JP2012011684A - Production method of tire - Google Patents

Production method of tire Download PDF

Info

Publication number
JP2012011684A
JP2012011684A JP2010151014A JP2010151014A JP2012011684A JP 2012011684 A JP2012011684 A JP 2012011684A JP 2010151014 A JP2010151014 A JP 2010151014A JP 2010151014 A JP2010151014 A JP 2010151014A JP 2012011684 A JP2012011684 A JP 2012011684A
Authority
JP
Japan
Prior art keywords
vulcanization
tire
semi
vulcanized
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010151014A
Other languages
Japanese (ja)
Inventor
Ryusaku Obuchi
竜作 大淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010151014A priority Critical patent/JP2012011684A/en
Publication of JP2012011684A publication Critical patent/JP2012011684A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a tire which controls difference of vulcanization degree due to a part location and reduces generation of bubbles, etc.SOLUTION: A semi-vulcanized tire 22 is taken out from a vulcanizing machine 10 when vulcanization has sufficiently progressed on the surface of a raw tire 20 (at the time of ending of pre-vulcanization). Then, the semi-vulcanized tire 22, once opened to atmosphere outside of the vulcanizing machine 10, is again moved into a pressurizing vessel 30 and is provided with gas pressure or liquid pressure from surrounds, so that vulcanization of an inner part (a most-delayed part) of the semi-vulcanized tire 22, which is not sufficiently vulcanized yet, is made to progress.

Description

本発明はタイヤ製造方法に関し、特に空気入りタイヤ製造方法に関する。   The present invention relates to a tire manufacturing method, and more particularly to a pneumatic tire manufacturing method.

一般的なタイヤの製造方法には、剛性コア上に成型した生タイヤを、その剛性コアとともにモールド内にて加熱・加圧することで加硫し、製品のパターンを決定しゴム材料に必要な物性を与える加硫工程が含まれ、当該工程において加硫中にタイヤに及ぼす温度・圧力がそのタイヤの加硫度・物性を決定する要因となる。   In general tire manufacturing methods, a raw tire molded on a rigid core is vulcanized by heating and pressing in the mold together with the rigid core to determine the product pattern and physical properties required for the rubber material. The temperature and pressure exerted on the tire during vulcanization are factors that determine the vulcanization degree and physical properties of the tire.

従来一般に加硫工程における加硫度は2段階に分かれて進む。第1段階は一般に前加硫と呼ばれ、生タイヤを加硫機に収納し温度及び圧力を制御して予め決められた時間に亘って加熱及び加圧を行い、タイヤ内で加硫が最も遅い部分である最遅部の加硫度が所望の加硫度になるように加硫機の温度・圧力を制御している。   Conventionally, the degree of vulcanization in the vulcanization process generally proceeds in two stages. The first stage is generally called pre-vulcanization. The raw tire is stored in a vulcanizer and heated and pressurized for a predetermined period of time by controlling the temperature and pressure. The temperature and pressure of the vulcanizer are controlled so that the vulcanization degree of the slowest part, which is the slow part, becomes the desired vulcanization degree.

これに続く第2段階は後加硫と呼ばれ、この後加硫は、前加硫が終了したタイヤを加硫機から取り出した後、自然冷却するまでの間に進む加硫であって、場合によってはこれをポストキュアインフレーション装置(通常PCI装置という)等にタイヤを取り付けて行われている。そして加硫開始から後加硫終了までの加硫度を所定範囲内の加硫度に制御している。   The subsequent second stage is called post-vulcanization, and this post-vulcanization is a vulcanization that proceeds from the time when the pre-cured tire is taken out of the vulcanizer until it is naturally cooled, In some cases, this is performed by attaching a tire to a post-cure inflation device (usually called a PCI device) or the like. The degree of vulcanization from the start of vulcanization to the end of post-vulcanization is controlled to a vulcanization degree within a predetermined range.

しかし自然冷却に委ねられる後加硫においては、例えば、部屋の奥まった場所や外気に触れやすい場所等の後加硫が行われる場所、例えば、PCI装置が設置されている位置や、気温の変化等によって加硫の進み具合もそれぞれ異なってしまい後加硫開始から終了までの加硫度(後加硫度)がばらついてしまう。また加硫モールド内で加硫が終了するのを待ってPCI装置に投入するのでは時間がかかりすぎ、生産性が良くない等の問題があった。   However, in post-vulcanization, which is left to natural cooling, for example, a place where the post-vulcanization is performed such as a place deep inside the room or a place where it is easily exposed to outside air, for example, a position where a PCI device is installed, or a change in temperature. The progress of vulcanization varies depending on the degree of vulcanization, and the degree of vulcanization (post-vulcanization degree) from the start to the end of post-vulcanization varies. Moreover, it takes too much time to wait for the vulcanization to be completed in the vulcanization mold and put it into the PCI device, resulting in poor productivity.

そこで上記の問題に対する対策として、目標加硫量の途中まで加硫機でタイヤを加硫したのち、該半加硫タイヤの内部に流体を充填し加熱・冷却する製造方法が提案されている(例えば、特許文献1参照)。また、保温されたPCI装置内でマイクロ波を用いて後加硫する製造方法が提案されている(例えば、特許文献2参照)。あるいは被加硫物の後加硫での雰囲気温度を制御する製造方法が提案されている(例えば、特許文献3参照)。   Therefore, as a countermeasure against the above problem, a manufacturing method has been proposed in which a tire is vulcanized with a vulcanizer until the middle of the target vulcanization amount, and then the fluid is filled into the semi-vulcanized tire and heated and cooled ( For example, see Patent Document 1). Further, a manufacturing method has been proposed in which post-vulcanization is performed using microwaves in a PCI device kept warm (see, for example, Patent Document 2). Or the manufacturing method which controls the atmospheric temperature in the post-vulcanization | curing | vulcanization | curing material is proposed (for example, refer patent document 3).

しかし上記特許文献1および特許文献2に開示された例は何れも半加硫タイヤの内部に液体を注入する装置、あるいはマイクロ波発生装置などの追加設備を必要とするためコストが嵩み、また特許文献3の例では放冷して自然冷却する方法に比較すると後加硫での雰囲気温度を制御するための設備にコストを必要とする等の欠点がある。   However, both of the examples disclosed in Patent Document 1 and Patent Document 2 require additional equipment such as a device for injecting a liquid into a semi-vulcanized tire or a microwave generator, which increases the cost. In the example of Patent Document 3, there is a disadvantage that the equipment for controlling the atmospheric temperature in the post-vulcanization requires a cost as compared with the method of allowing to cool and naturally cooling.

特開平6−238669号公報JP-A-6-238669 特開平9−193159号公報Japanese Patent Laid-Open No. 9-193159 特開平7−032374号公報JP-A-7-032374

ところで、上記の各製造方法では前加硫が終了した時点で加硫機よりタイヤを排出しているが、タイヤ内部の最も加硫が遅い最遅部の加硫度を確保するために必要な温度(熱量)をタイヤの内面・外面から絶えず供給しているため、加硫の初期にあってもタイヤの表層近傍では既に加硫が進行している。   By the way, in each of the above manufacturing methods, the tire is discharged from the vulcanizer at the time when the pre-vulcanization is completed, but it is necessary to secure the vulcanization degree of the slowest part in the tire that is the slowest vulcanization. Since temperature (amount of heat) is constantly supplied from the inner surface and the outer surface of the tire, vulcanization has already progressed in the vicinity of the surface layer of the tire even at the initial stage of vulcanization.

このためタイヤ表面部では加硫が過剰傾向にあり、またタイヤ全体としても加硫度の進み方の部分的な差異が大きくなる。且つ加硫の初期にはタイヤおよびコアは共に熱膨脹量が少なく、タイヤの加圧力が小さい状況下でタイヤ表面の加硫が進むため、表面では圧力不足により所謂ブローンや気泡発生の虞があるという問題がある。   For this reason, vulcanization tends to be excessive at the tire surface, and a partial difference in the degree of vulcanization progresses as a whole. In the initial stage of vulcanization, both the tire and the core have a small amount of thermal expansion, and the vulcanization of the tire surface proceeds under the condition that the pressure of the tire is small. There's a problem.

本発明は上記事実を考慮し、部位による加硫度の差を抑え、気泡等の発生を低減するタイヤ製造方法を提供することを課題とする。   This invention considers the said fact and makes it a subject to provide the tire manufacturing method which suppresses the difference in the vulcanization degree by a site | part, and reduces generation | occurrence | production of a bubble etc.

請求項1に記載の発明は、加硫金型中のタイヤを加硫機内で加圧、加熱する前加硫工程と、前記タイヤを加硫完了前に前記加硫金型より取り出す工程と、前記タイヤを圧力容器へ移して加圧保持し、余熱で加硫完了させる後加硫工程と、を含むことを特徴とする。   The invention according to claim 1 is a pre-curing step of pressurizing and heating a tire in a vulcanizing mold in a vulcanizer, and a step of taking out the tire from the vulcanizing die before vulcanization is completed. And a post-vulcanization step in which the tire is transferred to a pressure vessel and held under pressure, and vulcanization is completed with residual heat.

上記の発明では、タイヤ内部の加硫が最も遅い最遅部が加硫を終えるまえに加硫機よりタイヤを取り出すので、タイヤ表面での過度な加硫を防ぎつつ、再度タイヤを圧力容器内で加圧しつつ余熱で加硫完了することで、圧力不足による気泡やブローンの発生を抑え、最遅部まで不足なく加硫を進めることができる。   In the above invention, the tire is taken out of the vulcanizer before the slowest slowest vulcanization inside the tire finishes vulcanization, so that the tire is placed in the pressure vessel again while preventing excessive vulcanization on the tire surface. By completing the vulcanization with residual heat while applying pressure, the generation of bubbles and blown due to insufficient pressure can be suppressed, and the vulcanization can proceed without any shortage to the slowest part.

請求項2に記載の発明は、請求項1に記載の構成において、前記前加硫工程では前記タイヤ全体を加硫するに足る熱量を前記タイヤに付与することを特徴とする。   According to a second aspect of the present invention, in the configuration according to the first aspect, in the pre-curing step, an amount of heat sufficient to vulcanize the entire tire is imparted to the tire.

上記の発明では、タイヤ内部において加硫の最も遅い最遅部まで十分に加硫するに足る熱を既に前加硫工程で付与されているので、後加硫工程では加圧に加えて表面部からの伝導熱が加わることで最遅部まで十分に加硫され、既に加硫を終えている表面部と最遅部との加硫度の差異を小さく抑えることができる。   In the above invention, heat sufficient to sufficiently vulcanize the slowest vulcanization part inside the tire has already been applied in the pre-vulcanization process. By adding the heat of conduction from the surface, it is sufficiently vulcanized to the slowest part, and the difference in the degree of vulcanization between the surface part already vulcanized and the slowest part can be kept small.

請求項3に記載の発明は、請求項1または請求項2に記載の構成において、前記後加硫工程では前記タイヤを液中で加圧することを特徴とする。   According to a third aspect of the present invention, in the configuration according to the first or second aspect, the tire is pressurized in a liquid in the post-vulcanization step.

上記の発明では、後加硫工程では液中でタイヤを加圧することで、気中での加圧に比較して高圧を付与することができる。   In said invention, a high pressure can be provided compared with the pressurization in the air by pressurizing a tire in a liquid in a post-vulcanization process.

本発明によれば、部位による加硫度の差を抑え、気泡等の発生を低減するタイヤ製造方法とすることができる。   ADVANTAGE OF THE INVENTION According to this invention, it can be set as the tire manufacturing method which suppresses the difference in the vulcanization degree by a site | part, and reduces generation | occurrence | production of a bubble etc.

本発明に係るタイヤの製造方法を示す概念図である。It is a conceptual diagram which shows the manufacturing method of the tire which concerns on this invention. 図1に示すタイヤの製造方法における、タイヤに付与される圧力を示す概念図である。It is a conceptual diagram which shows the pressure provided to a tire in the manufacturing method of the tire shown in FIG. 従来のタイヤの製造方法を示す概念図である。It is a conceptual diagram which shows the manufacturing method of the conventional tire. 図3に示すタイヤの製造方法における、タイヤに付与される圧力を示す概念図である。It is a conceptual diagram which shows the pressure provided to a tire in the manufacturing method of the tire shown in FIG.

<全体構成>
以下、本発明の一実施形態として空気入りタイヤの製造方法を例として挙げ、これに従って説明する。
<Overall configuration>
Hereinafter, as an embodiment of the present invention, a method for producing a pneumatic tire will be described as an example, and will be described in accordance with this method.

図1(A)は、本実施形態の加硫機10を示した概略見取図である。図1(A)に概念図で示すように、加硫機10は、生タイヤ20を外側から包み込む上側モールド12及び下側モールド14で構成されているモールドユニット16と、生タイヤ20を内側から外側へ押圧するように変形可能なブラダユニット(図示せず)とを備えている。     FIG. 1A is a schematic sketch showing the vulcanizer 10 of the present embodiment. As shown in a conceptual diagram in FIG. 1A, the vulcanizer 10 includes a mold unit 16 including an upper mold 12 and a lower mold 14 that wraps the raw tire 20 from the outside, and the raw tire 20 from the inside. A bladder unit (not shown) that can be deformed so as to press outward.

生タイヤ20の内部に配置されたブラダユニットの膨張により、生タイヤ20の外側表面が上側モールド12及び下側モールド14の内側面に圧着されて製品パターンを形成するとともに、加熱により生タイヤ20の表面より加硫が開始され、タイヤとしてのゴム物性が与えられる。   Due to the expansion of the bladder unit disposed inside the green tire 20, the outer surface of the green tire 20 is pressed against the inner surfaces of the upper mold 12 and the lower mold 14 to form a product pattern, and the raw tire 20 is heated by heating. Vulcanization is started from the surface, and rubber physical properties as a tire are given.

モールドユニット16の周囲は、ジャケット18によって覆われている。このジャケット18には加熱流体(例えば、蒸気)が流動する構成になっている。このジャケット18によってモールドユニット16(上側モールド12及び下側モールド14)の、生タイヤ20の外周面に対応する側が加熱される。   The periphery of the mold unit 16 is covered with a jacket 18. A heating fluid (for example, steam) flows through the jacket 18. The jacket 18 heats the side of the mold unit 16 (upper mold 12 and lower mold 14) corresponding to the outer peripheral surface of the raw tire 20.

このように構成された加硫機10内には、モールドユニット16の温度を検出するモールドユニット温度センサ(図示せず)と、生タイヤ20の内部空間の温度を検出するブラダ温度センサ(図示せず)とが備えられ、これらのセンサによって検出された温度を基に、図示しない加硫制御回路がモールドユニット16及びブラダユニットが所定の温度になるように加熱流体を流動等させる。   In the vulcanizer 10 thus configured, a mold unit temperature sensor (not shown) for detecting the temperature of the mold unit 16 and a bladder temperature sensor (not shown) for detecting the temperature of the internal space of the raw tire 20 are included. Based on the temperatures detected by these sensors, a vulcanization control circuit (not shown) causes the heating fluid to flow so that the mold unit 16 and the bladder unit have a predetermined temperature.

このとき、モールドユニット16及びブラダユニットにより生タイヤ20に対しては、生タイヤ20が全体として十分な加硫度を得られるのに足る熱量を加えるため、上記の加硫制御回路にて必要な熱量を算出して加熱流体を流動等させ、加硫機10の内部で処理を終了する前加硫終了までの段階で生タイヤ20全体が加硫度を得るのに必要な熱量を付与する。   At this time, the mold unit 16 and the bladder unit add necessary heat to the raw tire 20 so that the raw tire 20 can obtain a sufficient degree of vulcanization as a whole. The amount of heat is calculated, the heated fluid is flowed, etc., and the amount of heat necessary for the entire raw tire 20 to obtain the degree of vulcanization is applied at the stage until the end of pre-vulcanization within the vulcanizer 10 where the processing is completed.

図1(B)に示すように、上側モールド12及び下側モールド14による加圧および加熱により生タイヤ20の表面に製品パターンが形成され、生タイヤ20の表面において加硫が十分に進行した時点(前加硫終了時点)で上側モールド12、下側モールド14を開いて半加硫タイヤ22を加硫機10より取り出す。この時点で前加硫終了とする。   As shown in FIG. 1B, when a product pattern is formed on the surface of the raw tire 20 by the pressurization and heating by the upper mold 12 and the lower mold 14, and the vulcanization sufficiently proceeds on the surface of the raw tire 20. At the end of the pre-vulcanization, the upper mold 12 and the lower mold 14 are opened and the semi-vulcanized tire 22 is taken out from the vulcanizer 10. At this point, the pre-vulcanization is complete.

ここで図1(B)に示すように、前加硫工程を終えた生タイヤ20は半加硫タイヤ22として加硫機10の外で大気開放される。このとき、例えば自然冷却により半加硫タイヤ22の表面はそれ以上加硫が進行しない程度の温度まで冷却される可能性があるため、場合によっては保温容器にて保持する等の対策を取ってもよい。一方で半加硫タイヤ22の内部では加硫機10で付与された熱が表面より熱伝導によって浸透し、加圧されれば更なる加硫が進行する状態とされている。   Here, as shown in FIG. 1B, the raw tire 20 that has finished the pre-vulcanization process is opened to the atmosphere outside the vulcanizer 10 as a semi-vulcanized tire 22. At this time, for example, the surface of the semi-vulcanized tire 22 may be cooled to a temperature at which the vulcanization does not proceed any further due to natural cooling. Also good. On the other hand, in the inside of the semi-vulcanized tire 22, the heat applied by the vulcanizer 10 penetrates from the surface by heat conduction, and if it is pressurized, further vulcanization proceeds.

さらに図1(C)に示すように、半加硫タイヤ22は圧力容器30内に移され、周囲から気圧あるいは液圧が付与される。このとき、前述のように加硫機10内で既に付与された熱(余熱)によって、未だ加硫が十分に進行していない半加硫タイヤ22内部(最遅部)の加硫を進行させる。本願発明に係るタイヤ製造方法においては、この工程が後加硫に相当する工程となる。   Further, as shown in FIG. 1C, the semi-vulcanized tire 22 is moved into the pressure vessel 30 and is given atmospheric pressure or hydraulic pressure from the surroundings. At this time, as described above, vulcanization inside the semi-vulcanized tire 22 (latest part) in which vulcanization has not sufficiently progressed is advanced by the heat (residual heat) already applied in the vulcanizer 10. . In the tire manufacturing method according to the present invention, this step corresponds to post-vulcanization.

すなわち、従来のタイヤ製造方法において、前加硫が終了したタイヤを加硫機から取り出した後、ポストキュアインフレーション装置(PCI装置)等に取付け、自然冷却するまでの間に進行する加硫度(加硫開始から後加硫終了までの加硫度)を所定範囲内の加硫度としているのに対して、本願発明に係るタイヤ製造方法においては、前加硫が終了した半加硫タイヤ22を圧力容器30内で再度加圧処理する間に余熱で加硫度の進行する工程を後加硫工程としている。   That is, in the conventional tire manufacturing method, after the pre-cured tire is taken out of the vulcanizer, it is attached to a post-cure inflation device (PCI device) or the like, and the degree of vulcanization that progresses until it is naturally cooled ( Whereas the vulcanization degree from the start of vulcanization to the end of post-vulcanization is set to a vulcanization degree within a predetermined range, in the tire manufacturing method according to the present invention, the semi-vulcanized tire 22 in which the pre-vulcanization has been completed. The process in which the degree of vulcanization progresses with the residual heat during the pressurization process in the pressure vessel 30 is referred to as a post-vulcanization process.

上記の図1(A)〜図1(C)に示す各工程における、生タイヤ20(半加硫タイヤ22)に加えられる圧力(加硫圧)の変化を、加硫時間との関係で示した概念図を図2に示す。   The change of the pressure (vulcanization pressure) applied to the raw tire 20 (semi-vulcanized tire 22) in each step shown in FIGS. 1A to 1C is shown in relation to the vulcanization time. A conceptual diagram is shown in FIG.

図2中、A部分は加硫機10の中でモールドユニット16およびブラダユニットにより所定の圧力で加圧された状態が維持され、前加硫終了と共に半加硫タイヤ22は大気中に開放され、加圧されない状態となる。このとき、部位によっては完全に加硫が完了していないため、前述のように圧力不足となり、気泡やブローンの発生する可能性がある。   In FIG. 2, the portion A is maintained at a predetermined pressure by the mold unit 16 and the bladder unit in the vulcanizer 10, and the semi-vulcanized tire 22 is opened to the atmosphere when the pre-curing is completed. In this state, no pressure is applied. At this time, since the vulcanization is not completely completed depending on the part, the pressure becomes insufficient as described above, and there is a possibility that bubbles or blown may occur.

次いでB部分では、半加硫タイヤ22は大気中に開放され、外部より加圧されていないため、半加硫タイヤ22の表面ではそれ以上に加硫が進行せず、表面のみ過度に加硫が進行する事態とはならない一方、半加硫タイヤ22の内部で未だ加硫が十分に進行していない所謂最遅部では、この時点では未だ加硫が不足した状態とされている。   Next, in part B, since the semi-vulcanized tire 22 is opened to the atmosphere and is not pressurized from the outside, vulcanization does not proceed further on the surface of the semi-vulcanized tire 22, and only the surface is excessively vulcanized. On the other hand, the so-called slowest part in which the vulcanization has not progressed sufficiently inside the semi-vulcanized tire 22 is still in a state where the vulcanization is still insufficient.

最後にC部分では、半加硫タイヤ22を圧力容器30の内部にて気圧または液圧で加圧することにより、再び圧が付与されている。この時点で付与される加硫圧はA部分で加硫機10内部にて付与された圧力と、必ずしも同等の圧力が付与される必要はない。すなわち、半加硫タイヤ22の表面は前加硫工程にてモールドユニット16による成型が既に行われ、タイヤとしての形状を維持できる程度の物性を備えているので、前述のように圧力が不足して気泡やブローンの発生する事態を防止できる程度の圧力を付与すればよい。   Finally, in part C, the pressure is applied again by pressurizing the semi-vulcanized tire 22 with the atmospheric pressure or the hydraulic pressure inside the pressure vessel 30. The vulcanization pressure applied at this point does not necessarily need to be applied with the same pressure as the pressure applied inside the vulcanizer 10 at the A portion. That is, the surface of the semi-vulcanized tire 22 has already been molded by the mold unit 16 in the pre-vulcanization process and has physical properties that can maintain the shape of the tire, so that the pressure is insufficient as described above. Therefore, it is sufficient to apply a pressure that can prevent the occurrence of bubbles and blown.

<効果>
従来のタイヤ製造方法においては、図3(A)、(B)に示すように、加硫機100の内部で前加硫が終了した半加硫タイヤ22は、加硫機100より取り出され自然冷却するまで放冷するか、或いはポストキュアインフレーション装置等にタイヤを取り付けて後加硫を行う。このときタイヤに付与される圧力の変化は、図4に示すように加硫機100の内部で加熱・加圧された以降は加熱・加圧されることはなく、そのまま大気圧下で後加硫が進む。
<Effect>
In the conventional tire manufacturing method, as shown in FIGS. 3A and 3B, the semi-vulcanized tire 22 that has been pre-cured inside the vulcanizer 100 is taken out of the vulcanizer 100 and is naturally Allow to cool until cooled, or attach the tire to a post-cure inflation device and post-vulcanize. At this time, the change in pressure applied to the tire is not heated or pressurized after being heated and pressurized inside the vulcanizer 100 as shown in FIG. Sulfur proceeds.

このとき、加硫機100内部で付与される熱と圧力は、タイヤ内部において最も加硫が遅い部分である最遅部が所望の加硫度となるように制御されている。しかし最遅部の加硫度を確保するために必要な圧力および熱を生タイヤ20(図示せず)の内面および外面より付与しているので、加硫度の進行が早いタイヤ表面においては加硫が過度となる傾向があり、またタイヤ全体として加硫度の進行に差が生じる虞があった。   At this time, the heat and pressure applied inside the vulcanizer 100 are controlled such that the slowest part, which is the slowest part of vulcanization inside the tire, has a desired degree of vulcanization. However, since the pressure and heat necessary to secure the vulcanization degree of the slowest part are applied from the inner surface and outer surface of the raw tire 20 (not shown), the vulcanization degree is accelerated on the tire surface where the vulcanization degree progresses quickly. There was a tendency for the vulcanization to be excessive, and there was a risk of a difference in the progress of the vulcanization degree as a whole tire.

本願発明に係るタイヤ製造方法においては、図1(A)で加硫機10内において行われる前加硫の工程で、生タイヤ20全体が加硫度を得るのに必要な熱量を付与している。この後に図1(B)で半加硫タイヤ22を大気圧開放すると、前加硫工程で生タイヤ20に付与された熱は、加硫度の進行が早い表面より未だ加硫が十分に進行していない所謂最遅部へ伝導熱として供給される。一方、加硫度の進行が早い表面では加熱停止により温度が低下し、加硫の進行は停止する。   In the tire manufacturing method according to the present invention, in the pre-vulcanization process performed in the vulcanizer 10 in FIG. Yes. Thereafter, when the semi-vulcanized tire 22 is released to atmospheric pressure in FIG. 1B, the heat applied to the raw tire 20 in the pre-curing process is still sufficiently vulcanized from the surface where the progress of the vulcanization degree is fast. It is supplied as conduction heat to the so-called slowest part that is not. On the other hand, on the surface where the progress of the vulcanization degree is fast, the temperature is lowered by stopping the heating, and the progress of vulcanization is stopped.

次いで図1(C)に示すように圧力容器30内で半加硫タイヤ22を加圧する工程において、半加硫タイヤ22の表面部分では既に加熱停止のため温度は低下し、更なる加硫は進行しない。一方、加硫の進行が遅い半加硫タイヤ22内部においては、前述のように表面からの伝導熱として熱が供給されるため、加熱を停止した以降も加硫度の進行が進む。   Next, in the step of pressurizing the semi-vulcanized tire 22 in the pressure vessel 30 as shown in FIG. 1 (C), the temperature of the surface portion of the semi-vulcanized tire 22 has already decreased due to the stop of heating, and further vulcanization is performed. Does not progress. On the other hand, in the semi-vulcanized tire 22 where the progress of vulcanization is slow, heat is supplied as the conduction heat from the surface as described above, so that the degree of vulcanization proceeds even after the heating is stopped.

これにより、既に加硫度の進行している半加硫タイヤ22の表面では更なる加硫度の進行は起こらず、その一方で十分に加硫度の進行していない半加硫タイヤ22の内部では、表面からの伝導熱で、更なる加硫度の進行が起こる。且つ圧力容器30内部にて加圧されているため、圧力不足による気泡やブローンの発生を防止することができる。   As a result, on the surface of the semi-vulcanized tire 22 where the degree of vulcanization has already progressed, no further progress of the degree of vulcanization occurs, while on the other hand, the semi-vulcanized tire 22 whose degree of vulcanization has not sufficiently progressed Internally, the degree of vulcanization proceeds further due to the heat of conduction from the surface. And since it is pressurized inside the pressure vessel 30, the generation | occurrence | production of the bubble by the pressure shortage and a blown can be prevented.

このため、半加硫タイヤ22の表面と内部とで加硫度の進行に生じる差異を小さく抑えることができ、全体として部位による加硫度のムラが少ないタイヤ製造方法とすることが可能となる。特に表面における加硫度を過度に進行させないため、摩耗度などのタイヤ性能を向上させることができる。   For this reason, the difference which arises in progress of a vulcanization degree by the surface and the inside of the semi-vulcanized tire 22 can be suppressed small, and it becomes possible to set it as the tire manufacturing method with few nonuniformity of the vulcanization degree by a site | part as a whole. . In particular, since the vulcanization degree on the surface is not excessively advanced, the tire performance such as the wear degree can be improved.

さらに、後加硫工程は加硫機10ではなく圧力容器30内で半加硫タイヤ22を加圧し、かつ気圧に限定されず液圧を付与してもよいので、付与される圧力の設定に自由度が大きく、また液体は気体よりも比熱が大きいため温度が変化しにくく、温度管理等も容易に行うことができる。   Furthermore, since the post-vulcanization step pressurizes the semi-vulcanized tire 22 in the pressure vessel 30 instead of the vulcanizer 10 and may apply a hydraulic pressure without being limited to the atmospheric pressure, Since the degree of freedom is large and the specific heat of the liquid is larger than that of the gas, the temperature does not easily change, and temperature management and the like can be easily performed.

また、半加硫タイヤ22は内部の加硫が十分に進行していない状態で一旦、大気圧開放するため、タイヤ単体で任意の場所(圧力容器30の設置箇所に限定されない)へ移動可能となる。同時に、生タイヤ20が加硫機10を占有する時間が短縮できるので、より効率よく作業を行うことができる。   Further, since the semi-vulcanized tire 22 is temporarily released to atmospheric pressure in a state where the internal vulcanization has not sufficiently progressed, the tire itself can be moved to any place (not limited to the place where the pressure vessel 30 is installed). Become. At the same time, since the time for the raw tire 20 to occupy the vulcanizer 10 can be shortened, the work can be performed more efficiently.

さらに、前述のようにタイヤの加硫度が低い時点で加圧力が不足する場合に屡々タイヤ内の揮発分やエアの膨脹を抑えるに足る十分な圧力を得られず、ブローン(凹み)あるいはエア入り(気泡)等が発生する問題が知られているが、発明者らは半加硫タイヤ22を加硫機10より取り出した時点でブローンが発生している場合であっても、圧力容器30内部で加圧保持することにより既に発生したブローンが縮小する効果を見い出した。   Further, as described above, when the pressure is insufficient when the vulcanization degree of the tire is low, it is often impossible to obtain sufficient pressure to suppress the volatile matter in the tire and the expansion of the air, and blown (dent) or air Although the problem of entering (bubbles) or the like is known, even if the blower is generated when the semi-vulcanized tire 22 is taken out from the vulcanizer 10, the inventors have the pressure vessel 30. It has been found that the blown already generated can be reduced by maintaining pressure inside.

以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、本発明の権利範囲がこれらの実施形態に限定されず、本発明の要旨を逸脱しない範囲内で種々変更して実施できることは言うまでもない。   The embodiments of the present invention have been described above with reference to the embodiments. However, these embodiments are merely examples, and the scope of rights of the present invention is not limited to these embodiments, and does not depart from the gist of the present invention. Needless to say, various modifications can be made.

10 加硫機
12 上側モールド
14 下側モールド
16 モールドユニット
18 ジャケット
20 生タイヤ
22 半加硫タイヤ
30 圧力容器
DESCRIPTION OF SYMBOLS 10 Vulcanizer 12 Upper mold 14 Lower mold 16 Mold unit 18 Jacket 20 Raw tire 22 Semi-vulcanized tire 30 Pressure vessel

Claims (3)

加硫金型中のタイヤを加硫機内で加圧、加熱する前加硫工程と、
前記タイヤを加硫完了前に前記加硫金型より取り出す工程と、
前記タイヤを圧力容器へ移して加圧保持し、余熱で加硫完了させる後加硫工程と、
を含むことを特徴とするタイヤ製造方法。
A pre-curing step of pressurizing and heating the tire in the vulcanizing mold in a vulcanizer;
Removing the tire from the vulcanization mold before vulcanization is completed;
After the tire is transferred to a pressure vessel and held under pressure, vulcanization is completed with residual heat;
The tire manufacturing method characterized by including.
前記前加硫工程では前記タイヤ全体を加硫するに足る熱量を前記タイヤに付与することを特徴とする請求項1に記載のタイヤ製造方法。   2. The tire manufacturing method according to claim 1, wherein in the pre-vulcanization step, an amount of heat sufficient to vulcanize the entire tire is imparted to the tire. 前記後加硫工程では前記タイヤを液中で加圧することを特徴とする請求項1または請求項2に記載のタイヤ製造方法。   The tire manufacturing method according to claim 1, wherein the tire is pressurized in a liquid in the post-vulcanization step.
JP2010151014A 2010-07-01 2010-07-01 Production method of tire Pending JP2012011684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010151014A JP2012011684A (en) 2010-07-01 2010-07-01 Production method of tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151014A JP2012011684A (en) 2010-07-01 2010-07-01 Production method of tire

Publications (1)

Publication Number Publication Date
JP2012011684A true JP2012011684A (en) 2012-01-19

Family

ID=45598684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151014A Pending JP2012011684A (en) 2010-07-01 2010-07-01 Production method of tire

Country Status (1)

Country Link
JP (1) JP2012011684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016055440A (en) * 2014-09-05 2016-04-21 株式会社ブリヂストン Method and apparatus for manufacturing tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016055440A (en) * 2014-09-05 2016-04-21 株式会社ブリヂストン Method and apparatus for manufacturing tire

Similar Documents

Publication Publication Date Title
KR101173339B1 (en) Tire vulcanizer and tire vulcanizing method
KR102040039B1 (en) Tire vulcanizer mold temperature control device
JP4436712B2 (en) Tire vulcanization method
JP5661569B2 (en) Tire vulcanizer and tire vulcanizing method
JP2009018445A (en) Method of manufacturing pneumatic tire
JP2012011684A (en) Production method of tire
CN114786933B (en) Vulcanizing process and apparatus for tires
US8163210B2 (en) Method of vulcanising pneumatic tyres and apparatus therefor
JP2008273095A (en) Pneumatic tire manufacturing method
JP2594336B2 (en) Method and apparatus for curing thick articles
JP4626334B2 (en) Tire vulcanizing bladder and manufacturing method thereof
KR20120066090A (en) Mold apparatus
KR101694126B1 (en) Method of Curing Run Flat Tire
KR100771688B1 (en) Loader for pre-heating bead section of green tire
JP6114476B2 (en) Tire preheating device, tire vulcanizing system, tire preheating method, and tire manufacturing method
JP2007203684A (en) Manufacturing process and apparatus of retreaded tire
JP5318682B2 (en) Tire vulcanization method
JP2014076581A (en) Device and method for preheating unvulcanized tire, and method for producing tire
JP2009208400A (en) Tire production method and production equipment
JP2018192702A (en) Tire vulcanization method and tire vulcanizing apparatus
JP5193497B2 (en) Adjustment method of tire vulcanization degree
JP5551977B2 (en) Stand tire vulcanizer
JP2006027208A (en) Tire vulcanizing method, setting method for tire vulcanizing process and tire vulcanizing bladder
JP2013086281A (en) Method and apparatus for producing tire
JP2008018623A (en) Rubber molding method