JP2012015611A - High-power amplification circuit - Google Patents

High-power amplification circuit Download PDF

Info

Publication number
JP2012015611A
JP2012015611A JP2010147771A JP2010147771A JP2012015611A JP 2012015611 A JP2012015611 A JP 2012015611A JP 2010147771 A JP2010147771 A JP 2010147771A JP 2010147771 A JP2010147771 A JP 2010147771A JP 2012015611 A JP2012015611 A JP 2012015611A
Authority
JP
Japan
Prior art keywords
signal
amplifier
input signal
circuit
envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010147771A
Other languages
Japanese (ja)
Other versions
JP5301506B2 (en
Inventor
Shoichi Oshima
尚一 大嶋
Mitsuru Harada
充 原田
Mamoru Ugajin
守 宇賀神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010147771A priority Critical patent/JP5301506B2/en
Publication of JP2012015611A publication Critical patent/JP2012015611A/en
Application granted granted Critical
Publication of JP5301506B2 publication Critical patent/JP5301506B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a high-power amplification circuit capable of detecting a distorted component caused by an amplifier in a simple structure, and suppressing the distorted component at low cost and by low power consumption.SOLUTION: A high-power amplification circuit includes: an amplifier having linear amplification characteristics and amplifying an input signal, a center frequency of which is known, to output; a third order harmonic component extraction circuit extracting a third order harmonic component, in which a center frequency is three times as much as that of the input signal, out of harmonic components arising from an output signal of the amplifier due to non-linear amplification characteristics; and an envelope curve detection circuit detecting an envelope curve signal of the third order harmonic component from the output of the third order harmonic component extraction circuit. The high-power amplification circuit further includes a distorted component suppression circuit separating the input signal into a carrier signal and the envelope curve signal, generating a summation signal obtained by adding the envelope curve signal of the input signal and the envelope curve signal of the third order harmonic component, and multiplying this summation signal by the carrier signal of the input signal to input the product thereof into the amplifier.

Description

本発明は、無線通信用機器などに用いられ、特に高効率および高線形性を有する高出力増幅回路に関する。   The present invention relates to a high-power amplifier circuit that is used in radio communication equipment and the like, and particularly has high efficiency and high linearity.

現在、無線通信用機器などの分野で、高周波電力増幅に用いられる高出力増幅回路においては、高効率と高線形性を同時に達成するためにフィードバック型(非特許文献1、非特許文献2)や、プリディストーション型(非特許文献3、非特許文献4)の歪補償回路が導入されているものがある。   At present, in a high-power amplifier circuit used for high-frequency power amplification in the field of wireless communication equipment and the like, in order to achieve high efficiency and high linearity simultaneously, a feedback type (Non-Patent Document 1, Non-Patent Document 2) In some cases, a predistortion type (Non-Patent Document 3, Non-Patent Document 4) distortion compensation circuit is introduced.

図7は、従来の高出力増幅回路の構成例を示す。
図7において、従来の高出力増幅回路は、増幅器11の入力信号と出力信号を結合器21−1,21−2で分岐して検波器22−1,22−2にそれぞれ入力し、各22−1,22−2でそれぞれ検出される包絡線電力を比較器23で比較する。比較器23の出力は、増幅器11で発生した歪成分の強度に対応するので、その歪成分の強度に応じて増幅器11の前段に配置した歪成分抑圧回路24を制御して増幅器11の非線形特性を補償し、適応的に歪成分を抑制する構成である。
FIG. 7 shows a configuration example of a conventional high-power amplifier circuit.
In FIG. 7, the conventional high output amplifier circuit branches the input signal and output signal of the amplifier 11 by couplers 21-1, 21-2 and inputs them to the detectors 22-1, 22-2, respectively. The comparator 23 compares the envelope power detected at -1,22-2. Since the output of the comparator 23 corresponds to the intensity of the distortion component generated in the amplifier 11, the distortion component suppression circuit 24 arranged in the previous stage of the amplifier 11 is controlled according to the intensity of the distortion component to control the nonlinear characteristic of the amplifier 11. Is compensated for and the distortion component is adaptively suppressed.

なお、増幅器11は、飽和領域の前段で入出力特性が抑圧された状態になり、それが歪成分として検出される。したがって、検出される歪成分の強度が大きい場合に、歪成分抑圧回路24として用いる可変利得増幅器の利得を大きくすることにより、増幅器11が飽和領域に入るまで入出力特性の線形性を維持し、飽和領域付近で低歪動作させて高効率化を実現する。   The amplifier 11 is in a state where the input / output characteristics are suppressed in the previous stage of the saturation region, and this is detected as a distortion component. Therefore, when the intensity of the detected distortion component is large, by increasing the gain of the variable gain amplifier used as the distortion component suppression circuit 24, the linearity of the input / output characteristics is maintained until the amplifier 11 enters the saturation region, High efficiency is achieved by operating at low distortion near the saturation region.

また、歪成分抑圧回路24として歪入力回路を用いるプリディストーション型歪補償回路では、増幅器11の入力信号に歪の逆位相成分を注入することで歪成分を抑制する構成であり、歪成分の強度に応じて注入する歪の逆位相成分を調整することにより歪成分を抑制する。   In addition, the predistortion type distortion compensation circuit using a distortion input circuit as the distortion component suppression circuit 24 is configured to suppress the distortion component by injecting an anti-phase component of distortion into the input signal of the amplifier 11, and the intensity of the distortion component. Accordingly, the distortion component is suppressed by adjusting the anti-phase component of the distortion to be injected.

T. Arthanayake, et. al.,“Linear amplification using envelope feedback, ” IEEE Electronics Letters, vol.7, pp.145-146, April, 1971T. Arthanayake, et. Al., “Linear amplification using envelope feedback,” IEEE Electronics Letters, vol.7, pp.145-146, April, 1971 小杉裕昭, 他, “包絡線フィードバック制御を用いた高効率線形電力増幅器, ”電子情報通信学会論文誌 C-I, vol. J76-C-I, no.11, pp.407-413, 1993Hiroaki Kosugi, et al., “Highly efficient linear power amplifier using envelope feedback control,” IEICE Transactions C-I, vol. J76-C-I, no.11, pp.407-413, 1993 安達誠幸, 他, “アナログプリディストーションを用いた7GHz帯電力増幅器の開発, ”日本無線技報, No.51, 2006Masayuki Adachi, et al., “Development of 7 GHz band power amplifier using analog predistortion,” Japan Radio Technical Report, No.51, 2006 J. Kathleen, et. al., “Look-Up Table Techniques for Adaptive Digital Predistortion: A Development and Comparison,” IEEE Trans. on Vehicular Technology, vol.49, no.5, Sep., 2009J. Kathleen, et. Al., “Look-Up Table Techniques for Adaptive Digital Predistortion: A Development and Comparison,” IEEE Trans. On Vehicular Technology, vol.49, no.5, Sep., 2009

従来の高出力増幅回路は、歪成分の強度を検出するために、増幅器の前後に配置する結合器を介して入力信号および出力信号を取り出し、それぞれの包絡線電力を比較する構成になっていた。   In order to detect the intensity of the distortion component, the conventional high-power amplifier circuit has a configuration in which the input signal and the output signal are taken out via a coupler disposed before and after the amplifier and the respective envelope powers are compared. .

ここで、入力信号および出力信号が相似であれば歪はなく、相似でなければ歪はあると判断できる。しかし、単純に歪の量に比例するように入力信号に歪の逆位相成分を注入すると、「歪なし→歪の逆位相成分の注入量を0にする→歪発生→歪の逆位相成分の注入量を増加させる→歪なし」のプロセスを繰り返したり、歪が残る状態で制御動作が安定することが想定される。すなわち、単純に歪の量に比例するように入力信号に歪の逆位相成分を注入するような制御では不十分で、より高度な制御が必要となることから高出力増幅回路の回路規模が増大し、高コスト化や消費電力の増加をもたらす問題があった。   Here, if the input signal and the output signal are similar, there is no distortion, and if it is not similar, it can be determined that there is distortion. However, when a distortion anti-phase component is simply injected into the input signal so as to be proportional to the amount of distortion, “no distortion → sets the distortion anti-phase component injection amount to zero → distortion generation → distortion anti-phase component It is assumed that the control operation is stabilized when the process of “increasing the injection amount → no distortion” is repeated or the distortion remains. In other words, control that simply injects the anti-phase component of distortion into the input signal so that it is proportional to the amount of distortion is not sufficient, and more sophisticated control is required, increasing the circuit scale of the high-power amplifier circuit. However, there has been a problem of increasing costs and increasing power consumption.

本発明は、増幅器における歪成分を簡単な構成で検出し、低コストおよび低消費電力で歪成分を抑制することができる高出力増幅回路を提供することを目的とする。   An object of the present invention is to provide a high output amplifier circuit that can detect distortion components in an amplifier with a simple configuration and suppress distortion components at low cost and low power consumption.

第1の発明の高出力増幅回路は、非線形増幅特性を有し、中心周波数が既知の入力信号を増幅して出力する増幅器と、増幅器の出力信号から非線形増幅特性により発生する高調波成分のうち、中心周波数が入力信号の3倍の3次高調波成分を抽出する3次高調波成分抽出回路と、3次高調波成分抽出回路の出力から、3次高調波成分の包絡線信号を検出する包絡線検出回路と、入力信号をキャリア信号および包絡線信号に分離し、入力信号の包絡線信号と3次高調波成分の包絡線信号とを加算した和信号を生成し、この和信号と入力信号のキャリア信号とを乗算して増幅器に入力する歪成分抑圧回路とを備える。   A high-power amplifier circuit according to a first aspect of the present invention includes an amplifier that has a nonlinear amplification characteristic and amplifies and outputs an input signal having a known center frequency, and a harmonic component generated by the nonlinear amplification characteristic from the output signal of the amplifier. The third harmonic component extraction circuit that extracts the third harmonic component whose center frequency is three times that of the input signal and the envelope signal of the third harmonic component are detected from the output of the third harmonic component extraction circuit. An envelope detection circuit and an input signal are separated into a carrier signal and an envelope signal, a sum signal is generated by adding the envelope signal of the input signal and the envelope signal of the third harmonic component, and this sum signal and input And a distortion component suppression circuit that multiplies the carrier signal of the signal and inputs it to the amplifier.

第2の発明の高出力増幅回路は、非線形増幅特性および利得制御機能を有し、中心周波数が既知の入力信号を増幅して出力する可変利得増幅器と、可変利得増幅器の出力信号から非線形増幅特性により発生する高調波成分のうち、中心周波数が入力信号の3倍の3次高調波成分を抽出する3次高調波成分抽出回路と、3次高調波成分抽出回路の出力から、3次高調波成分の包絡線信号を検出する包絡線検出回路と、入力信号をキャリア信号および包絡線信号に分離し、入力信号のキャリア信号を可変利得増幅器に入力し、入力信号の包絡線信号と3次高調波成分の包絡線信号とを加算した和信号を生成し、この和信号により可変利得増幅器の利得を制御する歪成分抑圧回路とを備える。   A high-power amplifier circuit according to a second aspect of the invention has a non-linear amplification characteristic and a gain control function, a variable gain amplifier that amplifies and outputs an input signal having a known center frequency, and a non-linear amplification characteristic from the output signal of the variable gain amplifier 3rd harmonic component extraction circuit that extracts the 3rd harmonic component whose center frequency is 3 times that of the input signal, and 3rd harmonic from the output of the 3rd harmonic component extraction circuit. An envelope detection circuit for detecting an envelope signal of a component, an input signal is separated into a carrier signal and an envelope signal, the carrier signal of the input signal is input to a variable gain amplifier, and the envelope signal and the third harmonic of the input signal are input A distortion signal suppression circuit is provided that generates a sum signal obtained by adding the envelope signal of the wave component and controls the gain of the variable gain amplifier based on the sum signal.

第1の発明の高出力増幅回路において、和信号の振幅は、入力信号の3乗に対し、増幅器の3次高調波歪電圧利得と基本波電圧利得の比に−3/4 を乗じた値とする構成である。   In the high output amplifier circuit of the first invention, the sum signal amplitude is a value obtained by multiplying the ratio of the third harmonic distortion voltage gain of the amplifier to the fundamental voltage gain by −3/4 with respect to the cube of the input signal. The configuration is as follows.

第1の発明の高出力増幅回路において、和信号の振幅は、入力信号の3乗に対し、増幅器の3次高調波歪電圧利得と基本波電圧利得の比に−3/2 を乗じた値を超えない値とする構成である。   In the high output amplifier circuit of the first invention, the sum signal amplitude is obtained by multiplying the third power of the input signal by -3/2 to the ratio of the third harmonic distortion voltage gain of the amplifier to the fundamental voltage gain. It is the composition which makes the value which does not exceed.

第2の発明の高出力増幅回路において、和信号の振幅は、入力信号の3乗に対し、可変利得増幅器の3次高調波歪電圧利得と基本波電圧利得の比に−3/4 を乗じた値とする構成である。   In the high output amplifier circuit of the second invention, the sum signal amplitude is multiplied by -3/4 to the ratio of the third harmonic distortion voltage gain and the fundamental voltage gain of the variable gain amplifier to the cube of the input signal. It is the composition which makes it a value.

第2の発明の高出力増幅回路において、和信号の振幅は、入力信号の3乗に対し、可変利得増幅器の3次高調波歪電圧利得と基本波電圧利得の比に−3/2 を乗じた値を超えない値とする構成である。   In the high output amplifier circuit of the second invention, the sum signal amplitude is multiplied by -3/2 to the ratio of the third harmonic distortion voltage gain and the fundamental voltage gain of the variable gain amplifier to the cube of the input signal. The value is set so as not to exceed the specified value.

本発明の高出力増幅回路は、増幅器の出力信号から増幅器で発生した3次高調波成分を抽出することで容易に歪成分の大きさを検出し、この歪成分の強度に応じて歪成分を抑制することができる。これにより、回路規模が小さく、低コストおよび低消費電力の高出力増幅回路を構成することができる。   The high output amplifier circuit of the present invention easily detects the magnitude of the distortion component by extracting the third harmonic component generated by the amplifier from the output signal of the amplifier, and the distortion component is detected according to the intensity of the distortion component. Can be suppressed. As a result, a high-power amplifier circuit with a small circuit scale, low cost and low power consumption can be configured.

ここで、抽出する3次高調波成分は、プリディストーションを行わない場合の基本波周波数における歪の大きさに比例し、かつ、プリディストーションを行なっても3次高調波成分の大きさは変化しない。したがって、抽出する3次高調波成分に比例したプレディストーションを行うという単純な制御により、歪の補償が可能となる。また、入力信号の包絡線信号と3次高調波成分の包絡線信号を加算した和信号とキャリア信号と乗算する、あるいは和信号をキャリア信号の利得制御に用いるので、キャリア信号が高周波になってもキャリア信号の位相調整は考慮しなくてよい。   Here, the extracted third harmonic component is proportional to the magnitude of distortion at the fundamental frequency when predistortion is not performed, and the magnitude of the third harmonic component does not change even if predistortion is performed. . Therefore, distortion can be compensated by simple control of performing predistortion proportional to the third-order harmonic component to be extracted. Also, since the sum signal obtained by adding the envelope signal of the input signal and the envelope signal of the third harmonic component and the carrier signal are multiplied, or the sum signal is used for gain control of the carrier signal, the carrier signal becomes a high frequency. However, it is not necessary to consider the phase adjustment of the carrier signal.

本発明の高出力増幅回路の実施例1の構成例を示す図である。It is a figure which shows the structural example of Example 1 of the high output amplifier circuit of this invention. 増幅器11の出力信号の周波数スペクトルを示す図である。3 is a diagram illustrating a frequency spectrum of an output signal of an amplifier 11. FIG. 本発明の高出力増幅回路の実施例2の構成例を示す図である。It is a figure which shows the structural example of Example 2 of the high output amplifier circuit of this invention. 本発明の高出力増幅回路の実施例3の構成例を示す図である。It is a figure which shows the structural example of Example 3 of the high output amplifier circuit of this invention. 本発明の高出力増幅回路の実施例4の構成例を示す図である。It is a figure which shows the structural example of Example 4 of the high output amplifier circuit of this invention. 本発明の高出力増幅回路の実施例5の構成例を示す図である。It is a figure which shows the structural example of Example 5 of the high output amplifier circuit of this invention. 従来の高出力増幅回路の構成例を示す図である。It is a figure which shows the structural example of the conventional high output amplifier circuit.

図1は、本発明の高出力増幅回路の実施例1の構成例を示す。
図1において、実施例1の高出力増幅回路は、増幅器11の前段に歪成分抑圧回路12を配置し、後段に3次高調波成分抽出回路13を配置し、3次高調波成分抽出回路13で増幅器11の出力信号から3次高調波成分を抽出して包絡線検出回路14に入力する。包絡線検出回路14は3次高調波成分の包絡線信号を検出し、増幅器11の出力信号の歪成分の強度として歪成分抑圧回路12に入力する。
FIG. 1 shows a configuration example of Example 1 of a high-output amplifier circuit according to the present invention.
In FIG. 1, in the high-power amplifier circuit according to the first embodiment, a distortion component suppression circuit 12 is disposed in the front stage of the amplifier 11, and a third harmonic component extraction circuit 13 is disposed in the subsequent stage, and the third harmonic component extraction circuit 13. The third harmonic component is extracted from the output signal of the amplifier 11 and input to the envelope detection circuit 14. The envelope detection circuit 14 detects the envelope signal of the third harmonic component and inputs it to the distortion component suppression circuit 12 as the distortion component intensity of the output signal of the amplifier 11.

歪成分抑圧回路12は、入力信号を2分岐する結合器121と、その一方の入力信号から包絡線信号を検出する包絡線検出回路122と、その他方の入力信号からキャリア信号を抽出するリミッタ123と、包絡線検出回路122から出力される入力信号の包絡線信号と包絡線検出回路14から出力される3次高調波成分の包絡線信号(歪成分の強度)とを逆位相で加算する包絡線加算器124と、包絡線加算器124から出力される歪成分が抑制された包絡線信号とリミッタ123から出力される入力信号のキャリア信号とを乗算して増幅器11の入力信号とするミキサ125により構成される。   The distortion component suppression circuit 12 includes a coupler 121 that divides an input signal into two, an envelope detection circuit 122 that detects an envelope signal from one input signal, and a limiter 123 that extracts a carrier signal from the other input signal. And the envelope signal of the input signal output from the envelope detection circuit 122 and the envelope signal (distortion component strength) of the third harmonic component output from the envelope detection circuit 14 in an opposite phase. Line adder 124, mixer 125 that multiplies the envelope signal output from envelope adder 124 with the distortion component suppressed and the carrier signal of the input signal output from limiter 123 to obtain the input signal of amplifier 11. Consists of.

本実施例の特徴は、増幅器11の出力信号から抽出した3次高調波成分から増幅器11の歪成分の強度を検出し、その歪成分を入力信号の包絡線信号へ加算することで歪を抑制するところにある。従来の高出力増幅回路が増幅器11の前後に結合器を配置し、それぞれ分岐した入力信号と出力信号の包絡線強度を比較して歪成分の強度を検出する構成であったのに対して、本実施例では、増幅器11の後段に配置した3次高調波成分抽出回路13で抽出した3次高調波成分から包絡線信号(歪成分の強度)を検出する構成であり、回路規模の縮小が可能になっている。   The feature of this embodiment is that the intensity of the distortion component of the amplifier 11 is detected from the third harmonic component extracted from the output signal of the amplifier 11, and the distortion component is added to the envelope signal of the input signal to suppress distortion. There is a place to do. Whereas a conventional high-power amplifier circuit has a configuration in which couplers are arranged before and after the amplifier 11 and the envelope strengths of the branched input signal and output signal are compared to detect the strength of the distortion component, In the present embodiment, the envelope signal (distortion component intensity) is detected from the third harmonic component extracted by the third harmonic component extraction circuit 13 arranged at the subsequent stage of the amplifier 11, and the circuit scale can be reduced. It is possible.

以下、増幅器11の出力信号の3次高調波成分から歪成分の強度を推定できる原理について説明する。   Hereinafter, the principle by which the intensity of the distortion component can be estimated from the third harmonic component of the output signal of the amplifier 11 will be described.

増幅器11の簡単な入出力特性は、入力信号をX、出力信号をY、増幅器11の固有値である基本波電圧利得、2倍波電圧利得、3倍波電圧利得(3次高調波歪電圧利得)をそれぞれa1 ,a2 ,a3 とすると、以下の多項式で近似的に表記できる。
Y=a1X+a22+a33 …(1)
The simple input / output characteristics of the amplifier 11 are as follows: the input signal is X, the output signal is Y, the fundamental voltage gain, the second harmonic voltage gain, the third harmonic voltage gain (third harmonic distortion voltage gain), which are eigenvalues of the amplifier 11 ) As a 1 , a 2 , and a 3 , respectively, can be approximately expressed by the following polynomial.
Y = a 1 X + a 2 X 2 + a 3 X 3 (1)

ここで、入力信号Xとして変調信号を想定すると、
X=s(t) cos(ωct)
となる。ωc は入力信号の角周波数、tは時間である。出力信号Yは、発生する周波数成分ごとに分けて表記すると、
DC成分 :YDC =(1/2)a2s(t)2 …(2)
基本波成分 :Y1st =(a1s(t)+(3/4)a3s(t)3)cos(ωct) …(3)
2次高調波成分:Y2nd =(1/2)a2s(t)2cos(2ωct) …(4)
3次高調波成分:Y3rd =(1/4)a3s(t)3cos(3ωct) …(5)
となる。
Here, assuming a modulation signal as the input signal X,
X = s (t) cos (ω c t)
It becomes. ω c is the angular frequency of the input signal, and t is time. The output signal Y is expressed separately for each frequency component to be generated.
DC component: Y DC = (1/2) a 2 s (t) 2 (2)
Fundamental wave component: Y 1st = (a 1 s (t) + (3/4) a 3 s (t) 3 ) cos (ω c t) (3)
Second harmonic component: Y 2nd = (1/2) a 2 s (t) 2 cos (2ω c t) (4)
Third harmonic component: Y 3rd = (1/4) a 3 s (t) 3 cos (3ω c t) (5)
It becomes.

増幅器11の出力信号の周波数スペクトルを図2に示す。所望信号101の周辺に発生する歪成分102が抑制すべき信号である。この歪成分102は、3次高調波成分103と同じ周波数帯域および包絡線を有している。3次高調波成分103の包絡線を抽出し、入力側の包絡線へ加算すると、増幅器11への入力信号は、
X' ≒(s(t)+B×s(t)3) cos(ωct) …(6)
となる。ここで、Bはフィードバック系の利得からくる定数である。 (1)式に代入して基本波成分、3次高調波成分に関してまとめると、
基本波成分:
1st =a1s(t) cos(ωct)+(3/4)a3s(t)3cos(ωct)
{a1s(t)3B+(3/4)a3(3s(t)5B+3s(t)72+s(t)93)}cos(ωct)
…(7)
3次高調波成分: Y3rd =(1/4)a3{s(t)3+3s(t)5B+3s(t)72+s(t)93)}cos(3ωct)
…(8)
となる。
The frequency spectrum of the output signal of the amplifier 11 is shown in FIG. A distortion component 102 generated around the desired signal 101 is a signal to be suppressed. The distortion component 102 has the same frequency band and envelope as the third harmonic component 103. When the envelope of the third harmonic component 103 is extracted and added to the envelope on the input side, the input signal to the amplifier 11 is
X′≈ (s (t) + B × s (t) 3 ) cos (ω c t) (6)
It becomes. Here, B is a constant derived from the gain of the feedback system. Substituting into equation (1) and summing up the fundamental wave component and third harmonic component,
Fundamental wave component:
Y 1st = a 1 s (t) cos (ω c t) + (3/4) a 3 s (t) 3 cos (ω c t)
{A 1 s (t) 3 B + (3/4) a 3 (3s (t) 5 B + 3 s (t) 7 B 2 + s (t) 9 B 3 )} cos (ω c t)
… (7)
Third harmonic component: Y 3rd = (1/4) a 3 {s (t) 3 + 3s (t) 5 B + 3s (t) 7 B 2 + s (t) 9 B 3 )} cos (3ω c t)
… (8)
It becomes.

基本波成分に関してみていくと、第1項が所望信号、第2項が補償する前から発生している歪、第3項が入力へ3次高調波の包絡線を戻したことにより発生する信号である。ここで、第3項において、増幅器の入力信号s(t) は出力信号に対し十分小さいため、s(t)5以降の高次成分を無視して考えると、第2項と第3項の歪成分を除去するには、
(3/4)a3s(t)3+a1s(t)3B=0 …(9)
を満足すればよい。すなわち、
B=−(3/4)a3/a1 …(10)
となる。
Looking at the fundamental wave component, the first term is the desired signal, the second term is the distortion generated before compensation, and the third term is the signal that is generated by returning the third harmonic envelope to the input. It is. Here, in the third term, the input signal s (t) of the amplifier is sufficiently small with respect to the output signal. Therefore, if the higher order components after s (t) 5 are ignored, the second and third terms To remove the distortion component,
(3/4) a 3 s (t) 3 + a 1 s (t) 3 B = 0 (9)
Should be satisfied. That is,
B =-(3/4) a 3 / a 1 (10)
It becomes.

以上により、3次高調波成分の包絡線信号を一定の利得Bで入力へ戻すことで、発生する3次歪をキャンセルすることが可能となる。この信号は、包絡線の位相を反転することでも作成できる。利得Bの設定は、包絡線加算器124の設定でも可能である。   As described above, the third-order distortion that occurs can be canceled by returning the envelope signal of the third-order harmonic component to the input with a constant gain B. This signal can also be created by inverting the phase of the envelope. The gain B can also be set by the envelope adder 124.

また、式(10)で示される最適な利得Bの値に対し、強度が2倍未満、すなわち
0>B>−(3/2)a3/a1 …(11)
であれば、補償を行わない場合よりも歪の低減作用が働く。
Further, the intensity is less than twice the optimum value of gain B shown in equation (10), that is, 0>B> − (3/2) a 3 / a 1 (11)
If so, the effect of reducing the distortion is more effective than when no compensation is performed.

また、式(8) より、入力へ3次高調波成分の包絡線信号を戻しても、s(t) が十分小さければ3次高調波成分に変化が無いことがわかる。このため、歪を補正した後でも帰還される包絡線信号量は保持され続け、歪が発生している間は常に自動的に歪の補正が働くこととなる。   Further, from equation (8), it can be seen that even if the envelope signal of the third harmonic component is returned to the input, the third harmonic component does not change if s (t) is sufficiently small. For this reason, the envelope signal amount fed back continues even after the distortion is corrected, and the distortion is always automatically corrected while the distortion is occurring.

3次高調波抽出回路13は、電力分配器または結合器などの分岐手段131で増幅器11の出力信号を分岐し、分岐した出力信号からバンドパスフィルタやハイパスフィルタなどをフィルタ132で3次高調波成分を抽出する構成により実現可能である。このとき、高出力増幅回路の出力側に、入力信号の中心周波数と同じ中心周波数を透過し、入力信号の2次以上の高調波は透過しないフィルタ133を設置することで、高調波をカットすることが可能となる。   The third-order harmonic extraction circuit 13 branches the output signal of the amplifier 11 by a branching means 131 such as a power distributor or a coupler, and a third-order harmonic is output from the branched output signal by a filter 132 such as a bandpass filter or a highpass filter. It is realizable by the structure which extracts a component. At this time, harmonics are cut by installing a filter 133 that transmits the same center frequency as the center frequency of the input signal and does not transmit the second and higher harmonics of the input signal on the output side of the high-power amplifier circuit. It becomes possible.

また、3次高調波抽出回路13は、増幅器11の出力信号を基本波成分と3次高調波成分に分波する分波器を用い、基本波成分を高出力増幅回路の出力とするとともに、3次高調波成分を包絡線検出回路14に入力する構成としてもよい。このような分波器は、2つの出力ポートの一方が3次高調波成分に対して低インピーダンス(基本波成分および2次高調波成分に対して高インピーダンス)、他方が3次高調波成分に対して高インピーダンス(基本波成分に対して低インピーダンス)となるように設計されたものを用いる。   The third harmonic extraction circuit 13 uses a branching filter that demultiplexes the output signal of the amplifier 11 into a fundamental wave component and a third harmonic component, and uses the fundamental wave component as an output of the high-power amplifier circuit. The third harmonic component may be input to the envelope detection circuit 14. In such a duplexer, one of the two output ports has a low impedance with respect to the third harmonic component (high impedance with respect to the fundamental wave component and the second harmonic component), and the other has a third harmonic component. On the other hand, the one designed to have high impedance (low impedance with respect to the fundamental wave component) is used.

図3は、本発明の高出力増幅回路の実施例2の構成例を示す。
図3において、実施例1の包絡線加算器124に代えてオペアンプ(差動増幅回路)126を用いた他は、実施例1と同じである。包絡線加算器124をオペアンプ126で構成することにより、利得Bの値の調整・変更が柔軟になる。
FIG. 3 shows a configuration example of Embodiment 2 of the high-output amplifier circuit of the present invention.
3 is the same as the first embodiment except that an operational amplifier (differential amplifier circuit) 126 is used instead of the envelope adder 124 of the first embodiment. By configuring the envelope adder 124 with the operational amplifier 126, the value of the gain B can be adjusted and changed flexibly.

図4は、本発明の高出力増幅回路の実施例3の構成例を示す。
図4において、実施例2の結合器121、包絡線検出回路122およびリミッタ123に代えてディジタルEER回路127を用い、入力信号をディジタルEER回路127で包絡線信号、位相信号、キャリア信号に分離し、このうち位相信号とキャリア信号をミキサ128に入力し、ミキサ128の出力信号をミキサ135に入力する構成である。その他の構成は、実施例2と同じである。このような構成により、ディジタルEER回路127を利用することができる。
FIG. 4 shows an example of the configuration of Embodiment 3 of the high-power amplifier circuit according to the present invention.
In FIG. 4, a digital EER circuit 127 is used instead of the coupler 121, the envelope detection circuit 122, and the limiter 123 of the second embodiment, and the input signal is separated into an envelope signal, a phase signal, and a carrier signal by the digital EER circuit 127. Of these, the phase signal and the carrier signal are input to the mixer 128, and the output signal of the mixer 128 is input to the mixer 135. Other configurations are the same as those of the second embodiment. With such a configuration, the digital EER circuit 127 can be used.

図5は、本発明の高出力増幅回路の実施例4の構成例を示す。
図5においては、実施例2の増幅器11に代えて可変利得増幅器15を用い、可変利得増幅器15にミキサ125の機能をもたせた以外は、実施例2と同じである。すなわち、リミッタ123から出力される入力信号のキャリア信号を可変利得増幅器15で増幅する際、その利得をオペアンプ(包絡線加算器)126から出力される包絡線信号で制御することにより、可変利得増幅器15にミキサ125の機能を持たせることができる。このような構成により、部品点数を減らすことができる。
FIG. 5 shows a configuration example of Embodiment 4 of the high-output amplifier circuit of the present invention.
5 is the same as the second embodiment except that the variable gain amplifier 15 is used instead of the amplifier 11 of the second embodiment and the function of the mixer 125 is provided in the variable gain amplifier 15. That is, when the carrier signal of the input signal output from the limiter 123 is amplified by the variable gain amplifier 15, the gain is controlled by the envelope signal output from the operational amplifier (envelope adder) 126. 15 can have the function of the mixer 125. With such a configuration, the number of parts can be reduced.

図6は、本発明の高出力増幅回路の実施例5の構成例を示す。
図6においては、実施例4の結合器121、包絡線検出回路122およびリミッタ123に代えてディジタルEER回路127を用い、入力信号をディジタルEER回路127で包絡線信号、位相信号、キャリア信号に分離し、このうち位相信号とキャリア信号をミキサ128に入力し、ミキサ128の出力信号を可変利得増幅器15に入力する構成である。その他の構成は、実施例4と同じである。このような構成により、ディジタルEER回路127を利用することができる。
FIG. 6 shows an example of the configuration of Embodiment 5 of the high-output amplifier circuit according to the present invention.
In FIG. 6, a digital EER circuit 127 is used instead of the coupler 121, the envelope detection circuit 122, and the limiter 123 of the fourth embodiment, and the input signal is separated into an envelope signal, a phase signal, and a carrier signal by the digital EER circuit 127. Of these, the phase signal and the carrier signal are input to the mixer 128, and the output signal of the mixer 128 is input to the variable gain amplifier 15. Other configurations are the same as those in the fourth embodiment. With such a configuration, the digital EER circuit 127 can be used.

11 増幅器
12 歪成分抑圧回路
121 結合器
122 包絡線検出回路
123 リミッタ
124 包絡線加算器
125,128 ミキサ
126 オペアンプ
127 ディジタルEER回路
13 3次高調波抽出回路
131 分岐手段
132,133 フィルタ
14 包絡線検出回路
15 可変利得増幅器
21 結合器
22 検波器
23 比較器
24 歪成分抑圧回路
DESCRIPTION OF SYMBOLS 11 Amplifier 12 Distortion component suppression circuit 121 Coupler 122 Envelope detection circuit 123 Limiter 124 Envelope adder 125,128 Mixer 126 Operational amplifier 127 Digital EER circuit 13 Third harmonic extraction circuit 131 Branch means 132, 133 Filter 14 Envelope detection Circuit 15 Variable gain amplifier 21 Coupler 22 Detector 23 Comparator 24 Distortion component suppression circuit

Claims (6)

非線形増幅特性を有し、中心周波数が既知の入力信号を増幅して出力する増幅器と、
前記増幅器の出力信号から前記非線形増幅特性により発生する高調波成分のうち、中心周波数が前記入力信号の3倍の3次高調波成分を抽出する3次高調波成分抽出回路と、
前記3次高調波成分抽出回路の出力から、前記3次高調波成分の包絡線信号を検出する包絡線検出回路と、
前記入力信号をキャリア信号および包絡線信号に分離し、入力信号の包絡線信号と前記3次高調波成分の包絡線信号とを加算した和信号を生成し、この和信号と入力信号のキャリア信号とを乗算して前記増幅器に入力する歪成分抑圧回路と
を備えたことを特徴とする高出力増幅回路。
An amplifier that has nonlinear amplification characteristics and amplifies and outputs an input signal having a known center frequency;
A third-order harmonic component extraction circuit that extracts a third-order harmonic component having a center frequency three times that of the input signal among the harmonic components generated by the nonlinear amplification characteristic from the output signal of the amplifier;
An envelope detection circuit for detecting an envelope signal of the third harmonic component from the output of the third harmonic component extraction circuit;
The input signal is separated into a carrier signal and an envelope signal, a sum signal is generated by adding the envelope signal of the input signal and the envelope signal of the third harmonic component, and the sum signal and the carrier signal of the input signal are generated. And a distortion component suppression circuit that multiplies and inputs to the amplifier.
非線形増幅特性および利得制御機能を有し、中心周波数が既知の入力信号を増幅して出力する可変利得増幅器と、
前記可変利得増幅器の出力信号から前記非線形増幅特性により発生する高調波成分のうち、中心周波数が前記入力信号の3倍の3次高調波成分を抽出する3次高調波成分抽出回路と、
前記3次高調波成分抽出回路の出力から、前記3次高調波成分の包絡線信号を検出する包絡線検出回路と、
前記入力信号をキャリア信号および包絡線信号に分離し、入力信号のキャリア信号を前記可変利得増幅器に入力し、入力信号の包絡線信号と前記3次高調波成分の包絡線信号とを加算した和信号を生成し、この和信号により前記可変利得増幅器の利得を制御する歪成分抑圧回路と
を備えたことを特徴とする高出力増幅回路。
A variable gain amplifier having a non-linear amplification characteristic and a gain control function, and amplifying and outputting an input signal having a known center frequency;
A third-order harmonic component extraction circuit for extracting a third-order harmonic component having a center frequency three times that of the input signal among the harmonic components generated by the nonlinear amplification characteristic from the output signal of the variable gain amplifier;
An envelope detection circuit for detecting an envelope signal of the third harmonic component from the output of the third harmonic component extraction circuit;
The input signal is separated into a carrier signal and an envelope signal, the carrier signal of the input signal is input to the variable gain amplifier, and the sum of the envelope signal of the input signal and the envelope signal of the third harmonic component is added And a distortion component suppression circuit that generates a signal and controls the gain of the variable gain amplifier based on the sum signal.
請求項1に記載の高出力増幅回路において、
前記和信号の振幅は、前記入力信号の3乗に対し、前記増幅器の3次高調波歪電圧利得と基本波電圧利得の比に−3/4 を乗じた値とする
ことを特徴とする高出力増幅回路。
The high-power amplifier circuit according to claim 1,
The amplitude of the sum signal is a value obtained by multiplying the ratio of the third harmonic distortion voltage gain and the fundamental voltage gain of the amplifier by -3/4 to the cube of the input signal. Output amplifier circuit.
請求項1に記載の高出力増幅回路において、
前記和信号の振幅は、前記入力信号の3乗に対し、前記増幅器の3次高調波歪電圧利得と基本波電圧利得の比に−3/2 を乗じた値を超えない値とする
ことを特徴とする高出力増幅回路。
The high-power amplifier circuit according to claim 1,
The amplitude of the sum signal should not exceed a value obtained by multiplying the ratio of the third harmonic distortion voltage gain and the fundamental voltage gain of the amplifier by −3/2 with respect to the cube of the input signal. High-output amplifier circuit that is characterized.
請求項2に記載の高出力増幅回路において、
前記和信号の振幅は、前記入力信号の3乗に対し、前記可変利得増幅器の3次高調波歪電圧利得と基本波電圧利得の比に−3/4 を乗じた値とする
ことを特徴とする高出力増幅回路。
The high output amplifier circuit according to claim 2,
The sum signal amplitude is obtained by multiplying the ratio of the third harmonic distortion voltage gain and the fundamental voltage gain of the variable gain amplifier by -3/4 to the cube of the input signal. High output amplifier circuit.
請求項2に記載の高出力増幅回路において、
前記和信号の振幅は、前記入力信号の3乗に対し、前記可変利得増幅器の3次高調波歪電圧利得と基本波電圧利得の比に−3/2 を乗じた値を超えない値とする
ことを特徴とする高出力増幅回路。
The high output amplifier circuit according to claim 2,
The amplitude of the sum signal does not exceed a value obtained by multiplying the ratio of the third harmonic distortion voltage gain and the fundamental voltage gain of the variable gain amplifier by −3/2 with respect to the cube of the input signal. A high-power amplifier circuit characterized by that.
JP2010147771A 2010-06-29 2010-06-29 High power amplifier circuit Expired - Fee Related JP5301506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010147771A JP5301506B2 (en) 2010-06-29 2010-06-29 High power amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010147771A JP5301506B2 (en) 2010-06-29 2010-06-29 High power amplifier circuit

Publications (2)

Publication Number Publication Date
JP2012015611A true JP2012015611A (en) 2012-01-19
JP5301506B2 JP5301506B2 (en) 2013-09-25

Family

ID=45601566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010147771A Expired - Fee Related JP5301506B2 (en) 2010-06-29 2010-06-29 High power amplifier circuit

Country Status (1)

Country Link
JP (1) JP5301506B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060521A (en) * 2004-08-20 2006-03-02 Nippon Telegr & Teleph Corp <Ntt> Nonlinear distortion compensation method and device thereof
JP2009194575A (en) * 2008-02-13 2009-08-27 Panasonic Corp Transmission device
JP2010081406A (en) * 2008-09-26 2010-04-08 Kyocera Corp Transmitter and signal processing method
JP2011055364A (en) * 2009-09-03 2011-03-17 Fujitsu Ltd Radio communication device and radio communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060521A (en) * 2004-08-20 2006-03-02 Nippon Telegr & Teleph Corp <Ntt> Nonlinear distortion compensation method and device thereof
JP2009194575A (en) * 2008-02-13 2009-08-27 Panasonic Corp Transmission device
JP2010081406A (en) * 2008-09-26 2010-04-08 Kyocera Corp Transmitter and signal processing method
JP2011055364A (en) * 2009-09-03 2011-03-17 Fujitsu Ltd Radio communication device and radio communication method

Also Published As

Publication number Publication date
JP5301506B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
US7307473B2 (en) Distortion compensating and power amplifying apparatus
US7696818B2 (en) Amplifying apparatus
US10305437B2 (en) Doherty amplifier
KR101758086B1 (en) Power amplifier with advanced linearity
US6930547B2 (en) Linearizing LINC amplifiers using pre-distortion
US9197465B2 (en) Apparatus and method for a digital transmitter architecture with outphasing power amplifier
JP2007174148A (en) Amplifier
KR100984079B1 (en) Cascode configured amplifier
US6757338B1 (en) Predistortion linearizer using even order intermodulation components
JP2015002538A (en) Amplification device
JP5284247B2 (en) High power amplifier circuit
JP5301506B2 (en) High power amplifier circuit
KR20080065042A (en) Digital predistoriton linearizer for doherty power amplifier
CN103036513A (en) Linear power amplifying device
KR101477715B1 (en) Harmonic filtered class-e power amplifier with dynamic biasing system and method
Braithwaite et al. High efficiency feedforward power amplifier using a nonlinear error amplifier and offset alignment control
JP5795218B2 (en) ET power amplifier
JP6645428B2 (en) Transmitter, transmission system and transmission method
JP2001203541A (en) Distortion compensation device and distortion compensation method, amplifier and wireless transmitter
JP2016015708A (en) Multistage power amplifier
Bondar et al. A digital predistorter for wireless transmitters
JP2011103540A (en) Electric power amplifier
US8963608B1 (en) Peak-to-peak average power ratio reduction and intermodulation distortion pre-suppression using open-loop signal processing
Bondar et al. Distortion improvement of power amplifiers with digital predistortion
Liu et al. Up-converted dual-envelope injection enhanced digital predistortion for inverse class-E power amplifier linearization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Ref document number: 5301506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees