JP2007174148A - Amplifier - Google Patents

Amplifier Download PDF

Info

Publication number
JP2007174148A
JP2007174148A JP2005367433A JP2005367433A JP2007174148A JP 2007174148 A JP2007174148 A JP 2007174148A JP 2005367433 A JP2005367433 A JP 2005367433A JP 2005367433 A JP2005367433 A JP 2005367433A JP 2007174148 A JP2007174148 A JP 2007174148A
Authority
JP
Japan
Prior art keywords
impedance
amplifier
output
amplifiers
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005367433A
Other languages
Japanese (ja)
Inventor
Yoichi Okubo
陽一 大久保
Yasuhiro Takeda
康弘 武田
Masaru Adachi
勝 安達
Shu Tanaka
周 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2005367433A priority Critical patent/JP2007174148A/en
Publication of JP2007174148A publication Critical patent/JP2007174148A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0294Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microwave Amplifiers (AREA)
  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an amplifier adopting the LINC (Linear Amplification With Nonlinear Component) system, the composite loss of which is reduced. <P>SOLUTION: The length of transmission lines 24, 34 configuring a composite unit 14 is not limited to λ/4 but set to a length whereby impedance values Z23, Z33 when viewing the transmission lines 24, 34 from a composite point 16 are much greater. Concretely, a load impedance Z22 of an amplifier element 21 is matched by a matching circuit 23 and the transmission line 24 acts like enhancing the efficiency by load modulation when a phase angle is increased. Further, the matching circuit 23 converts the output impedance Z23 of the amplifier element 21 into an impedance different from the impedance Z22 and much greater than the impedance of the transmission line 24. The composite loss can be reduced by avoiding conjugate matching. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、増幅装置に係り、特に合成損失が少ない信号合成器を用いた増幅装置に関する。 The present invention relates to an amplifying apparatus, and more particularly, to an amplifying apparatus using a signal synthesizer with low synthesis loss.

従来、CDMA信号やマルチキャリア信号のような無線周波信号を電力増幅する場合、共通増幅器に歪補償手段を付加し、共通増幅器の動作範囲を飽和領域付近まで広げることで低消費電力化を図っていた。歪補償手段として、フィードフォワード歪補償やプリディストーション歪補償などがあるが、歪補償だけでは低消費電力化に限界が近づいている。そのため近年、高効率増幅器の一種であるLINC方式(Linear Amplification With Nonlinear Component)が注目されている(例えば特許文献1、非特許文献1〜3参照)。 Conventionally, when amplifying a radio frequency signal such as a CDMA signal or a multicarrier signal, a distortion compensation means is added to the common amplifier, and the operation range of the common amplifier is extended to the vicinity of the saturation region, thereby reducing power consumption. It was. As distortion compensation means, there are feedforward distortion compensation and predistortion distortion compensation. However, the distortion compensation alone is approaching the limit of low power consumption. Therefore, in recent years, attention has been paid to a LINC (Linear Amplification With Nonlinear Component) which is a kind of high efficiency amplifier (see, for example, Patent Document 1 and Non-Patent Documents 1 to 3).

図1は基本的なLINC増幅器の構成図に示す。
入力端子10から入った入力信号は、処理部11で処理部11の2つの出力信号が同振幅で2つのベクトル合成波が入力信号の振幅、位相になるように処理される。そして、その2つの出力信号を飽和形の増幅器12,13で増幅し、合成器14’でベクトル和されて出力端子15から出力される。増幅器は飽和形なので高効率にできる手法である。
FIG. 1 is a block diagram of a basic LINC amplifier.
The input signal input from the input terminal 10 is processed by the processing unit 11 so that the two output signals of the processing unit 11 have the same amplitude and the two vector composite waves have the amplitude and phase of the input signal. Then, the two output signals are amplified by the saturation type amplifiers 12 and 13, vector-summed by the synthesizer 14 ′, and output from the output terminal 15. Since the amplifier is a saturated type, it is a technique that can achieve high efficiency.

基本的なLINC増幅器では、合成器14’にハイブリッドや3dBカプラなどを使用しており、合成時に3dBの損失が発生する。つまり、効率の良い飽和形増幅器を使用しても半分がロスになるので、効率は飽和形の概ね半分になってしまう。 In a basic LINC amplifier, a hybrid or a 3 dB coupler is used for the synthesizer 14 ′, and a loss of 3 dB occurs at the time of synthesis. In other words, even if an efficient saturated amplifier is used, half is lost, and the efficiency is almost half that of the saturated amplifier.

そこで、増幅器12,13の出力をアイソレーションせずに結合する、Chireix合成器が知られる(例えば非特許文献3〜4参照)。単にλ/4線路を介して結合すると、合成位相が同相以外のときに増幅器12、13の負荷インピーダンスは、それぞれ大きさが等しく極性が反対のリアクタンス成分を持つので、Chireix合成器ではそれを補償するシャントリアクタンスを備えている。 Therefore, a Chireix synthesizer that couples the outputs of the amplifiers 12 and 13 without isolation is known (see, for example, Non-Patent Documents 3 to 4). When coupled via a λ / 4 line, the load impedances of the amplifiers 12 and 13 have reactance components having the same magnitude and opposite polarities when the combined phase is other than in-phase. The Chireix combiner compensates for this. It has a shunt reactance.

特表2002−510927号公報Japanese translation of PCT publication No. 2002-510927 Kaunisto Risto, "A vector-locked loop forpower amplifier linearization", Microwave Symposium Digest, IEEE MTT-SInternational,(米国), 2004年6月, Vol.2, p.673- 676Kaunisto Risto, "A vector-locked loop for power amplifier linearization", Microwave Symposium Digest, IEEE MTT-SInternational, (USA), June 2004, Vol.2, p.673-676 F. H. Raab, P. Asbeck, S. Cripps, P. B. Kenington,Z. B. Popovic, N.Pothecary, J. F. Sevic, and N. O.Sokal, "Power amplifiers and transmitters for RF and microwave", IEEE Transactions on Microwave Theoryand Techniques, (米国), 2002年3月, Vol. 50, No.3, p. 814-826FH Raab, P. Asbeck, S. Cripps, PB Kenington, ZB Popovic, N. Pothecary, JF Sevic, and NOSokal, "Power amplifiers and transmitters for RF and microwave", IEEE Transactions on Microwave Theoryand Techniques, (USA), March 2002, Vol. 50, No.3, p. 814-826 F. H. Raab, "Efficiency of outphasing RFpower-amplifier systems", IEEE Transactions on Communications, 1985年10月, Vol. COM-33, No. 10, p. 1094-1099F. H. Raab, "Efficiency of outphasing RFpower-amplifier systems", IEEE Transactions on Communications, October 1985, Vol. COM-33, No. 10, p. 1094-1099 Ilkka Hakala1, Leila Gharavi, Risto Kaunisto,"Chireix Power Combining with Saturated Class-B Power Amplifiers", [online]、2004年、 12th GAAS Symposium - Amsterdam、[2005年11月18日検索]、インターネット<URL: http://amsacta.cib.unibo.it/archive/00001005/01/GA042058.PDF>Ilkka Hakala1, Leila Gharavi, Risto Kaunisto, "Chireix Power Combining with Saturated Class-B Power Amplifiers", [online], 2004, 12th GAAS Symposium-Amsterdam, [November 18, 2005 search], Internet <URL: http : //amsacta.cib.unibo.it/archive/00001005/01/GA042058.PDF> Boumaiza, S., Jing Li, F.M. Ghannouchi, "Implementation of Adaptive Digital/RF Predistorter Using Diredt LUTSynthesis", IEEE MTT-S,(米国), 2004年, Vol. 2, p.681-684Boumaiza, S., Jing Li, F.M. Ghannouchi, "Implementation of Adaptive Digital / RF Predistorter Using Diredt LUTSynthesis", IEEE MTT-S, (USA), 2004, Vol. 2, p.681-684 W. Gerhard, R. Knochel, "Digital ComponentSeparator for W-CDMA-LINCTransmitters implemented on an FPGA", Advances in Radio Science,(ドイツ), Copernicus GmbH,2005年, Vol. 3, p. 239-246W. Gerhard, R. Knochel, "Digital ComponentSeparator for W-CDMA-LINCTransmitters implemented on an FPGA", Advances in Radio Science, (Germany), Copernicus GmbH, 2005, Vol. 3, p. 239-246 Jaehyok Yi, Youngoo Yang, Bumman Kim, " Effectof efficiency optimization on linearity of LINC amplifiers with CDMA signal",IEEE MTT-S International Microwave Symposium Digest,(米国), 2001年, Vol. 2, p. 1359-1362Jaehyok Yi, Youngoo Yang, Bumman Kim, "Effect of efficiency optimization on linearity of LINC amplifiers with CDMA signal", IEEE MTT-S International Microwave Symposium Digest, (USA), 2001, Vol. 2, p. 1359-1362

従来のLINC増幅器では、合成器15に3dBカプラなどを使用した場合、平均して3dBの損失が発生していた。
また、Chireix合成器を用いた場合、完全なアイソレーションは実現不可能であるとしても、出力や効率が負荷インピーダンスに依存する高出力、高周波の増幅器を用いて、最良の性能(最大出力、効率、利得、歪などの総合評価)が得られるものになっていなかった。
本発明は、上述した背景からなされたものであり、改良された合成器を用いて性能を向上させた増幅装置を提供することを目的とする。
In the conventional LINC amplifier, when a 3 dB coupler or the like is used for the combiner 15, an average loss of 3 dB occurs.
In addition, even when complete isolation is not possible when using a Chireix synthesizer, the best performance (maximum output, efficiency) is achieved using a high-power, high-frequency amplifier whose output and efficiency depend on the load impedance. , Overall evaluation of gain, distortion, etc.) was not obtained.
The present invention has been made from the above-described background, and an object thereof is to provide an amplifying apparatus whose performance is improved by using an improved synthesizer.

LINC方式の増幅器において、振幅及び位相が変化する入力信号を振幅の略等しい2つの信号に分解する処理部と、分解された信号をそれぞれ増幅する第1及び第2の増幅器と、前記第1及び、第2の増幅器の出力をλ/4を除く任意の長さ伝送線路で互いに接続して合成する合成器と、を備える増幅装置。 In the LINC amplifier, a processing unit that decomposes an input signal whose amplitude and phase change into two signals having substantially the same amplitude, first and second amplifiers that respectively amplify the decomposed signals, and And a synthesizer that connects and combines the outputs of the second amplifier with transmission lines of any length excluding λ / 4.

振幅及び位相が変化する入力信号を振幅の略等しい2つの信号に分解する処理部と、分解された信号をそれぞれ増幅する第1及び第2の増幅器と、前記第1及び、第2の増幅器の出力をλ/4を除く任意の長さ伝送線路をそれぞれ介して合成点で互いに接続する合成器と、を備えるLINC方式の増幅装置であって、
それぞれの前記伝送線路は、合成点に接続される負荷抵抗の略2倍に等しい特性インピーダンスを有し、
第1及び第2の増幅器は、増幅器が備える増幅素子の特定の(条件下での)負荷インピーダンスを前記特性インピーダンスにほぼ等しいインピーダンスに変換する出力整合回路をそれぞれ備え、位相角が大きくなるに従い前期伝送路により効率の良い負荷インピーダンスに変換できることを特徴とする前記の増幅装置。
A processing unit for decomposing an input signal whose amplitude and phase are changed into two signals having substantially the same amplitude, first and second amplifiers for amplifying the decomposed signals, and the first and second amplifiers, respectively. A LINC-type amplifying apparatus comprising: a synthesizer that connects outputs to each other at transmission points via transmission lines of any length except λ / 4;
Each of the transmission lines has a characteristic impedance equal to approximately twice the load resistance connected to the composite point;
Each of the first and second amplifiers includes an output matching circuit that converts a specific (under conditions) load impedance of the amplification element included in the amplifier into an impedance that is substantially equal to the characteristic impedance, and as the phase angle increases, The amplifying apparatus described above, which can be converted into an efficient load impedance by a transmission line.

それぞれの前記伝送線路の長さは、長さがλ/4の時よりも合成損失が小さくなるようにまた効率向上する様に設定されていることを特徴とする、前記の増幅装置。 The length of each transmission line is set so that the combined loss is smaller than that when the length is λ / 4, and the efficiency is improved.

前記分解された信号の位相差が大きいときに、前記分解された信号の振幅を第1及び第2の増幅器に入力される前に小さくすることを特徴とする、前記の増幅装置。 The amplification apparatus according to claim 1, wherein when the phase difference of the decomposed signal is large, the amplitude of the decomposed signal is reduced before being input to the first and second amplifiers.

前記処理部の前段に、第1及び第2の増幅器で発生する非線形歪を補償するプリディストータを備えたことを特徴とする、前記の増幅装置。 The amplifying apparatus described above, further comprising a predistorter that compensates for non-linear distortion generated in the first and second amplifiers before the processing unit.

本発明にかかる信号合成器及び増幅装置によれば、合成器の損失を減らす事と負荷変調により増幅装置の性能を向上させることができる。 According to the signal synthesizer and the amplification device according to the present invention, it is possible to reduce the loss of the synthesizer and improve the performance of the amplification device by load modulation.

以下、本発明の実施の形態について、複数の実施例を通じて説明する。尚、以下で説明する機能実現手段は、当該機能を実現できればどのような回路又は装置であっても構わず、機能実現手段を複数の回路によって実現してもよく、複数の機能実現手段を単一の回路で実現してもよい。また各実施例は、明細書中で引用された公知文献の記載と組み合わせることを妨げない。 Hereinafter, embodiments of the present invention will be described through a plurality of examples. The function realization means described below may be any circuit or device as long as the function can be realized, and the function realization means may be realized by a plurality of circuits. You may implement | achieve with one circuit. Moreover, each Example does not prevent combining with description of the well-known literature referred in the specification.

図2は、実施例1の増幅装置の構成図である。図1と同じ構成は、同一符号としている。
処理部11は、入力端子10からの入力信号を、同振幅でベクトル和が入力と相似となるような2つの信号S1及びS2に分解し、増幅器20及び30にそれぞれ出力する。信号S1及びS2は例えば、増幅素子21、31が飽和あるいはその付近で動作するような一定の振幅を有する。
増幅器20は、入力整合回路22、増幅素子21、出力整合回路23から構成される。
入力整合回路22は、信号S1を増幅素子21の入力インピーダンスに整合して出力する。
増幅素子21は、AB,B、あるいはC級にバイアスされ、入力整合回路22から入力された信号S1を増幅する。
出力整合回路23は、増幅素子21と合成器14を、インピーダンス変換を伴って結合する。出力整合回路23は通常、増幅素子21の比較的低いインピーダンスを、比較的高いインピーダンスに変換する。
FIG. 2 is a configuration diagram of the amplifying apparatus according to the first embodiment. The same components as those in FIG.
The processing unit 11 decomposes the input signal from the input terminal 10 into two signals S1 and S2 having the same amplitude and a vector sum similar to the input, and outputs the signals to the amplifiers 20 and 30, respectively. The signals S1 and S2 have, for example, a constant amplitude such that the amplification elements 21 and 31 operate at or near the saturation.
The amplifier 20 includes an input matching circuit 22, an amplification element 21, and an output matching circuit 23.
The input matching circuit 22 matches the signal S1 with the input impedance of the amplifying element 21 and outputs it.
The amplifying element 21 is biased to AB, B, or C class, and amplifies the signal S1 input from the input matching circuit 22.
The output matching circuit 23 couples the amplifying element 21 and the combiner 14 together with impedance conversion. The output matching circuit 23 usually converts a relatively low impedance of the amplifying element 21 into a relatively high impedance.

同様に増幅器30は、入力整合回路32、増幅素子31、出力整合回路33から構成される。増幅器20と30は同一構成である。分解された他方の信号S2も、S1と同様に入力整合回路32を通りAB,B、あるいはC級級にバイアスされた増幅素子31で増幅され、出力整合回路33で整合し合成器14に入力される。 Similarly, the amplifier 30 includes an input matching circuit 32, an amplification element 31, and an output matching circuit 33. The amplifiers 20 and 30 have the same configuration. Similarly to S1, the other decomposed signal S2 passes through the input matching circuit 32, is amplified by the amplifier element 31 biased to class AB, B, or C, is matched by the output matching circuit 33, and is input to the combiner 14. Is done.

合成器14は、伝送線路24及び34と合成点16から構成される。
伝送線路24は、増幅器20と合成点16との間を接続する伝送線路である。
伝送線路34は、増幅器30と合成点16との間を接続する伝送線路である。伝送線路24及び34は、後述するように最適化された線路長をそれぞれ有する。
合成点16は、伝送線路24と、伝送線路34と、出力15への配線とを結合する点である。
増幅された信号S1,S2は、それぞれ伝送線路24,34を通り合成されて出力端子15から出力される。
The combiner 14 includes transmission lines 24 and 34 and a combining point 16.
The transmission line 24 is a transmission line that connects the amplifier 20 and the synthesis point 16.
The transmission line 34 is a transmission line that connects the amplifier 30 and the synthesis point 16. The transmission lines 24 and 34 each have an optimized line length as will be described later.
The combining point 16 is a point that couples the transmission line 24, the transmission line 34, and the wiring to the output 15.
The amplified signals S1 and S2 are combined through transmission lines 24 and 34, respectively, and output from the output terminal 15.

本実施例では、合成損失を抑えるため、合成点16を介して互いの増幅器に影響することがないように、合成点16からみたインピーダンスZ23、Z33を大きくする。
そのため、増幅素子21の出力インピーダンスZ21を、出力整合回路23と任意の長さLの伝送線路24により、大きなインピーダンスZ23に変換する。増幅素子21の負荷インピーダンスZ22は出力が出るように出力整合回路23で整合させるが、出力インピーダンスZ21と共役にならず、共役のZ21とは離れたインピーダンスにする。
In this embodiment, in order to suppress the synthesis loss, the impedances Z 23 and Z 33 viewed from the synthesis point 16 are increased so that the amplifiers are not affected via the synthesis point 16.
Therefore, the output impedance Z 21 of the amplifying element 21, the output matching circuit 23 and the transmission line 24 of any length L, a converted into large impedance Z 23. The load impedance Z 22 of the amplifying element 21 is matched by the output matching circuit 23 so that an output is output, but is not conjugated with the output impedance Z 21 , but is separated from the conjugated Z 21 .

なお、増幅素子21の出力インピーダンスZ21とは、出力側から増幅素子21を見たインピーダンスであり、負荷インピーダンスZ22は、増幅素子21から出力側を見たインピーダンスでる。一般に、増幅素子の最大出力あるいは最大効率が得られるときのZ22は、Z21の共役とは必ずしも一致しないことが、ロードプル測定により知られている。 The output impedance Z 21 of the amplifying element 21 is the impedance when the amplifying element 21 is viewed from the output side, and the load impedance Z 22 is the impedance when the amplifying element 21 is viewed from the output side. In general, it is known from load pull measurement that Z 22 when the maximum output or maximum efficiency of the amplifying element is obtained does not necessarily coincide with the conjugate of Z 21 .

本実施例では、負荷インピーダンスZ22は出力整合回路23で整合し、整合された負荷インピーダンスZ24と同じ特性インピーダンスの伝送線路24で合成点まで伝送するので、Z22の整合は出力整合回路243のみで決めることができる。一方、合成点16から見たインピーダンスZ23は、出力インピーダンスZ21を整合回路23でインピーダンス変換し、更に伝送線路24でZ24を中心に回転させるので、伝送線路24の線路長をZ23が最も高くなるような長さに設定することができる。Z24は例えば、出力端子15に接続される負荷抵抗RLの約2倍あるいはそれより若干大きく設定する。線路長は例えば、Z23が負荷抵抗RLの約3倍以上になるように設定する。
増幅器30側も同様に設計する。
従って増幅された信号S1はインピーダンスの低い出力端子15側にほぼ全て伝送し、増幅器30側には漏れない構造となり、損失がない。
In this embodiment, the load impedance Z 22 is matched by the output matching circuit 23 and transmitted to the synthesis point by the transmission line 24 having the same characteristic impedance as that of the matched load impedance Z 24. Therefore, the matching of Z 22 is performed by the output matching circuit 243. Can only be determined. On the other hand, the impedance Z 23 as viewed from the combining point 16, impedance conversion by the output impedance Z 21 of the matching circuit 23, since the rotation about the Z 24 further transmission line 24, the Z 23 the line length of the transmission line 24 The length can be set to be the highest. For example, Z 24 is set to be approximately twice the load resistance R L connected to the output terminal 15 or slightly larger. Line length, for example, set to Z 23 is more than about 3 times the load resistance R L.
The amplifier 30 side is similarly designed.
Therefore, almost all of the amplified signal S1 is transmitted to the output terminal 15 having a low impedance and does not leak to the amplifier 30 side, and there is no loss.

22はZ21の共役と離れているので多少増幅素子の能力より劣る可能性はあるが、AB,BあるいはCクラスでは最大出力あるいは最大効率が得られる負荷インピーダンスと出力インピーダンスZ21が共役関係にないので、Z22とZ21の共役との距離は増幅素子や性能により決めることになる。
また増幅素子によりインピーダンスの距離(Z22と、Z21の共役との距離)を十分に離せない場合、増幅素子21に漏れこみ動作が異常になる場合があるが、その場合増幅器の動作をAB級にして漏れ分を増幅素子のバイアス電流で変動を抑える。この場合でもAB級の飽和形はC級より劣るにしてもまだ十分に高い。
Since Z 22 is far from the conjugate of Z 21 , there is a possibility that it is somewhat inferior to the ability of the amplifying element, but in AB, B or C class, the load impedance and the output impedance Z 21 that can obtain the maximum output or maximum efficiency are conjugate relation Therefore, the distance between Z 22 and the conjugate of Z 21 is determined by the amplification element and performance.
Further, when the impedance distance (distance between Z 22 and the conjugate of Z 21 ) cannot be sufficiently separated by the amplifying element, the leakage operation may become abnormal in the amplifying element 21, but in this case, the operation of the amplifier is changed to AB. The fluctuation is suppressed by the bias current of the amplifying element. Even in this case, the AB class saturated form is still sufficiently high even if inferior to the C class.

増幅素子31系も同様に行う。
以上説明した動作において、信号S1とS2が同一レベルであっても位相が大幅に異なるときは、各増幅素子21,31の負荷は負荷変動を起こし、増幅素子から見た負荷インピーダンスに依存する最大出力も変動するが、効率を上げるように伝送線路24,25の長さを調整する。しかし、そのときの合成ベクトルは小さいので最大出力が低下しても問題はない。
従って互いの信号が漏れないようなZ23とZ33しながら位相角が動いた時のZ22とZ32を効率の上がるようにする。
伝送線路24及び34の電気長Lは、増幅素子や出力整合回路により異なるので一律に規定できず、ここでは任意としているが、λ/4に限定した場合よりも合成損失が改善される事と効率が上がるような長さであることが望ましい。ただしλ/4の時に最良点になる場合はこの限りではない。
増幅器20及び30は、低レベルの信号を増幅するプリアンプを入力側に備えても良い。
処理部11は、アナログRF信号を入力して信号S1,S2に分離するものに限らず、デジタル信号からS1,S2を生成したり、IFを使用して更に周波数変換をしてもよく、増幅器前段部については特に限定しない。
The amplification element 31 system is similarly performed.
In the operation described above, when the signals S1 and S2 are at the same level but the phases are significantly different, the load of each of the amplifying elements 21 and 31 causes a load fluctuation and the maximum depending on the load impedance viewed from the amplifying element. Although the output also varies, the lengths of the transmission lines 24 and 25 are adjusted so as to increase the efficiency. However, since the combined vector at that time is small, there is no problem even if the maximum output is reduced.
Accordingly, the efficiency of Z 22 and Z 32 when the phase angle is moved is increased while Z 23 and Z 33 are such that the mutual signals do not leak.
The electrical length L of the transmission lines 24 and 34 varies depending on the amplifying element and the output matching circuit and cannot be uniformly defined. Here, it is arbitrary, but the combined loss is improved as compared with the case where it is limited to λ / 4. It is desirable for the length to increase efficiency. However, this is not the case when the best point is obtained at λ / 4.
The amplifiers 20 and 30 may include a preamplifier for amplifying a low level signal on the input side.
The processing unit 11 is not limited to the one that receives an analog RF signal and separates it into signals S1 and S2, but may generate S1 and S2 from a digital signal, or may further perform frequency conversion using IF, and an amplifier. There is no particular limitation on the front stage.

本実施例2は、処理部11が、入力レベルが小さいときに信号S1、S2の振幅を小さくする点で、実施例1と異なる。
図3は、本実施例の処理部11における入力信号の信号S1、S2への分解を示す図である。
0は処理部11への入力信号であり、S1、S2は非特許文献1〜4のような従来のLINC増幅器で分解される信号であり、θはS1とS2の位相差である。S11とS22は、本実施例の処理部11が生成する信号であり、βはS11とS22の位相差である。
従来は、増幅器を一定の飽和状態で使用するために、S1とS2のレベルを一定としていた。しかし出力レベルを小さくする場合感度が高くなったり、またθを180度にしても理論上は出力は零になるが現実的には零にならない。従ってS1とS2を小さくして合成ベクトルを小さく出来るようにするものである。
The second embodiment is different from the first embodiment in that the processing unit 11 reduces the amplitude of the signals S1 and S2 when the input level is low.
FIG. 3 is a diagram illustrating the decomposition of the input signal into signals S1 and S2 in the processing unit 11 of the present embodiment.
S 0 is the input signal to the processing unit 11, S1, S2 is a signal that is degraded in the conventional LINC amplifiers, such as Non-Patent Document 1 to 4, theta is the phase difference between S1 and S2. S11 and S22 are signals generated by the processing unit 11 of the present embodiment, and β is a phase difference between S11 and S22.
Conventionally, the levels of S1 and S2 are constant in order to use the amplifier in a constant saturation state. However, when the output level is reduced, the sensitivity is increased, and even if θ is 180 degrees, the output is theoretically zero, but in reality it is not zero. Therefore, S1 and S2 are made small so that the combined vector can be made small.

本実施例の処理部11は基本的には、入力信号を、入力信号に対し振幅がAで位相がβ/2及び−β/2シフトした2つの信号S11とS22に分解する。振幅Aは、入力信号が小さいときに、それに応じて小さくしても良い。また振幅Aは0にはならない。 The processing unit 11 of this embodiment basically decomposes an input signal into two signals S11 and S22 having an amplitude A and a phase shifted by β / 2 and −β / 2 with respect to the input signal. The amplitude A may be reduced accordingly when the input signal is small. The amplitude A does not become zero.

このように信号S11とS22の振幅Aを変化させ、それにあわせて位相角も変えることにより、信号S11とS22間の位相差βはθに比べ小さくなり、合成が行いやすくなる。 Thus, by changing the amplitude A of the signals S11 and S22 and changing the phase angle accordingly, the phase difference β between the signals S11 and S22 becomes smaller than θ and it is easy to combine them.

図4は、本実施例3の増幅装置の構成図である。本実施例は、実施例1及び2に更にプリディスト−ション歪補償方式を組み合わせたものである。
入力端子6から入った信号(アナログア、デジタルは問わない)は、プリディスト−タ1で予歪を付加し、実施例1又は2の増幅装置と同様の増幅部2(処理部11はプリディスト−タ1側に入れても良い)で増幅され、結合器4を経て、出力端子15の負荷に供給される。
FIG. 4 is a configuration diagram of an amplifying apparatus according to the third embodiment. This embodiment is a combination of the first and second embodiments and a predistortion compensation system.
The pre-distorter 1 adds predistortion to the signal (analogue or digital) input from the input terminal 6, and the amplification unit 2 (the processing unit 11 is the predistortion unit) similar to the amplification device of the first or second embodiment. May be placed on the output side of the output terminal 15, and may be supplied to the load of the output terminal 15 through the coupler 4.

結合器4は、出力の一部を帰還信号用に取り出して、適応制御部5に出力する。
適応制御部5は、帰還信号を入力信号と比較して誤差を検出したり、帰還信号に含まれる歪信号を検出したりして、その誤差分(歪分)を小さくするように、プリディスト−タ1の歪補償の態様を更新する。プリディスト−ション歪補償方式は種々あり(例えば非特許文献5参照)、ここでは方式に特にこだわらない。
The coupler 4 extracts a part of the output for a feedback signal and outputs it to the adaptive control unit 5.
The adaptive control unit 5 compares the feedback signal with the input signal to detect an error, or detects a distortion signal included in the feedback signal, so that the error (distortion) is reduced. The mode of distortion compensation of the data 1 is updated. There are various predistortion distortion compensation methods (see, for example, Non-Patent Document 5), and no particular attention is paid to the method here.

本実施例において、処理部11は、非特許文献6〜7のように信号を生成してもよい。
本実施例によれば、LINK増幅器において小規模のハードウェアで振幅の制御を適切に行うことができる。また、負荷変調を積極的に利用することで効率を良くすることができ、また増幅器間の干渉が無いので通常のバックオフにおける効率や歪を改善することができる。
In a present Example, the process part 11 may produce | generate a signal like the nonpatent literatures 6-7.
According to the present embodiment, the amplitude can be appropriately controlled with small-scale hardware in the LINK amplifier. Further, the load modulation can be used positively to improve the efficiency, and since there is no interference between the amplifiers, the efficiency and distortion in the normal back-off can be improved.

従来のLINC増幅器の構成図Configuration diagram of a conventional LINC amplifier 実施例1の増幅装置の構成図Configuration diagram of the amplifying device of Embodiment 1 実施例2の処理部11における入力信号の信号S1、S2への分解を示す図The figure which shows decomposition | disassembly into the signals S1 and S2 of the input signal in the process part 11 of Example 2. FIG. 実施例3の増幅装置の構成図Configuration diagram of amplifying device of Example 3

符号の説明Explanation of symbols

1、100 プリディスト−ション部
2 増幅部
4 結合器
5 適応制御部(Adaptive Controller)
10 入力端子(Input Terminal)
11 処理部
12、13、20、30 増幅器
14 合成器
15 出力端子
21、31 増幅素子
22、32 入力整合回路
23、33 出力整合回路
24、34 伝送線路
DESCRIPTION OF SYMBOLS 1,100 Predistortion part 2 Amplification part 4 Coupler 5 Adaptive control part (Adaptive Controller)
10 Input Terminal
DESCRIPTION OF SYMBOLS 11 Processing part 12, 13, 20, 30 Amplifier 14 Synthesizer 15 Output terminal 21, 31 Amplifying element 22, 32 Input matching circuit 23, 33 Output matching circuit 24, 34 Transmission line

Claims (3)

LINC方式の増幅器において、振幅及び位相が変化する入力信号を振幅の略等しい2つの信号に分解する処理部と、分解された信号をそれぞれ増幅する第1及び第2の増幅器と、前記第1及び、第2の増幅器の出力をλ/4を除く任意の長さ伝送線路で互いに接続して合成する合成器と、を備える増幅装置。 In the LINC amplifier, a processing unit that decomposes an input signal whose amplitude and phase change into two signals having substantially the same amplitude, first and second amplifiers that respectively amplify the decomposed signals, and And a synthesizer that connects and combines the outputs of the second amplifier with transmission lines of any length excluding λ / 4. 前記分解された信号の位相差が大きいときに、前記分解された信号の振幅を第1及び第2の増幅器に入力される前に小さくすることを特徴とする、請求項1記載の増幅装置。 2. The amplifying apparatus according to claim 1, wherein when the phase difference of the decomposed signal is large, the amplitude of the decomposed signal is reduced before being input to the first and second amplifiers. 前記処理部の前段に、第1及び第2の増幅器で発生する非線形歪を補償するプリディストータを備えたことを特徴とする、請求項1又は2記載の増幅装置。 3. The amplifying apparatus according to claim 1, further comprising a predistorter that compensates for non-linear distortion generated in the first and second amplifiers before the processing unit.
JP2005367433A 2005-12-21 2005-12-21 Amplifier Pending JP2007174148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367433A JP2007174148A (en) 2005-12-21 2005-12-21 Amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367433A JP2007174148A (en) 2005-12-21 2005-12-21 Amplifier

Publications (1)

Publication Number Publication Date
JP2007174148A true JP2007174148A (en) 2007-07-05

Family

ID=38300142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367433A Pending JP2007174148A (en) 2005-12-21 2005-12-21 Amplifier

Country Status (1)

Country Link
JP (1) JP2007174148A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719353B2 (en) 2008-03-17 2010-05-18 Hitachi Kokusai Electric Inc. LINC amplifying device
JP2012175188A (en) * 2011-02-17 2012-09-10 Fujitsu Ltd Amplifier circuit, transmitter and amplifier circuit control method
JP2012525749A (en) * 2009-04-28 2012-10-22 アルカテル−ルーセント Method for data transmission using LINC amplifier, LINC amplifier, transmitting device, receiving device, and communication network thereof
JP5144672B2 (en) * 2007-09-27 2013-02-13 京セラ株式会社 Power amplifier circuit and transmitter and radio communication device using the same
JP5144671B2 (en) * 2007-09-27 2013-02-13 京セラ株式会社 Power amplifier circuit and transmitter and radio communication device using the same
US8384481B2 (en) 2010-08-30 2013-02-26 Fujitsu Limited Signal amplification device and signal amplification method
US8427231B2 (en) 2010-12-28 2013-04-23 Fujitsu Limited Amplifying device and amplifying method
JP2014011653A (en) * 2012-06-29 2014-01-20 Fujitsu Ltd Distortion compensation device and distortion compensation method
EP2816726A1 (en) 2013-06-18 2014-12-24 Fujitsu Limited Amplification apparatus
US9473072B2 (en) 2014-02-03 2016-10-18 Fujitsu Limited Amplification device and amplification method
CN107017848A (en) * 2016-01-27 2017-08-04 络达科技股份有限公司 Power amplifying circuit and operation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831886B2 (en) * 1989-09-14 1996-03-27 松下電器産業株式会社 Transmitter
WO2003061115A1 (en) * 2002-01-16 2003-07-24 Telefonaktiebolaget Lm Ericsson Composite power amplifier
JP2004343666A (en) * 2003-05-19 2004-12-02 Japan Radio Co Ltd High frequency amplifier circuit
JP2006314087A (en) * 2005-04-08 2006-11-16 Matsushita Electric Ind Co Ltd Amplifier circuit and radio equipment
JP2008523763A (en) * 2004-12-14 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Low loss, asymmetric combiner for adaptive phase difference system and adaptive radio frequency amplifier with asymmetric combiner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831886B2 (en) * 1989-09-14 1996-03-27 松下電器産業株式会社 Transmitter
WO2003061115A1 (en) * 2002-01-16 2003-07-24 Telefonaktiebolaget Lm Ericsson Composite power amplifier
JP2004343666A (en) * 2003-05-19 2004-12-02 Japan Radio Co Ltd High frequency amplifier circuit
JP2008523763A (en) * 2004-12-14 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Low loss, asymmetric combiner for adaptive phase difference system and adaptive radio frequency amplifier with asymmetric combiner
JP2006314087A (en) * 2005-04-08 2006-11-16 Matsushita Electric Ind Co Ltd Amplifier circuit and radio equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5144672B2 (en) * 2007-09-27 2013-02-13 京セラ株式会社 Power amplifier circuit and transmitter and radio communication device using the same
JP5144671B2 (en) * 2007-09-27 2013-02-13 京セラ株式会社 Power amplifier circuit and transmitter and radio communication device using the same
US7719353B2 (en) 2008-03-17 2010-05-18 Hitachi Kokusai Electric Inc. LINC amplifying device
US9264359B2 (en) 2009-04-28 2016-02-16 Alcatel Lucent Method for data transmission using a LINC amplifier, a LINC amplifier, a transmitting device, a receiving device, and a communication network therefor
JP2012525749A (en) * 2009-04-28 2012-10-22 アルカテル−ルーセント Method for data transmission using LINC amplifier, LINC amplifier, transmitting device, receiving device, and communication network thereof
US8384481B2 (en) 2010-08-30 2013-02-26 Fujitsu Limited Signal amplification device and signal amplification method
US8427231B2 (en) 2010-12-28 2013-04-23 Fujitsu Limited Amplifying device and amplifying method
JP2012175188A (en) * 2011-02-17 2012-09-10 Fujitsu Ltd Amplifier circuit, transmitter and amplifier circuit control method
JP2014011653A (en) * 2012-06-29 2014-01-20 Fujitsu Ltd Distortion compensation device and distortion compensation method
EP2816726A1 (en) 2013-06-18 2014-12-24 Fujitsu Limited Amplification apparatus
US9276536B2 (en) 2013-06-18 2016-03-01 Fujitsu Limited Amplification apparatus
US9473072B2 (en) 2014-02-03 2016-10-18 Fujitsu Limited Amplification device and amplification method
CN107017848A (en) * 2016-01-27 2017-08-04 络达科技股份有限公司 Power amplifying circuit and operation method thereof

Similar Documents

Publication Publication Date Title
JP2007174148A (en) Amplifier
US10305437B2 (en) Doherty amplifier
JP5245822B2 (en) Power amplifier
US6930547B2 (en) Linearizing LINC amplifiers using pre-distortion
KR101758086B1 (en) Power amplifier with advanced linearity
WO2005078919A1 (en) Methods and systems for signal amplification through envelope removal and restoration
KR101128487B1 (en) Power amplifier linearization method and apparatus
JP2005117599A (en) High frequency amplifier
US7315207B2 (en) Doherty amplifier and its distortion characteristic compensation method
US9276536B2 (en) Amplification apparatus
JP2008135829A (en) Power amplifying circuit
US20100148862A1 (en) Method and apparatus for enhancing performance of doherty power amplifier
KR20080065042A (en) Digital predistoriton linearizer for doherty power amplifier
JP5390495B2 (en) High frequency amplifier
JP4628175B2 (en) amplifier
US7719353B2 (en) LINC amplifying device
JP2006148780A (en) High frequency doherty amplifier
JP2006279633A (en) Distortion compensator and its distortion compensation method
US6867648B2 (en) Linearization apparatus capable of adjusting peak-to-average power ratio
CN106034095B (en) Digital predistortion transmitter and its control method
CN113162559B (en) Millimeter wave self-adaptive predistortion linearized solid-state power amplifier
WO2016021178A1 (en) Transmitter, transmission system and transmission method
JP5301506B2 (en) High power amplifier circuit
JP2007006436A (en) Distortion compensating amplifier
KR20190049344A (en) Method and Apparatus for Digital Pre-Distortion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101228