JP2012012861A - Wood siding wall and earthquake-resistant repairing method - Google Patents

Wood siding wall and earthquake-resistant repairing method Download PDF

Info

Publication number
JP2012012861A
JP2012012861A JP2010151343A JP2010151343A JP2012012861A JP 2012012861 A JP2012012861 A JP 2012012861A JP 2010151343 A JP2010151343 A JP 2010151343A JP 2010151343 A JP2010151343 A JP 2010151343A JP 2012012861 A JP2012012861 A JP 2012012861A
Authority
JP
Japan
Prior art keywords
plate
longitudinal direction
dowel
wall
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010151343A
Other languages
Japanese (ja)
Other versions
JP5674358B2 (en
Inventor
Masayuki Yamanaka
昌之 山中
Yuji Yajima
祐司 矢島
Kazufusa Mitani
一房 三谷
Yoichi Matsuzaki
洋一 松崎
Ken Isohata
建 五十畑
Tomohiro Kimura
友博 木村
Kenji Takahashi
賢二 高橋
Kyoji Kikuchi
恭二 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAMURA INST OF ARCHITECTURE
NAKAMURA INSTITUTE OF ARCHITECTURE
Obayashi Corp
Original Assignee
NAKAMURA INST OF ARCHITECTURE
NAKAMURA INSTITUTE OF ARCHITECTURE
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAMURA INST OF ARCHITECTURE, NAKAMURA INSTITUTE OF ARCHITECTURE, Obayashi Corp filed Critical NAKAMURA INST OF ARCHITECTURE
Priority to JP2010151343A priority Critical patent/JP5674358B2/en
Publication of JP2012012861A publication Critical patent/JP2012012861A/en
Application granted granted Critical
Publication of JP5674358B2 publication Critical patent/JP5674358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To improve the earthquake resistance of buildings or the like by increasing the strength of wood siding walls.SOLUTION: The wood siding wall includes a plurality of plate materials. In the plurality of plate materials, the mutually adjacent plate materials are abutted at the small ends while aligning the longitudinal direction of the plate materials in either the perpendicular direction or the horizontal direction. Consequently, the plurality of plate materials are aligned and arranged in such a manner that a direction orthogonal to the longitudinal direction is set as an alignment direction. In the small ends, a plurality of dowels are provided so as to control the longitudinal relative movement of the mutually adjacent plate materials in the alignment direction. In each small end, the length in the longitudinal direction of at least one dowel is longer than the length in the alignment direction.

Description

本発明は、板壁であって、特に木造建築物に有効に適用可能な板壁、及び耐震改修方法に関する。   The present invention relates to a plate wall, and particularly to a plate wall that can be effectively applied to a wooden building, and an earthquake-proof repair method.

社寺等における伝統的木造建築物は、図7の正面図に示すように、柱1,1と梁3,3に設けられた四周の溝1t,3tにはめ込まれた板壁111を有している。そして、かかる板壁111は、コスト削減等の観点から高価な大判の板材を用いずに、複数枚の帯状の板材115,115…を組み合わせて構成される。詳しくは、これら板材115,115…は、その長手方向を水平方向に揃えながら、互いに隣り合う板材115,115同士が小端(こば)115k,115kにおいて当接されることにより、鉛直方向(上下方向)を整列方向として整列配置されている。そして、各板材115の上端面115uや下端面115dたる前記小端115kにはダボ121,121…が設けられ、これにより、整列方向に隣り合う板材115,115同士の長手方向(図示例では水平方向)の相対移動を規制している(特許文献1を参照)。   As shown in the front view of FIG. 7, the traditional wooden building in a shrine or the like has a plate wall 111 fitted in the four circumferential grooves 1 t and 3 t provided in the columns 1 and 1 and the beams 3 and 3. . And this board wall 111 is comprised combining several strip | belt-shaped board | plate materials 115,115 ... without using an expensive large-sized board | plate material from viewpoints, such as cost reduction. Specifically, these plate members 115, 115... Are aligned in the vertical direction by contacting adjacent plate members 115, 115 at the small ends 115k, 115k while aligning the longitudinal direction thereof in the horizontal direction. Aligned with the vertical direction as the alignment direction. Further, dowels 121, 121,... Are provided at the small end 115k, which is the upper end surface 115u and the lower end surface 115d of each plate member 115, whereby the longitudinal direction of the plate members 115 adjacent to each other in the alignment direction (horizontal in the illustrated example). Direction) relative movement is regulated (see Patent Document 1).

特開2000−248640号公報JP 2000-248640 A

このような板壁111は、地震時に耐震壁として機能する。よって、建築物の耐震性を高めるには、壁数を増やすことが有効であり、つまり耐震改修方法の一例として、木造建築物の室内に板壁111を増設することが挙げられる。但し、伝統的木造建築物では、開放感等の観点から間仕切りの少ない架構が望まれるところ、壁数が増えると、この要望に応え難くなる。   Such a plate wall 111 functions as a seismic wall during an earthquake. Therefore, in order to increase the earthquake resistance of the building, it is effective to increase the number of walls. That is, as an example of the earthquake-resistant repair method, it is possible to increase the plate wall 111 in the room of the wooden building. However, in a traditional wooden building, a frame with few partitions is desired from the viewpoint of openness and the like, and it becomes difficult to meet this demand as the number of walls increases.

他方、板壁一枚当たりの耐力を高めることによっても、耐震性を高め得る。そして、これによれば、壁数を増やすこと無く、建築物の耐震性を高めることができる。
そこで、かかる板壁111の耐力につき本願出願人が鋭意検討したところ、上述のように板材115の長手方向を水平方向に揃えつつ上下方向を整列方向として複数枚の板材115,115…が整列配置されている場合には、板壁111に水平外力が作用した際に、ダボ121は繊維と直交方向に圧縮を受けるため、その支圧及びせん断による変形が板壁111の剛性に影響(関係)し、かつダボ121の回転挙動(例えば図3Aを参照)も、板壁111の耐力に影響(関係)していることを知見した。そして、このダボの変形及び回転挙動を抑えるには、図7のような上下方向に長い縦長のダボ121よりも、水平方向に長い横長のダボ21(例えば図1Aを参照)を用いる方が効果的であることを知見した。
つまり、板材115の整列方向よりも、板材115の長手方向と平行な方向に長いダボ21を用いる方が、ダボ自身のせん断耐力の向上と合わせて、板壁111の水平方向の耐力を格段に高め得ることを知見した。
On the other hand, the seismic resistance can also be improved by increasing the proof stress per sheet wall. And according to this, the earthquake resistance of a building can be improved, without increasing the number of walls.
Accordingly, when the applicant of the present invention diligently examined the proof strength of the plate wall 111, as described above, a plurality of plate materials 115, 115... Are aligned and arranged with the longitudinal direction being the alignment direction while aligning the longitudinal direction of the plate material 115 in the horizontal direction. When the horizontal external force is applied to the plate wall 111, the dowel 121 is compressed in the direction orthogonal to the fiber, so that the deformation due to the bearing pressure and shear affects (relates) the rigidity of the plate wall 111, and It has been found that the rotational behavior of the dowel 121 (see, for example, FIG. 3A) also affects (relates) the proof stress of the plate wall 111. In order to suppress the deformation and rotation behavior of the dowel, it is more effective to use the horizontally long dowel 21 (see, for example, FIG. 1A) than the vertically long dowel 121 as shown in FIG. I found out that
In other words, the use of the dowel 21 that is longer in the direction parallel to the longitudinal direction of the plate material 115 than the alignment direction of the plate material 115 significantly increases the horizontal strength of the plate wall 111 in combination with the improvement of the shear strength of the dowel itself. I found out that

本発明は、上記のような従来の問題に鑑みなされたものであって、その目的は、板壁の耐力を向上することにより、建物等の耐震性を向上することにある。   This invention is made | formed in view of the above conventional problems, The objective is to improve earthquake resistance, such as a building, by improving the yield strength of a plate wall.

かかる目的を達成するために請求項1に示す発明は、
複数の板材を有する板壁であって、
前記複数の板材は、前記板材の長手方向を鉛直方向及び水平方向のどちらか一方に揃えながら、互いに隣り合う前記板材同士が小端において当接されることにより、前記長手方向と直交する方向を整列方向として整列配置され、
前記小端には、前記整列方向に隣り合う前記板材同士の前記長手方向の相対移動を規制する複数のダボが設けられ、
各小端につき少なくとも一つのダボの前記長手方向の長さが、前記整列方向の長さ以上であることを特徴とする。
上記請求項1に示す発明によれば、各小端につき少なくとも一つのダボは、前記長手方向の長さが前記整列方向の長さ以上となるように形成されている。よって、前記ダボのせん断耐力を向上させると共にダボの回転挙動を抑制し、板壁の水平方向の耐力を高めることができる。
In order to achieve this object, the invention shown in claim 1
A plate wall having a plurality of plate members,
The plurality of plate members are arranged in a direction orthogonal to the longitudinal direction by contacting the plate members adjacent to each other at a small end while aligning the longitudinal direction of the plate member in one of the vertical direction and the horizontal direction. Aligned as the alignment direction,
The small end is provided with a plurality of dowels for restricting the relative movement in the longitudinal direction between the plate members adjacent in the alignment direction,
The length in the longitudinal direction of at least one dowel for each small end is greater than or equal to the length in the alignment direction.
According to the first aspect of the present invention, at least one dowel for each small end is formed such that the length in the longitudinal direction is not less than the length in the alignment direction. Therefore, the shear strength of the dowel can be improved, the rotational behavior of the dowel can be suppressed, and the horizontal strength of the plate wall can be increased.

請求項2に示す発明は、請求項1に記載の板壁であって、
前記板壁は、一対の鉛直材及び一対の水平材によってその内方に区画される空間に配置され、
前記板材の前記長手方向の両端部には、ほぞが設けられ、
前記板材の長手方向を水平方向に揃えながら複数の前記板材が整列配置される場合には、前記板材の前記長手方向の両端部のほぞが、これらほぞに対応させて前記一対の鉛直材に形成されたほぞ穴に嵌合することにより、前記一対の鉛直材に前記板材が固定され、
前記板材の長手方向を鉛直方向に揃えながら複数の前記板材が整列配置される場合には、前記板材の前記長手方向の両端部のほぞが、これらほぞに対応させて前記一対の水平材に形成されたほぞ穴に嵌合することにより、前記一対の水平材に前記板材が固定されることを特徴とする。
上記請求項2に示す発明によれば、板材の長手方向の両端部に設けられたほぞは、対応する鉛直材のほぞ穴又は水平材のほぞ穴に嵌合し、これにより、板材は鉛直材又は水平材に強固に固定される。よって、鉛直材又は水平材と板壁との一体性を高めることができて、板壁に生じる所謂対角線上での圧縮束が早期に破壊しない架構を形成するため、結果、耐震性に優れた板壁を構成可能となる。
Invention of Claim 2 is a board wall of Claim 1, Comprising:
The plate wall is disposed in a space partitioned inward by a pair of vertical members and a pair of horizontal members,
Tenons are provided at both ends in the longitudinal direction of the plate material,
When a plurality of the plate members are arranged in alignment while aligning the longitudinal direction of the plate member in the horizontal direction, tenons at both ends in the longitudinal direction of the plate member are formed on the pair of vertical members corresponding to these tenons. The plate member is fixed to the pair of vertical members by fitting into the mortise hole,
When a plurality of the plate materials are aligned and arranged while aligning the longitudinal direction of the plate material in the vertical direction, tenons at both ends in the longitudinal direction of the plate material are formed in the pair of horizontal members corresponding to these tenons. The plate member is fixed to the pair of horizontal members by fitting into the mortise.
According to the second aspect of the present invention, the tenons provided at both ends in the longitudinal direction of the plate material are fitted into the corresponding mortise of the vertical material or the mortise of the horizontal material, whereby the plate material is the vertical material. Or it is firmly fixed to the horizontal member. Therefore, the integrity of the vertical or horizontal material and the plate wall can be increased, and a so-called diagonal bundle formed on the plate wall forms a frame that does not break at an early stage. It becomes configurable.

請求項3に示す発明は、請求項1又は2に記載の板壁であって、
前記板壁が具備する全ての前記ダボに関して、前記長手方向の長さが、前記整列方向の長さ以上であることを特徴とする。
上記請求項3に示す発明によれば、全てのダボに亘りせん断耐力の向上を図れ、結果、板壁の水平方向の耐力をより確実に高めることができる。
Invention of Claim 3 is a board wall of Claim 1 or 2, Comprising:
With respect to all the dowels included in the plate wall, the length in the longitudinal direction is not less than the length in the alignment direction.
According to the third aspect of the invention, the shear strength can be improved over all the dowels, and as a result, the horizontal strength of the plate wall can be more reliably increased.

請求項4に示す発明は、請求項1乃至3の何れかに記載の板壁であって、
前記ダボは木材であり、
前記木材の繊維方向は、前記長手方向に沿っていることを特徴とする。
上記請求項4に示す発明によれば、ダボの前記長手方向の圧縮強度や圧縮剛性を高くすることができる。これにより、前記長手方向の外力がダボに作用した際のダボの潰れやめり込み等の圧縮変形量の低減を図れ、結果、隣り合う板材同士の相対移動を確実に規制し、板壁の耐力を高めることができる。
Invention of Claim 4 is a board wall in any one of Claims 1 thru | or 3, Comprising:
The dowel is wood,
The fiber direction of the wood is along the longitudinal direction.
According to the fourth aspect of the present invention, the longitudinal compressive strength and compressive rigidity of the dowel can be increased. As a result, it is possible to reduce the amount of compressive deformation such as crushing or squeezing of the dowel when the external force in the longitudinal direction acts on the dowel. As a result, the relative movement between adjacent plate members is reliably restricted, and the proof stress of the plate wall is increased. be able to.

請求項5に示す発明は、請求項4に記載の板壁であって
前記板材は木材であり、
前記木材の繊維方向は、前記長手方向に沿っており、
前記板材よりも前記ダボの方が堅い木材であることを特徴とする。
上記請求項5に示す発明によれば、板材に凹設されるダボ穴の前記長手方向の圧縮強度や圧縮剛性を高くすることができる。これにより、前記長手方向の外力がダボ穴に作用した際のダボ穴の潰れやめり込み等の圧縮変形量の低減を図れる。結果、隣り合う板材同士の相対移動を確実に規制し、板壁の耐力を高めることができる。
またダボと板材の両者とも、繊維方向に圧縮されることで力が伝達されるために初期剛性が高くなる。
Invention of Claim 5 is a board wall of Claim 4, Comprising: The said board | plate material is wood,
The fiber direction of the wood is along the longitudinal direction,
The dowel is harder than the plate material.
According to the fifth aspect of the present invention, the compressive strength and compressive rigidity in the longitudinal direction of the dowel hole recessed in the plate material can be increased. As a result, it is possible to reduce the amount of compressive deformation such as crushing or sinking of the dowel hole when the external force in the longitudinal direction acts on the dowel hole. As a result, the relative movement between adjacent plate materials can be reliably restricted, and the proof stress of the plate wall can be increased.
In addition, since both the dowel and the plate material are compressed in the fiber direction and the force is transmitted, the initial rigidity is increased.

請求項6に示す発明は、請求項1乃至5の何れかに記載の板壁であって、
前記ダボの前記長手方向の両端面は、前記長手方向と直交する垂直面に形成されており、
前記小端に設けられて前記ダボが嵌合するダボ穴の前記長手方向の両端面は、前記長手方向と直交する垂直面に形成されていることを特徴とする。
上記請求項6に示す発明によれば、前記長手方向の外力をダボの端面とダボ穴の端面との面当たりによって確実に受けることができるので、前記長手方向の外力がダボ及びダボ穴に作用した際のダボ及びダボ穴の潰れやめり込み等の圧縮変形量の低減を図れる。結果、隣り合う板材同士の相対移動を規制し、板壁の耐力を高めることができる。
Invention of Claim 6 is a board wall in any one of Claim 1 thru | or 5, Comprising:
Both end surfaces in the longitudinal direction of the dowel are formed on vertical surfaces orthogonal to the longitudinal direction,
Both end surfaces in the longitudinal direction of the dowel holes provided in the small ends and into which the dowels are fitted are formed in vertical surfaces orthogonal to the longitudinal direction.
According to the sixth aspect of the present invention, since the external force in the longitudinal direction can be reliably received by the contact between the end surface of the dowel and the end surface of the dowel hole, the external force in the longitudinal direction acts on the dowel and the dowel hole. It is possible to reduce the amount of compressive deformation such as the dowels and dowel holes being crushed or recessed. As a result, the relative movement between adjacent plate materials can be restricted, and the proof stress of the plate wall can be increased.

請求項7に示す発明は、複数の板材を有する板壁の耐震改修方法であって、
前記複数の板材は、前記板材の長手方向を鉛直方向及び水平方向のどちらか一方に揃えながら、互いに隣り合う前記板材同士が小端において当接されることにより、前記長手方向と直交する方向を整列方向として整列配置されているとともに、前記小端には、前記整列方向に隣り合う前記板材同士の前記長手方向の相対移動を規制する複数のダボが設けられており、
各小端につき少なくとも一つのダボを、前記長手方向の長さが前記整列方向の長さ以上のダボに変更することを特徴とする。
上記請求項7に示す発明によれば、各小端につき少なくとも一つのダボは、前記長手方向の長さが前記整列方向の長さ以上のダボに変更される。よって、前記ダボの回転挙動を抑制し、板壁の水平方向の耐力を高めることができる。
The invention shown in claim 7 is an earthquake-resistant repair method for a plate wall having a plurality of plate materials,
The plurality of plate members are arranged in a direction orthogonal to the longitudinal direction by contacting the plate members adjacent to each other at a small end while aligning the longitudinal direction of the plate member in one of the vertical direction and the horizontal direction. A plurality of dowels are provided that regulate the relative movement in the longitudinal direction between the plate members adjacent to each other in the alignment direction, and are arranged in an alignment direction.
At least one dowel for each small end is changed to a dowel whose length in the longitudinal direction is longer than the length in the alignment direction.
According to the seventh aspect of the present invention, at least one dowel for each small end is changed to a dowel whose length in the longitudinal direction is greater than or equal to the length in the alignment direction. Therefore, the rotational behavior of the dowel can be suppressed and the horizontal strength of the plate wall can be increased.

本発明によれば、板壁の耐力を向上することにより、建物等の耐震性を高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the earthquake resistance of a building etc. can be improved by improving the yield strength of a board wall.

図1Aは、本実施形態に係る板壁11を正面視及び中心縦断面視で示す図であり、図1Bは、図1A中のB−B断面図であり、図1Cは、図1A中のC−C断面図である。1A is a view showing a plate wall 11 according to the present embodiment in a front view and a central longitudinal cross-sectional view, FIG. 1B is a BB cross-sectional view in FIG. 1A, and FIG. 1C is a cross-sectional view in FIG. It is -C sectional drawing. 図2Aは、板壁11の中央部の拡大正面図であり、図2Bは、図2A中のB−B断面図である。2A is an enlarged front view of a central portion of the plate wall 11, and FIG. 2B is a cross-sectional view taken along line BB in FIG. 2A. 図3Aは、板壁11に水平外力が作用した際の横長のダボ21縦長のダボ121の挙動を示す模式図であり、図3Bは、同じく横長のダボ21の挙動を示す模式図である。3A is a schematic diagram illustrating the behavior of the horizontally long dowel 21 when the horizontal external force is applied to the plate wall 11, and FIG. 3B is a schematic diagram illustrating the behavior of the horizontally long dowel 21. FIG. 図4A及び図4Bは、実験に用いた試験片11s1,11s2及び試験装置の概略図である。4A and 4B are schematic views of the test pieces 11s1 and 11s2 and the test apparatus used in the experiment. 図5A及び図5Bは、実施例及び比較例の荷重−変位のグラフである。5A and 5B are graphs of load-displacement of the example and the comparative example. その他の実施の形態の板壁11の正面図である。It is a front view of the plate wall 11 of other embodiment. 従来(比較例)の板壁111の正面図である。It is a front view of the board wall 111 of the past (comparative example). 対角圧縮現象を示す板壁111の正面図である。It is a front view of the board wall 111 which shows a diagonal compression phenomenon.

===本実施形態===
図1A乃至図1Cは、本実施形態に係る板壁11の説明図である。図1A中の左半部には板壁11を正面視で示し、同右半部には中心縦断面視で示している。また、図1Bは、図1A中のB−B断面図であり、図1Cは、図1A中のC−C断面図である。
=== This Embodiment ===
1A to 1C are explanatory views of the plate wall 11 according to the present embodiment. In FIG. 1A, the left half of the plate wall 11 is shown in front view, and the right half of the plate wall 11 is shown in center longitudinal sectional view. 1B is a cross-sectional view taken along the line BB in FIG. 1A, and FIG. 1C is a cross-sectional view taken along the line CC in FIG. 1A.

なお、以下では、互いに直交する三方向を、板壁11の壁高方向、壁幅方向、及び壁厚方向とする。ここで、壁高方向は、鉛直方向たる上下方向を向いており、また壁幅方向及び壁厚方向は、それぞれ水平方向を向いている。なお、壁幅方向のことを左右方向とも言い、壁厚方向のことを前後方向とも言う。
また、図1A乃至図1C中では、図の錯綜を防ぐ目的で、本来ハッチングで示すべき断面部もハッチング無しで示している。
In the following, the three directions orthogonal to each other are defined as a wall height direction, a wall width direction, and a wall thickness direction of the plate wall 11. Here, the wall height direction is the vertical direction, which is the vertical direction, and the wall width direction and the wall thickness direction are respectively horizontal. The wall width direction is also referred to as the left-right direction, and the wall thickness direction is also referred to as the front-rear direction.
Further, in FIGS. 1A to 1C, for the purpose of preventing the complication of the drawings, the cross-sectional portion that should be originally shown by hatching is also shown without hatching.

本実施形態の建物は木造建築物であり、その木造軸組みは、左右一対の柱1,1(鉛直材に相当)と、上下一対の梁3,3(水平材に相当)とを有している。なお、下梁3は地覆でも良い。また、柱1及び梁3は、例えば檜材であるが、これ以外の木材でも良い。そして、柱1と梁3とは、互いの端部1e,3eにおいて、ほぞ及びほぞ穴等の適宜な嵌合構造や込栓4により相対移動不能に連結固定されており、これにより、矩形枠状の木造軸組みの内方には、正面視矩形状の空間が区間されている。   The building of this embodiment is a wooden building, and the wooden frame has a pair of left and right columns 1 and 1 (corresponding to a vertical member) and a pair of upper and lower beams 3 and 3 (corresponding to a horizontal member). ing. The lower beam 3 may be a ground cover. Moreover, although the pillar 1 and the beam 3 are cocoons, for example, wood other than this may be sufficient. The column 1 and the beam 3 are connected and fixed in a mutually non-movable manner by an appropriate fitting structure such as a mortise and a mortise at the end portions 1e and 3e and a plug 4 so that the rectangular frame A rectangular space when viewed from the front is sectioned inside the wooden frame.

この矩形状の空間には、板壁11が設けられている。板壁11は、複数枚の略長方形の板材15,15…を有する。各板材15は、その長手方向を左右の水平方向に向け且つ幅方向を上下方向に向けながら、上下に隣り合う板材15と小端(こば)15kにおいて当接されており、これにより、前記長手方向と直交する方向たる上下方向を整列方向として各板材15,15…は整列配置されている。また、各板材15の小端15kたる上端面15u及び下端面15dには、それぞれダボ21が設けられており、かかるダボ21を介して、上下に隣り合う板材15,15同士が順次一体に連結されて全ての板材15,15…が一体化され、これにより全体として一枚の耐震用板壁11として機能する。   A plate wall 11 is provided in the rectangular space. The plate wall 11 has a plurality of substantially rectangular plate members 15, 15. Each plate 15 is in contact with the plate 15 adjacent to the upper and lower sides at a small end (kob) 15k, with the longitudinal direction thereof being directed to the left and right horizontal directions and the width direction being directed to the vertical direction. The plate members 15, 15,. In addition, dowels 21 are respectively provided on the upper end surface 15u and the lower end surface 15d, which are the small ends 15k of the respective plate members 15, and the plate members 15 and 15 adjacent in the vertical direction are sequentially connected integrally with each other via the dowels 21. Thus, all the plate members 15, 15... Are integrated, thereby functioning as a single earthquake-resistant plate wall 11 as a whole.

かかる板壁11の各柱1,1への固定は、例えば、ほぞ15h及びほぞ穴1h等の嵌合構造によりなされる。すなわち、各板材15の長手方向たる左右方向の各端部15e,15eには、ほぞ15hが一体に形成されており、これに対応させて、柱1の溝状の大入れ1tの底面には、ほぞ穴1hが形成されている。そして、板材15の左右の各端部15e,15eが柱1の大入れ1tに入った状態で、各端部15e,15eのほぞ15hが大入れ1tの底面のほぞ穴1hに嵌るようになっており、これにより、柱1と板壁11とは鉛直方向のせん断力の伝達が可能な状態に連結される。   The plate wall 11 is fixed to the columns 1 and 1 by, for example, a fitting structure such as a tenon 15h and a tenon 1h. That is, a tenon 15h is integrally formed at each of the end portions 15e and 15e in the left and right direction, which is the longitudinal direction of each plate member 15, and correspondingly, on the bottom surface of the groove-like large case 1t of the column 1 A mortise 1h is formed. Then, in a state where the left and right end portions 15e, 15e of the plate member 15 are in the large insertion 1t of the column 1, the tenon 15h of each end portion 15e, 15e is fitted into the tenon 1h on the bottom surface of the large insertion 1t. Thus, the pillar 1 and the plate wall 11 are connected to each other in a state in which a vertical shearing force can be transmitted.

同様に、板壁11の各梁3,3への固定も、例えば、ほぞ15h1及びほぞ穴3h等の嵌合構造によりなされる。すなわち、上端の板材15の上端面及び下端の板材15の下端面には、それぞれ、ほぞ15h1が一体に形成されており、これに対応させて、上梁3及び下梁3の各大入れ3t,3tの底面には、それぞれ、ほぞ穴3hが形成されている。そして、上端の板材15の上端面が、上梁3の大入れ3tに入った状態で、同上端面のほぞ15h1が大入れ3tの底面のほぞ穴3hに嵌るとともに、下端の板材15の下端面が、下梁3の大入れ3tに入った状態で、同下端面のほぞ15h1が大入れ3tの底面のほぞ穴3hに嵌るようになっており、これにより、上梁3及び下梁3と板壁11とは水平力の伝達が可能な状態に連結される。なお、上梁3及び下梁3と板壁11との水平方向のせん断力の伝達は、ダボ21によっても良い。   Similarly, the plate wall 11 is fixed to the beams 3 and 3 by a fitting structure such as a tenon 15h1 and a tenon 3h. That is, a tenon 15h1 is integrally formed on the upper end surface of the upper end plate member 15 and the lower end surface of the lower end plate member 15, respectively. , 3t are respectively formed with mortises 3h. Then, in a state where the upper end surface of the upper plate member 15 is in the large insertion 3t of the upper beam 3, the tenon 15h1 of the upper end surface fits into the mortise 3h on the bottom surface of the large insertion 3t, and the lower end surface of the lower plate member 15 However, the tenon 15h1 on the bottom surface of the lower beam 3 is fitted in the mortise 3h on the bottom surface of the large beam 3t in the state where the lower beam 3 is in the large case 3t. The plate wall 11 is connected to a state in which a horizontal force can be transmitted. The horizontal shear force between the upper beam 3 and the lower beam 3 and the plate wall 11 may be transmitted by the dowel 21.

なお、図示例では、上端の板材15と下端の板材15とを除き、それらの間に位置する各板材15,15…の平面形状は、何れも同形の長方形になっているが、同形状でなくても良く、つまり板材15の幅寸(図1Aの例では上下方向の長さ)や板厚(図1Bの例では前後方向の長さ)が、板材毎に異なっていても良い。   In the illustrated example, except for the plate member 15 at the upper end and the plate member 15 at the lower end, the planar shapes of the plate members 15, 15... Positioned between them are all the same rectangular shape. In other words, the width of the plate 15 (the length in the vertical direction in the example of FIG. 1A) and the plate thickness (the length in the front-rear direction in the example of FIG. 1B) may be different for each plate.

図2A及び図2Bは、ダボ21の説明図である。図2Aには、板壁11の中央部の拡大正面図を示し、図2Bには、図2A中のB−B断面図を示している。
板材15,15同士を一体に連結するダボ21は、前述のように板材15の小端15kに埋設されている。すなわち、上下に隣り合う板材15,15同士の各小端15k,15kには、それぞれ、ダボ穴16,16が凹設されており、そして、互いに対向する上側の板材15のダボ穴16と下側の板材15のダボ穴16とに跨って、ダボ21が嵌合することにより、当該ダボ21を介して上側の板材15と下側の板材15とが、その長手方向たる水平方向の左右の相対移動を規制された状態に一体化されている。そして、かかる板材15,15同士の一体化が上下方向に亘って繰り返されることにより、図1Aで既述したように、全ての板材15,15…が連結一体化されて一枚の板壁11をなし、柱1や梁3から入力される地震力等の水平外力を受け止めて木造建築物の耐震性を高めるようになっている。
2A and 2B are explanatory diagrams of the dowel 21. 2A shows an enlarged front view of the central portion of the plate wall 11, and FIG. 2B shows a cross-sectional view taken along line BB in FIG. 2A.
The dowels 21 that integrally connect the plate members 15 and 15 are embedded in the small end 15k of the plate member 15 as described above. That is, dowel holes 16 and 16 are respectively provided in the small ends 15k and 15k of the plate materials 15 and 15 adjacent to each other in the vertical direction, and the dowel holes 16 and the lower plate plate 15 on the upper plate material 15 facing each other. The dowels 21 are fitted over the dowel holes 16 of the plate member 15 on the side, so that the upper plate member 15 and the lower plate member 15 are connected to the left and right in the horizontal direction as the longitudinal direction thereof. It is integrated in a state where relative movement is restricted. Then, by repeating the integration of the plate members 15 and 15 in the vertical direction, as described above with reference to FIG. 1A, all the plate members 15, 15. None, receiving horizontal external force such as seismic force input from the pillar 1 or the beam 3 to improve the earthquake resistance of the wooden building.

かかるダボ21は、例えば中実の直方体部材である。その素材としては木材が使用され、また、板材15よりも堅い木材が使用される。ここで「堅い」というのは、圧縮荷重を付与した際に圧縮変形量が小さい(つまり潰れ難い)ということであり、この例では、板材15が檜材であるので、これよりも堅い木材として白樫や欅(けやき)等が使用される。   The dowel 21 is, for example, a solid cuboid member. Wood is used as the material, and wood harder than the plate material 15 is used. Here, “hard” means that the amount of compressive deformation is small (that is, hard to be crushed) when a compressive load is applied. In this example, the plate material 15 is a straw material, so that it is a harder wood than this. White birch and zelkova are used.

また、ダボ穴16の各内法は、ダボ21の各外法と同寸若しくは若干小さめに設計されており、これにより、ダボ穴16にダボ21が嵌合された状態においては、ダボ21とダボ穴16との間に隙間が生じないようになっている。但し、ダボ21を介して板材15,15同士が連結された際に、これら板材15,15同士が小端15k,15kの略全面に亘って互いに当接するようにすべく、ダボ穴16の深さDは、ダボ21の上下方向の外法L1の略半分の値に設定されているとともに、各板材15の小端15kは平坦面に形成されている。   Further, each inner method of the dowel hole 16 is designed to be the same size or slightly smaller than each outer method of the dowel 21, so that when the dowel 21 is fitted in the dowel hole 16, A gap is not formed between the dowel hole 16 and the dowel hole 16. However, when the plate members 15 and 15 are connected to each other via the dowel 21, the depth of the dowel hole 16 is set so that these plate members 15 and 15 come into contact with each other over substantially the entire surface of the small ends 15 k and 15 k. The length D is set to a value approximately half of the outer method L1 in the vertical direction of the dowel 21 and the small end 15k of each plate 15 is formed on a flat surface.

ここで、本実施形態にあっては、ダボ21の長手方向が、板材15の長手方向を向いている。すなわち、ダボ21は、ダボ穴16に嵌合された状態において、板材15の長手方向と平行な方向(図2Aの例では左右方向)の長さL2が板材15の整列方向(図2Aの例では上下方向)の長さL1よりも長い横長形状に形成されている。これにより、板壁11自体の水平耐力が高められて、建築物の耐震性を向上可能となる。   Here, in the present embodiment, the longitudinal direction of the dowel 21 is directed to the longitudinal direction of the plate 15. That is, when the dowel 21 is fitted in the dowel hole 16, the length L2 in the direction parallel to the longitudinal direction of the plate material 15 (the left-right direction in the example of FIG. 2A) is the alignment direction of the plate material 15 (example of FIG. 2A). Is formed in a horizontally long shape longer than the length L1 in the vertical direction). Thereby, the horizontal proof stress of board wall 11 itself is raised, and it becomes possible to improve the earthquake resistance of a building.

このように水平耐力が向上する理由は、次のように推察される。
ダボ121が図3Aの比較例のような縦長形状の場合、つまり、ダボ121の長手方向が、板材15の長手方向と直交する方向たる上下方向を向いている場合には、ダボ121自身のせん断耐力が小さいことに加えて、ダボ121と周囲の板材15の接する面で、ダボ121は繊維方向に直交して支圧を受けることにより変形が大きくなり、かつダボ121の上下面が接する周囲の板材が支圧による圧縮変形を生じることにより、ダボ121の回転変形が生じやすくなる。
The reason why the horizontal proof stress is improved in this way is presumed as follows.
When the dowel 121 has a vertically long shape as in the comparative example of FIG. 3A, that is, when the longitudinal direction of the dowel 121 is oriented in the vertical direction that is perpendicular to the longitudinal direction of the plate 15, the shear of the dowel 121 itself In addition to the low proof stress, the dowel 121 is deformed by receiving a bearing pressure perpendicular to the fiber direction at the surface where the dowel 121 and the surrounding plate 15 contact, and the upper and lower surfaces of the dowel 121 are in contact with each other. When the plate material is compressed and deformed due to the bearing pressure, the dowel 121 is likely to be rotationally deformed.

これに対して、図3Bの本実施形態の場合には、ダボ21が、板材15の長手方向たる左右方向に長くなっている。このダボ21は長手方向が繊維方向であるため、繊維方向に沿って圧縮を受けることで力が伝達されるために、ダボ21側の変形は小さくなる。また、面21a,21bが左右方向に広く確保されていることで、上下に隣り合う板材15,15同士が水平方向に相対移動する際にダボ21に作用する回転モーメントを、上記面21a,21bにより有効に受け止めて、これにより、図3B中二点鎖線で示すようにダボ21の回転は小さくなる。また、ダボ21は左右方向に長いため、せん断力を負担する面積も大きく、これをもって、板壁11の面内せん断剛性及び耐力が向上するものと考えられる。また板壁11としての面内せん断剛性及び耐力が向上することは、後述の実験によっても確認された事実である。   On the other hand, in the case of the present embodiment of FIG. 3B, the dowel 21 is elongated in the left-right direction, which is the longitudinal direction of the plate material 15. Since the longitudinal direction of the dowel 21 is the fiber direction, the force is transmitted by being compressed along the fiber direction, so deformation on the dowel 21 side is reduced. Further, since the surfaces 21a and 21b are widely secured in the left and right direction, the rotational moment acting on the dowel 21 when the plate members 15 and 15 adjacent to each other in the vertical direction move in the horizontal direction is reduced. This effectively reduces the rotation of the dowel 21 as indicated by the two-dot chain line in FIG. 3B. Further, since the dowel 21 is long in the left-right direction, the area for bearing the shearing force is large, and it is considered that the in-plane shear rigidity and the proof stress of the plate wall 11 are improved. Further, the fact that the in-plane shear rigidity and the proof stress as the plate wall 11 are improved is a fact that has also been confirmed by experiments described later.

かかるダボ21の横長形状に関し、この図2Aの例では、板材15の長手方向と平行な方向(図2A中の左右方向)のダボの長さL2と、板材15の整列方向(図2A中の上下方向)のダボ21の長さL1との比を、3:1としているが、何等これに限るものではない。すなわち、基本的には、板材15の長手方向と平行な方向(図2Aでは左右方向)のダボ21の長さL2を、板材15の整列方向(図2Aでは上下方向)のダボ21の長さL1以上にしていれば、上述の比較例よりも板壁11の水平耐力を高めることができる。但し、実用上は、上記の比を、2:1〜4:1の範囲に設定すると良い。   With respect to the horizontally long shape of the dowel 21, in the example of FIG. 2A, the length L 2 of the dowel in a direction parallel to the longitudinal direction of the plate material 15 (left and right direction in FIG. 2A) and the alignment direction of the plate material 15 (in FIG. 2A) The ratio with the length L1 of the dowels 21 in the vertical direction is 3: 1, but the present invention is not limited to this. That is, basically, the length L2 of the dowel 21 in the direction parallel to the longitudinal direction of the plate 15 (left and right in FIG. 2A) is the length L2 of the dowel 21 in the alignment direction of the plate 15 (up and down in FIG. 2A). If it is set to L1 or more, the horizontal proof stress of the board wall 11 can be improved rather than the above-mentioned comparative example. However, in practice, the above ratio is preferably set in the range of 2: 1 to 4: 1.

また、図2Aの例では、直方体形状のダボ21を用いているので、その左右の両小口(請求項に係る「両端面」に相当)は、左右方向と直交する垂直面となっており、また、両小口が対向するダボ穴16の左右端面も、左右方向と直交する垂直面になっている。よって、水平外力をダボ21の小口とダボ穴16の端面との面接触により略均一に受けることができて、水平外力がダボ21及びダボ穴16に作用した際のダボ21及びダボ穴16の潰れやめり込み等の圧縮変形量の低減を図れ、その結果、隣り合う板材15,15同士の相対移動を有効に規制し、このことも、板壁11の水平耐力の向上に寄与する。   Further, in the example of FIG. 2A, since the rectangular dowel 21 is used, the left and right fore edges (corresponding to “both end faces” according to the claims) are vertical surfaces orthogonal to the left-right direction, Further, the left and right end faces of the dowel hole 16 facing both small holes are also vertical faces orthogonal to the left-right direction. Accordingly, the horizontal external force can be substantially uniformly received by the surface contact between the small edge of the dowel 21 and the end face of the dowel hole 16, and the dowel 21 and the dowel hole 16 when the horizontal external force acts on the dowel 21 and the dowel hole 16. The amount of compressive deformation such as crushing or sinking can be reduced, and as a result, the relative movement between the adjacent plate members 15 and 15 is effectively restricted, which also contributes to the improvement of the horizontal strength of the plate wall 11.

ここで望ましくは、木材からなるダボ21の繊維方向を、板材15の長手方向たる左右方向に沿わせていると良く、更に望ましくは、板材15の繊維方向を、板材15の長手方向たる左右方向に沿わせていると良い。   Here, the fiber direction of the dowel 21 made of wood is preferably along the left-right direction that is the longitudinal direction of the plate material 15, and more preferably, the fiber direction of the plate material 15 is the left-right direction that is the longitudinal direction of the plate material 15. It is good to be along.

そして、このようにすれば、ダボ21及び板材15の圧縮強度や圧縮剛性を、板材15の長手方向たる左右方向に関して高めることができる。これにより、水平外力が板壁11に作用した際のダボ21及び板材15のダボ穴16の潰れやめり込み等の圧縮変形量の低減を図れ、結果、上下に隣り合う板材15,15同士の左右方向の相対移動を確実に規制することができる。   And if it does in this way, the compressive strength and compression rigidity of the dowel 21 and the board | plate material 15 can be improved regarding the left-right direction which is the longitudinal direction of the board | plate material 15. FIG. As a result, it is possible to reduce the amount of compressive deformation such as the dowel 21 and the dowel hole 16 of the plate member 15 being crushed or sunk when a horizontal external force is applied to the plate wall 11, and as a result, the plate members 15, 15 adjacent to each other vertically Relative movement can be reliably controlled.

図1Aの例では、かかるダボ21,21…が、板壁11の壁面上において略格子状パターンで離散配置されている。すなわち、ダボ21,21…は、梁間方向(梁3の長手方向(左右方向))に所定ピッチで配置され、且つ上下方向に隣り合うダボ21,21同士は、梁間方向の位置を互いに揃えて配置されているが、この配置パターンは何等これに限るものではなく、例えば千鳥配置でも良い。   In the example of FIG. 1A, such dowels 21, 21... Are discretely arranged in a substantially lattice pattern on the wall surface of the plate wall 11. That is, the dowels 21, 21... Are arranged at a predetermined pitch in the beam-to-beam direction (longitudinal direction (left-right direction) of the beam 3), and the dowels 21, 21 adjacent in the vertical direction are aligned with each other in the beam-to-beam direction. However, the arrangement pattern is not limited to this, and may be, for example, a staggered arrangement.

以上説明してきた横長のダボ21による板壁11の水平耐力向上効果を、実験によっても確認しているので、その結果等について以下に説明する。
図4A及び図4Bは、実験に用いた試験片11s1,11s2及び試験装置の概略図である。図4Aには、実施例たる横長のダボ21の場合を示し、図4Bには比較例たる縦長のダボ121の場合を示している。
Since the horizontal proof stress improvement effect of the plate wall 11 by the horizontally long dowels 21 described above has been confirmed by experiments, the results thereof will be described below.
4A and 4B are schematic views of the test pieces 11s1 and 11s2 and the test apparatus used in the experiment. FIG. 4A shows the case of a horizontally long dowel 21 as an example, and FIG. 4B shows the case of a vertically long dowel 121 as a comparative example.

図4Aに示す実施例の試験片11s1は、図2Aの板壁11において二点鎖線の部位を切り出したものに概ね相当する。また、図4Bに示す比較例の試験片11s2も、その外形寸法としては、上述の実施例と同寸である。すなわち、どちらの試験片11s1,11s2も、板材15の長手方向と直交する整列方向に並ぶ三枚の板材15,15,15を有し、整列方向の中央の板材15の両脇には、それぞれ一枚の板材15,15がダボ21(121)を介して取り付けられている。   The test piece 11s1 of the embodiment shown in FIG. 4A is substantially equivalent to the two-dot chain line portion of the plate wall 11 of FIG. 2A. Moreover, the test piece 11s2 of the comparative example shown in FIG. 4B is also the same size as the above-mentioned example as an external dimension. That is, each of the test pieces 11s1, 11s2 has three plate members 15, 15, 15 arranged in the alignment direction orthogonal to the longitudinal direction of the plate member 15, and on both sides of the central plate member 15 in the alignment direction, respectively. A single plate member 15, 15 is attached via a dowel 21 (121).

但し、図4Aの実施例の試験片11s1では、横長のダボ21が、中央の板材15の各小端15k,15kにそれぞれ一つずつ設けられているのに対し、図4Bの比較例の場合には、各小端15k,15kに、縦長のダボ121が二つずつ設けられている。また、実施例のダボ21の寸法は、24×180×60mmであるのに対して、比較例のダボ121の寸法は、24×24×60mmとしている。ここで、60mmは、板材15の整列方向に係るダボ21,121の長さL1であるが、実施例と比較例とは、共に、ダボ穴16,161の深さDを30mmに揃えていることから、ダボ21,121にあっても前記整列方向の長さL1を60mmに揃えている。また、板材15の長手方向に係るダボ16,161の長さL2については、実施例は180mmであるところ、比較例は24mmであり、これにより、実施例のダボ21は、比較例のダボ121よりも横長形状に形成されている。なお、残りの24mmは、板壁11の壁厚方向(図4A及び図4Bの紙面を貫通する方向)のダボ16,161の長さであり、互いに同寸である。   However, in the test piece 11s1 of the embodiment of FIG. 4A, the horizontally long dowels 21 are respectively provided at the small ends 15k and 15k of the central plate member 15, whereas in the comparative example of FIG. 4B. Each of the small ends 15k, 15k is provided with two vertically long dowels 121. Further, the size of the dowel 21 of the embodiment is 24 × 180 × 60 mm, whereas the size of the dowel 121 of the comparative example is 24 × 24 × 60 mm. Here, 60 mm is the length L1 of the dowels 21 and 121 in the alignment direction of the plate members 15. In both the example and the comparative example, the depth D of the dowel holes 16 and 161 is set to 30 mm. Therefore, even in the dowels 21 and 121, the length L1 in the alignment direction is set to 60 mm. The length L2 of the dowels 16 and 161 in the longitudinal direction of the plate material 15 is 180 mm in the embodiment, and 24 mm in the comparative example. Accordingly, the dowel 21 in the embodiment is replaced with the dowel 121 in the comparative example. It is formed in a horizontally long shape. The remaining 24 mm is the length of the dowels 16 and 161 in the wall thickness direction of the plate wall 11 (the direction penetrating the paper surface of FIGS. 4A and 4B) and is the same size as each other.

一方、試験装置は、固定ヘッド91,91と可動ヘッド93とを有する。そして、固定ヘッド91,91に、試験片11s1(11s2)の両脇の各板材15,15を固定するとともに、可動ヘッド93の方には中央の板材15を固定した状態で、可動ヘッド93を板材15の長手方向に沿って例えば2mm/分の速度でスライドさせることにより、中央の板材15に対して前記長手方向の荷重を負荷し、その際の荷重値をロードセルで計測しつつ可動ヘッド93のスライド量を計測する。そして、計測された荷重値及びスライド量を、それぞれ、荷重−変位グラフの荷重値及び変位量として同グラフにプロットする。なお、スライド量の最大値は40mmであり、つまり40mmまでスライドさせた後に、除荷した。   On the other hand, the test apparatus has fixed heads 91 and 91 and a movable head 93. The plate members 15 and 15 on both sides of the test piece 11s1 (11s2) are fixed to the fixed heads 91 and 91, and the movable head 93 is fixed to the movable head 93 with the central plate member 15 fixed thereto. By sliding the plate 15 along the longitudinal direction at a speed of, for example, 2 mm / min, the load in the longitudinal direction is applied to the central plate 15, and the movable head 93 measures the load value at that time with a load cell. Measure the slide amount. Then, the measured load value and slide amount are plotted on the same graph as the load value and displacement amount of the load-displacement graph, respectively. In addition, the maximum value of the slide amount was 40 mm, that is, after unloading after sliding to 40 mm.

図5A及び図5Bに、実施例及び比較例の実験結果をそれぞれ示す。なお、ここでは、上述の実験を、実施例について3回、比較例については2回行っており、そのため、図5Aには3本のグラフが示され、図5Bには2本のグラフが示されている。   5A and 5B show experimental results of Examples and Comparative Examples, respectively. Here, the above-described experiment was performed three times for the example and twice for the comparative example. Therefore, three graphs are shown in FIG. 5A and two graphs are shown in FIG. 5B. Has been.

また、同実験では、上述の実施形態の内容に対応させて、板壁11の板材15には檜材を用いる一方、実施例のダボ21には白樫を用い、また比較例のダボ121には欅を用いている。ここで、これら白樫や欅のどちらも、檜より十分に堅い木材である。よって、実験後にダボ21(121)及びダボ穴16(116)の損傷状態を観察したところ、専らダボ穴16(116)の方が凹んだりめり込まれるなど大きく損傷していた。つまり、ダボ21(121)の方の損傷は、概ね表面の浅い疵程度に留まっており、大きな凹み等の目立った外傷は無かった。   Further, in the same experiment, a corrugated material is used for the plate material 15 of the plate wall 11, while a white coral is used for the dowel 21 of the example, and a coral is used for the dowel 121 of the comparative example. Is used. Here, both white birch and cocoons are wood that is sufficiently harder than cocoons. Therefore, when the damage state of the dowel 21 (121) and the dowel hole 16 (116) was observed after the experiment, the dowel hole 16 (116) was largely damaged, such as being recessed or sunk exclusively. That is, the damage on the dowel 21 (121) remained almost as shallow as the surface, and there was no conspicuous trauma such as a large dent.

以下、図5A及び図5Bのグラフを参照しながら、実験結果について説明する。
先ず、各試験片11s1,11s2の耐力であるが、これは、グラフの最初の荷重ピーク値で評価した。そして、図5Aの実施例の場合は、3つのグラフのピーク値の平均値が58.4kNであり、また、図5Bの比較例の場合は、2つのグラフのピーク値の平均値が35.3kNであった。このことから、実施例の試験片11s1は、ダボ数が比較例の二分の一であるにも拘わらず、比較例の試験片11s2よりも高い耐力を示すことがわかる。
Hereinafter, experimental results will be described with reference to the graphs of FIGS. 5A and 5B.
First, the proof stress of each test piece 11s1, 11s2 was evaluated by the first load peak value in the graph. 5A, the average value of the peak values of the three graphs is 58.4 kN, and in the comparative example of FIG. 5B, the average value of the peak values of the two graphs is 35.kN. 3 kN. From this, it can be seen that the test piece 11s1 of the example shows higher proof stress than the test piece 11s2 of the comparative example, even though the number of dowels is half that of the comparative example.

また、ダボ一つ当たりの耐力を求めてみると、比較例では、そのダボ数が4であることから、上記耐力35.3kNをダボ数4で除算して8.8kNが得られ、他方、実施例では、ダボ数が2であることから、上記耐力58.4kNを2で除算して29.2kNが得られた。よって、実施例の横長のダボ構造は、比較例の縦長のダボ構造の約3倍の耐力を有することがわかった。また初期剛性も向上しているが、それはダボ21と板材15との力の伝達が繊維方向同士の圧縮によってなされることも関係していると推察される。   Further, when the yield strength per dowel is calculated, in the comparative example, since the number of dowels is 4, the above yield strength 35.3 kN is divided by the dowel number 4 to obtain 8.8 kN, In the example, since the dowel number is 2, the yield strength of 58.4 kN was divided by 2 to obtain 29.2 kN. Therefore, it was found that the horizontally long dowel structure of the example had a yield strength approximately three times that of the vertically long dowel structure of the comparative example. Moreover, although initial rigidity is also improving, it is guessed that it is related that the transmission of the force of the dowel 21 and the board | plate material 15 is made by compression of fiber directions.

更に、実験後の各試験片11s1,11s2の損傷状態の観察結果によれば、比較例の試験片11s2では、ダボ121が大きく回転しているのに対して、実施例の試験片11s1では、ダボ21の回転が大幅に抑制されていることが確認された。このことから、ダボ21,121の回転挙動が、板壁11を模擬した各試験片11s1,11s2の耐力に大きく関係していることがわかった。   Furthermore, according to the observation result of the damage state of each test piece 11s1, 11s2 after the experiment, the dowel 121 is greatly rotated in the test piece 11s2 of the comparative example, whereas in the test piece 11s1 of the example, It was confirmed that the rotation of the dowel 21 was greatly suppressed. From this, it was found that the rotational behavior of the dowels 21 and 121 is greatly related to the proof stress of the test pieces 11s1 and 11s2 simulating the plate wall 11.

ここで、図7及び図1Aを参照しながら、本実施形態の板壁11を用いた耐震改修方法について、既存の木造建築物の場合を例に説明する。この耐震改修は、既存の木造建築物を解体修理などする際に一緒に行われる。   Here, with reference to FIG. 7 and FIG. 1A, an earthquake-resistant repair method using the plate wall 11 of the present embodiment will be described by taking an example of an existing wooden building as an example. This seismic retrofitting is done together when dismantling and repairing existing wooden buildings.

先ず、建築物から図7に示す既存の柱1及び梁3を解体する際に、既存の板壁111を柱1及び梁3から外す。すなわち、板壁111を構成する既存の板材115,115…及びダボ121,121…を柱1及び梁3から外す。   First, when dismantling the existing column 1 and beam 3 shown in FIG. 7 from the building, the existing plate wall 111 is removed from the column 1 and beam 3. That is, the existing plate materials 115, 115... And dowels 121, 121.

次に、予め作成しておいた図1Aの板材15,15…及びダボ21,21…を現場に搬入する。そして、ダボ21によって板材15,15同士を順次連結していき、板壁11に組み立てる。これにより、縦長のダボ121から横長のダボ21へと変更されることとなり、もって、その耐震性は向上される。また、板壁11のダボ21は、既存の板壁111に用いていたダボ121よりも板材15の長手方向たる左右方向の長さが長いダボに変更されることにもなるので、これによっても、その耐震性は向上される。   Next, the plate members 15, 15... And dowels 21, 21. Then, the plate members 15 and 15 are sequentially connected by the dowel 21 and assembled to the plate wall 11. Thereby, it changes from the vertically long dowel 121 to the horizontally long dowel 21 and, therefore, its earthquake resistance is improved. Further, the dowel 21 of the plate wall 11 is also changed to a dowel with a longer length in the left-right direction, which is the longitudinal direction of the plate material 15, than the dowel 121 used for the existing plate wall 111. Earthquake resistance is improved.

そうしたら、修理後の既存の柱1及び梁3を再度軸組みする前に、これら柱1及び梁3の溝状の大入れ1t,3tに、それぞれ複数のほぞ穴1h,1h…,3h,3h…を形成する(図1A)。そして、柱1及び梁3を軸組みする際には、これら柱1及び梁3の各ほぞ穴1h,1h…,3h,3h…に板壁11のほぞ15h,15h…,15h1,15h1…を嵌めて柱1及び梁3に板壁11を取り付け、以上をもって、板壁11の耐震改修化工事が終了する。   Then, before re-assembling the existing pillar 1 and beam 3 after repair, a plurality of mortises 1h, 1h,..., 3h, 3h ... is formed (FIG. 1A). When the columns 1 and the beams 3 are assembled, the tenons 15h, 15h, 15h1, 15h1,... Of the plate wall 11 are fitted into the mortises 1h, 1h,. The plate wall 11 is attached to the column 1 and the beam 3, and the seismic retrofitting work for the plate wall 11 is completed.

ちなみに、上述では、既存の板壁111のみを新しい板壁11に交換し、既存の柱1及び梁3の方はそのまま流用していたが、何等これに限るものではなく、例えば、既存の木造建築物に対して新たに柱1及び梁3を追設し、その追設された柱1及び梁3に対して、本実施形態に係る板壁11を取り付けても良い。
更には、既存の木造建築物ではなく、新築の木造建築物に対して本実施形態の板壁11を適用可能であるのも言うまでもない。
By the way, in the above description, only the existing plate wall 111 was replaced with the new plate wall 11 and the existing pillar 1 and beam 3 were used as they were. However, the present invention is not limited to this. For example, an existing wooden building Alternatively, the column 1 and the beam 3 may be newly installed, and the plate wall 11 according to this embodiment may be attached to the added column 1 and beam 3.
Furthermore, it goes without saying that the plate wall 11 of the present embodiment can be applied not to an existing wooden building but to a newly built wooden building.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、本発明は、かかる実施形態に限定されるものではなく、その要旨を逸脱しない範囲で以下に示すような変形が可能である。
=== Other Embodiments ===
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The deformation | transformation as shown below is possible in the range which does not deviate from the summary.

上述の実施形態では、ダボ21として直方体形状のものを例示したが、何等これに限るものではない。例えば断面が円形や楕円形等の円柱体でも良いし、断面が三角形の三角柱体でも良いし、断面が五角形以上の多角柱体でも良い。   In the above-described embodiment, the dowel 21 is illustrated as a rectangular parallelepiped, but the dowel 21 is not limited to this. For example, a cylindrical body having a circular or elliptical cross section, a triangular prism having a triangular cross section, or a polygonal cylinder having a pentagon or more in cross section may be used.

上述の実施形態では、建物の架構の柱1や梁3、板壁11に係る板材15やダボ21を木製としていたが、その素材は何等木材に限るものではない。例えば、コンクリート製や樹脂製、金属製等でも良い。   In the above-described embodiment, the column 1 and the beam 3 of the building frame, the plate material 15 and the dowel 21 relating to the plate wall 11 are made of wood, but the material is not limited to wood. For example, it may be made of concrete, resin, metal or the like.

上述の実施形態では、図1Aに示すように、板壁11の板材15の長手方向を水平方向に揃えていたが、何等これに限るものではない。例えば、図6の正面図に示すように、板材15の長手方向を上下方向(鉛直方向)に揃えても良い。そして、この場合には、板材15の長手方向が上下方向を向いていることから、ダボ21の長手方向も上下方向を向いて配置されることになる。つまり、ダボ21は、ダボ穴16に嵌合された状態において、板材15の長手方向と平行な上下方向の長さが板材15の整列方向と平行な左右方向の長さよりも長く設定されることになる。そして、かかる構成においても、上述と同じ理屈で、板壁11の水平耐力を高めることができて、建築物の耐震性を向上可能となる。すなわち、水平外力F0が板壁11に作用した場合に、図6に示すように、水平外力F0は、板壁11の内力を介して上下方向の剪断力F1に変換されるので、当該剪断力F1によって板材15,15同士が上下方向に相対移動することになるが、この時、この上下方向の相対移動をダボ21が規制するので、当該ダボ21は、上述の実施形態と同様の耐力向上効果を奏することができる。   In the above-described embodiment, as shown in FIG. 1A, the longitudinal direction of the plate material 15 of the plate wall 11 is aligned in the horizontal direction, but the present invention is not limited to this. For example, as shown in the front view of FIG. 6, the longitudinal direction of the plate material 15 may be aligned in the vertical direction (vertical direction). In this case, since the longitudinal direction of the plate material 15 is directed in the vertical direction, the longitudinal direction of the dowel 21 is also disposed in the vertical direction. That is, when the dowel 21 is fitted in the dowel hole 16, the length in the vertical direction parallel to the longitudinal direction of the plate material 15 is set to be longer than the length in the left-right direction parallel to the alignment direction of the plate material 15. become. And also in this structure, the horizontal proof stress of the board wall 11 can be raised by the same reason as the above-mentioned, and it becomes possible to improve the earthquake resistance of a building. That is, when the horizontal external force F0 acts on the plate wall 11, as shown in FIG. 6, the horizontal external force F0 is converted into the vertical shearing force F1 via the internal force of the plate wall 11, so that the shearing force F1 The plate members 15 and 15 move relative to each other in the vertical direction. At this time, since the dowels 21 restrict the relative movement in the vertical direction, the dowels 21 have the same strength improvement effect as in the above-described embodiment. Can play.

上述の実施形態では、図1Aに示すように、全てのダボ21,21…が同形状であり、また、全てのダボ21,21…の長手方向が板材15の長手方向と平行に配置されていたが、何等これに限るものではない。例えば、各小端15kにつき少なくとも一つのダボ21の長手方向が、板材15の長手方向と平行な向きに配置されていれば、それ相応の耐力向上効果を奏し得る。すなわち、整列方向に並ぶ全ての小端15k,15k…に関して、小端15k毎に、それぞれ、少なくとも一つのダボ21の長手方向が、板材15の長手方向と平行な向きに配置されていれば、本発明の範囲に属する。
但し、図1Aのように全てのダボ21,21…に関して、板材15の長手方向に係るダボ21の長さが、板材15の整列方向に係るダボ21の長さ以上になっている方が、板壁11の耐力をより確実に高めることができることから、好ましいのは言うまでもない。
In the above-described embodiment, as shown in FIG. 1A, all the dowels 21, 21... Have the same shape, and the longitudinal directions of all the dowels 21, 21. However, it is not limited to this. For example, if the longitudinal direction of at least one dowel 21 is arranged in a direction parallel to the longitudinal direction of the plate member 15 for each small end 15k, the corresponding strength improvement effect can be obtained. That is, with respect to all the small ends 15k, 15k,... Aligned in the alignment direction, if the longitudinal direction of at least one dowel 21 is arranged in a direction parallel to the longitudinal direction of the plate member 15 for each small end 15k, It belongs to the scope of the present invention.
However, as shown in FIG. 1A, for all the dowels 21, 21..., The length of the dowels 21 in the longitudinal direction of the plate material 15 is longer than the length of the dowels 21 in the alignment direction of the plate materials 15. Needless to say, it is possible to increase the yield strength of the plate wall 11 more reliably.

上述の実施形態では、図1B及び図2Bに示すように、板材15の厚み方向(つまり、壁厚方向(板壁11の厚み方向))のダボ21の長さを、板材15の厚みよりも小さくし、これによりダボ21を板材15内に完全に埋設していたが、何等これに限るものでない。例えば、板材15の厚み方向のダボ21の長さを、板材15の厚みと同厚又はそれ以上の長さにしても良い。但し、その場合には、板材15の板面から、ダボ21の一部(ダボ21において板材15の板面(又は板壁11の壁面)と平行な面)が外部に露出することになる。   In the above-described embodiment, as shown in FIGS. 1B and 2B, the length of the dowel 21 in the thickness direction of the plate material 15 (that is, the wall thickness direction (thickness direction of the plate wall 11)) is smaller than the thickness of the plate material 15. As a result, the dowels 21 are completely embedded in the plate 15, but the present invention is not limited to this. For example, the length of the dowel 21 in the thickness direction of the plate material 15 may be the same as or greater than the thickness of the plate material 15. However, in that case, a part of the dowel 21 (a surface parallel to the plate surface of the plate member 15 (or the wall surface of the plate wall 11) in the dowel 21) is exposed to the outside from the plate surface of the plate member 15.

上述の実施形態では、図1Aに示すように、板材15毎に、その長手方向の両端部15e,15eにほぞ15tを一体に有している板壁11を例示したが、その際、作用効果については述べていなかったので、ここで、その作用効果について説明する。   In the above-described embodiment, as shown in FIG. 1A, the plate wall 11 having the tenon 15t integrally formed at both end portions 15e and 15e in the longitudinal direction is illustrated for each plate material 15. Has not been described, so its function and effect will be described here.

図7に、比較例の板壁111の正面図を示す。この比較例のように、一般に板壁111に係る板材115,115…は、その長手方向の両端部115e,115eにほぞを有していない。よって、左右一対の柱1,1にあってもほぞ穴は形成されておらず、つまり大入れ1tのみが上下に沿った溝状に形成されている。そして、板材115の長手方向の両端部115e,115eが当該大入れ1tに差し込まれて左右一対の柱1,1に固定されている。また、同様に、上下一対の梁3,3にもほぞ穴が形成されておらず、大入れ3tのみが左右に沿った溝状に形成されており、これに対応して、上端の板材115の上端面115mや下端の板材115の下端面115nもほぞを有しておらず、もって、上端の板材115の上端面115m及び下端の板材115の下端面115nが、それぞれ大入れ3t,3tに差し込まれて上下一対の梁3,3に固定されている。   In FIG. 7, the front view of the board wall 111 of a comparative example is shown. As in this comparative example, the plate members 115, 115... Generally associated with the plate wall 111 do not have tenons at both end portions 115e, 115e in the longitudinal direction. Accordingly, even in the pair of left and right columns 1 and 1, no mortise is formed, that is, only the large insertion 1t is formed in a groove shape along the top and bottom. Then, both end portions 115e, 115e in the longitudinal direction of the plate material 115 are inserted into the large case 1t and fixed to the pair of left and right columns 1,1. Similarly, the pair of upper and lower beams 3 and 3 are not formed with a mortise hole, and only the large insertion 3t is formed in a groove shape along the left and right. The upper end surface 115m of the lower end and the lower end surface 115n of the lower end plate member 115 do not have tenons, so that the upper end surface 115m of the upper end plate member 115 and the lower end surface 115n of the lower end plate member 115 become the large inserts 3t and 3t, respectively. It is inserted and fixed to a pair of upper and lower beams 3 and 3.

このような構成において、図8に示すような水平外力Fが作用すると、柱1及び梁3からなる木造軸組は、図8の二点鎖線のように、比較的容易に平行四辺形状に変形してしまう。すなわち、せん断力を受けた軸組内で板壁111全体が四辺でせん断力を伝達することができないため、対角方向に圧縮力を受けて抵抗する際に、対角両端の隅角部に圧縮力が集中しその結果、対角両端の板材115の繊維に直交方向に横圧縮が発生してつぶれ、対角長さが短くなることによって木造軸組は容易に平行四辺形状に変形してしまう。すると、所謂対角圧縮現象によって、図8に示す木造軸組みの四つの内角θ1,θ2,θ3,θ4のうちの鈍角の方の内角θ1,θ3につき、その対角線上に生じている圧縮束の影響により梁材3と柱材1の交点付近に圧縮束からの応力が作用し、これにより、当該部位が破損し易くなる。   In such a configuration, when a horizontal external force F as shown in FIG. 8 is applied, the wooden frame composed of the pillar 1 and the beam 3 is relatively easily deformed into a parallelogram shape as shown by a two-dot chain line in FIG. Resulting in. That is, since the entire plate wall 111 cannot transmit shearing force on all four sides within the shaft assembly that has received shearing force, it compresses to the corners at both ends of the diagonal when resisting by receiving compressive force in the diagonal direction. As a result of the concentration of force, lateral compression occurs in the fibers of the plate material 115 at both ends of the diagonal, resulting in crushing, and the diagonal length is shortened, so that the wooden frame is easily deformed into a parallelogram. . Then, due to the so-called diagonal compression phenomenon, the compression bundle generated on the diagonal line of the obtuse inner angles θ1, θ3 of the four inner angles θ1, θ2, θ3, θ4 of the wooden frame shown in FIG. The stress from the compression bundle acts near the intersection of the beam member 3 and the column member 1 due to the influence, and this part is easily damaged.

これに対して、図1Aの本実施形態の板壁11にあっては、各板材15,15…は、その長手方向たる左右方向の各端部15e,15eにほぞ15tを有しており、これらほぞ15t,15t…に対応させて、左右の各柱1,1の大入れ1tの底面には、ほぞ穴1h,1h…が断続的に形成されている。また、上端の板材15の上端面及び下端の板材15の下端面にも、それぞれ、複数のほぞ15h1,15h1…が断続的に形成されており、これに対応させて、上梁3及び下梁3の各大入れ3t,3tの底面には、それぞれ、複数のほぞ穴3h,3h…が断続的に形成されている。   On the other hand, in the plate wall 11 of the present embodiment in FIG. 1A, each plate member 15, 15... Has a tenon 15t at each end portion 15e, 15e in the left-right direction, which is the longitudinal direction thereof. Corresponding to the mortises 15t, 15t..., Mortise holes 1h, 1h. Further, a plurality of tenons 15h1, 15h1,... Are intermittently formed on the upper end surface of the upper end plate member 15 and the lower end surface of the lower end plate member 15, and the upper beam 3 and the lower beam are correspondingly formed. A plurality of mortises 3h, 3h,... Are intermittently formed on the bottom surface of each of the three large inserts 3t, 3t.

よって、上述の図8の水平外力Fが作用した際にも、ほぞ15tとほぞ穴1tとの嵌合によって、板材15の両端部15e,15eの柱1,1に対する鉛直方向の応力伝達が可能になるとともに、同じく、ほぞ15h1とほぞ穴3hとの嵌合によって、上端の板材15の上端面と上梁3との水平方向の応力伝達、及び下端の板材15の下端面と下梁3との水平方向の応力伝達が可能となる。これにより、上述の圧縮束の水平方向及び鉛直方向の分力を梁材3及び柱材1に効果的に伝達することが可能となり、水平外力Fの値を図7に示す架構形式よりも大きく設定することができる。合せて梁材3及び柱材1が変形に抵抗する要素となるため、平行四辺形状の変形も抑えられる。その結果、板壁11の面内せん断剛性及び耐力はより向上する。   Therefore, even when the horizontal external force F shown in FIG. 8 is applied, the stress in the vertical direction can be transmitted to the columns 1 and 1 at both ends 15e and 15e of the plate 15 by fitting the tenon 15t and the tenon 1t. Similarly, by fitting the tenon 15h1 and the mortise 3h, the horizontal stress transmission between the upper end surface of the upper end plate 15 and the upper beam 3, and the lower end surface of the lower end plate 15 and the lower beam 3 It is possible to transmit stress in the horizontal direction. As a result, the horizontal and vertical component forces of the compression bundle can be effectively transmitted to the beam member 3 and the column member 1, and the value of the horizontal external force F is larger than that of the frame form shown in FIG. Can be set. In addition, since the beam member 3 and the column member 1 are elements that resist deformation, deformation of a parallelogram can be suppressed. As a result, the in-plane shear rigidity and proof stress of the plate wall 11 are further improved.

すなわち、各々の板材15の両端部が柱1にほぞ差しされていることで、鉛直方向のせん断力が伝達され、上下端の板材15が梁3にも前記同様に嵌合されていることにより水平方向のせん断力が伝達される。そのため、従来の板壁111のように、ただ溝1t,3tにはまっているだけだと、筋かいのように対角方向の圧縮力で四周の軸組に力を伝達することになり、両端隅角部の板材15が繊維直交方向につぶれて、剛性・耐力が上がらないという欠点があるが、これを解決して剛性・耐力を向上させることを可能としている。   That is, since both end portions of each plate member 15 are inserted into the column 1, a vertical shearing force is transmitted, and the upper and lower plate members 15 are fitted to the beam 3 in the same manner as described above. Horizontal shear force is transmitted. Therefore, just like the conventional plate wall 111, if it is only in the grooves 1t and 3t, it will transmit force to the four-axis shaft with diagonal compression force like a brace. The corner plate 15 is crushed in the direction perpendicular to the fiber and the rigidity and proof strength are not improved. However, this problem can be solved and the rigidity and proof strength can be improved.

ちなみに、上述では、耐力の改善効果について、板材15の長手方向を水平方向に揃えながら複数の板材15,15…が上下方向に並んで配置された場合を例に説明したが(図1A)、何等これに限るものではない。すなわち、図6に示すように、板材15の長手方向を上下方向(鉛直方向)に揃えながら複数の板材15,15…が水平方向(左右方向)に並んで配置された場合についても、ほぞ15h1とほぞ穴1hとの嵌合及びほぞ15hとほぞ穴3hとの嵌合によって、耐力が改善されるのは言うまでもない。   Incidentally, in the above description, the effect of improving the yield strength has been described by taking as an example a case where a plurality of plate materials 15, 15... Are arranged in the vertical direction while aligning the longitudinal direction of the plate material 15 in the horizontal direction (FIG. 1A). This is not a limitation. That is, as shown in FIG. 6, even when a plurality of plate materials 15, 15... Are arranged in the horizontal direction (left-right direction) while aligning the longitudinal direction of the plate material 15 in the vertical direction (vertical direction), the tenon 15h1 Needless to say, the proof stress is improved by the engagement between the mortise and the mortise 1h and the mortise 15h and the mortise 3h.

1 柱、1e 端部、1h ほぞ穴、1t 大入れ、
3 梁、3e 端部、3h ほぞ穴、3t 大入れ、4 込栓、
11 板壁、11s1 試験片、11s2 試験片、
15 板材、15k 小端、15e 端部、15h ほぞ、15h1 ほぞ、
15u 上端面、15d 下端面、
16 ダボ穴、
21 ダボ、21a 面、
91 固定ヘッド、93 可動ヘッド、
111 板壁、115k 小端、115u 上端面、115d 下端面、
115m 上端面、115n 下端面、
116 ダボ穴、
121 ダボ
1 pillar, 1e end, 1h mortise, 1t large insertion,
3 beams, 3e end, 3h mortise, 3t large insertion, 4 spigot,
11 plate wall, 11s1 test piece, 11s2 test piece,
15 plate material, 15k small end, 15e end, 15h tenon, 15h1 tenon,
15u upper end surface, 15d lower end surface,
16 Dowel holes,
21 dowels, 21a side,
91 fixed head, 93 movable head,
111 plate wall, 115k small end, 115u upper end surface, 115d lower end surface,
115m upper end surface, 115n lower end surface,
116 Dowel holes,
121 Dowels

Claims (7)

複数の板材を有する板壁であって、
前記複数の板材は、前記板材の長手方向を鉛直方向及び水平方向のどちらか一方に揃えながら、互いに隣り合う前記板材同士が小端において当接されることにより、前記長手方向と直交する方向を整列方向として整列配置され、
前記小端には、前記整列方向に隣り合う前記板材同士の前記長手方向の相対移動を規制する複数のダボが設けられ、
各小端につき少なくとも一つのダボの前記長手方向の長さが、前記整列方向の長さ以上であることを特徴とする板壁。
A plate wall having a plurality of plate members,
The plurality of plate members are arranged in a direction orthogonal to the longitudinal direction by contacting the plate members adjacent to each other at a small end while aligning the longitudinal direction of the plate member in one of the vertical direction and the horizontal direction. Aligned as the alignment direction,
The small end is provided with a plurality of dowels for restricting the relative movement in the longitudinal direction between the plate members adjacent in the alignment direction,
The length of the longitudinal direction of at least one dowel for each small end is equal to or greater than the length in the alignment direction.
請求項1に記載の板壁であって、
前記板壁は、一対の鉛直材及び一対の水平材によってその内方に区画される空間に配置され、
前記板材の前記長手方向の両端部には、ほぞが設けられ、
前記板材の長手方向を水平方向に揃えながら複数の前記板材が整列配置される場合には、前記板材の前記長手方向の両端部のほぞが、これらほぞに対応させて前記一対の鉛直材に形成されたほぞ穴に嵌合することにより、前記一対の鉛直材に前記板材が固定され、
前記板材の長手方向を鉛直方向に揃えながら複数の前記板材が整列配置される場合には、前記板材の前記長手方向の両端部のほぞが、これらほぞに対応させて前記一対の水平材に形成されたほぞ穴に嵌合することにより、前記一対の水平材に前記板材が固定されることを特徴とする板壁。
The board wall according to claim 1,
The plate wall is disposed in a space partitioned inward by a pair of vertical members and a pair of horizontal members,
Tenons are provided at both ends in the longitudinal direction of the plate material,
When a plurality of the plate members are arranged in alignment while aligning the longitudinal direction of the plate member in the horizontal direction, tenons at both ends in the longitudinal direction of the plate member are formed on the pair of vertical members corresponding to these tenons. The plate member is fixed to the pair of vertical members by fitting into the mortise hole,
When a plurality of the plate materials are aligned and arranged while aligning the longitudinal direction of the plate material in the vertical direction, tenons at both ends in the longitudinal direction of the plate material are formed in the pair of horizontal members corresponding to these tenons. A plate wall, wherein the plate material is fixed to the pair of horizontal members by fitting into the mortise.
請求項1又は2に記載の板壁であって、
前記板壁が具備する全ての前記ダボに関して、前記長手方向の長さが、前記整列方向の長さ以上であることを特徴とする板壁。
The plate wall according to claim 1 or 2,
The plate wall characterized in that the length in the longitudinal direction is equal to or greater than the length in the alignment direction for all the dowels included in the plate wall.
請求項1乃至3の何れかに記載の板壁であって、
前記ダボは木材であり、
前記木材の繊維方向は、前記長手方向に沿っていることを特徴とする板壁。
A plate wall according to any one of claims 1 to 3,
The dowel is wood,
A plate wall characterized in that the fiber direction of the wood is along the longitudinal direction.
請求項4に記載の板壁であって
前記板材は木材であり、
前記木材の繊維方向は、前記長手方向に沿っており、
前記板材よりも前記ダボの方が堅い木材であることを特徴とする板壁。
The plate wall according to claim 4, wherein the plate material is wood,
The fiber direction of the wood is along the longitudinal direction,
A board wall characterized in that the dowel is harder than the board.
請求項1乃至5の何れかに記載の板壁であって、
前記ダボの前記長手方向の両端面は、前記長手方向と直交する垂直面に形成されており、
前記小端に設けられて前記ダボが嵌合するダボ穴の前記長手方向の両端面は、前記長手方向と直交する垂直面に形成されていることを特徴とする板壁。
A plate wall according to any one of claims 1 to 5,
Both end surfaces in the longitudinal direction of the dowel are formed on vertical surfaces orthogonal to the longitudinal direction,
A plate wall characterized in that both longitudinal end surfaces of a dowel hole provided in the small end and into which the dowel fits are formed in a vertical plane perpendicular to the longitudinal direction.
複数の板材を有する板壁の耐震改修方法であって、
前記複数の板材は、前記板材の長手方向を鉛直方向及び水平方向のどちらか一方に揃えながら、互いに隣り合う前記板材同士が小端において当接されることにより、前記長手方向と直交する方向を整列方向として整列配置されているとともに、前記小端には、前記整列方向に隣り合う前記板材同士の前記長手方向の相対移動を規制する複数のダボが設けられており、
各小端につき少なくとも一つのダボを、前記長手方向の長さが前記整列方向の長さ以上のダボに変更することを特徴とする板壁の耐震改修方法。
A method of earthquake-proofing a plate wall having a plurality of plate materials,
The plurality of plate members are arranged in a direction orthogonal to the longitudinal direction by contacting the plate members adjacent to each other at a small end while aligning the longitudinal direction of the plate member in one of the vertical direction and the horizontal direction. A plurality of dowels are provided that regulate the relative movement in the longitudinal direction between the plate members adjacent to each other in the alignment direction, and are arranged in an alignment direction.
A method for seismic retrofit of a plate wall, characterized in that at least one dowel per each small end is changed to a dowel whose length in the longitudinal direction is longer than the length in the alignment direction.
JP2010151343A 2010-07-01 2010-07-01 Plank wall and earthquake-proof repair method Active JP5674358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010151343A JP5674358B2 (en) 2010-07-01 2010-07-01 Plank wall and earthquake-proof repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151343A JP5674358B2 (en) 2010-07-01 2010-07-01 Plank wall and earthquake-proof repair method

Publications (2)

Publication Number Publication Date
JP2012012861A true JP2012012861A (en) 2012-01-19
JP5674358B2 JP5674358B2 (en) 2015-02-25

Family

ID=45599611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151343A Active JP5674358B2 (en) 2010-07-01 2010-07-01 Plank wall and earthquake-proof repair method

Country Status (1)

Country Link
JP (1) JP5674358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017048512A (en) * 2015-08-31 2017-03-09 国立大学法人 東京大学 Wooden wall and construction method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092318A (en) * 2005-09-27 2007-04-12 Design League:Kk Joint structure of wooden structural member, horizontal member, column structure, and column fitting, framework of wooden building with these parts, and method of assembling the framwork
JP2009002042A (en) * 2007-06-21 2009-01-08 Shimizu Corp Structure of earthquake resisting board wall
JP2011144621A (en) * 2009-12-18 2011-07-28 Shimizu Corp Earthquake-resisting board wall structure of wooden building

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092318A (en) * 2005-09-27 2007-04-12 Design League:Kk Joint structure of wooden structural member, horizontal member, column structure, and column fitting, framework of wooden building with these parts, and method of assembling the framwork
JP2009002042A (en) * 2007-06-21 2009-01-08 Shimizu Corp Structure of earthquake resisting board wall
JP2011144621A (en) * 2009-12-18 2011-07-28 Shimizu Corp Earthquake-resisting board wall structure of wooden building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017048512A (en) * 2015-08-31 2017-03-09 国立大学法人 東京大学 Wooden wall and construction method thereof

Also Published As

Publication number Publication date
JP5674358B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5601499B2 (en) Seismic wall structure of wooden building
WO2016002851A1 (en) Construction block and wall face structure using same
JP5674358B2 (en) Plank wall and earthquake-proof repair method
JP5622482B2 (en) Seismic wall
JP5667801B2 (en) Board wall
JP5185685B2 (en) Building damping device and building damping structure
JP5181267B2 (en) Seismic plate wall structure
JP7068917B2 (en) Connection structure of seismic metal fittings for wooden buildings
JP6969979B2 (en) Reinforcement method and reinforcement structure of masonry structure
JP2009102940A (en) Earthquake-resisting wall
JP6265653B2 (en) Block and wall structure
JP2020159078A (en) Buckling restricting brace
JP5918972B2 (en) Method for constructing reinforcing wall for reinforcing existing shaft and reinforcing wall for reinforcing existing shaft
JP2009155870A (en) Reinforcing structure
JP7233153B2 (en) bearing wall
JP4296552B2 (en) Masonry structure reinforcement structure
JP5305357B2 (en) Outer wall structure of wooden house, outer wall construction method, and reforming method of existing outer wall
JP5918971B2 (en) Method for constructing reinforcing wall for reinforcing existing shaft and reinforcing wall for reinforcing existing shaft
JP3172859U (en) Plastic formwork structure
JP6385686B2 (en) Wood frame structure
JP7308339B2 (en) bearing wall
JP6491063B2 (en) Wooden wall and its construction method
JP7010486B2 (en) Bearing wall and horizontal structure
JP6796404B2 (en) Resin parts for buildings
JP4819783B2 (en) Fireproof / seismic wall with wooden small thick plate and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5674358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250