. This coincides with the point that the induction motor is started as a squirrel-cage induction machine.
On the other hand, in a winding induction machine, the ratio (turn ratio) between the number of turns of the stator winding and the number of turns of the rotor winding is often designed to be approximately 1. In this case, when variable speed control is performed in a range where the slip is about 0.1, assuming that the voltage of the power supply system is 3.3 [kV], for example, the maximum voltage of the rotor winding is about 330 [V]. A standard 400 [V] rated power converter can be used connected to the rotor winding. That is, since the rated voltage of the power converter may be low, the required capacity of the power converter is small.

ところで、巻線形誘導機の回転子巻線または固定子巻線のいずれか一方を短絡し、他方の巻線から電力を供給して誘導機を加速する場合、誘導機が出力可能な最大トルク(停動トルク)は、誘導機に印加される電圧の2乗にほぼ比例することが知られている。従って、例えば回転子巻線を短絡し、固定子巻線に印加される電圧の上限値を定格電圧の1/10にすると、同期速度時の最大トルクは定格トルクの1/100まで低下するという問題がある。   By the way, when either the rotor winding or the stator winding of the winding induction machine is short-circuited and the induction machine is accelerated by supplying power from the other winding, the maximum torque that the induction machine can output ( It is known that the (stationary torque) is approximately proportional to the square of the voltage applied to the induction machine. Therefore, for example, when the rotor winding is short-circuited and the upper limit value of the voltage applied to the stator winding is 1/10 of the rated voltage, the maximum torque at the synchronous speed is reduced to 1/100 of the rated torque. There's a problem.

ここで、図10は、下記の等価回路定数を用いて、固定子巻線を短絡したときの速度−トルク特性の計算結果を示している。
定格出力:1000[kW]
定格速度:600[r/min]
電源系統:3.3[kV],50[Hz]
極数:10
固定子巻線抵抗:2[%](0.183[Ω])
回転子巻線抵抗:2[%](0.183[Ω])
固定子漏れインダクタンス:10[%](2.92[mH])
回転子漏れインダクタンス:10[%](2.92[mH])
励磁インダクタンス:200[%](18.3[mH])
固定子巻線の電圧上限値:400[V]
巻数比:1.3
Here, FIG. 10 shows the calculation result of the speed-torque characteristic when the stator winding is short-circuited using the following equivalent circuit constant.
Rated output: 1000 [kW]
Rated speed: 600 [r / min]
Power supply system: 3.3 [kV], 50 [Hz]
Number of poles: 10
Stator winding resistance: 2 [%] (0.183 [Ω])
Rotor winding resistance: 2 [%] (0.183 [Ω])
Stator leakage inductance: 10 [%] (2.92 [mH])
Rotor leakage inductance: 10 [%] (2.92 [mH])
Excitation inductance: 200 [%] (18.3 [mH])
Stator winding voltage upper limit: 400 [V]
Turns ratio: 1.3

図10によれば、特許文献1に係る従来技術(特性線B1とする)では、同期速度(電源周波数ω)での最大トルクは定格トルクの約3.5[%]となる。誘導機の等価回路から計算した最大トルクには、機械損及び鉄損の影響は考慮されていない。従って、回転速度の上昇に伴って大きくなる機械損及び鉄損の影響を考慮すると、同期速度近傍まで加速できないという問題や、同期速度近傍まで加速する時間(加速時間)が許容できないほど長くなる等の問題が生じる。
なお、図10において、特性線B2は特許文献2に係る従来技術の速度−トルク特性、特性線Aは本発明の実施例による速度−トルク特性であり、これらの特性線A,B1,B2の比較結果については後述することとする。
According to FIG. 10, in the related art (characteristic line B1) according to Patent Document 1, the maximum torque at the synchronous speed (power frequency ω 2 ) is about 3.5% of the rated torque. The maximum torque calculated from the equivalent circuit of the induction machine does not consider the effects of mechanical loss and iron loss. Therefore, in consideration of the effects of mechanical loss and iron loss that increase as the rotational speed increases, there is a problem that acceleration cannot be accelerated to the vicinity of the synchronization speed, and the time for acceleration to the vicinity of the synchronization speed (acceleration time) becomes unacceptably long Problem arises.
In FIG. 10, the characteristic line B2 is the speed-torque characteristic of the prior art according to Patent Document 2, and the characteristic line A is the speed-torque characteristic according to the embodiment of the present invention. These characteristic lines A, B1, B2 The comparison result will be described later.

一方、特許文献2では、上記問題を解決するため、ブースタトランス75等を追加して回転子巻線52に印加される最大電圧を大きくしているが、誘導機50を始動するためにブースタトランス75や各2台の電力変換器76,77及び変圧器79,80が必要であり、装置体積の大型化や重量化、高コスト化を招くという問題がある。   On the other hand, in Patent Document 2, in order to solve the above problem, a booster transformer 75 or the like is added to increase the maximum voltage applied to the rotor winding 52, but in order to start the induction machine 50, the booster transformer 75, two power converters 76 and 77, and transformers 79 and 80 are necessary, and there is a problem in that the apparatus volume is increased in size, weight, and cost.

そこで、本発明の解決課題は、巻線形誘導機の始動トルクを改善し、装置全体の小型軽量化、低コスト化を可能にした巻線形誘導機の始動制御方法及び始動制御装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, a problem to be solved by the present invention is to provide a start-up control method and start-up control device for a wire-wound induction machine that can improve the starting torque of the wire-wound induction machine and reduce the overall size, weight and cost. It is in.

上記課題を解決するため、請求項1に係る始動制御方法は、第1の開閉手段を介して第1の電源系統に接続され、かつ、第2の開閉手段を介して第1の電源系統よりも低圧の第2の電源系統に接続される固定子巻線と、電力変換器を介して第1の電源系統に接続される回転子巻線と、を備えた巻線形誘導機の始動制御方法において、
第1,第2の開閉手段をオフして前記固定子巻線を開放した状態で前記電力変換器により前記回転子巻線に電圧を印加し、前記固定子巻線の誘起電圧と第2の電源系統の電圧とを同期させてから第2の開閉手段をオンして第2の電源系統を前記固定子巻線に接続する第1の同期投入モードと、
前記電力変換器により前記回転子巻線に電力を供給して前記誘導機を所定速度まで加速し、その後、第2の開閉手段をオフして前記固定子巻線を開放する第1の加速モードと、
前記固定子巻線の誘起電圧と第1の電源系統の電圧とを同期させてから第1の開閉手段をオンして第1の電源系統を前記固定子巻線に接続する第2の同期投入モードと、を順次実行して前記誘導機を始動するものである。
In order to solve the above-mentioned problem, a start control method according to claim 1 is connected to a first power supply system via a first opening / closing means and is connected to the first power supply system via a second opening / closing means. A start control method for a winding induction machine comprising: a stator winding connected to a second low-voltage power supply system; and a rotor winding connected to the first power supply system via a power converter In
A voltage is applied to the rotor winding by the power converter in a state where the first and second opening / closing means are turned off and the stator winding is opened, and an induced voltage of the stator winding and a second A first synchronous on mode in which the second switching means is turned on after the voltage of the power system is synchronized and the second power system is connected to the stator winding;
A first acceleration mode in which power is supplied to the rotor winding by the power converter to accelerate the induction machine to a predetermined speed, and then the second opening / closing means is turned off to open the stator winding. When,
A second synchronous input that synchronizes the induced voltage of the stator winding and the voltage of the first power supply system and then turns on the first switching means to connect the first power supply system to the stator winding. Are sequentially executed to start the induction machine.

請求項2に係る始動制御方法は、請求項1に記載した前記第1の同期投入モードの前に、前記誘導機の回転子を静止させた状態で前記第1,第2の開閉手段をオフすると共に前記固定子巻線を短絡し、前記電力変換器により前記回転子巻線に電力を供給して前記誘導機を所定速度まで加速してから短絡状態の前記固定子巻線を開放する初期加速モードを実行し、その後、前記第1の同期投入モード,前記第1の加速モード,前記第2の同期投入モードを順次実行するものである。   According to a second aspect of the present invention, there is provided a start control method in which the first and second opening / closing means are turned off with the rotor of the induction machine stationary before the first synchronous input mode according to the first aspect. In addition, the stator winding is short-circuited, the power is supplied to the rotor winding by the power converter, and the induction machine is accelerated to a predetermined speed, and then the short-circuited stator winding is opened. The acceleration mode is executed, and then the first synchronous input mode, the first acceleration mode, and the second synchronous input mode are sequentially executed.

請求項3に係る始動制御装置は、第1の電源系統と巻線形誘導機の固定子巻線との間に接続された第1の開閉手段と、
第1の電源系統よりも低圧の第2の電源系統と前記固定子巻線との間に接続された第2の開閉手段と、
第1の電源系統と巻線形誘導機の回転子巻線との間に接続された電力変換器と、
第1,第2の開閉手段及び前記電力変換器を制御する制御手段と、を備え、
前記制御手段は、
第1,第2の開閉手段をオフして前記電力変換器により前記回転子巻線に電圧を印加すると共に、前記固定子巻線の誘起電圧と第2の電源系統の電圧とを同期させて第2の開閉手段をオンし、第2の電源系統を前記固定子巻線に接続する第1の同期投入モードと、
前記電力変換器により前記回転子巻線に電力を供給して前記誘導機を加速してから第2の開閉手段をオフし、前記固定子巻線を開放する第1の加速モードと、
前記固定子巻線の誘起電圧と第1の電源系統の電圧とを同期させて第1の開閉手段をオンし、第1の電源系統を前記固定子巻線に接続する第2の同期投入モードと、を順次実行して前記誘導機を始動するものである。
The start control device according to claim 3 is a first opening and closing means connected between the first power supply system and the stator winding of the winding induction machine,
A second opening / closing means connected between a second power supply system having a lower voltage than the first power supply system and the stator winding;
A power converter connected between the first power system and the rotor winding of the wound induction machine;
Control means for controlling the first and second opening / closing means and the power converter,
The control means includes
The first and second switching means are turned off and a voltage is applied to the rotor winding by the power converter, and the induced voltage of the stator winding and the voltage of the second power supply system are synchronized. Turning on the second opening and closing means and connecting a second power supply system to the stator winding;
A first acceleration mode in which power is supplied to the rotor winding by the power converter to accelerate the induction machine and then the second opening / closing means is turned off to open the stator winding;
A second synchronous input mode in which the first switching means is turned on by synchronizing the induced voltage of the stator winding and the voltage of the first power supply system to connect the first power supply system to the stator winding. Are sequentially executed to start the induction machine.

請求項4に係る始動制御装置は、請求項3に記載した巻線形誘導機の始動制御装置において、
前記固定子巻線を短絡する短絡手段を更に備え、
前記制御手段は、
前記誘導機の回転子を静止させて前記第1,第2の開閉手段をオフすると共に前記短絡手段により前記固定子巻線を短絡し、前記電力変換器により前記回転子巻線に電力を供給して前記誘導機を所定速度まで加速してから短絡状態の前記固定子巻線を開放する初期加速モードを、前記第1の同期投入モードに先立って実行するものである。
The start control device according to claim 4 is the start control device for a wound induction machine according to claim 3,
Short-circuit means for short-circuiting the stator winding,
The control means includes
The rotor of the induction machine is stopped, the first and second opening / closing means are turned off, the stator winding is short-circuited by the short-circuit means, and power is supplied to the rotor winding by the power converter. The initial acceleration mode in which the stator winding in a short-circuit state is opened after the induction machine is accelerated to a predetermined speed is executed prior to the first synchronous input mode.

請求項1または請求項3に係る発明によれば、特許文献1に係る従来技術に対しては、高速時の始動トルク特性を改善し、また、特許文献2に係る従来技術に対しては、ブースタトランスや2台の電力変換器を用いることなく巻線形誘導機を始動可能として、装置全体の小型軽量化、低コスト化を図ることができる。
請求項2または請求項4に係る発明によれば、誘導機の停止状態から高速回転時までのトルク特性を改善し、スムーズな加速を実現することができる。
According to the invention according to claim 1 or claim 3, the starting torque characteristic at high speed is improved with respect to the conventional technique according to Patent Document 1, and the conventional technique according to Patent Document 2 is The winding-type induction machine can be started without using a booster transformer or two power converters, so that the entire apparatus can be reduced in size, weight, and cost.
According to the invention which concerns on Claim 2 or Claim 4, the torque characteristic from the stop state of an induction machine to the time of high speed rotation can be improved, and smooth acceleration can be implement | achieved.

実施例1に係る始動制御装置の構成図である。1 is a configuration diagram of a start control device according to Embodiment 1. FIG. 実施例1に係る始動制御方法の操作手順を示すフローチャートである。3 is a flowchart illustrating an operation procedure of a start control method according to the first embodiment. 実施例1における誘導機の時間−速度特性図である。It is a time-speed characteristic figure of the induction machine in Example 1. FIG. 従来技術に係る始動制御方法の操作手順を示すフローチャートである。It is a flowchart which shows the operation procedure of the starting control method which concerns on a prior art. 従来技術における誘導機の時間−速度特性図である。It is a time-speed characteristic figure of the induction machine in a prior art. 実施例2に係る始動制御装置の構成図である。FIG. 6 is a configuration diagram of a start control device according to a second embodiment. 実施例2に係る始動制御方法の操作手順を示すフローチャートである。7 is a flowchart illustrating an operation procedure of a start control method according to Embodiment 2. 実施例2における誘導機の時間−速度特性図である。It is a time-speed characteristic figure of the induction machine in Example 2. FIG. 特許文献2に係る従来技術の構成図である。It is a block diagram of the prior art which concerns on patent document 2. FIG. 従来技術及び本発明の実施例による誘導機の速度−トルク特性図である。FIG. 6 is a speed-torque characteristic diagram of an induction machine according to an embodiment of the prior art and the present invention.

以下、図に沿って本発明の実施形態を説明する。
本発明の実施形態は、誘導機の始動時に、巻線形誘導機の固定子巻線を低圧の電源系統に接続すると共に、回転子巻線に接続された電力変換器によって誘導機の入出力電力を制御することにより、従来技術に比べて速度−トルク特性を改善するものである。この実施形態を具体化した実施例1,2を、以下に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The embodiment of the present invention connects the stator winding of the wound-type induction machine to the low-voltage power supply system at the start of the induction machine, and uses the power converter connected to the rotor winding to input / output power of the induction machine. By controlling this, the speed-torque characteristics are improved as compared with the prior art. Examples 1 and 2 embodying this embodiment will be described below.

図1は、請求項1,3に対応する実施例1の構成図であり、例えば三相の電源系統に接続された三相巻線形誘導機の始動制御装置を単線図によって表したものである。
図1において、10は三相巻線形誘導機、11はその固定子巻線、12は回転子巻線、13は回転子であり、回転子13には、速度検出器14が取り付けられている。
FIG. 1 is a configuration diagram of a first embodiment corresponding to claims 1 and 3, and shows, for example, a three-phase winding induction machine start control device connected to a three-phase power supply system in a single line diagram. .
In FIG. 1, 10 is a three-phase winding induction machine, 11 is a stator winding thereof, 12 is a rotor winding, 13 is a rotor, and a speed detector 14 is attached to the rotor 13. .

また、21は第1の交流電源系統であり、この電源系統21には、開閉器31を介して誘導機10の固定子巻線11が接続されている。ここで、「開閉器」は、故障時の大電流の遮断能力を持たない開閉手段であり、大電流の遮断能力を持つ「遮断器」と区別されるが、本発明では大電流の遮断能力の有無を問わず、単に電路を開閉する開閉手段として機能すればよいため、開閉器、遮断器の何れであっても良い。以下、各実施例における「開閉器」は開閉器、遮断器を総称した意味で用いることとする。
22は、電源系統21よりも低圧の第2の交流電源系統であり、この電源系統22には、開閉器32を介して誘導機10の固定子巻線11が接続されている。
なお、第2の電源系統22としては、下記の降圧トランス33の低圧巻線(二次巻線)を、開閉器32を介して固定子巻線11に接続して構成することも可能である。すなわち、第2の電源系統22は、必ずしも第1の電源系統21と独立した別個の電源系統である必要はなく、第1の電源系統21を降圧して構成してもよい。
Reference numeral 21 denotes a first AC power supply system. The stator winding 11 of the induction machine 10 is connected to the power supply system 21 via a switch 31. Here, the “switch” is a switching means that does not have a large current interruption capability in the event of a failure, and is distinguished from a “breaker” that has a large current interruption capability. Regardless of the presence or absence of the switch, the switch may be either a switch or a circuit breaker because it simply functions as an opening / closing unit that opens and closes the electric circuit. Hereinafter, the term “switch” in each embodiment is used in a generic meaning of a switch and a circuit breaker.
Reference numeral 22 denotes a second AC power supply system having a lower voltage than the power supply system 21, and the stator winding 11 of the induction machine 10 is connected to the power supply system 22 via a switch 32.
The second power supply system 22 may be configured by connecting a low-voltage winding (secondary winding) of a step-down transformer 33 described below to the stator winding 11 via a switch 32. . That is, the second power supply system 22 is not necessarily a separate power supply system independent of the first power supply system 21 and may be configured by stepping down the first power supply system 21.

電源系統21には降圧トランス33の一次側が接続され、その二次側はインバータやマトリクスコンバータ等の電力変換器34を介して誘導機10の回転子巻線12に接続されている。
本実施例では、第1の電源系統21に接続された電力変換器34によって回転子巻線12への供給電力を制御することにより、第2の電源系統22に接続された固定子巻線11の入出力電力を制御する。ここで、図1では回転子13の軸に速度検出器14を取り付けて速度をフィードバック制御する例を示しているが、本発明は、速度を検出せずにV/f一定制御や速度センサレス制御などによって始動する場合にも適用可能である。
なお、第1,第2の開閉器31,32の開閉制御及び電力変換器34の駆動制御を行うための制御装置は、図示を省略してある。
The primary side of the step-down transformer 33 is connected to the power supply system 21, and the secondary side is connected to the rotor winding 12 of the induction machine 10 via a power converter 34 such as an inverter or a matrix converter.
In the present embodiment, the power converter 34 connected to the first power supply system 21 controls the power supplied to the rotor winding 12, so that the stator winding 11 connected to the second power supply system 22. Controls input / output power. Here, FIG. 1 shows an example in which the speed detector 14 is attached to the shaft of the rotor 13 and feedback control of the speed is performed. However, the present invention does not detect the speed but controls V / f constant control or speed sensorless control. The present invention can also be applied to the case of starting by, for example.
A control device for performing opening / closing control of the first and second switches 31, 32 and drive control of the power converter 34 is not shown.

次に、この実施例1における誘導機10の始動制御方法を、図2、図3を参照しつつ説明する。図2は、始動制御方法の操作手順を示すフローチャートであり、図3は、誘導機10の時間−速度特性図である。   Next, a starting control method for the induction machine 10 according to the first embodiment will be described with reference to FIGS. FIG. 2 is a flowchart showing an operation procedure of the start control method, and FIG. 3 is a time-speed characteristic diagram of the induction machine 10.

始めに、時刻tにて開閉器31,32をオフしておくことにより、初期状態とする(ステップS1)。 First, by keeping off the switch 31 at time t 0, the initial state (step S1).

次に、期間tの第1の同期投入モードにおいて、まず、電力変換器34によって回転子巻線12に電圧を印加すると共に、開閉器31,32のオフにより固定子巻線11を開放した状態で固定子巻線11に誘起電圧を発生させ、この誘起電圧を第2の電源系統22の電圧に同期させる制御を行う(ステップS2)。
すなわち、後に開閉器32をオンする前に固定子巻線11の誘起電圧と電源系統22の電圧との振幅及び位相を一致させることで、開閉器32をオンした際のショックを低減する。なお、電圧の振幅及び位相を制御する方法は、電圧のフィードバック制御やPLL制御など各種公知であるため、ここでは説明を省略する。
そして、固定子巻線11の誘起電圧の振幅及び位相が、電源系統22の電圧の振幅及び位相と等しくなったら開閉器32をオンし、固定子巻線11を電源系統22に接続して同期投入する(ステップS3)。
Next, in the first synchronous input mode of period t 2 , first, a voltage is applied to the rotor winding 12 by the power converter 34 and the stator winding 11 is opened by turning off the switches 31 and 32. In this state, an induced voltage is generated in the stator winding 11, and control is performed to synchronize this induced voltage with the voltage of the second power supply system 22 (step S2).
That is, before the switch 32 is turned on, the amplitude and phase of the induced voltage of the stator winding 11 and the voltage of the power supply system 22 are matched to reduce shock when the switch 32 is turned on. Various methods for controlling the amplitude and phase of the voltage are known, such as voltage feedback control and PLL control, and the description thereof is omitted here.
When the amplitude and phase of the induced voltage of the stator winding 11 become equal to the amplitude and phase of the voltage of the power supply system 22, the switch 32 is turned on, and the stator winding 11 is connected to the power supply system 22 and synchronized. (Step S3).

次に、期間tの第1の加速モードにおいて、電力変換器34を用いた公知のベクトル制御により、回転子巻線12に電圧を印加して回転子13を加速する(ステップS4)。回転速度が、同期速度に相当するωになったら、開閉器32をオフし、固定子巻線11を開放する(ステップS5)。 Next, in the first acceleration mode period t 3, by a known vector control using the power converter 34 to accelerate the rotor 13 by applying a voltage to the rotor winding 12 (step S4). When the rotational speed reaches ω 2 corresponding to the synchronous speed, the switch 32 is turned off and the stator winding 11 is opened (step S5).

次いで、期間tの第2の同期投入モードにおいて、第1の同期投入モードと同様に、固定子巻線11を開放した状態で固定子巻線11の誘起電圧を電源系統21の電圧に同期させる制御を行った後に、開閉器31をオンし、固定子巻線11を電源系統21に接続する(ステップS6,S7)。 Next, in the second synchronous input mode of period t 4 , the induced voltage of the stator winding 11 is synchronized with the voltage of the power supply system 21 with the stator winding 11 open, as in the first synchronous input mode. After performing the control, the switch 31 is turned on, and the stator winding 11 is connected to the power supply system 21 (steps S6 and S7).

その後、期間tの第2の加速モードにおいて、第1の加速モードと同様に電力変換器34のベクトル制御により、回転子13を更に加速する。ここでは、定格電力によって回転子13を加速することができる。そして、図3に示すごとく、回転速度がωに達したら、始動終了とする。 Then, in the second acceleration mode period t 5, the vector control of the power converter 34 as in the first acceleration mode, further accelerates the rotor 13. Here, the rotor 13 can be accelerated by the rated power. Then, as shown in FIG. 3, when the rotational speed reaches omega 3, the starting ends.

以下、この実施例1と対比するために、前述した特許文献2に係る従来技術(図9参照)の始動制御方法を説明する。図4は、この従来技術による始動制御方法の手順を示すフローチャートであり、図5は誘導機の時間−速度特性図である。
従来技術では、まず、時刻tの初期状態として、図9における遮断器71,73をオフし、遮断器72,74をオンし、電力変換器76,77をブースタトランス75に接続する(ステップS31)。また、遮断器61をオフすると共に遮断器101をオンして三相短絡器102により固定子巻線51を短絡し、誘導機50を一般的な誘導電動機として構成する。
Hereinafter, for comparison with the first embodiment, a start control method of the conventional technique (see FIG. 9) according to Patent Document 2 described above will be described. FIG. 4 is a flowchart showing the procedure of the starting control method according to this prior art, and FIG. 5 is a time-speed characteristic diagram of the induction machine.
In the prior art, first, as an initial state at time t 0 , the circuit breakers 71 and 73 in FIG. 9 are turned off, the circuit breakers 72 and 74 are turned on, and the power converters 76 and 77 are connected to the booster transformer 75 (step). S31). In addition, the circuit breaker 61 is turned off, the circuit breaker 101 is turned on, and the stator winding 51 is short-circuited by the three-phase short circuit 102 to configure the induction machine 50 as a general induction motor.

次に、期間tの加速モードにおいて、電力変換器76,77を運転し、これらの出力電圧をブースタトランス75を介し重畳して誘導機50の回転子巻線52に印加することにより誘導機50を加速する(ステップS32)。
その後、回転速度がωになったら、遮断器101をオフし(ステップS33)、以後は図2における第2の同期投入モード、第2の加速モードと同様に、期間tの同期投入モード、期間tの加速モードを順次実行する(ステップS34〜S36)。
Next, in the acceleration mode of the period t 1 , the power converters 76 and 77 are operated, and these output voltages are superimposed via the booster transformer 75 and applied to the rotor winding 52 of the induction machine 50 to thereby induce the induction machine. 50 is accelerated (step S32).
Thereafter, when the rotational speed becomes omega 2, turning off the circuit breaker 101 (step S33), thereafter the second synchronous loading mode in FIG. 2, similarly to the second acceleration mode, synchronous loading mode period t 4 sequentially executes the acceleration mode period t 5 (step S34 to S36).

図6は、請求項2,4に対応する実施例2の構成図であり、図1に示した実施例1と同様な部分は同一符号を付して説明を省略し、以下では実施例1と異なる部分を中心に説明する。
この実施例2では、誘導機10の固定子巻線11が開閉器35を介して三相短絡器36に接続されている。
FIG. 6 is a configuration diagram of the second embodiment corresponding to claims 2 and 4. The same parts as those of the first embodiment shown in FIG. It demonstrates centering on a different part.
In the second embodiment, the stator winding 11 of the induction machine 10 is connected to the three-phase short circuit 36 via the switch 35.

実施例2に係る始動制御装置は、回転子13が静止している状態から回転速度がω(図8参照)になるまで三相短絡器36により固定子巻線11を短絡して始動するものである。この実施例2による始動制御方法を、図7のフローチャート及び図8の時間−速度特性図を参照しつつ以下に説明する。 The starting control apparatus according to the second embodiment starts by short-circuiting the stator winding 11 by the three-phase short circuit 36 until the rotational speed becomes ω 1 (see FIG. 8) from the state where the rotor 13 is stationary. Is. The start control method according to the second embodiment will be described below with reference to the flowchart of FIG. 7 and the time-speed characteristic diagram of FIG.

まず、時刻tの初期状態として、回転子13が静止している状態で、開閉器31,32をオフ、開閉器35をオンとする(ステップS11)。 First, as an initial state at time t 0 , the switches 31 and 32 are turned off and the switch 35 is turned on while the rotor 13 is stationary (step S 11).

次に、期間tの初期加速モードにおいて、上述した如くオン状態の開閉器35及び三相短絡器36によって固定子巻線11を短絡することにより、巻線形誘導機10を一般的な誘導電動機として構成する。その後、電力変換器34を用いた公知のベクトル制御により、回転子巻線12に給電し、回転子13を加速する(ステップS12)。回転子13の回転速度がωになったら開閉器35をオフし、短絡されていた固定子巻線11を開放する(ステップS13)。 Next, in the initial acceleration mode of the period t 1, the stator winding 11 is short-circuited by the switch 35 and the three-phase short circuit 36 which are in the on state as described above, whereby the winding induction machine 10 is made to be a general induction motor. Configure as. Thereafter, power is supplied to the rotor winding 12 by known vector control using the power converter 34 to accelerate the rotor 13 (step S12). Rotational speed of the rotor 13 turns off the switch 35 When turned omega 1, to open the stator winding 11 which has been short-circuited (step S13).

以下、回転速度ωの状態で、実施例1と同様にして期間tの第1の同期投入モードに移行し(ステップS14,S15)、固定子巻線11を第2の電源系統22に同期投入する。以後の操作(ステップS16〜S20)は実施例1と同様であるため、説明を省略する。 Thereafter, in the state of the rotational speed ω 1 , as in the first embodiment, the process shifts to the first synchronous input mode of the period t 2 (steps S 14 and S 15), and the stator winding 11 is connected to the second power supply system 22. Synchronize. Since the subsequent operations (steps S16 to S20) are the same as those in the first embodiment, description thereof is omitted.

ここで、図10は、特許文献1,2に係る従来技術(特性線をそれぞれB1,B2とする)、及び、本発明の実施例1(特性線をAとする)による誘導機の速度−トルク特性図であり、ある巻線形誘導機の回路定数を用いてそれぞれの始動制御装置を用いた場合のものである。
特許文献1に係る従来技術(特性線B1)では、電力変換器の電圧制限により、高速時では回転速度とトルクとがほぼ反比例しており、前述したように、電源周波数ω付近ではトルクが3.5[%]程度になっている。このため、誘導機の摩擦損や機械損が大きいと電源周波数まで加速することができない恐れがある。
また、特許文献2に係る従来技術(特性線B2)では、ブースタトランスによって電力変換器の電圧を回転子巻線に重畳することにより、トルクを増加させることが可能になっているが、高速になるほその効果が小さくなっていることが明らかである。
Here, FIG. 10 shows the speed of the induction machine according to the prior arts according to Patent Documents 1 and 2 (characteristic lines are B1 and B2, respectively) and Example 1 of the present invention (characteristic line is A). It is a torque characteristic figure, and is a thing at the time of using each starting control apparatus using the circuit constant of a certain winding type induction machine.
In Patent Document 1 to such a prior art (the characteristic line B1), the voltage limitation of the power converter, the fast time and approximately inversely proportional with the rotational speed and torque, as described above, the torque in the vicinity of the power supply frequency omega 2 It is about 3.5 [%]. For this reason, if the friction loss or mechanical loss of the induction machine is large, it may not be possible to accelerate to the power frequency.
In the related art (characteristic line B2) according to Patent Document 2, it is possible to increase the torque by superimposing the voltage of the power converter on the rotor winding by a booster transformer. It is clear that the effect becomes smaller.

これに対して、本発明の実施例1(特性線A)では、低速時では電力変換器の電圧制限の影響が現れるものの、少なくとも7[%]程度のトルクが得られるため、始動不能に陥る可能性は低くなる。
また、高速時には、固定子巻線の電圧と回転子巻線の電圧とのベクトル和が誘導機に作用すると共に、回転子巻線の電圧周波数が小さくなるのでリアクタンスによる損失が少なくなり、結果的に大きなトルクが得られている。
総じて、本発明によれば、高速時の始動トルク特性を改善し、ブースタトランスや複数台の電力変換器を必要とせずに小型軽量かつ低コストの装置構成によって巻線形誘導機を始動可能であると共に、静止状態から高速回転時までのトルク特性を改善してスムーズな加速を実現することができる。
On the other hand, in Example 1 (characteristic line A) of the present invention, although the influence of the voltage limitation of the power converter appears at a low speed, a torque of at least about 7 [%] is obtained, so that the engine cannot be started. The possibility is low.
At high speeds, the vector sum of the stator winding voltage and the rotor winding voltage acts on the induction machine, and the rotor winding voltage frequency is reduced, resulting in less loss due to reactance. A large torque is obtained.
In general, according to the present invention, the starting torque characteristics at high speed can be improved, and the wound induction machine can be started with a small, lightweight and low-cost apparatus configuration without requiring a booster transformer or a plurality of power converters. In addition, smooth acceleration can be realized by improving the torque characteristics from the stationary state to the high speed rotation.

10:巻線形誘導機
11:固定子巻線
12:回転子巻線
13:回転子
14:速度検出器
21,22:交流電源系統
31,32,35:開閉器
33:降圧トランス
34:電力変換器
36:三相短絡器
10: Winding induction machine 11: Stator winding 12: Rotor winding 13: Rotor 14: Speed detector 21, 22: AC power supply system 31, 32, 35: Switch 33: Step-down transformer 34: Power conversion 36: Three-phase short circuit

Claims (4)

第1の開閉手段を介して第1の電源系統に接続され、かつ、第2の開閉手段を介して第1の電源系統よりも低圧の第2の電源系統に接続される固定子巻線と、電力変換器を介して第1の電源系統に接続される回転子巻線と、を備えた巻線形誘導機の始動制御方法において、
第1,第2の開閉手段をオフして前記固定子巻線を開放した状態で前記電力変換器により前記回転子巻線に電圧を印加し、前記固定子巻線の誘起電圧と第2の電源系統の電圧とを同期させてから第2の開閉手段をオンして第2の電源系統を前記固定子巻線に接続する第1の同期投入モードと、
前記電力変換器により前記回転子巻線に電力を供給して前記誘導機を所定速度まで加速し、その後、第2の開閉手段をオフして前記固定子巻線を開放する第1の加速モードと、
前記固定子巻線の誘起電圧と第1の電源系統の電圧とを同期させてから第1の開閉手段をオンして第1の電源系統を前記固定子巻線に接続する第2の同期投入モードと、
を順次実行して前記誘導機を始動することを特徴とする巻線形誘導機の始動制御方法。
A stator winding connected to the first power supply system via the first opening / closing means and connected to the second power supply system having a lower voltage than the first power supply system via the second opening / closing means; In the starting control method of the winding induction machine comprising a rotor winding connected to the first power supply system via a power converter,
A voltage is applied to the rotor winding by the power converter in a state where the first and second opening / closing means are turned off and the stator winding is opened, and an induced voltage of the stator winding and a second A first synchronous on mode in which the second switching means is turned on after the voltage of the power system is synchronized and the second power system is connected to the stator winding;
A first acceleration mode in which power is supplied to the rotor winding by the power converter to accelerate the induction machine to a predetermined speed, and then the second opening / closing means is turned off to open the stator winding. When,
A second synchronous input that synchronizes the induced voltage of the stator winding and the voltage of the first power supply system and then turns on the first switching means to connect the first power supply system to the stator winding. Mode,
Are sequentially executed to start the induction machine. A starting control method for a wound induction machine.
請求項1に記載した前記第1の同期投入モードの前に、前記誘導機の回転子を静止させた状態で前記第1,第2の開閉手段をオフすると共に前記固定子巻線を短絡し、前記電力変換器により前記回転子巻線に電力を供給して前記誘導機を所定速度まで加速してから短絡状態の前記固定子巻線を開放する初期加速モードを実行し、
その後、前記第1の同期投入モード,前記第1の加速モード,前記第2の同期投入モードを順次実行することを特徴とする巻線形誘導機の始動制御方法。
Prior to the first synchronous input mode according to claim 1, the first and second opening / closing means are turned off and the stator winding is short-circuited with the rotor of the induction machine stationary. Performing an initial acceleration mode in which power is supplied to the rotor winding by the power converter to accelerate the induction machine to a predetermined speed and then open the short-circuited stator winding;
Then, the winding-type induction machine start control method characterized by sequentially executing the first synchronous input mode, the first acceleration mode, and the second synchronous input mode.
第1の電源系統と巻線形誘導機の固定子巻線との間に接続された第1の開閉手段と、
第1の電源系統よりも低圧の第2の電源系統と前記固定子巻線との間に接続された第2の開閉手段と、
第1の電源系統と巻線形誘導機の回転子巻線との間に接続された電力変換器と、
第1,第2の開閉手段及び前記電力変換器を制御する制御手段と、
を備え、
前記制御手段は、
第1,第2の開閉手段をオフして前記電力変換器により前記回転子巻線に電圧を印加すると共に、前記固定子巻線の誘起電圧と第2の電源系統の電圧とを同期させて第2の開閉手段をオンし、第2の電源系統を前記固定子巻線に接続する第1の同期投入モードと、
前記電力変換器により前記回転子巻線に電力を供給して前記誘導機を加速してから第2の開閉手段をオフし、前記固定子巻線を開放する第1の加速モードと、
前記固定子巻線の誘起電圧と第2の電源系統の電圧とを同期させて第1の開閉手段をオンし、第1の電源系統を前記固定子巻線に接続する第2の同期投入モードと、
を順次実行して前記誘導機を始動することを特徴とする巻線形誘導機の始動制御装置。
First opening / closing means connected between the first power supply system and the stator winding of the wound induction machine;
A second opening / closing means connected between a second power supply system having a lower voltage than the first power supply system and the stator winding;
A power converter connected between the first power system and the rotor winding of the wound induction machine;
Control means for controlling the first and second switching means and the power converter;
With
The control means includes
The first and second switching means are turned off and a voltage is applied to the rotor winding by the power converter, and the induced voltage of the stator winding and the voltage of the second power supply system are synchronized. Turning on the second opening and closing means and connecting a second power supply system to the stator winding;
A first acceleration mode in which power is supplied to the rotor winding by the power converter to accelerate the induction machine and then the second opening / closing means is turned off to open the stator winding;
A second synchronous input mode in which the first switching means is turned on by synchronizing the induced voltage of the stator winding and the voltage of the second power supply system, and the first power supply system is connected to the stator winding. When,
And starting the induction machine in sequence.
請求項3に記載した巻線形誘導機の始動制御装置において、
前記固定子巻線を短絡する短絡手段を更に備え、
前記制御手段は、
前記誘導機の回転子を静止させて前記第1,第2の開閉手段をオフすると共に前記短絡手段により前記固定子巻線を短絡し、前記電力変換器により前記回転子巻線に電力を供給して前記誘導機を所定速度まで加速してから短絡状態の前記固定子巻線を開放する初期加速モードを、前記第1の同期投入モードに先立って実行することを特徴とする巻線形誘導機の始動制御装置。
In the start-up control device for a winding induction machine according to claim 3,
Short-circuit means for short-circuiting the stator winding,
The control means includes
The rotor of the induction machine is stopped, the first and second opening / closing means are turned off, the stator winding is short-circuited by the short-circuit means, and power is supplied to the rotor winding by the power converter. Then, an initial acceleration mode in which the induction motor is accelerated to a predetermined speed and then the stator winding in a short-circuit state is opened is executed prior to the first synchronous input mode. Start control device.
JP2010152600A 2010-07-05 2010-07-05 Winding induction machine start control method and start control device Active JP5696381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010152600A JP5696381B2 (en) 2010-07-05 2010-07-05 Winding induction machine start control method and start control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010152600A JP5696381B2 (en) 2010-07-05 2010-07-05 Winding induction machine start control method and start control device

Publications (2)

Publication Number Publication Date
JP2012016227A true JP2012016227A (en) 2012-01-19
JP5696381B2 JP5696381B2 (en) 2015-04-08

Family

ID=45601986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010152600A Active JP5696381B2 (en) 2010-07-05 2010-07-05 Winding induction machine start control method and start control device

Country Status (1)

Country Link
JP (1) JP5696381B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312020A (en) * 1976-07-19 1978-02-03 Mitsubishi Electric Corp Static scherbius system
JPS5963988A (en) * 1982-10-04 1984-04-11 Kansai Electric Power Co Inc:The Starting method for variable speed induction motor
US4481455A (en) * 1983-09-29 1984-11-06 Osamu Sugimoto Method of starting variable-speed induction motor
JPS6450794A (en) * 1987-08-21 1989-02-27 Fuji Electric Co Ltd Synchronous making system for wound-rotor induction motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312020A (en) * 1976-07-19 1978-02-03 Mitsubishi Electric Corp Static scherbius system
JPS5963988A (en) * 1982-10-04 1984-04-11 Kansai Electric Power Co Inc:The Starting method for variable speed induction motor
US4481455A (en) * 1983-09-29 1984-11-06 Osamu Sugimoto Method of starting variable-speed induction motor
JPS6450794A (en) * 1987-08-21 1989-02-27 Fuji Electric Co Ltd Synchronous making system for wound-rotor induction motor

Also Published As

Publication number Publication date
JP5696381B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
US8436569B2 (en) Alternating current machine with increased torque above and below rated speed for hybrid/electric propulsion systems
JP6190967B2 (en) Power generation system
CN107453404A (en) A kind of large-scale phase modifier starts combination method
CN105577065A (en) Brushless doubly-fed motor asynchronous starting method and apparatus
WO2014209127A1 (en) Method and system for starting electrical machines
WO2018037470A1 (en) Brushless synchronous power generation device
CN111835018B (en) Synchronous phase modulator starting grid-connected circuit based on time sequence hybrid excitation control and control method
JP5696381B2 (en) Winding induction machine start control method and start control device
JP2943563B2 (en) Starting control device for winding induction motor
US4652807A (en) Starting method for induction motors
CN107612042B (en) Synchronous phase modulator starting grid-connected circuit based on pre-access large impedance and control method
Mohamadein et al. Mixed-pole reluctance machine with ring-coils on rotor poles (a novel rotor version)
EP3907879A1 (en) Thyristor starting device
JP2008043017A (en) Kondorfer starting device for electric motor
JP3321474B2 (en) Control device for variable speed generator motor
JP2014011810A (en) Control device and variable speed generator motor starting method
JP3754644B2 (en) Starting method for variable speed frequency converter
JP2005086906A (en) Method of stating variable speed generator-motor, and controller for variable speed generator-motor
JP2022043417A (en) System integration device
Kar Chowdhury Lecture Notes on Synchronous Machines
JPS61236398A (en) Controller of wound-rotor induction generator
JP3764011B2 (en) Permanent magnet synchronous motor controller
JPS6315684A (en) Pumped storage generator system
JPH04265684A (en) Operating method and device for synchronous motor employing cycloconverter
JP2001211550A (en) Starting method for power-interchange device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150126

R150 Certificate of patent or registration of utility model

Ref document number: 5696381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250