JP2012011932A - Liquid circulating system for vehicle - Google Patents

Liquid circulating system for vehicle Download PDF

Info

Publication number
JP2012011932A
JP2012011932A JP2010151766A JP2010151766A JP2012011932A JP 2012011932 A JP2012011932 A JP 2012011932A JP 2010151766 A JP2010151766 A JP 2010151766A JP 2010151766 A JP2010151766 A JP 2010151766A JP 2012011932 A JP2012011932 A JP 2012011932A
Authority
JP
Japan
Prior art keywords
heat exchanger
water
refrigerant
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010151766A
Other languages
Japanese (ja)
Inventor
Michimi Kusaka
道美 日下
Shunji Moriwaki
俊二 森脇
Tomoaki Kitano
智章 北野
Shigeo Aoyama
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010151766A priority Critical patent/JP2012011932A/en
Publication of JP2012011932A publication Critical patent/JP2012011932A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid circulating system for a vehicle in which comfortability at start of cooling/heating operation is improved, and energy required for cooling and heating is kept low to improve energy saving performance.SOLUTION: The system includes a refrigerant circuit 10 with which a compressor 1, a refrigerant water heat exchanger 2, an expansion valve 3 and a refrigerant air heat exchanger 4 are connected, and a water circuit 20 having a pump 21 circulating water heat-exchanged by the refrigerant water heat exchanger 2, a first heat exchanger 22 connected in series with the refrigerant water heat exchanger 2, and a second heat exchanger 23 and/or a third heat exchanger 24 respectively connected in parallel in the downstream side of the first heat exchanger 22. The first heat exchanger 22 transfers heat through air from a blower 28, the second heat exchanger 23 is installed on the surface of components constituting a vehicle interior other than a seat and transfers heat by radiation, and the third heat exchanger 24 is installed inside the seat and transfers heat by conduction.

Description

本発明は、エンジン冷却水を有しない電気自動車や空冷式内燃機関搭載車等の車室内の冷暖房に利用される車両用液体循環システムに関するものである。   The present invention relates to a vehicle liquid circulation system used for cooling and heating a vehicle interior of an electric vehicle without an engine cooling water or a vehicle equipped with an air-cooled internal combustion engine.

従来より、電気自動車のようなエンジン冷却水からの排熱を利用して車室内の暖房ができない車両用の空気調和装置として、空気から熱を汲み上げるヒートポンプ技術を用いたものがある。   2. Description of the Related Art Conventionally, as an air conditioner for a vehicle that cannot heat a vehicle interior using exhaust heat from engine coolant such as an electric vehicle, there is one using a heat pump technology that pumps heat from air.

この技術は、圧縮機、冷媒水熱交換器、蒸発器を有する冷凍サイクルと、温水を循環させるポンプ、ダクト内に設置され流入した温水によりダクト内を流れる空気を加熱する温水式加熱器を有する温水サイクルとを備えることにより、エンジン排熱を用いずにヒートポンプ技術により車室内の暖房を行うものである。例えば、特許文献1には、図5に示すような車両用空気調和装置100が開示されている。   This technology has a refrigeration cycle having a compressor, a refrigerant water heat exchanger, an evaporator, a pump that circulates hot water, and a hot water heater that heats the air flowing in the duct by the hot water that is installed in the duct and flows in. By providing a hot water cycle, the vehicle interior is heated by heat pump technology without using engine exhaust heat. For example, Patent Document 1 discloses a vehicle air conditioner 100 as shown in FIG.

この車両用空気調和装置100は、冷媒を循環させる冷媒回路110と温水を循環させる水回路120とを備えている。冷媒回路110は、圧縮機101、冷媒水熱交換器102、減圧手段103、および、蒸発器104が配管により環状に接続されており、一方、水回路120は、ポンプ111、冷媒水熱交換器102、ダクト115内に設置された温水ヒータコア112が配管により環状に接続されている。   The vehicle air conditioner 100 includes a refrigerant circuit 110 that circulates refrigerant and a water circuit 120 that circulates hot water. In the refrigerant circuit 110, the compressor 101, the refrigerant water heat exchanger 102, the decompression means 103, and the evaporator 104 are annularly connected by piping, while the water circuit 120 includes a pump 111, a refrigerant water heat exchanger. 102, the hot water heater core 112 installed in the duct 115 is connected in an annular shape by piping.

冷媒回路110における冷媒水熱交換器102にて高温高圧冷媒の凝縮熱によって加熱された温水が、ポンプ111によりダクト115内の温水ヒータコア112に搬送され、温水ヒータコア112では、送風機113の作用によりダクト115内を流れる空気と熱交換して空気を加熱する。その加熱された空気は、送風機113の作用により車室内へ吹き出され車室内が暖房される。   The hot water heated by the heat of condensation of the high-temperature and high-pressure refrigerant in the refrigerant water heat exchanger 102 in the refrigerant circuit 110 is transported to the hot water heater core 112 in the duct 115 by the pump 111, and the hot water heater core 112 has the duct by the action of the blower 113. Heat is exchanged with air flowing through 115 to heat the air. The heated air is blown out into the vehicle interior by the action of the blower 113 and the vehicle interior is heated.

このように空気熱源のヒートポンプ技術を用いることにより、エンジン排熱を使用せずに車室内の暖房が可能になる車両用空気調和装置を提供することができる。   Thus, by using the heat pump technology of the air heat source, it is possible to provide a vehicle air conditioner that can heat the vehicle interior without using engine exhaust heat.

特許第3477868号公報Japanese Patent No. 3477868

しかしながら、前記従来の構成では、消費電力低減の観点から以下のような問題が生じる。すなわち、前記従来の構成による暖房方式では、温水ヒータコア112内の温水と、ダクト115内を流れる空気とが熱交換することにより空気を加熱し、その空気を車室内に吹き出して車室内空間の暖房運転を行うという、いわゆる強制対流を利用した暖房方式であるため、温水ヒータコア112内の温水と空気との温度差を比較的大きくしなければならず、水回路120流れる温水の温度を高くする必要がある。   However, the conventional configuration has the following problems from the viewpoint of reducing power consumption. That is, in the heating method according to the conventional configuration, the hot water in the hot water heater core 112 and the air flowing in the duct 115 exchange heat to heat the air, and the air is blown into the vehicle interior to heat the vehicle interior space. Since it is a heating system that uses so-called forced convection to operate, the temperature difference between the hot water and the air in the hot water heater core 112 must be relatively large, and the temperature of the hot water flowing through the water circuit 120 must be increased. There is.

このため、冷媒回路110側の凝縮圧力を高くしなければならず、圧縮機101の消費電力が増加する問題があった。   For this reason, the condensing pressure on the refrigerant circuit 110 side must be increased, and there is a problem that the power consumption of the compressor 101 increases.

さらに、従来の構成では、水回路120おける温水ヒータコア112へ流入する温水と、空気と熱交換した後に温水ヒータコア112から流出する温水との温度差が小さいため、所定の加熱能力を得るためには、水回路120を流れる温水の循環量を増加させる必要がある。このため、ポンプ111の動力が増加するという問題があった。   Further, in the conventional configuration, since the temperature difference between the hot water flowing into the hot water heater core 112 in the water circuit 120 and the hot water flowing out from the hot water heater core 112 after exchanging heat with air is small, in order to obtain a predetermined heating capacity It is necessary to increase the circulation amount of the hot water flowing through the water circuit 120. For this reason, there existed a problem that the motive power of the pump 111 increased.

さらに、前記従来の構成の冷媒回路110において、冷媒を逆方向に流動させることにより、冷房運転が可能になるが、この場合にも同様に、蒸発圧力の低下に伴う圧縮機101の消費電力の増加とポンプ111の動力の増加という問題があった。   Further, in the refrigerant circuit 110 having the above-described conventional configuration, the cooling operation can be performed by causing the refrigerant to flow in the opposite direction. In this case as well, the power consumption of the compressor 101 due to the decrease in the evaporation pressure is similarly achieved. There was a problem of an increase and an increase in power of the pump 111.

本発明は、このような事情に鑑み、冷暖房に要するエネルギーを低く抑える、いわゆる省エネルギー性の向上を図ることができる車両用液体循環システムを提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a vehicle liquid circulation system that can reduce energy required for cooling and heating, and can improve so-called energy saving.

前記従来の課題を解決するために、本発明の車両用液体循環システムは、圧縮機、冷媒水熱交換器、膨張手段、冷媒空気熱交換器が接続された冷媒回路と、冷媒水熱交換器で熱交換された水を循環させる循環手段、冷媒水熱交換器に対して直列に接続された第1熱交換手段、第1熱交換手段の下流側に接続された第2熱交換手段を有する水回路と、制御手段とを備え、第1熱交換手段は送風手段が発する空気により熱伝達するとともに、第2熱交換手段は車室内を構成する部品の表面または内部に設置され、熱伝導、または輻射により伝熱するものである。   In order to solve the above-described conventional problems, a liquid circulation system for a vehicle according to the present invention includes a refrigerant circuit to which a compressor, a refrigerant water heat exchanger, expansion means, a refrigerant air heat exchanger are connected, and a refrigerant water heat exchanger. A circulation means for circulating the water exchanged in heat, a first heat exchange means connected in series to the refrigerant water heat exchanger, and a second heat exchange means connected downstream of the first heat exchange means. A water circuit and control means, wherein the first heat exchanging means transfers heat by the air generated by the air blowing means, and the second heat exchanging means is installed on the surface or inside of the components constituting the vehicle interior, Alternatively, heat is transferred by radiation.

これによって、暖房運転を行う場合、冷媒水熱交換器から流出する温度の高い温水を対流熱伝達で伝熱を行う第1熱交換手段で利用し、その後、第1熱交換手段での熱交換により比較的温度の低くなった温水を輻射、または、熱伝導で伝熱を行う第2熱交換手段で利用が可能となる。一方、冷房運転を行う場合、冷媒水熱交換器から流出する温度の低い冷水を対流熱伝達で伝熱を行う第1熱交換手段で利用し、その後、第1熱交換手段での熱交換により比較的温度の高くなった冷水を輻射、または、熱伝導で伝熱を行う第2熱交換手段で利用が可能となる。   Accordingly, when performing heating operation, hot water having a high temperature flowing out from the refrigerant water heat exchanger is used in the first heat exchanging means that transfers heat by convective heat transfer, and then heat exchange in the first heat exchanging means. Thus, the hot water having a relatively low temperature can be used by the second heat exchanging means that performs heat transfer by radiation or heat conduction. On the other hand, when performing cooling operation, cold water having a low temperature flowing out from the refrigerant water heat exchanger is used in the first heat exchanging means that transfers heat by convective heat transfer, and then by heat exchange in the first heat exchanging means. The cold water having a relatively high temperature can be used by the second heat exchange means that performs heat transfer by radiation or heat conduction.

本発明の車両用液体循環システムは、暖房運転時には、冷媒水熱交換器に戻る温水の温度を下げることで、冷媒回路の凝縮圧力を下げることができ、また、冷房運転時には、冷媒水熱交換器に戻る冷水の温度を上げることで、冷媒回路の蒸発圧力を上げることができる。これにより、圧縮機の消費電力を低減することができる。また、水回路において、冷媒水熱交換器の入口と出口の温度差を大きくすることできるため、循環水量を少なくすることができ、ポンプ動力を低減することができる。   The vehicle liquid circulation system of the present invention can reduce the condensing pressure of the refrigerant circuit by lowering the temperature of warm water returning to the refrigerant water heat exchanger during heating operation, and can also perform refrigerant water heat exchange during cooling operation. The evaporation pressure of the refrigerant circuit can be increased by increasing the temperature of the cold water returning to the vessel. Thereby, the power consumption of a compressor can be reduced. Further, in the water circuit, the temperature difference between the inlet and outlet of the refrigerant water heat exchanger can be increased, so that the amount of circulating water can be reduced and the pump power can be reduced.

本発明の実施の形態1に係る車両用液体循環システムの暖房運転時の概略構成図Schematic configuration diagram during heating operation of the vehicle liquid circulation system according to Embodiment 1 of the present invention 本発明の実施の形態1における暖房運転時の熱交換器通過後の水温変化グラフWater temperature change graph after passing through a heat exchanger during heating operation in Embodiment 1 of the present invention 本発明の実施の形態1に係る車両用液体循環システムの冷房運転時の概略構成図Schematic configuration diagram of the vehicle liquid circulation system according to Embodiment 1 of the present invention during cooling operation 本発明の実施の形態1における冷房運転時の熱交換器通過後の水温変化グラフWater temperature change graph after passing through a heat exchanger during cooling operation in Embodiment 1 of the present invention 従来の冷凍サイクル装置の概略構成図Schematic configuration diagram of a conventional refrigeration cycle apparatus

第1の発明は、圧縮機、冷媒水熱交換器、膨張手段、冷媒空気熱交換器が接続された冷媒回路と、冷媒水熱交換器で熱交換された水を循環させる循環手段、冷媒水熱交換器に対して直列に接続された第1熱交換手段、第1熱交換手段の下流側に接続された第2熱交換手段を有する水回路と、制御手段とを備え、第1熱交換手段は送風手段が発する空気により熱伝達するとともに、第2熱交換手段は車室内を構成する部品の表面または内部に設置され、熱伝導、または輻射により伝熱することにより、暖房運転においては、対流熱伝達を利用する第1熱交換手段に加えて、さらに、第2熱交換手段で輻射、または、熱伝導により熱交換を行うことにより、比較的温度の低い温水でも同等の温熱感を得られる輻射、または、熱伝導を併用するため、冷媒水熱交換器に戻る温水の温度を下げることができる。   A first invention includes a refrigerant circuit to which a compressor, a refrigerant water heat exchanger, an expansion unit, a refrigerant air heat exchanger are connected, a circulation unit for circulating water exchanged in the refrigerant water heat exchanger, and refrigerant water A first heat exchange means connected in series to the heat exchanger, a water circuit having a second heat exchange means connected downstream of the first heat exchange means, and a control means, and a first heat exchange In the heating operation, the means transfers heat by the air generated by the blowing means, and the second heat exchange means is installed on the surface or inside of the components constituting the vehicle interior, and transfers heat by heat conduction or radiation. In addition to the first heat exchanging means using convective heat transfer, the second heat exchanging means radiates or exchanges heat by heat conduction, thereby obtaining the same thermal feeling even in hot water having a relatively low temperature. To be used together with radiation or heat conduction It may lower the temperature of the hot water returning to the refrigerant-water heat exchanger.

これにより、冷媒水熱交換器における水回路の平均温度を下げることが可能となるため、冷媒回路の凝縮圧力を下げることができ、圧縮機の消費電力を低減することができる。   Thereby, since it becomes possible to lower | hang the average temperature of the water circuit in a refrigerant | coolant water heat exchanger, the condensing pressure of a refrigerant circuit can be lowered | hung and the power consumption of a compressor can be reduced.

また、水回路においても、冷媒水熱交換器の入口と出口の温度差を大きくすることできるため、同一暖房能力においては、循環水量の低減が可能となり、ポンプ動力を低減できるため省エネルギー性の向上を図ることができる。   Also, in the water circuit, the temperature difference between the inlet and outlet of the refrigerant water heat exchanger can be increased, so the same heating capacity can reduce the amount of circulating water, and the pump power can be reduced, improving energy savings. Can be achieved.

一方、冷房運転においても、対流熱伝達を利用する第1熱交換手段に加えて、さらに、第2熱交換手段で輻射、または、熱伝導により熱交換を行うことにより、比較的温度の高い冷水でも同等の冷熱感を得られる輻射、または、熱伝導を併用するため、冷媒水熱交換器に戻る冷水の温度を上げることができる。   On the other hand, in the cooling operation, in addition to the first heat exchanging means using convective heat transfer, the second heat exchanging means further performs heat exchange by radiation or heat conduction, so that cold water having a relatively high temperature is used. However, since radiation or heat conduction that can provide the same cool feeling can be used, the temperature of the cold water returning to the refrigerant water heat exchanger can be raised.

これにより、冷媒水熱交換器における水回路の平均温度を上げることができるため、冷媒回路の蒸発圧力を上げることができ、圧縮機の消費電力を低減することができる。   Thereby, since the average temperature of the water circuit in a refrigerant | coolant water heat exchanger can be raised, the evaporation pressure of a refrigerant circuit can be raised and the power consumption of a compressor can be reduced.

また、水回路においても、冷媒水熱交換器の入口と出口の温度差を大きくすることできるため、同一冷房能力においては、循環水量の低減が可能となり、ポンプ動力を低減できるため省エネルギー性の向上を図ることができる。   Also in the water circuit, the temperature difference between the inlet and outlet of the refrigerant water heat exchanger can be increased, so the same cooling capacity can reduce the amount of circulating water, and the pump power can be reduced, improving energy savings. Can be achieved.

第2の発明は、特に、第1の発明の第2熱交換手段を複数設置し、かつそれぞれを並列に設置したことにより、対流熱伝達を利用する第1熱交換手段による車室内全体の冷暖房、および熱伝導、または、輻射を利用する第2熱交換手段による在席者ごとに局所的な冷暖房を、運転時間帯、在席者の位置、在席者の体感等により使い分けることができる。   In particular, the second invention is provided with a plurality of second heat exchange means of the first invention, and each of them is installed in parallel, so that the entire vehicle interior is cooled and heated by the first heat exchange means utilizing convective heat transfer. The local air conditioning for each occupant by the second heat exchanging means using heat conduction or radiation can be selectively used depending on the driving time zone, the position of the occupant, the sensation of the occupant, and the like.

第3の発明は、特に、第1または第2の発明における第1熱交換手段、第2熱交換手段のそれぞれを流れる水流量を調整する流量調整手段を配設することにより、第1熱交換手段、第2熱交換手段への水流量を個別に調整することができる。   In particular, the third aspect of the invention provides the first heat exchange by disposing flow rate adjusting means for adjusting the flow rate of water flowing through each of the first heat exchanging means and the second heat exchanging means in the first or second invention. The water flow rate to the means and the second heat exchange means can be adjusted individually.

これにより、輻射、および、熱伝導による暖房・冷房運転において、在席者の有無や要求負荷に応じて水流量を適正に制御することができ、快適性を向上することができる。   Thereby, in the heating / cooling operation by radiation and heat conduction, the water flow rate can be appropriately controlled according to the presence or absence of the occupant and the required load, and the comfort can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が制限されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not restrict | limited by this embodiment.

(実施の形態1)
図1は、本発明の第1の実施の形態における、車両用液体循環システム50を示す。この車両用液体循環システム50は、冷媒を循環させる冷媒回路10と、冷媒回路10を熱源として生成される温水、または冷水を循環させる水回路20と、制御手段である制御装置40とを備えている。
(Embodiment 1)
FIG. 1 shows a vehicle liquid circulation system 50 according to a first embodiment of the present invention. The vehicle liquid circulation system 50 includes a refrigerant circuit 10 that circulates refrigerant, a water circuit 20 that circulates hot water or cold water generated using the refrigerant circuit 10 as a heat source, and a control device 40 that is a control means. Yes.

冷媒回路10は、冷媒を圧縮する圧縮機1、冷媒の流動方向を切り換える四方弁5、冷媒と水とを熱交換させる冷媒水熱交換器2、高圧冷媒を膨張させる膨張手段である膨張弁3、および、冷媒と空気とを熱交換させる冷媒空気熱交換器4が配管により接続されて構成されている。   The refrigerant circuit 10 includes a compressor 1 that compresses the refrigerant, a four-way valve 5 that switches a flow direction of the refrigerant, a refrigerant water heat exchanger 2 that exchanges heat between the refrigerant and water, and an expansion valve 3 that is an expansion unit that expands the high-pressure refrigerant. And the refrigerant | coolant air heat exchanger 4 which heat-exchanges a refrigerant | coolant and air is connected and comprised by piping.

冷媒回路10には、暖房運転から冷房運転へ、または、暖房運転から除霜運転へ切り換えるための四方弁5が設けられている。   The refrigerant circuit 10 is provided with a four-way valve 5 for switching from heating operation to cooling operation or from heating operation to defrosting operation.

なお、冷媒としては、例えば、R410A等の擬似共沸混合冷媒、R407C等の非共沸混合冷媒、または、フロン冷媒系、または、自然冷媒系の単一冷媒等を用いることができる。   As the refrigerant, for example, a pseudo-azeotropic refrigerant mixture such as R410A, a non-azeotropic refrigerant mixture such as R407C, a chlorofluorocarbon refrigerant system, a natural refrigerant system single refrigerant, or the like can be used.

一方、水回路20は、水を搬送する循環手段であるポンプ21、冷媒水熱交換器2、そして、冷媒水熱交換器2にて熱交換された水の熱を放熱するための第1熱交換器22、第2熱交換器23、第3熱交換器24、および、第2熱交換器23への水流量を調整するための流量調整手段としての第1流量調整弁25、第3熱交換器24への水流量を調整するための流量調整手段としての第2流量調整弁26から構成されている。   On the other hand, the water circuit 20 has a pump 21 that is a circulation means for conveying water, the refrigerant water heat exchanger 2, and a first heat for radiating the heat of the water heat-exchanged in the refrigerant water heat exchanger 2. The first flow rate adjustment valve 25 as the flow rate adjusting means for adjusting the water flow rate to the exchanger 22, the second heat exchanger 23, the third heat exchanger 24, and the second heat exchanger 23, the third heat It is comprised from the 2nd flow volume adjustment valve 26 as a flow volume adjustment means for adjusting the water flow volume to the exchanger 24. FIG.

第1熱交換器22は本発明における第1熱交換手段であり、第2熱交換器23、第3熱交換器24は、本発明における第2熱交換手段である。   The 1st heat exchanger 22 is the 1st heat exchange means in the present invention, and the 2nd heat exchanger 23 and the 3rd heat exchanger 24 are the 2nd heat exchange means in the present invention.

水回路20において、第1熱交換器22は冷媒水熱交換器2に対して直列に設置されている。また、第2熱交換器23、および、第3熱交換器24は、第1熱交換器22の下流側に直列に設置され、第2熱交換器23、第3熱交換器24は、それぞれ並列に接続されている。   In the water circuit 20, the first heat exchanger 22 is installed in series with the refrigerant water heat exchanger 2. Moreover, the 2nd heat exchanger 23 and the 3rd heat exchanger 24 are installed in series in the downstream of the 1st heat exchanger 22, and the 2nd heat exchanger 23 and the 3rd heat exchanger 24 are respectively Connected in parallel.

また、第1流量調整弁25、第2流量調整弁26は、第2熱交換器23、第3熱交換器24の入口側で、かつ、車室外に設置するものとする。   Moreover, the 1st flow regulating valve 25 and the 2nd flow regulating valve 26 shall be installed in the entrance side of the 2nd heat exchanger 23 and the 3rd heat exchanger 24, and the exterior of a vehicle interior.

第1熱交換器22は送風ダクト27の中に設置され、送風手段である送風機28の送風により対流熱伝達を利用して水から空気へ熱交換が行われる。第1熱交換器22で熱交換された空気は送風ダクト27の吹出口に設置された風量調整ダンパ29を介して車室内へ吹き出される。   The 1st heat exchanger 22 is installed in the ventilation duct 27, and heat exchange is performed from water to air using convection heat transfer by ventilation of the air blower 28 which is a ventilation means. The air heat-exchanged by the first heat exchanger 22 is blown out into the passenger compartment through an air volume adjusting damper 29 installed at the outlet of the air duct 27.

また、第2熱交換器23は車室内のドア内面パネルに設置され輻射により座席シートへの在席者に温冷熱を伝え、第3熱交換器24は車室内の座席シートの内部に設置され、熱伝導により座席シート、および、座席シートへの在席者に温冷熱を伝える。   The second heat exchanger 23 is installed on the inner panel of the door in the passenger compartment and transmits heat and cold to the occupants in the seat by radiation, and the third heat exchanger 24 is installed inside the seat in the passenger compartment. Heat and heat are transmitted to the seat seat and the occupants of the seat seat by heat conduction.

水回路20に使用する水としては、例えば、市水等のほか、不凍液、ブライン等を用いることができる。   As water used for the water circuit 20, for example, city water or the like, antifreeze, brine, or the like can be used.

水回路20の第1熱交換器22の入口配管(冷媒水熱交換器2出口から第1熱交換器22入口までの配管)には、第1熱交換器22へ流入する水温を検出するための入口温度センサ30が設置されている。第2熱交換器23の出口配管(第2熱交換器23出口から第2熱交換器23と第3熱交換器24との合流部までの配管)には、第2熱交換器23から流出する水の温度を検出するための第1出口温度センサ31が設置されている。また、第3熱交換器24の出口配管(第3熱交換器24出口から第2熱交換器23と第3熱交換器24との合流部までの配管)には、第3熱交換器24から流出する水の温度を検出するための第2出口温度センサ32が設置されている。   In order to detect the temperature of water flowing into the first heat exchanger 22 in the inlet pipe (the pipe from the refrigerant water heat exchanger 2 outlet to the first heat exchanger 22 inlet) of the first heat exchanger 22 of the water circuit 20. Inlet temperature sensor 30 is installed. The outlet pipe of the second heat exchanger 23 (the pipe from the outlet of the second heat exchanger 23 to the junction of the second heat exchanger 23 and the third heat exchanger 24) flows out of the second heat exchanger 23. The 1st exit temperature sensor 31 for detecting the temperature of the water to perform is installed. In addition, the third heat exchanger 24 is connected to the outlet pipe of the third heat exchanger 24 (the pipe from the outlet of the third heat exchanger 24 to the junction of the second heat exchanger 23 and the third heat exchanger 24). A second outlet temperature sensor 32 for detecting the temperature of water flowing out from the tank is installed.

制御手段である制御装置40は、入口温度センサ30、第1出口温度センサ31、第2出口温度センサ32、第1流量調整弁25、第2流量調整弁26と信号線で接続されている。制御装置40は、入口温度センサ30、第1出口温度センサ31、第2出口温度センサ32が検出した検出値に基づいて、送風機28の運転有無、第1流量調整弁25、第2流量調整弁26を通過する水流量を制御する。   The control device 40 which is a control means is connected to the inlet temperature sensor 30, the first outlet temperature sensor 31, the second outlet temperature sensor 32, the first flow rate adjustment valve 25, and the second flow rate adjustment valve 26 through signal lines. Based on the detected values detected by the inlet temperature sensor 30, the first outlet temperature sensor 31, and the second outlet temperature sensor 32, the control device 40 determines whether or not the blower 28 is operating, the first flow rate adjustment valve 25, and the second flow rate adjustment valve. 26 controls the flow rate of water through 26.

以上のように構成された車両用液体循環システムは、四方弁5を切り換えることで、第1熱交換器22や第2熱交換器23、第3熱交換器24へ温水を搬送する暖房運転と、第1熱交換器22や第2熱交換器23、第3熱交換器24へ冷水を搬送する冷房運転を行うことができる。以下、暖房運転における冷媒、および、水の状態変化を説明する。   The vehicle liquid circulation system configured as described above includes a heating operation in which hot water is conveyed to the first heat exchanger 22, the second heat exchanger 23, and the third heat exchanger 24 by switching the four-way valve 5. The cooling operation of conveying cold water to the first heat exchanger 22, the second heat exchanger 23, and the third heat exchanger 24 can be performed. Hereinafter, the state change of the refrigerant and water in the heating operation will be described.

図1の本実施形態の車両用液体循環システム50では、冷媒回路10の加熱運転により生成された温水を、水回路20において各熱交換器へ搬送して車室内の暖房に利用する暖房運転の動作を示している。図1では暖房運転時の冷媒の流れ方向を実線矢印、水の流れ方向を破線矢印で示している。   In the vehicle liquid circulation system 50 of the present embodiment shown in FIG. 1, the hot water generated by the heating operation of the refrigerant circuit 10 is transferred to each heat exchanger in the water circuit 20 and used for heating in the passenger compartment. The operation is shown. In FIG. 1, the flow direction of the refrigerant during the heating operation is indicated by a solid arrow, and the flow direction of water is indicated by a broken line arrow.

まず、冷媒回路10において、圧縮機1から吐出された高圧ガス冷媒は、四方弁5により冷媒水熱交換器2に流入する方向に切り換えられ、凝縮器として作用する冷媒水熱交換器2において冷媒水熱交換器2の水側流路を通過する水と熱交換して水を加熱し、冷媒自身は放熱して液化凝縮し、高圧液冷媒となる。   First, in the refrigerant circuit 10, the high-pressure gas refrigerant discharged from the compressor 1 is switched by the four-way valve 5 to flow into the refrigerant water heat exchanger 2, and the refrigerant in the refrigerant water heat exchanger 2 acting as a condenser. Heat is exchanged with water passing through the water-side flow path of the water heat exchanger 2 to heat the water, and the refrigerant itself dissipates heat and liquefies and condenses to become a high-pressure liquid refrigerant.

冷媒水熱交換器2から流出した高圧液冷媒は、膨張弁3によって減圧されて膨張し、低圧二相冷媒となり、蒸発器として作用する冷媒空気熱交換器4に流入する。   The high-pressure liquid refrigerant that has flowed out of the refrigerant water heat exchanger 2 is decompressed and expanded by the expansion valve 3, becomes a low-pressure two-phase refrigerant, and flows into the refrigerant air heat exchanger 4 that functions as an evaporator.

冷媒空気熱交換器4に流入した低圧二相冷媒は、ここで蒸発して空気から気化熱を吸熱して過熱冷媒となって冷媒空気熱交換器4を流出し、圧縮機1へ戻る。   The low-pressure two-phase refrigerant that has flowed into the refrigerant air heat exchanger 4 evaporates here, absorbs the heat of vaporization from the air, becomes superheated refrigerant, flows out of the refrigerant air heat exchanger 4, and returns to the compressor 1.

一方、水回路20において、ポンプ21により水回路20を循環する水は、冷媒水熱交換器2の水側流路において、冷媒水熱交換器2の冷媒側流路で凝縮する冷媒と熱交換して温水となる。   On the other hand, in the water circuit 20, the water circulating in the water circuit 20 by the pump 21 exchanges heat with the refrigerant condensed in the refrigerant side flow path of the refrigerant water heat exchanger 2 in the water side flow path of the refrigerant water heat exchanger 2. And warm water.

その後、第1熱交換器22に温水が流入し、温水から空気へ対流熱伝達で加熱されることにより温風を生成して車室内の暖房を行い、水自身は空気との熱交換によって水温が低下して第1熱交換器22から流出する。   Thereafter, warm water flows into the first heat exchanger 22 and is heated by convection heat transfer from the warm water to the air to generate warm air to heat the passenger compartment. The water itself is heated by heat exchange with the air. Decreases and flows out of the first heat exchanger 22.

そして、車室内のドア内面パネルに設置された第2熱交換器23に流入した場合、在席者の体温より高い温水で加熱されたドア内面パネルから輻射により座席シート在席者に温熱を伝え在席者の暖房快適性を高め、水自身は輻射により座席シート在席者に温熱を伝えることよって水温が低下して第2熱交換器23から流出する。   And when it flows into the 2nd heat exchanger 23 installed in the door inner surface panel of a vehicle interior, heat is transmitted to a seat seat occupant by radiation from the door inner surface panel heated with warm water higher than the body temperature of the occupant. The heating comfort of the occupants is enhanced, and the water itself transmits heat to the seat occupants by radiation, whereby the water temperature decreases and flows out of the second heat exchanger 23.

一方、車室内の座席シートの内部に設置された第3熱交換器24に流入した場合、在席者の体温より高い温水が、熱伝導により座席シート、および、座席シート在席者に温熱を伝え在席者の暖房快適性を高め、水自身は座席シートや在席者との熱交換によって水温が低下して第3熱交換器24から流出する。   On the other hand, when flowing into the third heat exchanger 24 installed inside the seat in the passenger compartment, hot water higher than the body temperature of the occupant heats the seat seat and the occupant seated by heat conduction. As a result, the heating comfort of the occupants is enhanced, and the water itself flows out of the third heat exchanger 24 due to the heat exchange with the seats and the occupants.

そして、第2熱交換器23、第3熱交換器24から流出した水は集合後、冷媒水熱交換器2へ戻る。   And the water which flowed out from the 2nd heat exchanger 23 and the 3rd heat exchanger 24 returns to the refrigerant | coolant water heat exchanger 2 after aggregation.

ここで、水回路20において、暖房運転における各熱交換器を通過した温水の温度の変化は、図2に示すようになる。   Here, in the water circuit 20, the change of the temperature of the warm water which passed each heat exchanger in heating operation becomes as shown in FIG.

図2において、温水は温度t1で第1熱交換器22に流入し、温度t2で流出する。このとき、第1熱交換器22における温水の温度差は、△t(=t1−t2)となる。その後、温水は温度t2で第2熱交換器23、および/または、第3熱交換器24に流入し、温度t3で流出することになる。このとき、第1熱交換器22、第2熱交換器23、および/または、第3熱交換器24において放熱された温水の温度差は、最終的に△t’(=t1−t3)となる。   In FIG. 2, hot water flows into the first heat exchanger 22 at a temperature t1, and flows out at a temperature t2. At this time, the temperature difference of the hot water in the first heat exchanger 22 is Δt (= t1−t2). Thereafter, the hot water flows into the second heat exchanger 23 and / or the third heat exchanger 24 at the temperature t2, and flows out at the temperature t3. At this time, the temperature difference of the hot water radiated in the first heat exchanger 22, the second heat exchanger 23, and / or the third heat exchanger 24 is finally Δt ′ (= t1−t3). Become.

すなわち、対流熱伝達による伝熱を行う第1熱交換器22において、温度の高い温水を利用した後に、比較的低温の温水でも十分に温熱感を得られる輻射、または、熱伝導を利用して伝熱を行う第2熱交換器23、および/または、第3熱交換器24で利用することにより、冷媒水熱交換器2への温水の戻り温度を下げることができる。   That is, in the first heat exchanger 22 that performs heat transfer by convective heat transfer, after using hot water having a high temperature, radiation or heat conduction that can sufficiently obtain a warm feeling even with relatively low temperature hot water is used. By using the second heat exchanger 23 and / or the third heat exchanger 24 for conducting heat transfer, the return temperature of the hot water to the refrigerant water heat exchanger 2 can be lowered.

したがって、冷媒水熱交換器2への温水の戻り温度が低いため、冷媒水熱交換器2の冷媒側流路における冷媒の凝縮圧力を低下させることができる。このため、圧縮機1は、吐出する冷媒の圧力を低くできるために、圧縮機1の消費電力を低減できる。   Therefore, since the return temperature of the warm water to the refrigerant water heat exchanger 2 is low, the condensation pressure of the refrigerant in the refrigerant side flow path of the refrigerant water heat exchanger 2 can be reduced. For this reason, since the compressor 1 can lower the pressure of the refrigerant to be discharged, the power consumption of the compressor 1 can be reduced.

また、冷媒水熱交換器2の入水温度(図2における戻り温水温度)と出水温度(図2における行き温水温度)との温度差を大きくすることができるため、各熱交換器で、同一の加熱能力を車内に供給する場合に、水流量を低減することが可能となる。このため、ポンプ21の動力を低減でき、省エネルギー性の向上を図ることができる。   In addition, since the temperature difference between the incoming water temperature (return hot water temperature in FIG. 2) and the outgoing water temperature (bound hot water temperature in FIG. 2) of the refrigerant water heat exchanger 2 can be increased, When supplying the heating capacity into the vehicle, the water flow rate can be reduced. For this reason, the motive power of the pump 21 can be reduced and energy saving can be improved.

次に、冷房運転における冷媒、および、水の状態変化を説明する。   Next, the state change of the refrigerant and water in the cooling operation will be described.

図3では、冷媒回路10の冷却運転により生成された冷水を、水回路20において各熱交換器へ搬送して車室内の冷房に利用する冷房運転の動作を示している。図3では冷房運転時の冷媒の流れ方向を実線矢印、水の流れを破線矢印で示している。   FIG. 3 shows the operation of the cooling operation in which the cold water generated by the cooling operation of the refrigerant circuit 10 is conveyed to each heat exchanger in the water circuit 20 and used for cooling the passenger compartment. In FIG. 3, the flow direction of the refrigerant during the cooling operation is indicated by a solid arrow, and the flow of water is indicated by a broken arrow.

まず、冷媒回路10において、圧縮機1から吐出された高圧ガス冷媒は、四方弁5により冷媒空気熱交換器4に流入する方向に切り換えられ、凝縮器として作用する冷媒空気熱交換器4において空気と熱交換して冷媒自身は放熱して液化凝縮し、高圧液冷媒となる。   First, in the refrigerant circuit 10, the high-pressure gas refrigerant discharged from the compressor 1 is switched by the four-way valve 5 in a direction to flow into the refrigerant air heat exchanger 4, and the air in the refrigerant air heat exchanger 4 acting as a condenser. The refrigerant itself dissipates heat and liquefies and condenses to form a high-pressure liquid refrigerant.

冷媒空気熱交換器4から流出した高圧液冷媒は、膨張弁3によって減圧されて膨張し、低圧二相冷媒となり、蒸発器として作用する冷媒水熱交換器2に流入する。   The high-pressure liquid refrigerant that has flowed out of the refrigerant air heat exchanger 4 is decompressed and expanded by the expansion valve 3, becomes a low-pressure two-phase refrigerant, and flows into the refrigerant water heat exchanger 2 that acts as an evaporator.

冷媒水熱交換器2に流入した低圧二相冷媒は、冷媒水熱交換器2の水側流路を通過する水と熱交換して水から気化熱を吸熱して過熱冷媒となって冷媒水熱交換器2を流出し、圧縮機1へ戻る。   The low-pressure two-phase refrigerant that has flowed into the refrigerant water heat exchanger 2 exchanges heat with water that passes through the water-side flow path of the refrigerant water heat exchanger 2, absorbs the heat of vaporization from the water, and becomes superheated refrigerant water. The heat exchanger 2 flows out and returns to the compressor 1.

一方、水回路20において、ポンプ21により水回路20を循環する水は、冷媒水熱交換器2の水側流路において、冷媒水熱交換器2の冷媒側流路で蒸発する冷媒と熱交換して冷水となる。   On the other hand, in the water circuit 20, the water circulating in the water circuit 20 by the pump 21 exchanges heat with the refrigerant evaporated in the refrigerant side flow path of the refrigerant water heat exchanger 2 in the water side flow path of the refrigerant water heat exchanger 2. Then it becomes cold water.

その後、第1熱交換器22に冷水が流入し、冷水から空気へ対流熱伝達で加熱されることにより冷風を生成して車室内の冷房を行い、水自身は空気との熱交換によって水温が上昇して第1熱交換器22から流出する。   Thereafter, cold water flows into the first heat exchanger 22 and is heated by convection heat transfer from the cold water to the air to generate cold air to cool the passenger compartment. The water itself has a water temperature by heat exchange with the air. It rises and flows out of the first heat exchanger 22.

そして、車室内のドア内面パネルに設置された第2熱交換器23に流入した場合、在席者の体温より低い冷水により冷却されたドア内面パネルから輻射により座席シート在席者に冷熱を伝えることにより在席者の冷房快適性を高め、水自身は輻射により座席シート在席者に冷熱を伝えることよって水温が上昇して第2熱交換器23から流出する。   And when it flows into the 2nd heat exchanger 23 installed in the door inner surface panel of a vehicle interior, it conveys cold heat to a seat seat occupant by radiation from the door inner surface panel cooled by the cold water lower than a occupant's body temperature. Accordingly, the cooling comfort of the occupant is increased, and the water itself transmits cold to the seat occupant by radiation, whereby the water temperature rises and flows out of the second heat exchanger 23.

一方、車室内の座席シートの内部に設置された第3熱交換器24に流入した場合、在席者の体温より低い温水が、熱伝導により座席シート、および、座席シート在席者に冷熱を伝えることにより在席者の冷房快適性を高め、水自身は座席シートや在席者との熱交換によって水温が上昇して第3熱交換器24から流出する。   On the other hand, when flowing into the third heat exchanger 24 installed inside the seat in the passenger compartment, hot water lower than the temperature of the occupant cools the seat occupant and the seat occupant by heat conduction. The air conditioning comfort of the occupant is increased by the transmission, and the water temperature rises due to heat exchange with the seat seat and the occupant and flows out of the third heat exchanger 24.

そして、第2熱交換器23、第3熱交換器24から流出した水は集合後、冷媒水熱交換器2へ戻る。   And the water which flowed out from the 2nd heat exchanger 23 and the 3rd heat exchanger 24 returns to the refrigerant | coolant water heat exchanger 2 after aggregation.

ここで、水回路20において、冷房運転における各熱交換器を通過した冷水の温度の変化は、図4に示すようになる。   Here, in the water circuit 20, the change of the temperature of the cold water which passed each heat exchanger in air_conditionaing | cooling operation becomes as shown in FIG.

図4において、冷水は温度t4で第1熱交換器22に流入し、温度t5で流出する。このとき、第1熱交換手段22における冷水の温度差は、△t(=t5−t4)となる。その後、冷水は温度t5で第2熱交換器23、および/または、第3熱交換器24に流入し、温度t6で流出することになる。このとき、第1熱交換器22、第2熱交換器23、および/または、第3熱交換器24において吸熱された冷水の温度差は、最終的に△t’(=t6−t4)となる。   In FIG. 4, cold water flows into the first heat exchanger 22 at a temperature t4 and flows out at a temperature t5. At this time, the temperature difference of the cold water in the first heat exchange means 22 is Δt (= t5−t4). Thereafter, the cold water flows into the second heat exchanger 23 and / or the third heat exchanger 24 at the temperature t5 and flows out at the temperature t6. At this time, the temperature difference of the cold water absorbed in the first heat exchanger 22, the second heat exchanger 23, and / or the third heat exchanger 24 is finally Δt ′ (= t6−t4). Become.

すなわち、対流熱伝達による伝熱を行う第1熱交換器22において、温度の低い冷水を利用した後に、比較的高温の冷水でも十分に冷熱感を得られる輻射、または、熱伝導により伝熱を行う第2熱交換器23、および/または、第3熱交換器24で利用することにより、冷媒水熱交換器2への冷水の戻り温度を上げることができる。   That is, in the first heat exchanger 22 that performs heat transfer by convective heat transfer, after using cold water having a low temperature, heat transfer is performed by radiation or heat conduction that can sufficiently obtain a cool feeling even with relatively high-temperature cold water. By using the second heat exchanger 23 and / or the third heat exchanger 24 to perform, the return temperature of the cold water to the refrigerant water heat exchanger 2 can be increased.

したがって、冷媒水熱交換器2への冷水の戻り温度が高いため、冷媒水熱交換器2の冷媒側流路における冷媒の蒸発圧力を上昇させることができる。このため、圧縮機1の冷媒循環量を増加させることができる。これにより、各熱交換器で、同一の冷却能力を車内に供給する場合に、圧縮機1の運転容量(例えば、圧縮機1の回転数)を抑えることができるため、圧縮機1の消費電力を低減することができる。   Therefore, since the return temperature of the cold water to the refrigerant water heat exchanger 2 is high, the evaporation pressure of the refrigerant in the refrigerant side flow path of the refrigerant water heat exchanger 2 can be increased. For this reason, the refrigerant circulation amount of the compressor 1 can be increased. Thereby, when the same cooling capacity is supplied into the vehicle in each heat exchanger, the operating capacity of the compressor 1 (for example, the number of revolutions of the compressor 1) can be suppressed. Can be reduced.

また、冷媒水熱交換器2の入水温度(図4における戻り冷水温度)と出水温度(図4における行き冷水温度)の温度差を大きくすることができるため、各熱交換器で、同一の冷却能力を車内に供給する場合に、水流量を低減することができる。このため、ポンプ21の動力を低減でき、省エネルギー性の向上を図ることができる。   Further, since the temperature difference between the incoming water temperature (return chilled water temperature in FIG. 4) and outlet water temperature (bound chilled water temperature in FIG. 4) of the refrigerant water heat exchanger 2 can be increased, the same cooling is performed in each heat exchanger. When supplying capacity into the vehicle, the water flow rate can be reduced. For this reason, the motive power of the pump 21 can be reduced and energy saving can be improved.

以上のように、本発明にかかる車両用液体循環システムは、冷暖房に要するエネルギーを低く抑えることができる。すなわち、省エネルギー性の向上を図ることができるので、水を冷却・加熱し、その水を冷房・暖房に利用する車両用冷暖房装置に特に有用である。   As described above, the vehicle liquid circulation system according to the present invention can keep the energy required for cooling and heating low. That is, since energy saving can be improved, it is particularly useful for a vehicle air conditioner that cools and heats water and uses the water for cooling and heating.

さらに、温水や冷水を循環させて冷暖房を行う冷温水循環型暖房冷房装置においても同様の熱交換器の接続構成によって同様の省エネルギー性の向上を図ることができる。   Furthermore, in the cold / hot water circulation type heating / cooling apparatus that circulates hot water or cold water to perform air conditioning, the same energy-saving improvement can be achieved by the same heat exchanger connection configuration.

1 圧縮機
2 冷媒水熱交換器
3 膨張弁(膨張手段)
4 冷媒空気熱交換器
10 冷媒回路
20 水回路
21 ポンプ(循環手段)
22 第1熱交換器(第1熱交換手段)
23 第2熱交換器(第2熱交換手段)
24 第3熱交換器(第2熱交換手段)
25 第1流量調整弁(流量調整手段)
26 第2流量調整弁(流量調整手段)
28 送風機(送風手段)
40 制御装置(制御手段)
50 車両用液体循環システム
DESCRIPTION OF SYMBOLS 1 Compressor 2 Refrigerant water heat exchanger 3 Expansion valve (expansion means)
4 Refrigerant air heat exchanger 10 Refrigerant circuit 20 Water circuit 21 Pump (circulation means)
22 1st heat exchanger (1st heat exchange means)
23 Second heat exchanger (second heat exchange means)
24 3rd heat exchanger (2nd heat exchange means)
25 1st flow regulating valve (flow regulating means)
26 Second flow rate adjusting valve (flow rate adjusting means)
28 Blower (Blower means)
40 Control device (control means)
50 Liquid circulation system for vehicles

Claims (3)

圧縮機、冷媒水熱交換器、膨張手段、冷媒空気熱交換器が接続された冷媒回路と、前記冷媒水熱交換器で熱交換された水を循環させる循環手段、前記冷媒水熱交換器と直列に接続された第1熱交換手段、前記第1熱交換手段の下流側に接続された第2熱交換手段を有する水回路と、制御手段とを備え、前記第1熱交換手段は送風手段が発する空気により熱伝達するとともに、前記第2熱交換手段は車室内を構成する部品の表面または内部に設置され、熱伝導、または輻射により伝熱することを特徴する車両用液体循環システム。 A refrigerant circuit connected to a compressor, a refrigerant water heat exchanger, an expansion means, a refrigerant air heat exchanger, a circulation means for circulating water exchanged in the refrigerant water heat exchanger, and the refrigerant water heat exchanger A first heat exchange means connected in series; a water circuit having a second heat exchange means connected downstream of the first heat exchange means; and a control means, wherein the first heat exchange means is a blower means. The vehicle liquid circulation system is characterized in that heat is transferred by air emitted from the vehicle, and the second heat exchanging means is installed on the surface or inside of a part constituting the vehicle interior and transfers heat by heat conduction or radiation. 前記第2熱交換手段を複数設置し、かつそれぞれを並列に設置したことを特徴とする請求項1に記載の車両用液体循環システム。 2. The vehicle liquid circulation system according to claim 1, wherein a plurality of the second heat exchange means are installed, and each of them is installed in parallel. 前記第2熱交換手段を流れる水流量を調整する流量調整手段を配設したことを特徴とする請求項1または2に記載の車両用液体循環システム。 The vehicle liquid circulation system according to claim 1 or 2, further comprising a flow rate adjusting means for adjusting a flow rate of water flowing through the second heat exchange means.
JP2010151766A 2010-07-02 2010-07-02 Liquid circulating system for vehicle Pending JP2012011932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010151766A JP2012011932A (en) 2010-07-02 2010-07-02 Liquid circulating system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151766A JP2012011932A (en) 2010-07-02 2010-07-02 Liquid circulating system for vehicle

Publications (1)

Publication Number Publication Date
JP2012011932A true JP2012011932A (en) 2012-01-19

Family

ID=45598871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151766A Pending JP2012011932A (en) 2010-07-02 2010-07-02 Liquid circulating system for vehicle

Country Status (1)

Country Link
JP (1) JP2012011932A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734524B2 (en) * 2012-08-08 2015-06-17 三菱電機株式会社 Air conditioner
CN108583217A (en) * 2018-04-24 2018-09-28 芜湖黑特新能源汽车科技有限公司 A kind of automobile air-conditioner high-pressure heating water PTC assemblies with equipotential design
CN109624650A (en) * 2018-12-12 2019-04-16 上海加冷松芝汽车空调股份有限公司 A kind of air conditioning system for vehicle
CN110189593A (en) * 2019-06-28 2019-08-30 常州工学院 A kind of accurate heat transfer comprehensive experimental device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485806A (en) * 1987-09-28 1989-03-30 Nippon Denso Co Heat pump type cooling/warming device for vehicle
JPH0952508A (en) * 1995-06-07 1997-02-25 Denso Corp Vehicular air conditioner
JP2006321269A (en) * 2005-05-17 2006-11-30 Nissan Motor Co Ltd Heat source distribution system for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485806A (en) * 1987-09-28 1989-03-30 Nippon Denso Co Heat pump type cooling/warming device for vehicle
JPH0952508A (en) * 1995-06-07 1997-02-25 Denso Corp Vehicular air conditioner
JP2006321269A (en) * 2005-05-17 2006-11-30 Nissan Motor Co Ltd Heat source distribution system for vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734524B2 (en) * 2012-08-08 2015-06-17 三菱電機株式会社 Air conditioner
US20150176876A1 (en) * 2012-08-08 2015-06-25 Mitsubishi Electric Corporation Air-conditioning apparatus
US9890976B2 (en) 2012-08-08 2018-02-13 Mitsubishi Electric Corporation Air-conditioning apparatus
CN108583217A (en) * 2018-04-24 2018-09-28 芜湖黑特新能源汽车科技有限公司 A kind of automobile air-conditioner high-pressure heating water PTC assemblies with equipotential design
CN109624650A (en) * 2018-12-12 2019-04-16 上海加冷松芝汽车空调股份有限公司 A kind of air conditioning system for vehicle
CN109624650B (en) * 2018-12-12 2023-09-01 上海加冷松芝汽车空调股份有限公司 Air conditioning system for vehicle
CN110189593A (en) * 2019-06-28 2019-08-30 常州工学院 A kind of accurate heat transfer comprehensive experimental device
CN110189593B (en) * 2019-06-28 2021-11-23 常州工学院 Accurate heat transfer comprehensive experiment device

Similar Documents

Publication Publication Date Title
CN112074425B (en) Thermal management system for vehicle
JP7172815B2 (en) In-vehicle temperature controller
KR102182343B1 (en) Heat pump system for vehicle
KR100970876B1 (en) Heat pump type heating and cooling apparatus
JP6218953B2 (en) Heat pump system for vehicles
US20100281901A1 (en) Air conditioner for vehicle
JP6332219B2 (en) Temperature control device for vehicles
KR100357988B1 (en) Heat pump type air conditioning apparatus
JP2012011928A (en) Vehicle water circulation system
JP5896817B2 (en) Cooling power generation system
JP2011252636A (en) Hot-water heating hot-water supply apparatus
US10464398B2 (en) Vehicle anti-fogging device
US11260724B2 (en) Vehicular air conditioning system and method for controlling the same
CN115366620A (en) Vehicle-mounted temperature adjusting system
JP2012011929A (en) Liquid circulation system for vehicle
JP2012011931A (en) Liquid circulating system for vehicle
JP2012011932A (en) Liquid circulating system for vehicle
JP2015009652A (en) Air conditioner for vehicle
JP7543980B2 (en) Vehicle temperature control system
JP5096956B2 (en) Air conditioning system for vehicles
JP2017013561A (en) Heat pump system for vehicle
JP2012011927A (en) Vehicle water circulation system
JP2017026159A (en) Heat pump device
JP2009202773A (en) Air conditioning system for vehicle
KR200412598Y1 (en) Heat pump system for having function of hot water supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121211

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311