JP2012013026A - Idle control device of internal combustion engine - Google Patents

Idle control device of internal combustion engine Download PDF

Info

Publication number
JP2012013026A
JP2012013026A JP2010151552A JP2010151552A JP2012013026A JP 2012013026 A JP2012013026 A JP 2012013026A JP 2010151552 A JP2010151552 A JP 2010151552A JP 2010151552 A JP2010151552 A JP 2010151552A JP 2012013026 A JP2012013026 A JP 2012013026A
Authority
JP
Japan
Prior art keywords
rotational speed
internal combustion
combustion engine
target rotational
water temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010151552A
Other languages
Japanese (ja)
Inventor
Daisaku Takahashi
大作 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2010151552A priority Critical patent/JP2012013026A/en
Publication of JP2012013026A publication Critical patent/JP2012013026A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize idle speed immediately after starting in frosty weather at a sub-zero temperature, inhibit hunting of engine speed feedback control or eliminate it earlier, and reduce discomfort of an occupant caused by generation of fluctuated engine speed, in an idle control device of an internal combustion engine.SOLUTION: When water temperature at starting is higher than a set value (ST2) preset separately from warming-up determination and does not meet warming-up completion determination, engine speed (Ne) of the internal combustion engine (1) is higher than a determination speed which is less than the initial target speed (Ntgel) by a predetermined quantity, and the state that power generation quantity is more than the predetermined value continues for a predetermined period of time, a control means (20) increases and renews the initial target speed (Ntgel) each time by the predetermined quantity as a target speed which is calculated based on an electric load, thus the speed can be increased to the preset upper limit target speed (MX).

Description

この発明は、内燃機関のアイドル制御装置に係り、始動直後の暖機中におけるアイドル回転数を制御する内燃機関のアイドル制御装置に関する。   The present invention relates to an idle control device for an internal combustion engine, and more particularly to an idle control device for an internal combustion engine that controls the idling speed during warm-up immediately after startup.

車両の内燃機関においては、内燃機関の水温、回転数、電気負荷を含む運転状態を検出する各検出手段を備え、この各検出手段により検出された運転状態に基づいて目標回転数と一致するように吸入空気量を変更する回転数フィードバック制御を行うアイドル制御装置を設けているものがある。   The internal combustion engine of the vehicle includes detection means for detecting an operation state including the water temperature, the rotation speed, and the electric load of the internal combustion engine, and matches the target rotation speed based on the operation state detected by each detection means. Some of them are provided with an idle control device that performs rotation speed feedback control for changing the intake air amount.

特許第3254262号公報Japanese Patent No. 3254262 特開2003−336532号公報JP 2003-336532 A

特許文献1に係るエンジンのアイドル回転数制御装置は、アイドル運転時に電気負荷が急増したときに、その急増の大きさに応じて最適な速度でアイドル空気量を制御するものである。
特許文献2に係る内燃機関の空気量制御装置は、オルタネータ負荷トルクに応じて内燃機関への吸入空気量を補正するものである。
The engine idle speed control device according to Patent Document 1 controls the amount of idle air at an optimum speed according to the magnitude of the sudden increase when the electrical load suddenly increases during idle operation.
The air amount control device for an internal combustion engine according to Patent Document 2 corrects the intake air amount to the internal combustion engine in accordance with the alternator load torque.

ところで、従来、内燃機関のアイドル制御装置において、目標回転数の設定にあっては、図9に示すように、内燃機関の冷却水温度である水温から回転数を算出し、また、発電機(オルタネータ)の発電量から電気負荷を推定してこの電気負荷に対応する回転数を算出し、そして、この算出された回転数の大きい方の値を最終的な目標回転数として設定している。例えば、水温(80℃)により算出された回転数が900rpmで、電気負荷により算出された回転数が1100rpmの場合に、アイドル運転時の目標回転数は、大きい方の値を選択するため、1100rpmとなる。なお、同様に、他のパラメータに基づく目標回転数がこの他にある場合でも、回転数の大きい方の値を目標回転数として選択している。
また、上記の目標回転数の設定にあっては、電気負荷やシフトレンジ状態を考慮し、図10に示すように、エアコン(A/C)スイッチがオン又はシフトレンジスイッチがNレンジの場合に、目標回転数(N1)を設定する一方、それ以外の条件下では、他の目標回転数(N2)を設定している。
By the way, in the conventional idle control device for an internal combustion engine, when setting the target rotational speed, as shown in FIG. 9, the rotational speed is calculated from the water temperature which is the cooling water temperature of the internal combustion engine, and the generator ( The electric load is estimated from the power generation amount of the alternator), the rotation speed corresponding to this electric load is calculated, and the larger value of the calculated rotation speed is set as the final target rotation speed. For example, when the rotation speed calculated by the water temperature (80 ° C.) is 900 rpm and the rotation speed calculated by the electric load is 1100 rpm, the target rotation speed during idle operation is selected to be the larger value because 1100 rpm It becomes. Similarly, even when there are other target rotational speeds based on other parameters, the value with the larger rotational speed is selected as the target rotational speed.
Further, in setting the target rotational speed, the electric load and the shift range state are taken into consideration, as shown in FIG. 10, when the air conditioner (A / C) switch is on or the shift range switch is in the N range. While setting the target rotational speed (N1), other target rotational speeds (N2) are set under other conditions.

図11に示すように、燃費対応を考慮して発電機の発電量(仕事量)の見合った目標回転数を設定するために、回転数フィードバック(F/B)時において、内燃機関1の回転数(Ne)が初期目標回転数(Ntgel)から所定量(α)少ない判定回転数(Ntgel−α)以上で、且つ発電量(Dfr:デューティ値)が所定値(β)以上である場合が、所定時間(T2)継続する際には、優先順位1として、初期目標回転数(Ntgel)を所定量(Nadd1)だけ増加した回転数の値と予め所定値に設定された下限目標回転数(MN)との小さい方(min)を選択して、目標回転数を設定する。
また、内燃機関1の回転数(Ne)が初期目標回転数(Ntgel)に所定量(γ)を加算した判定回転数(Ntgel+γ)未満で、且つ発電量(Dfr)が所定値(δ)未満である場合が、所定時間(T2)継続する際には、優先順位2として、初期目標回転数(Ntgel)を所定量(Nadd2)だけ減少した回転数の値と予め所定値に設定された上限目標回転数(MX)との大きい方(max)を選択して、目標回転数を設定する。そして、上記以外の条件の下では、優先順位3として、初期目標回転数(Ntgel)と上限目標回転数(MX)との大きい方(Max)を選択して、目標回転数を設定する。
As shown in FIG. 11, the rotational speed of the internal combustion engine 1 is set at the time of rotational speed feedback (F / B) in order to set a target rotational speed corresponding to the power generation amount (work amount) of the generator in consideration of fuel consumption. In some cases, the number (Ne) is equal to or greater than the determined rotational speed (Ntgel−α), which is a predetermined amount (α) less than the initial target rotational speed (Ntgel), and the power generation amount (Dfr: duty value) is equal to or greater than the predetermined value (β). When continuing for the predetermined time (T2), as the priority 1, the value of the rotational speed obtained by increasing the initial target rotational speed (Ntgel) by a predetermined amount (Nadd1) and the lower limit target rotational speed (preliminarily set to a predetermined value) Select the smaller (min) of (MN) and set the target rotational speed.
Further, the rotation speed (Ne) of the internal combustion engine 1 is less than a determination rotation speed (Ntgel + γ) obtained by adding a predetermined amount (γ) to the initial target rotation speed (Ntgel), and the power generation amount (Dfr) is less than a predetermined value (δ). In the case where the predetermined time (T2) is continued, the priority number 2 is set as the priority order 2, and the value of the rotational speed obtained by reducing the initial target rotational speed (Ntgel) by a predetermined amount (Nadd2) and the upper limit set in advance to the predetermined value. The larger one (max) of the target rotational speed (MX) is selected and the target rotational speed is set. Under conditions other than the above, as priority 3, the larger one (Max) of the initial target rotational speed (Ntgel) and the upper limit target rotational speed (MX) is selected, and the target rotational speed is set.

しかしながら、サーモスタットが閉まった状態でラジエータに冷却水が流れていない場合に、水温だけでは内燃機関が暖機完了判定条件であるのかどうかを判断ができないおそれがあり、この場合、回転数の不安定化の要因として、吸気系が冷えているため、噴射燃料の霧化が悪くなって燃焼が安定しない不具合がある。
また、バッテリの温度が0℃以上であれば、バッテリヘ常に充電をしているため、発電機には常に一定の負荷がかかっている状態である。しかし、ヘッドライトやワイパー、ターンシグナル等の電気負荷の変化が直接発電特性に影響を与えるために、トルクに変化が起きる。そして、バッテリの温度が0℃以下(氷点下)の条件下では、発電特性の変化が短い時間(周期)に起こる現象が現れるため、所定時間内において所定量の発電量を計測することができず、目標回転数を上昇設定することができなかった。
However, when the cooling water is not flowing to the radiator with the thermostat closed, it may not be possible to determine whether or not the internal combustion engine is in the warm-up completion determination condition only with the water temperature. As a cause of the change, the intake system is cold, and there is a problem that the atomization of the injected fuel becomes worse and the combustion is not stabilized.
Further, if the battery temperature is 0 ° C. or higher, the battery is always charged, so that the generator is always under a certain load. However, changes in electrical loads such as headlights, wipers, and turn signals directly affect power generation characteristics, resulting in changes in torque. Under the condition where the temperature of the battery is 0 ° C. or lower (below freezing point), a phenomenon occurs in which the change in power generation characteristics occurs in a short time (cycle), and thus a predetermined amount of power generation cannot be measured within a predetermined time. The target rotational speed could not be set to increase.

上述したように、電気負荷による回転数の上昇の判断ができない場合には、図12に示すように、水温により算出される目標回転数となる。しかしながら、水温から算出される回転数では、発電機の発電状態を示すFR端子の値であるFR値が99%(最大)で目標回転数が上昇しないが(図12において、G1(時間t2)、G2(時間t4)、G3(時間t6)で示す)、発電特性の変化に対応できないときには、発電機の負荷が抜けた箇所で(図12において、S1(時間t1)、S2(時間t3)、S3(時間t5)、S4(時間t7)で示す)、回転数のハンチングが発生する。そして、発電機の負荷としてFR値が80〜100%で変動しているが、この変動している周期が短いために、現状の制御では、発電機の負荷が大きいと判断せず、よって、目標回転数を上昇させることができなく、回転数が上昇しないために、回転数のハンチングが収まらない現象が生ずるという不都合があった。   As described above, when it is not possible to determine the increase in the rotational speed due to the electrical load, the target rotational speed is calculated based on the water temperature as shown in FIG. However, in the rotational speed calculated from the water temperature, the FR value, which is the value of the FR terminal indicating the power generation state of the generator, is 99% (maximum), but the target rotational speed does not increase (in FIG. 12, G1 (time t2) , G2 (time t4), G3 (time t6)), when it is not possible to cope with the change in the power generation characteristics, at the location where the load of the generator is removed (in FIG. 12, S1 (time t1), S2 (time t3) , S3 (time t5), S4 (time t7)), and hunting of the rotational speed occurs. And although the FR value fluctuates as 80 to 100% as the load of the generator, since the changing period is short, the current control does not determine that the load of the generator is large. Since the target rotational speed cannot be increased and the rotational speed does not increase, there is a disadvantage that a phenomenon that the hunting of the rotational speed does not fit occurs.

また、寒冷地(氷点下での環境条件)の場合にあっては、内燃機関を始動後、即車両の走行を開始し、この車両の走行後で、サーモスタットが開動作していなく、内燃機関の冷却水温度である水温が暖気完了判定の設定された設定水温に達している条件下では、アイドル回転数が安定し難いものである。
このように、アイドル回転数が安定しない理由としては、水温だけ暖気完了の判断をしているが、エンジンルーム内は外気温と略同値である点、エンジンルーム内の温度が上昇していないため、バッテリが温まりにくい点、バッテリが氷点下の条件下では充電ができないために電流が流れない点、寒冷地にて市街地での使用が主な車両ではバッテリが氷点下の条件下では充電ができないためにバッテリが弱り気味となる点、電流が流れないことでバッテリ本体の温度が上がりにくい点等の各要因によって、寒冷地では、バッテリヘの電力供給が無い(充電できない)ため、電気負荷(ヘッドライト、ブロア等)の変化を直接発電機が補うため、発電機の出力特性が急変することによって、暖機判定の完了時のアイドル回転数(燃費への影響を考え低いアイドル回転数を設定)では不安定となり、また、アイドル回転数が安定しないことで、運転者に不快感を与えるという不都合があった。つまり、電気負荷(ヘッドライト、エアコン(A/C)によるブロア等)が増加することで、発電機の発電による負荷が増加し、この負荷の増加に対応して、発電機による発電量を確保するために、回転数を上昇させるが、水温のみで暖機状態を推定し、目標回転数を設定しているので、寒冷地のような環境下では、設定された目標回転数では内燃機関の回転数が不足してしまうという不都合がある。
Also, in the case of cold regions (environmental conditions below freezing point), after the internal combustion engine is started, the vehicle starts traveling immediately. After the vehicle travels, the thermostat is not opened and the internal combustion engine Under the condition that the water temperature, which is the cooling water temperature, has reached the set water temperature set for the warm-up completion determination, the idling speed is difficult to stabilize.
As described above, the reason why the idling engine speed is not stable is that the warm-up is determined only by the water temperature, but the temperature in the engine room is substantially the same as the outside air temperature, and the temperature in the engine room has not increased. The battery is difficult to warm, the battery cannot be charged under freezing conditions, so no current flows, and the vehicle that is mainly used in urban areas in cold regions cannot be charged under freezing conditions Due to factors such as the weakness of the battery and the difficulty in raising the temperature of the battery body due to the absence of current flow, there is no power supply to the battery (cannot be recharged) in cold regions. Because the generator directly compensates for changes in the blower, etc., the output characteristics of the generator change suddenly. For example setting a lower idle speed), the unstable, also idle speed by not stable, there is an inconvenience that discomfort to the driver. In other words, the electrical load (headlight, blower by air conditioner (A / C), etc.) increases, so the load generated by the generator increases, and the amount of power generated by the generator is secured in response to this increase in load. In order to increase the engine speed, the warm-up state is estimated only by the water temperature and the target engine speed is set. There is a disadvantage that the rotational speed is insufficient.

更に、上記の特許文献1、2では、電気負荷の増大に伴って吸入空気量を増加することを開示しているが、余剰電力をバッテリに充電できない状態や、電気負荷が大きいと判断されない状態を考慮しておらず、アイドル回転数が安定せず、また、アイドル空気量の制御が不十分であり、改善が望まれていた。   Furthermore, in the above Patent Documents 1 and 2, it is disclosed that the intake air amount is increased with an increase in the electric load, but the state where the surplus power cannot be charged to the battery or the electric load is not determined to be large. Thus, the idling speed is not stable, the control of the idling air amount is insufficient, and improvement has been desired.

そこで、この発明の目的は、氷点下となる寒冷時であって始動直後のアイドル回転数を安定化すること、回転数フィードバック制御のハンチングの発生を抑制及び早期に解消すること、回転数の変動発生によって乗員に与える不快感を低減することができる内燃機関のアイドル制御装置を提供することにある。   Accordingly, an object of the present invention is to stabilize the idling engine speed immediately after start-up when the temperature is below freezing, to suppress and quickly eliminate the occurrence of hunting in the engine speed feedback control, and to generate engine speed fluctuations. An object of the present invention is to provide an idling control device for an internal combustion engine that can reduce discomfort given to the occupant.

この発明は、内燃機関の水温、回転数、電気負荷を含む運転状態を検出する各検出手段を設け、この各検出手段により検出された運転状態に基づいて一つ以上の目標回転数を算出し且つ最終的に―つの目標回転数を設定して前記内燃機関の回転数が前記最終的な目標回転数と一致するように吸入空気量を変更する回転数フィードバック制御を行う制御手段を設けた内燃機関のアイドル制御装置において、前記内燃機関にかかる電気負荷に相当する発電量を検出する発電量検出手段を設け、前記制御手段は、始動時水温又は所定の運転後の水温に基づいて前記内燃機関の暖機完了を判定する一方、始動時水温が予め暖機判定とは別に設けた設定値より高く、且つ暖機完了判定を満たしておらず、且つ前記内燃機関の回転数が初期目標回転数から所定量少ない判定回転数以上で、且つ発電量が所定値以上である場合が所定時間継続する際に、電気負荷に基づいて算出する目標回転数として初期目標回転数を所定量ずつ増加更新して予め設定した上限目標回転数まで増加可能とすることを特徴とする。   The present invention provides each detection means for detecting an operation state including the water temperature, the rotation speed, and the electric load of the internal combustion engine, and calculates one or more target rotation speeds based on the operation state detected by each detection means. And finally-an internal combustion engine provided with control means for performing rotational speed feedback control for setting one target rotational speed and changing the intake air amount so that the rotational speed of the internal combustion engine matches the final target rotational speed In the engine idle control device, a power generation amount detection means for detecting a power generation amount corresponding to an electric load applied to the internal combustion engine is provided, and the control means is based on a water temperature at start-up or a water temperature after a predetermined operation. On the other hand, the start-up water temperature is higher than a preset value provided separately from the warm-up determination, does not satisfy the warm-up completion determination, and the rotational speed of the internal combustion engine is the initial target rotational speed From When the predetermined number of revolutions that are less than the predetermined value and the power generation amount is greater than or equal to the predetermined value continues for a predetermined time, the initial target revolution is incremented and updated by a predetermined amount as the target revolution calculated based on the electrical load. It is possible to increase up to a set upper limit target rotational speed.

この発明の内燃機関のアイドル制御装置は、氷点下となる寒冷時であって始動直後のアイドル回転数を安定化させることができ、回転数フィードバック制御のハンチングの発生を抑制ないし早期に解消することができ、しかも、回転数の変動発生によって乗員に与える不快感を低減することができる。   The idle control device for an internal combustion engine according to the present invention can stabilize the idling engine speed immediately after start-up when it is cold below freezing point, and can suppress or eliminate the occurrence of hunting in the engine speed feedback control early. In addition, it is possible to reduce discomfort given to the occupant due to the occurrence of fluctuations in the rotational speed.

図1はアイドル制御装置のシステム構成図である。(実施例1)FIG. 1 is a system configuration diagram of an idle control device. Example 1 図2はアイドル制御装置のブロック図である。(実施例1)FIG. 2 is a block diagram of the idle control device. Example 1 図3は暖機完了判定の成立・不成立の一の例を示す説明図である。(実施例1)FIG. 3 is an explanatory diagram showing an example of establishment / non-establishment of the warm-up completion determination. Example 1 図4は暖機完了判定の成立・不成立の他の例を示す説明図である。(実施例1)FIG. 4 is an explanatory view showing another example of establishment / non- establishment of the warm-up completion determination. Example 1 図5は最低目標回転数を含む各目標回転数の設定を示す説明図である。(実施例1)FIG. 5 is an explanatory diagram showing the setting of each target rotational speed including the minimum target rotational speed. Example 1 図6は燃費対応を考慮して発電機の電気負荷の発電量(仕事量)に見合った回転数を設定する場合であって、初期目標回転数を所定量ずつ増加更新して予め設定した上限目標回転数まで増加可能とする場合の各回転数を設定する説明図である。(実施例2)FIG. 6 shows a case where the number of revolutions corresponding to the power generation amount (work amount) of the electric load of the generator is set in consideration of the fuel consumption correspondence, and the initial target revolution number is increased and updated by a predetermined amount and set in advance. It is explanatory drawing which sets each rotation speed in the case where it can increase to a target rotation speed. (Example 2) 図7は特定の電気負荷用スイッチを備えたアイドル制御装置のブロック図である。(実施例2の変形例)FIG. 7 is a block diagram of an idle control device having a specific electrical load switch. (Modification of Example 2) 図8はパータベーションを禁止するように判定する場合の説明図である。(実施例3)FIG. 8 is an explanatory diagram in the case of determining to prohibit perturbation. (Example 3) 図9は従来の目標回転数を設定する説明図である。(従来例)FIG. 9 is an explanatory diagram for setting a conventional target rotational speed. (Conventional example) 図10は従来で電気負荷等により目標回転数を設定する説明図である。(従来例)FIG. 10 is an explanatory diagram for setting a target rotational speed by an electric load or the like in the prior art. (Conventional example) 図11は従来で燃費対応を考慮して発電機の電気負荷の発電量(仕事量)に見合った目標回転数を設定する説明図である。(従来例)FIG. 11 is an explanatory diagram for setting a target rotational speed commensurate with the power generation amount (work amount) of the electric load of the generator in consideration of fuel consumption. (Conventional example) 図12は従来で回転数のハンチングの発生状態を示すタイムチャートである。(従来例)FIG. 12 is a time chart showing a conventional state of occurrence of hunting of the rotational speed. (Conventional example)

この発明は、氷点下となる寒冷時であって始動直後のアイドル回転数を安定化すること、回転数フィードバック制御のハンチングの発生を抑制ないし早期に解消すること、回転数の変動発生によって乗員に与える不快感を低減することの目的を、電気負荷の影響が顕著に現れる寒冷時の暖機中に、ある程度長時間にわたる大きな電気負荷がない場合でも、電気負荷に応じて目標回転数を設定して実現するものである。   The present invention stabilizes the idling engine speed immediately after start-up when it is cold below freezing point, suppresses or eliminates the occurrence of hunting in the engine speed feedback control, and gives the occupant by generating the engine speed fluctuation. The purpose of reducing discomfort is to set the target speed according to the electric load even when there is no large electric load over a long period of time during the warm-up in cold weather where the influence of the electric load is significant. It is realized.

図1〜図5は、この発明の実施例1を示すものであって、請求項4に係る発明である。
図1において、1は車両に搭載される内燃機関、2はこの内燃機関1に連結された駆動系(変速機)である。この内燃機関1には、吸気系で、吸気通路3を形成する吸気マニホルド4の下流端部が連結しているとともに、排気系で、排気通路5を形成する排気マニホルド6の上流端部が連結している 吸気マニホルド4の上流端部には、スロットルバルブ7を備えたスロットルボディ8を介して吸気管9の下流端部が連結している。この吸気管9の上流端部には、エアクリーナ10が連結している。
また、内燃機関1には、発電機(オルタネータ)11が付設されているとともに、インレットパイプ12及びアウトレットパルプ13を介して冷却水を冷却するラジエータ14が付設され、また、インレットパイプ12の手前の箇所でラジエータ14への冷却水流量を調整するように開閉動作するサーモスタット15が設けられている。
また、内燃機関1には、アイドル制御装置16が設けられる。
このアイドル制御装置16は、スロットルバルブ7を迂回して吸気通路3に連通するバイパス通路17を形成するパイパス空気管18と、このパイパス空気管18の途中に設けられたアイドル空気量制御弁(ISCバルブ)19と、このアイドル空気量制御弁19に連絡した制御手段20を備え、アイドル運転時の内燃機関1への空気量を制御する。
1 to 5 show a first embodiment of the present invention, which is an invention according to claim 4. FIG.
In FIG. 1, reference numeral 1 denotes an internal combustion engine mounted on a vehicle, and 2 denotes a drive system (transmission) connected to the internal combustion engine 1. The internal combustion engine 1 is connected to the downstream end portion of the intake manifold 4 that forms the intake passage 3 in the intake system, and is connected to the upstream end portion of the exhaust manifold 6 that forms the exhaust passage 5 in the exhaust system. The downstream end of the intake pipe 9 is connected to the upstream end of the intake manifold 4 via a throttle body 8 having a throttle valve 7. An air cleaner 10 is connected to the upstream end of the intake pipe 9.
Further, the internal combustion engine 1 is provided with a generator (alternator) 11 and a radiator 14 for cooling the cooling water via the inlet pipe 12 and the outlet pulp 13, and in front of the inlet pipe 12. A thermostat 15 that opens and closes so as to adjust the flow rate of the cooling water to the radiator 14 at a location is provided.
The internal combustion engine 1 is provided with an idle control device 16.
The idle control device 16 includes a bypass air pipe 18 that forms a bypass passage 17 that bypasses the throttle valve 7 and communicates with the intake passage 3, and an idle air amount control valve (ISC) provided in the middle of the bypass air pipe 18. And a control means 20 connected to the idle air amount control valve 19 to control the air amount to the internal combustion engine 1 during idling.

図2に示すように、制御手段20には、入力側で、内燃機関1の水温、回転数、電気負荷を含む運転状態を検出する各検出手段として、イグニションスイッチ21と、内燃機関1の回転数(Ne)を検出可能なクランク角検出手段22と、スロットル開度を検出するスロットル検出手段23と、内燃機関1の冷却水温度である水温を検出する水温検出手段24と、吸入空気の温度である吸気温を検出する吸気温検出手段25と、スモールランプ等の電気負荷を検出する電気負荷検出手段26と、空調装置(エアコン:A/C)をオン・オフするエアコンスイッチ27と、駆動系(変速機)2のレンジを検出するシフトレンジスイッチ28とが連絡している。
また、制御手段20には、出力側で、燃料噴射弁29と、イグニションコイル30と、アイドル空気量制御弁19と、エアコンコンプレッサクラッチ31と、自動変速機用コントローラ32とが接続している。
制御手段20は、燃料噴射制御部33と、点火時期制御部34と、アイドル空気量制御部35と、エアコン制御部36と、自動変速機制御信号部37と、電気負荷演算部38と、回転数設定部39と、暖機完了判定部40とを備えている。
As shown in FIG. 2, the control means 20 includes an ignition switch 21 and a rotation of the internal combustion engine 1 as detection means for detecting the operation state including the water temperature, the rotational speed, and the electric load of the internal combustion engine 1 on the input side. Crank angle detecting means 22 capable of detecting the number (Ne), throttle detecting means 23 for detecting the throttle opening, water temperature detecting means 24 for detecting the water temperature that is the cooling water temperature of the internal combustion engine 1, and the temperature of the intake air An intake air temperature detecting means 25 for detecting the intake air temperature, an electric load detecting means 26 for detecting an electric load such as a small lamp, an air conditioner switch 27 for turning on / off an air conditioner (air conditioner: A / C), and driving A shift range switch 28 for detecting the range of the system (transmission) 2 is in communication.
Further, on the output side, a fuel injection valve 29, an ignition coil 30, an idle air amount control valve 19, an air conditioner compressor clutch 31, and an automatic transmission controller 32 are connected to the control means 20.
The control means 20 includes a fuel injection control unit 33, an ignition timing control unit 34, an idle air amount control unit 35, an air conditioner control unit 36, an automatic transmission control signal unit 37, an electric load calculation unit 38, and a rotation. A number setting unit 39 and a warm-up completion determination unit 40 are provided.

制御手段20は、上記の各検出手段により検出された運転状態に基づいて一つ以上の目標回転数を算出し且つ最終的に―つの目標回転数を設定して内燃機関1の回転数が最終的な目標回転数と一致するように吸入空気量を変更する回転数フィードバック制御を行うものである。ここで、上記の内燃機関1の回転数及び目標回転数は、単位当たりの回転数であって、回転速度と同義である。   The control means 20 calculates one or more target rotational speeds based on the operating state detected by each of the detecting means and finally sets one target rotational speed so that the rotational speed of the internal combustion engine 1 is finally reached. Rotational speed feedback control is performed to change the intake air amount so as to match the target rotational speed. Here, the rotational speed and the target rotational speed of the internal combustion engine 1 are the rotational speed per unit and are synonymous with the rotational speed.

制御手段20では、内燃機関1の暖機完了判定を実施する。
この暖機完了判定とは、水温が一定温度(暖機完了判定に用いられる設定値)(例えば、90℃)に達し、一定時間が経過してサーモスタット15が開動作し、ラジエータ14まで冷却水が回った状態である。
具体的には、この暖機完了判定は、図3に示すように、優先順位1として、始動時水温≧設定値ST1(℃)の条件、又は停止モードを抜けて一度でも水温(WT)が、WT≧設定値TH1(℃)になってから一定時間T1(sec)以上経過した時の条件のいずれか1つの条件を満たしたときに成立されるが、それ以外の条件下では、優先順位2として、不成立とされる。
あるいは、図4に示すように、この暖機完了判定は、優先順位1として、始動時水温≧設定値ST1(℃)の条件、又は、停止モードを抜けて一度でも水温(WT)が、WT≧設定値TH1(℃)になってから一定時間T1(sec)以上経過した時の条件、又は、吸気温(AT)が、AT≧設定値TA1(℃)の条件のいずれか1つの条件を満たしたときに成立されるが、それ以外の条件下では、優先順位2として、不成立とされる。
In the control means 20, the warm-up completion determination of the internal combustion engine 1 is performed.
In this warm-up completion determination, the water temperature reaches a certain temperature (set value used for the warm-up completion determination) (for example, 90 ° C.), the thermostat 15 is opened after a certain period of time, and the cooling water is supplied to the radiator 14. Is in a state of turning.
Specifically, as shown in FIG. 3, this warm-up completion determination is performed in the order of priority 1, as shown in FIG. 3, at the time of starting water temperature ≧ set value ST1 (° C.) WT ≧ set value TH1 (° C.), which is satisfied when any one of the conditions when a predetermined time T1 (sec) or more has elapsed is satisfied. 2 is not established.
Alternatively, as shown in FIG. 4, this warm-up completion determination is performed with priority 1 as the condition of the starting water temperature ≧ the set value ST1 (° C.), or even when the water temperature (WT) exits the stop mode even if the water temperature (WT) is WT. ≧ Conditions when a certain time T1 (sec) or more has passed since the set value TH1 (° C.) or the intake air temperature (AT) is AT ≧ set value TA1 (° C.) It is established when it is satisfied, but it is not established as priority 2 under other conditions.

そして、この実施例1において、図5に示すように、制御手段20は、始動時水温又は所定の運転後の水温に基づいて内燃機関1の暖機完了を判定する一方、始動時水温が予め暖機判定での設定値(ST1)とは別に設けた設定値(ST2)よりも高く、且つ暖機完了判定を満たしていない場合に(暖機完了判定不成立時)、電気負荷に基づく内燃機関1の最低目標回転数(NLow)を設定し、これを優先順位1とする。
また、制御手段20は、優先順位2として、エアコンスイッチ27がオン又はシフトレンジスイッチ28がNレンジの場合に、最低目標回転数(NLow)よりも高い第1の目標回転数(N1)を設定し、一方で、それ以外の条件下では、優先順位3として、第1の目標回転数(N1)よりも高い第2の目標回転数(N2)を設定する。上記の第1の目標回転数(N1)及び第2の目標回転数(N2)は、従来のものと同一である。
このように、この実施例1では、従来の第1の目標回転数(N1)よりも低い最低目標回転数(NLow)を新たに設定することにより、内燃機関1の回転数が急激に落ち込むことがなく、それに起因する運転者の不快感を低減できる。
そして、制御手段20は、請求項5に係る発明に関連して、水温に基づいて目標回転数を算出し、この水温に基づいて算出した目標回転数と電気負荷に基づいて算出した目標回転数とを含む複数の目標回転数から相互比較して、内燃機関1の最終的な目標回転数を選定する。
これにより、内燃機関1の運転状態に応じたさらに最適な目標回転数を設定でき、アイドル回転数を安定させることができる。つまり、最終的な目標回転数を、制御サイクル毎に、算出された複数の目標回転数の候補の中から選択して設定し、そして、より高い回転数となる目標回転数を選択することであって、水温から算出した目標回転数と電気負荷から算出した最低目標回転数(NLow)とから選択して最終目標回転数を決定する。
この結果、この実施例1では、上記の始動時水温、暖機完了判定等についてモニターをすることで、例えば、特定条件下(寒冷地)であることを判断して、目標回転数を発電機11の負荷に見合った目標回転数に設定し、アイドル空気量制御弁19を作動して内燃機関1へのアイドル空気量を制御することで、内燃機関1の回転数を上昇させてアイドル回転数の安定化を図ることができる。
In the first embodiment, as shown in FIG. 5, the control means 20 determines completion of warming-up of the internal combustion engine 1 based on the starting water temperature or the water temperature after a predetermined operation, while the starting water temperature is determined in advance. Internal combustion engine based on electric load when higher than set value (ST2) provided separately from set value (ST1) in warm-up determination and when warm-up completion determination is not satisfied (when warm-up completion determination is not satisfied) A minimum target rotational speed (NLow) of 1 is set, and this is set as a priority order 1.
The control means 20 sets the first target rotational speed (N1) higher than the minimum target rotational speed (NLow) as the priority order 2 when the air conditioner switch 27 is on or the shift range switch 28 is in the N range. On the other hand, under other conditions, the second target rotational speed (N2) higher than the first target rotational speed (N1) is set as the priority order 3. The first target rotational speed (N1) and the second target rotational speed (N2) are the same as the conventional one.
As described above, in the first embodiment, the rotational speed of the internal combustion engine 1 drops sharply by newly setting the lowest target rotational speed (NLow) lower than the conventional first target rotational speed (N1). And the driver's discomfort caused by it can be reduced.
Then, in relation to the invention according to claim 5, the control means 20 calculates the target rotational speed based on the water temperature, and the target rotational speed calculated based on the target rotational speed calculated based on the water temperature and the electric load. The final target rotational speed of the internal combustion engine 1 is selected from a plurality of target rotational speeds including the above.
As a result, a further optimum target rotational speed corresponding to the operating state of the internal combustion engine 1 can be set, and the idle rotational speed can be stabilized. In other words, the final target rotational speed is selected and set from a plurality of calculated target rotational speed candidates for each control cycle, and the target rotational speed that is higher is selected. Then, the final target rotational speed is determined by selecting from the target rotational speed calculated from the water temperature and the minimum target rotational speed (NLow) calculated from the electric load.
As a result, in the first embodiment, by monitoring the start-up water temperature, the warm-up completion determination, and the like, for example, it is determined that the specific condition (cold region) is set, and the target rotational speed is set to the generator. 11 is set to a target rotational speed corresponding to the load of 11 and the idle air amount control valve 19 is operated to control the idle air amount to the internal combustion engine 1, thereby increasing the rotational speed of the internal combustion engine 1 to thereby increase the idle rotational speed. Can be stabilized.

図6は、この発明の実施例2を示すものである。
以下の実施例においては、上述の実施例1と同一機能を果たす箇所には同一符号を付して説明する。
この実施例2の特徴とするところは、請求項1に係る発明であって、以下の点にある。 図6に示すように、制御手段20は、始動時水温又は所定の運転後の水温に基づいて内燃機関1の暖機完了を判定する一方、始動時水温が予め暖機判定での設定値(ST1)とは別に設けた設定値(ST2)よりも高く、且つ暖機完了判定を満たしておらず(暖機完了判定不成立時)、且つ内燃機関1の回転数(Ne)が初期目標回転数(Ntgel)から所定量(α)少ない判定回転数(Ntgel−α)以上で、且つ発電量(Dfr)が所定値(β)以上である場合が、所定時間(T2)継続する際に、電気負荷に基づいて算出する目標回転数として初期目標回転数(Ntgel)を所定量(Nadd0.5、Nadd1…)ずつ増加更新して予め設定した上限目標回転数(NX)まで増加可能とする。
FIG. 6 shows Embodiment 2 of the present invention.
In the following embodiments, portions that perform the same functions as those in the first embodiment will be described with the same reference numerals.
The feature of the second embodiment is the invention according to claim 1 in the following points. As shown in FIG. 6, the control means 20 determines completion of warming-up of the internal combustion engine 1 based on the water temperature at the start or the water temperature after a predetermined operation, while the water temperature at the start is set in advance in the set value ( It is higher than a set value (ST2) provided separately from ST1), does not satisfy the warm-up completion determination (when the warm-up completion determination is not satisfied), and the rotational speed (Ne) of the internal combustion engine 1 is the initial target rotational speed. When the determined rotational speed (Ntgel−α) is greater than (Ntgel) by a predetermined amount (α) and the power generation amount (Dfr) is greater than or equal to a predetermined value (β), As the target rotational speed calculated based on the load, the initial target rotational speed (Ntgel) is increased and updated by a predetermined amount (Nadd0.5, Nadd1...), And can be increased to a preset upper limit target rotational speed (NX).

即ち、制御手段20は、回転数フィードバック(F/B)時において、始動時水温が予め暖機判定での設定値(ST1)とは別に設けた設定値(ST2)よりも高く、且つ暖機完了判定を満たしておらず(暖機完了判定不成立時)、且つ内燃機関1の回転数(Ne)が初期目標回転数(Ntgel)から所定量(α)少ない判定回転数(Ntgel−α)以上で、且つ発電量(Dfr)が所定値(β)以上である場合が、所定時間(T2)継続する際に、優先順位0.5として、初期目標回転数(Ntgel)を所定量(Nadd0.5)だけ増加した回転数の値と予め所定値に設定される目標回転数(Mset)との小さい方(min)を選択して、目標回転数を設定する。
この優先順位0.5においては、先ず、始動時水温が予め暖機判定での設定値(ST1)とは別に設けた設定値(ST2)よりも高く、且つ暖機完了判定を満たしていない(暖機完了判定不成立時)場合に始動時の環境条件を判定し、次いで、内燃機関1の回転数(Ne)が初期目標回転数(Ntgel)から所定量(α)少ない判定回転数(Ntgel−α)以上か否かを判定することで、電気負荷よる算出する目標回転数に対して、ある一定の回転数の値を引いた回転数よりも、実回転数が低い場合に、発電機11の負荷に対して回転数が低く安定しない状態を判断し、さらに、発電量(Dfr)が所定値(β)以上である場合が所定時間(T2)継続して発電機11の負荷を算出するためにFR値を読み取り、そして、これらの条件で、低温環境化において、内燃機関1の回転数が安定している回転数よりも低い回転数なった時に、発電機11の負荷を割り出し、発電機11の負荷(仕事量)に見合った回転数に段階的に上げている。
In other words, the control means 20 is configured so that, at the time of the rotation speed feedback (F / B), the water temperature at the start is higher than the set value (ST2) provided separately from the set value (ST1) in the warm-up determination in advance. Completion determination is not satisfied (when warm-up completion determination is not satisfied), and the rotation speed (Ne) of the internal combustion engine 1 is equal to or greater than a determination rotation speed (Ntgel−α) that is a predetermined amount (α) less than the initial target rotation speed (Ntgel). And when the power generation amount (Dfr) is equal to or greater than the predetermined value (β), when the predetermined time (T2) continues, the priority target rotation number (Ntgel) is set to the predetermined amount (Nadd0. 5) The smaller value (min) of the value of the increased rotational speed and the target rotational speed (Mset) set in advance to a predetermined value is selected to set the target rotational speed.
In this priority order 0.5, first, the starting water temperature is higher than a preset value (ST2) provided separately from the preset value (ST1) in the warm-up determination and does not satisfy the warm-up completion determination ( If the warm-up completion determination is not established, the environmental condition at the time of starting is determined, and then the determined rotational speed (Ntgel−) where the rotational speed (Ne) of the internal combustion engine 1 is a predetermined amount (α) less than the initial target rotational speed (Ntgel). When the actual rotational speed is lower than the rotational speed obtained by subtracting a certain rotational speed value from the target rotational speed calculated by the electric load by determining whether or not α) or more, the generator 11 The state where the rotational speed is low and unstable with respect to the load of the generator 11 is determined, and the load of the generator 11 is calculated continuously for a predetermined time (T2) when the power generation amount (Dfr) is equal to or greater than the predetermined value (β). In order to read the FR value and under these conditions In the temperature environment, when the rotational speed of the internal combustion engine 1 is lower than the stable rotational speed, the load of the generator 11 is determined, and the rotational speed is commensurate with the load (work load) of the generator 11. Raised in stages.

また、内燃機関1の回転数(Ne)が初期目標回転数(Ntgel)から所定量(α)少ない判定回転数(Ntgel−α)以上で、且つ発電量(Dfr)が所定値(β)以上である場合が、所定時間(T2)継続する際には、優先順位1として、初期目標回転数(Ntgel)を所定量(Nadd1)だけ増加した回転数の値と予め所定値に設定された下限目標回転数(MN)との小さい方(min)を選択して、目標回転数を設定する。
更に、内燃機関1の回転数(Ne)が初期目標回転数(Ntgel)に所定量(γ)加算した判定回転数(Ntgel+γ)未満で、且つ発電量(Dfr)が所定値(δ)未満である場合が、所定時間(T2)継続する際には、優先順位2として、初期目標回転数(Ntgel)を所定量(Nadd2)だけ減少した回転数の値と予め所定値に設定された上限目標回転数(MX)との大きい方(max)を選択して、目標回転数を設定する。
そして、上記以外の条件の下では、優先順位3として、初期目標回転数(Ntgel)と上限目標回転数(MX)との大きい方(max)を選択して、目標回転数を設定する。
この実施例2では、最終的な目標回転数を、制御サイクル毎に、算出された複数の目標回転数候補の中から選択して設定し、そして、より高い回転数となる目標回転数を選択することであって、水温から算出した目標回転数と電気負荷から算出した目標回転数とから、選択して最終目標回転数を決定する。
Further, the rotational speed (Ne) of the internal combustion engine 1 is equal to or greater than the determined rotational speed (Ntgel-α), which is a predetermined amount (α) less than the initial target rotational speed (Ntgel), and the power generation amount (Dfr) is equal to or greater than the predetermined value (β). In the case where the predetermined time (T2) continues, as the priority 1, the value of the rotational speed obtained by increasing the initial target rotational speed (Ntgel) by a predetermined amount (Nadd1) and the lower limit set in advance to the predetermined value The smaller one (min) of the target rotational speed (MN) is selected and the target rotational speed is set.
Further, the rotational speed (Ne) of the internal combustion engine 1 is less than a determination rotational speed (Ntgel + γ) obtained by adding a predetermined amount (γ) to the initial target rotational speed (Ntgel), and the power generation amount (Dfr) is less than a predetermined value (δ). In some cases, when continuing for a predetermined time (T2), as the priority 2, the value of the rotational speed obtained by reducing the initial target rotational speed (Ntgel) by a predetermined amount (Nadd2) and the upper limit target set in advance to a predetermined value. The larger one (max) of the number of revolutions (MX) is selected and the target number of revolutions is set.
Under the conditions other than the above, as priority 3, the larger one (max) of the initial target rotational speed (Ntgel) and the upper limit target rotational speed (MX) is selected and the target rotational speed is set.
In the second embodiment, the final target rotational speed is selected and set from a plurality of calculated target rotational speed candidates for each control cycle, and a higher target rotational speed is selected. That is, the final target rotational speed is selected by selecting from the target rotational speed calculated from the water temperature and the target rotational speed calculated from the electric load.

目標回転数は、制御サイクル毎に、初期目標回転数(Ntgel)から所定量(Nadd0.5)、所定量(Nadd1)、所定量(Nadd2)ずつ増加・減少するように更新される。例えば、優先順位0.5の条件が成立する間は、目標回転数を初期目標回転数(Ntgel)から所定量(Nadd0.5)ずつ増加し、この所定量(Nadd0.5)ずつ増加を繰り返した演算中の目標回転数が設定された目標回転数(Mset)を超えた時及びそれ以降は、目標回転数を設定された目標回転数(Mset)とする。これにより、激変緩和処理となる。この場合、目標回転数(Mset)は予め所定値に設定する目標回転数であり、下限目標回転数(MN)は目標回転数の下限ガード値であり、上限目標回転数(MX)は目標回転数の上限ガード値である。
そして、優先順位が同じ条件成立の下での制御が継続した場合には、これらの目標回転数(Mset)、下限目標回転数(MN)、上限目標回転数(MX)のいずれかに収斂することになる。そして、その条件が不成立となって優先順位がより低い条件に移れば、これらの目標回転数(Mset)、下限目標回転数(MN)、上限目標回転数(MX)のいずれかに収斂しないこともある。なお、目標回転数(Mset)の方を、下限目標回転数(MN)よりも高い回転数に設定することが望ましい。
この実施例2によれば、電気負荷の影響が顕著に現れる寒冷時の暖機中に、ある程度長時間にわたる大きな電気負荷がない場合でも、電気負荷に応じて目標回転数を設定でき、アイドル回転数の安定性を高めることができる。
また、徐々に目標回転数を増加するので実回転数が激変することがなく、回転数のハンチングを抑制し、アイドル回転数の安定性を高めることができる。更に、目標回転数の上限値を設定しているので、電気負荷の変動に伴う回転数の吹け上がりを防ぐことができ、しかも、必要以上に発電量を増やすこともない。
The target rotational speed is updated so that the initial target rotational speed (Ntgel) is increased / decreased by a predetermined amount (Nadd0.5), a predetermined amount (Nadd1), and a predetermined amount (Nadd2) every control cycle. For example, while the condition of the priority order 0.5 is satisfied, the target rotational speed is increased from the initial target rotational speed (Ntgel) by a predetermined amount (Nadd0.5) and repeatedly increased by this predetermined amount (Nadd0.5). When the target rotational speed during the calculation exceeds the set target rotational speed (Mset) and thereafter, the target rotational speed is set to the set target rotational speed (Mset). Thereby, a drastic change mitigation process is performed. In this case, the target rotational speed (Mset) is a target rotational speed set to a predetermined value in advance, the lower limit target rotational speed (MN) is a lower limit guard value for the target rotational speed, and the upper limit target rotational speed (MX) is the target rotational speed. The upper guard value of the number.
Then, when the control is continued under the same priority order, the target rotational speed (Mset), the lower limit target rotational speed (MN), or the upper limit target rotational speed (MX) is converged. It will be. If the condition is not satisfied and the priority is shifted to a lower priority condition, the target rotational speed (Mset), the lower limit target rotational speed (MN), or the upper limit target rotational speed (MX) should not be converged. There is also. It is desirable to set the target rotational speed (Mset) to a rotational speed higher than the lower limit target rotational speed (MN).
According to the second embodiment, the target rotational speed can be set according to the electric load even when there is no large electric load for a long time during the warm-up in the cold time when the influence of the electric load is noticeable. Number stability can be increased.
Further, since the target rotational speed is gradually increased, the actual rotational speed does not change drastically, hunting of the rotational speed can be suppressed, and the stability of the idle rotational speed can be enhanced. Further, since the upper limit value of the target rotational speed is set, it is possible to prevent the rotational speed from rising due to the fluctuation of the electric load, and the power generation amount is not increased more than necessary.

また、この実施例2の変形例としては、請求項2に係る発明であって、制御手段20は、発電量が所定値以上あるとの判断を、発電機のFR値に相当する値の検出と、発電機11の回転数の検出と、電圧・電流値の検出と、特定の電気負荷用スイッチの動作選択に基づく動作検出とのうち、いずれかによって行う。
このため、図7に示すように、制御手段20には、発電機11の回転数を検出する発電機回転数検出手段41と、電圧・電流値を検出する電圧・電流検出手段42と、特定の電気負荷用スイッチとして、内燃機関1にかかる電気負荷に相当する発電量(仕事量)としての発電機11の発電状態を示すFR端子のFR値であってそのデューティ値Dfrを検出する発電量検出手段43とが連絡する。
これにより、制御手段20には発電機11の回転数や発電機11の発電状態を示すFR端子のFR値を直接入力し、そして、電気負荷が大きい状態を確実に検出し、電気負荷の大きさに応じて最適な目標回転数を設定できる。
Further, as a modification of the second embodiment, in the invention according to claim 2, the control means 20 determines that the power generation amount is equal to or greater than a predetermined value, and detects a value corresponding to the FR value of the generator. And the detection of the number of rotations of the generator 11, the detection of the voltage / current value, and the operation detection based on the operation selection of the specific electric load switch.
For this reason, as shown in FIG. 7, the control means 20 includes a generator rotation speed detection means 41 for detecting the rotation speed of the generator 11, a voltage / current detection means 42 for detecting a voltage / current value, and a specification. As an electrical load switch, the power generation amount for detecting the duty value Dfr is the FR value of the FR terminal indicating the power generation state of the generator 11 as the power generation amount (work amount) corresponding to the electric load applied to the internal combustion engine 1. The detection means 43 communicates.
Thereby, the FR value of the FR terminal indicating the rotation speed of the generator 11 and the power generation state of the generator 11 is directly input to the control means 20, and the state where the electric load is large is reliably detected, and the magnitude of the electric load is increased. The optimum target speed can be set according to the situation.

図8は、この発明の実施例3を示すものである。
この実施例3の特徴とするところは、請求項3に係る発明であって、以下の点にある。 制御手段20は、暖機完了判定を満たしていない場合に(暖機完了判定不成立時)、内燃機関1の目標空然比を周期的に変動させるパータベーションを禁止するように判定し、このパータベーション禁止判定中に電気負荷に基づく内燃機関の目標回転数の算出を行う。
上記のパータベーションとは、内燃機関1の運転中の目標とする空燃比(A/F)を、一定ではなく、ある特定の幅を持たせて周期的に動かすことである。これにより、各検出手段等の部品の個体差から生じるズレをある程度見越すことができ、量産品で公差内にある検出手段で安定した排ガス性能を得られるようにしている。
この実施例3では、低温時における始動にて、吸気マニホルド4等の吸気系部品が冷えていること、燃料噴射において、機関摩擦が大きいために通常よりも増量して噴射していること、バッテリヘの充電が無い分、発電機11の負荷が軽く、吸気管絶対圧が低いことによる要因によって、燃料噴射弁29の先端に液滴が発生し、この液滴が燃料室内に落ちることで、リッチスパイクが発生する。このように、リッチスパイクが発生すると、空燃比(A/F)が急変するため、回転数の変動が生じ、運転者に不快感を与えることになる。
このため、MT車等の車両では、AT車に比べてアイドル運転時の吸気管絶対圧が低い車両に関して、図8に示すように、始動時水温の一定条件と、暖機完了判定の条件とで暖機完了が終了するまで(暖機完了判定成立)、空燃比(A/F)のパータベーションを禁止する。このパータベーション禁止の内容と、今回の目標回転数を冷機始動時のみ高く設定することを同時に行うことで、回転数のハンチングを抑制し、アイドル回転数の安定性を高めることができる。
FIG. 8 shows Embodiment 3 of the present invention.
The feature of the third embodiment is the invention according to claim 3 in the following points. When the warm-up completion determination is not satisfied (when the warm-up completion determination is not satisfied), the control unit 20 determines to prohibit perturbation that periodically varies the target air-fuel ratio of the internal combustion engine 1. The target rotational speed of the internal combustion engine based on the electric load is calculated during the determination of prohibition of basation.
The perturbation mentioned above is to periodically move the target air-fuel ratio (A / F) during the operation of the internal combustion engine 1 with a certain specific width instead of being constant. As a result, deviations caused by individual differences of parts such as each detection means can be anticipated to some extent, and stable exhaust gas performance can be obtained by the detection means within the tolerance in the mass-produced product.
In the third embodiment, the intake system parts such as the intake manifold 4 are cooled at the start at a low temperature, and the fuel is injected with an increased amount than usual because of the large engine friction. Due to the fact that the load on the generator 11 is light and the intake pipe absolute pressure is low, droplets are generated at the tip of the fuel injection valve 29, and the droplets fall into the fuel chamber. Spikes occur. As described above, when a rich spike occurs, the air-fuel ratio (A / F) changes suddenly, resulting in fluctuations in the rotational speed, which gives the driver an unpleasant feeling.
For this reason, in a vehicle such as an MT vehicle, as shown in FIG. 8, for a vehicle having a lower intake pipe absolute pressure during idle operation than an AT vehicle, Until the warm-up completion is completed (warming-up completion determination is established), perturbation of the air-fuel ratio (A / F) is prohibited. By simultaneously performing the contents of prohibiting perturbation and setting the current target rotational speed high only at the time of cold start, the hunting of the rotational speed can be suppressed and the stability of the idle rotational speed can be improved.

この発明に係るアイドル制御装置を、各種車両の内燃機関に適用可能である。   The idle control device according to the present invention can be applied to internal combustion engines of various vehicles.

1 内燃機関
3 吸気通路
11 発電機
16 アイドル制御装置
17 バイパス通路
19 アイドル空気量制御弁
20 制御手段
22 クランク角検出手段
24 水温検出手段
26 電気負荷検出手段
27 エアコンスイッチ
28 シフトレンジスイッチ
29 燃料噴射弁
38 電気負荷演算部
39 回転数制御部
40 暖機完了判定部
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 3 Intake passage 11 Generator 16 Idle control apparatus 17 Bypass passage 19 Idle air amount control valve 20 Control means 22 Crank angle detection means 24 Water temperature detection means 26 Electric load detection means 27 Air conditioner switch 28 Shift range switch 29 Fuel injection valve 38 Electric Load Calculation Unit 39 Speed Control Unit 40 Warm-up Completion Determination Unit

Claims (5)

内燃機関の水温、回転数、電気負荷を含む運転状態を検出する各検出手段を設け、この各検出手段により検出された運転状態に基づいて一つ以上の目標回転数を算出し且つ最終的に―つの目標回転数を設定して前記内燃機関の回転数が前記最終的な目標回転数と一致するように吸入空気量を変更する回転数フィードバック制御を行う制御手段を設けた内燃機関のアイドル制御装置において、前記内燃機関にかかる電気負荷に相当する発電量を検出する発電量検出手段を設け、前記制御手段は、始動時水温又は所定の運転後の水温に基づいて前記内燃機関の暖機完了を判定する一方、始動時水温が予め暖機判定とは別に設けた設定値より高く、且つ暖機完了判定を満たしておらず、且つ前記内燃機関の回転数が初期目標回転数から所定量少ない判定回転数以上で、且つ発電量が所定値以上である場合が所定時間継続する際に、電気負荷に基づいて算出する目標回転数として初期目標回転数を所定量ずつ増加更新して予め設定した上限目標回転数まで増加可能とすることを特徴とする内燃機関のアイドル制御装置。   Each detection means for detecting the operation state including the water temperature, the rotation speed, and the electric load of the internal combustion engine is provided, and one or more target rotation speeds are calculated based on the operation state detected by each detection means, and finally -Idle control of an internal combustion engine provided with a control means for performing rotational speed feedback control for setting one target rotational speed and changing the intake air amount so that the rotational speed of the internal combustion engine matches the final target rotational speed In the apparatus, a power generation amount detecting means for detecting a power generation amount corresponding to an electric load applied to the internal combustion engine is provided, and the control means completes warming up of the internal combustion engine based on a water temperature at start-up or a water temperature after a predetermined operation. On the other hand, the start-up water temperature is higher than a preset value provided separately from the warm-up determination, does not satisfy the warm-up completion determination, and the rotational speed of the internal combustion engine is smaller than the initial target rotational speed by a predetermined amount The initial target rotational speed is incremented and updated in advance by a predetermined amount as the target rotational speed calculated based on the electrical load when the constant rotational speed or higher and the amount of power generation exceeds the predetermined value continues for a predetermined time. An idle control device for an internal combustion engine, characterized in that it can be increased to an upper limit target rotational speed. 前記制御手段は、発電量が所定値以上あるとの判断を、発電機のFR値に相当する値の検出と、前記発電機の回転数の検出と、電圧・電流値の検出と、特定の電気負荷用スイッチの動作選択に基づく動作検出とのうち、いずれかによって行うことを特徴とする請求項1に記載の内燃機関のアイドル制御装置。   The control means determines that the power generation amount is a predetermined value or more, detects a value corresponding to the FR value of the generator, detects the number of rotations of the generator, detects a voltage / current value, The idle control device for an internal combustion engine according to claim 1, wherein the idle control device is performed by any one of operation detection based on operation selection of an electrical load switch. 前記制御手段は、暖機完了判定を満たしていない場合に、前記内燃機関の目標空然比を周期的に変動させるパータベーションを禁止するよう判定し、このパータベーション禁止判定中に電気負荷に基づく目標回転数の算出を行うことを特徴とする請求項1又は請求項2に記載の内燃機関のアイドル制御装置。   The control means determines to prohibit perturbation that periodically varies the target air-fuel ratio of the internal combustion engine when the warm-up completion determination is not satisfied, and based on the electric load during the perturbation prohibition determination The idle control device for an internal combustion engine according to claim 1 or 2, wherein the target rotational speed is calculated. 前記制御手段は、始動時水温又は所定の運転後の水温に基づいて前記内燃機関の暖機完了を判定する一方、始動時水温が予め暖機判定とは別に設けた設定値よりも高く、且つ暖機完了判定を満たしていない場合に、電気負荷に基づく最低目標回転数を設定することを特徴とする請求項1〜3のいずれか1項に記載の内燃機関のアイドル制御装置。   The control means determines completion of warming-up of the internal combustion engine based on the water temperature at start-up or the water temperature after a predetermined operation, while the water temperature at start-up is higher than a set value provided separately from the warm-up determination in advance, and The idle control device for an internal combustion engine according to any one of claims 1 to 3, wherein a minimum target rotational speed based on an electric load is set when the warm-up completion determination is not satisfied. 前記制御手段は、前記内燃機関の水温に基づいて目標回転数を算出し、この水温に基づいて算出した目標回転数と電気負荷に基づいて算出した目標回転数とを含む複数の目標回転数から相互比較して最終的な目標回転数を選定することを特徴とする請求項4に記載の内燃機関のアイドル制御装置。   The control means calculates a target rotational speed based on the water temperature of the internal combustion engine, and a plurality of target rotational speeds including a target rotational speed calculated based on the water temperature and a target rotational speed calculated based on an electrical load. 5. The idle control device for an internal combustion engine according to claim 4, wherein a final target rotational speed is selected by mutual comparison.
JP2010151552A 2010-07-02 2010-07-02 Idle control device of internal combustion engine Pending JP2012013026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010151552A JP2012013026A (en) 2010-07-02 2010-07-02 Idle control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151552A JP2012013026A (en) 2010-07-02 2010-07-02 Idle control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012013026A true JP2012013026A (en) 2012-01-19

Family

ID=45599742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151552A Pending JP2012013026A (en) 2010-07-02 2010-07-02 Idle control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2012013026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210388786A1 (en) * 2018-12-20 2021-12-16 Audi Ag Method for operating an internal combusting engine, and corresponding internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210388786A1 (en) * 2018-12-20 2021-12-16 Audi Ag Method for operating an internal combusting engine, and corresponding internal combustion engine
US11624330B2 (en) * 2018-12-20 2023-04-11 Audi Ag Method for operating an internal combusting engine, and corresponding internal combustion engine

Similar Documents

Publication Publication Date Title
KR101328885B1 (en) Control apparatus for internal combustion engine
US20040211381A1 (en) Internal combustion engine control apparatus
KR101728795B1 (en) Engine control device
KR20090063161A (en) Method and device for controlling an internal combustion engine in stop/start operation
JP3395535B2 (en) Automatic engine start / stop device
JP2012013026A (en) Idle control device of internal combustion engine
US5730103A (en) Fuel supply control system for internal combustion engines
CN113195882B (en) Method for operating an internal combustion engine and corresponding internal combustion engine
JP3772352B2 (en) Engine control device
JP2014169648A (en) Supercharger control device for internal combustion engine
JP5125755B2 (en) Control device for internal combustion engine
JP2006342706A (en) Control device for engine rpm at idle and control method of engine rpm
JP2006220159A (en) Idle fuel supply amount control method and device
JP4238713B2 (en) Engine idle speed control device
JP2005030335A (en) Engine speed control device
JP2010031710A (en) Control device for internal combustion engine
JP4305444B2 (en) Fuel injection amount control device for internal combustion engine
JP2012112293A (en) Idling speed control device
JP3544741B2 (en) Engine idle speed control method
JP2010025040A5 (en)
JP2010138877A (en) Control device for vehicle
JP2012082697A (en) Engine revolution stop control device
JP2006094624A (en) Power generation control device of power generator for vehicle
JP2006002639A (en) Control device for internal combustion engine
JP2006002706A (en) Fuel injection control device of internal combustion engine