JP2012011407A - Method for manufacturing welding joint and welding device for executing the same - Google Patents

Method for manufacturing welding joint and welding device for executing the same Download PDF

Info

Publication number
JP2012011407A
JP2012011407A JP2010148787A JP2010148787A JP2012011407A JP 2012011407 A JP2012011407 A JP 2012011407A JP 2010148787 A JP2010148787 A JP 2010148787A JP 2010148787 A JP2010148787 A JP 2010148787A JP 2012011407 A JP2012011407 A JP 2012011407A
Authority
JP
Japan
Prior art keywords
welding
speed
carriage
torch
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010148787A
Other languages
Japanese (ja)
Other versions
JP5494292B2 (en
Inventor
Kazuhiro Kojima
一浩 児嶋
Tetsuo Nose
哲郎 野瀬
Hiroshige Inoue
裕滋 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010148787A priority Critical patent/JP5494292B2/en
Publication of JP2012011407A publication Critical patent/JP2012011407A/en
Application granted granted Critical
Publication of JP5494292B2 publication Critical patent/JP5494292B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a welding control means allowing a heat input amount not to fluctuate even when a groove sectional area fluctuates when manufacturing a welding joint formed of a steel plate with a plate thickness of >50 mm without using a specified expensive instrument.SOLUTION: When welding is carried out at a constant voltage by moving upward a truck mounted with a welding torch along a groove of a steel plate and two electrode vertical electrogas arc welding is carried out by controlling the truck to move upward following ascending speed of a melt pool based on a welding current, the welding torch is mounted on the truck so as to be moved, the moving speed of the truck is measured, and difference between the moving speed and reference welding speed preliminarily set is calculated for each constant interval. When there is difference, the welding torch is moved upward or downward with a constant distance to change the length of the protrusion of the welding wire, wire feeding speed is changed corresponding to the change of the welding current to control the welding current so as to become constant, and the ascending speed of the melt pool is made to coincide with the reference welding speed to allow heat input during welding to be constant so that welding is carried out.

Description

本発明は、2電極立向エレクトロガスアーク溶接を用いた溶接継手の製造に関し、特に、開先形状の変動に対する入熱量の変動を抑制して、高靭性な溶接継手が得られるようにした溶接継手の製造方法及びその方法を実施するための装置に関する。   The present invention relates to the manufacture of a welded joint using two-electrode vertical electrogas arc welding, and in particular, a welded joint capable of obtaining a high-toughness welded joint by suppressing fluctuations in heat input relative to groove shape fluctuations. The present invention relates to a manufacturing method and an apparatus for carrying out the method.

近年、鋼構造物の大型化にともない、その建造には、従来よりも板厚が厚く、より高強度の鋼板が用いられるようになってきており、そのような鋼板の溶接にあたっては、板厚の増大に対応した施工の高能率化、高品質化、また、溶接継手の高強度化が要求されている。   In recent years, with the increase in the size of steel structures, steel sheets with higher thickness and higher strength have been used for the construction of steel structures. There is a demand for higher efficiency, higher quality, and higher strength welded joints.

従来、厚鋼板の立向溶接には、高能率1パス溶接が可能なエレクトロガスアーク溶接法(EGW法)が多用されていたが、例えば、コンテナ船等では、大型化にともない船側外板ではさらに厚い板厚の鋼板が用いられるようになり、従来の1パスでのEGW法では健全な溶接部、及び十分な継手特性を得ることが困難となってきた。
このため、EGW法をベースに、溶接部の溶け込み安定化とさらなる溶接能率の向上を図ることを目的に、特許文献1、2に示す2電極立向エレクトロガス溶接法が開発された。
しかし、近年では、50mm超、特に70mm以上の極厚鋼板がコンテナ船等で使用されるようになるなど、鋼材への入熱がさらに大入熱となる傾向があり、溶接継手の靭性確保が困難な状況が見られるようになってきた。
Conventionally, for vertical welding of thick steel plates, the electrogas arc welding method (EGW method) capable of high-efficiency one-pass welding has been frequently used. A thick steel plate has been used, and it has become difficult to obtain a sound weld and sufficient joint characteristics by the conventional EGW method in one pass.
For this reason, based on the EGW method, a two-electrode vertical electrogas welding method shown in Patent Documents 1 and 2 has been developed for the purpose of stabilizing the penetration of the weld and further improving the welding efficiency.
However, in recent years, extra-thick steel plates of more than 50 mm, particularly 70 mm or more have been used in container ships, etc., and there has been a tendency for heat input to steel materials to become even greater heat input, ensuring toughness of welded joints. Difficult situations have come to be seen.

ここで、図1を参照して、2電極立向エレクトロガス溶接法を用いた自動溶接による溶接継手の製造方法について説明する。
2電極立向エレクトロガス溶接では、縦方向に配置された2枚の鋼板1、1の上下方向に延びる開先2に2本のフラックス入り溶接ワイヤ3、3を供給しつつ、上方に向かって溶接が行われる。
溶接を自動的に行うために、溶接ワイヤ3、3を支持案内する第1と第2の溶接トーチ4、5は、開先2に沿って取付けられたレール7に支持案内されて上昇する台車6に搭載される。溶接中に発生する溶融プールの流出を防止するために、開先表面側に台車6とともに上昇する水冷式銅当金8が、また、開先裏面側にはセラミックス製などの裏当材9が配置される。
台車には、溶接トーチの他に溶接トーチを揺動させる駆動装置や台車の駆動装置及びそれらの制御装置などが搭載される。
Here, with reference to FIG. 1, the manufacturing method of the welded joint by automatic welding using the two-electrode vertical electrogas welding method is demonstrated.
In the two-electrode vertical electrogas welding, the two flux-cored welding wires 3 and 3 are supplied to the groove 2 extending in the vertical direction of the two steel plates 1 and 1 arranged in the vertical direction while facing upward. Welding is performed.
In order to automatically perform welding, the first and second welding torches 4 and 5 for supporting and guiding the welding wires 3 and 3 are supported and guided by the rail 7 attached along the groove 2 and are raised. 6 is installed. In order to prevent the molten pool from flowing out during welding, a water-cooled copper metal 8 rising together with the carriage 6 is provided on the groove surface side, and a backing material 9 made of ceramics is provided on the groove back side. Be placed.
In addition to the welding torch, the carriage is equipped with a driving device that swings the welding torch, a driving device for the carriage, and a control device for them.

第1と第2の溶接トーチ4、5は、それぞれ溶接電源12、13に接続され、各溶接トーチに案内される溶接ワイヤと鋼板との間に一定の電圧を供給される。溶接電源12、13は、例えば、裏面側の溶接ワイヤに正極性の電圧が供給され、表面側の溶接ワイヤに逆極性の電圧を供給するように接続される。表面側の溶接トーチ5と接続される溶接電源13と鋼板1の間には電流検出手段14が介挿されている。また、ワイヤ送給装置10、11、台車の走行装置、溶接電源の動作は、溶接制御装置15によって制御される。   The first and second welding torches 4 and 5 are connected to welding power sources 12 and 13, respectively, and a constant voltage is supplied between the welding wire and the steel plate guided by the welding torches. For example, the welding power sources 12 and 13 are connected such that a positive polarity voltage is supplied to the welding wire on the back surface side and a reverse polarity voltage is supplied to the welding wire on the front surface side. A current detecting means 14 is interposed between the welding power source 13 connected to the welding torch 5 on the surface side and the steel plate 1. The operations of the wire feeding devices 10 and 11, the traveling device of the carriage, and the welding power source are controlled by the welding control device 15.

溶接にあたっては、溶接ワイヤ3、3がそれぞれ一定速度で供給される。また、台車6は、基準の溶接速度に準じた低速走行と、台車の走行が遅れた場合にそれを回復する高速走行の2段の走行速度で走行するように溶接制御装置15の指令に基づき台車走行制御手段16により制御される。
溶接の進行に伴い開先内には溶融プールが形成され、台車6はまず低速で上昇する。台車の走行速度が低速で上昇している場合は、溶融プール表面(以下、湯面という場合がある。)の上昇速度の方が、台車の上昇速度よりわずかに大きくなるように設定されているので、溶融プ−ルの表面が溶接トーチ先端に徐々に近づくので、溶接ト−チ4、5の溶接チップからのワイヤ突き出し長が短くなり、溶接電流値が上昇していく。
その後、溶接電流値が所定値を上回ると、溶接制御装置15は、台車走行制御手段16に台車6を高速走行させるように指令を出す。そして、台車6が高速で上昇し、再び湯面から溶接ト−チの先端が離れ、ワイヤの突き出し長が長くなり、溶接電流値が所定値以下となると、溶接制御装置15から台車走行制御手段16に台車の低速走行の指令が出力され、台車6は低速で上昇する。
この動作を繰り返すことにより、溶接電流を予め設定された所定範囲内に維持しながら、溶接トーチを溶融プ−ルの上昇に追随して上昇させることができ、湯面と溶接ト−チの先端との距離が略一定となり、ワイヤの突き出し長が略一定に制御される。
In welding, the welding wires 3 and 3 are respectively supplied at a constant speed. Further, the cart 6 is based on a command from the welding control device 15 so as to run at a low speed running according to the reference welding speed and at a high speed running speed that recovers when the running of the cart is delayed. It is controlled by the cart traveling control means 16.
As welding progresses, a molten pool is formed in the groove, and the carriage 6 first rises at a low speed. When the traveling speed of the trolley is increasing at a low speed, the rising speed of the molten pool surface (hereinafter sometimes referred to as the molten metal surface) is set to be slightly higher than the rising speed of the trolley. Therefore, since the surface of the molten pool gradually approaches the tip of the welding torch, the length of the wire protruding from the welding tip of the welding torches 4 and 5 becomes short, and the welding current value increases.
Thereafter, when the welding current value exceeds a predetermined value, the welding control device 15 instructs the carriage travel control means 16 to cause the carriage 6 to travel at a high speed. Then, when the carriage 6 rises at a high speed, the tip of the welding torch is separated from the molten metal surface again, the protruding length of the wire becomes longer, and the welding current value becomes a predetermined value or less, the welding controller 15 sends the carriage traveling control means. A command for running the carriage at a low speed is output to 16, and the carriage 6 rises at a low speed.
By repeating this operation, the welding torch can be raised following the rise of the molten pool while maintaining the welding current within a predetermined range, and the molten metal surface and the tip of the welding torch And the protruding length of the wire is controlled to be substantially constant.

このような溶接制御方法を用いた溶接継手の製造方法によれば、2本の溶接ト−チを用いて自動で溶接を行うことができるので、板厚の厚い母材を溶接する時においても、開先辺各部の溶込みが良好で、しかも溶接速度が速いので、作業効率が良く溶接を行うことができる。
しかし、以上のような従来の溶接制御方法を用いてさらに板厚が厚い鋼板、特に板厚が50mm超の鋼板の溶接継手を溶接にて製造する際、鋼板の形成された開先部の途中に、ルートギャップ等の工作精度に起因して開先断面積が変動した箇所がある場合に、次のような問題が生じてきた。
According to the method for manufacturing a welded joint using such a welding control method, since welding can be automatically performed using two welding torches, even when a thick base metal is welded, Further, since the penetration of each part of the groove side is good and the welding speed is high, the work efficiency can be improved.
However, when a welded joint of a steel plate having a larger thickness, particularly a steel plate having a thickness of more than 50 mm, is manufactured by welding using the conventional welding control method as described above, it is in the middle of the groove portion where the steel plate is formed. In addition, when there is a portion where the groove cross-sectional area fluctuates due to work accuracy such as a route gap, the following problem has arisen.

例えば、途中に開先幅が基準の幅よりも広い箇所がある場合、台車がその箇所に到達すると、溶接ワイヤの送給速度が一定に制御されているので、溶融プールの上昇速度が低下するようになる。その結果、台車は低速走行の期間の時間が、基準の幅の箇所を溶接している場合に比べて長くなる。このため、その箇所の溶接速度が低下して入熱量が大きくなる。
厚板の溶接では、基本的に大入熱での溶接となっているが、開先幅の増大している箇所では、溶接速度の低下による入熱量の増加分がさらに重畳されるため、入熱が過大となり、溶接熱影響部の幅が増大して、溶接継手の靭性が確保できない結果となる。
また、途中に開先の狭い箇所がある場合には逆に入熱が過少となり、溶接継手部の強度が過大になり、この場合でも溶接継手の靭性が確保できない結果となる。
For example, when there is a part where the groove width is wider than the reference width in the middle, when the carriage reaches that part, the feeding speed of the welding wire is controlled to be constant, so the rising speed of the molten pool decreases. It becomes like this. As a result, the time of the low-speed traveling period of the bogie is longer than that when the portion having the reference width is welded. For this reason, the welding speed of the location falls and the amount of heat input becomes large.
Thick plate welding is basically welding with a large heat input, but at locations where the groove width increases, the increase in heat input due to the decrease in welding speed is further superimposed, so The heat becomes excessive, the width of the weld heat affected zone increases, and the toughness of the welded joint cannot be ensured.
On the other hand, when there is a narrow groove in the middle, the heat input becomes conversely too small and the strength of the welded joint becomes excessive. Even in this case, the toughness of the welded joint cannot be ensured.

このような状況から、靭性を確保した溶接継手を製造するには、開先幅が変動しても、溶接速度を変えないで、単位時間当たりの溶着金属量を開先断面積に応じて変化させることが必要となる。
そのための手段としては、開先幅や開先角度などの開先形状を検知して、検知した開先形状に応じて、ワイヤ供給速度を制御することが考えられるが、溶接環境では外乱となる要因も多く、開先形状をリアルタイムに正確に検知することは困難であり、コストもかかるという問題がある。
また、アーク溶接の特性を利用して、低コストで実施できる溶着金属量の制御方法として、被溶接物の形状変化などの要因により溶接電流値が変化した場合に、それに対応して自動的にワイヤの送給速度を変化させて、常に一定の大きさの溶接ビードとすることなども、特許文献3等によって知られているが、従来は、均一な溶接ビードの形成と同時に入熱量を一定にすることについては、特に考慮されていなかった。
Under these circumstances, to produce a welded joint with assured toughness, the amount of deposited metal per unit time changes according to the groove cross-sectional area without changing the welding speed even if the groove width varies. It is necessary to make it.
As a means for that, it is conceivable to detect a groove shape such as a groove width and a groove angle, and control the wire supply speed according to the detected groove shape, but this is a disturbance in the welding environment. There are many factors, and it is difficult to accurately detect the groove shape in real time, and there is a problem that it is expensive.
Also, as a method of controlling the amount of deposited metal that can be implemented at low cost using the characteristics of arc welding, when the welding current value changes due to factors such as the shape change of the work piece, it automatically responds accordingly. It is also known from Patent Document 3 that the wire feed speed is changed to always make the weld bead of a constant size. Conventionally, the heat input is kept constant simultaneously with the formation of a uniform weld bead. There was no particular consideration for making it.

特開平10−118771号公報JP-A-10-118771 特開平11−285826号公報Japanese Patent Laid-Open No. 11-285826 特開昭63−295062号公報JP-A 63-295062

そこで、本発明は、特に板厚が50mmを超えるような厚鋼板の溶接継手をエレクトロガスアーク溶接方法を用いて製造するにあたり、開先断面積が変動しても、入熱量が変動しないような溶接制御手段を、費用のかかる特別な機器を用いることなく提供することにより、高靭性な溶接継手が得られるようにすることを課題とする。   Therefore, in the present invention, particularly when manufacturing a welded joint of a thick steel plate having a plate thickness exceeding 50 mm using the electrogas arc welding method, even if the groove cross-sectional area varies, the welding heat input does not vary. It is an object of the present invention to provide a high-toughness welded joint by providing the control means without using expensive special equipment.

従来の2電極立向エレクトロガスアーク溶接方法では、上記のように、溶接速度は溶融プールの上昇に追随しており、開先断面積が広くなると、その分だけ溶融プールの上昇速度(すなわち溶接速度)が遅くなり入熱が増加することになる。これは、溶融プールの上昇速度に応じてワイヤ送給量(すなわちワイヤ送給速度)が変化する機構を有していないことが原因と考えられる。   In the conventional two-electrode vertical electrogas arc welding method, as described above, the welding speed follows the rise of the molten pool, and as the groove cross-sectional area increases, the molten pool rise speed (that is, the welding speed) increases accordingly. ) Slows down and heat input increases. This is considered to be because there is no mechanism for changing the wire feeding amount (that is, the wire feeding speed) in accordance with the rising speed of the molten pool.

そこで、本発明者らは、2電極立向エレクトロガスアーク溶接を用いて溶接継手を製造するにあたり、溶融プールの上昇速度に応じてワイヤ送給速度を変化できるようにして、溶接速度を一定にし、開先断面積が変動しても入熱を一定とする方法について検討した。
その結果、溶融プールの上昇速度が変化した場合に、強制的に溶接トーチのワイヤ突き出し長さを変更し、それに追随してワイヤ送給速度を変更して制御すれば、溶融プール表面の上昇速度を基準の溶接速度に一致させることができ、溶接速度を一定にして開先長手方向の入熱量を一定にできることを見出した。
そのようにしてなされた本発明の要旨は以下のとおりである。
Therefore, the inventors have made the welding speed constant so that the wire feeding speed can be changed according to the rising speed of the molten pool when manufacturing a welded joint using two-electrode vertical electrogas arc welding, A method for keeping the heat input constant even when the groove cross-sectional area fluctuated was investigated.
As a result, if the rise speed of the molten pool changes, if the wire protrusion length of the welding torch is forcibly changed and the wire feed speed is changed and controlled accordingly, the rise speed of the molten pool surface Was found to be consistent with the reference welding speed, and the heat input in the longitudinal direction of the groove can be made constant while keeping the welding speed constant.
The gist of the present invention thus made is as follows.

(1)2本の溶接トーチを搭載する台車を、溶接しようとする鋼板の開先に沿って上昇させて定電圧で溶接を行うとともに、溶接電流に基づいて前記台車が溶融プールの上昇速度に追随して上昇するように制御して2電極立向エレクトロガスアーク溶接を行うことによって溶接継手を製造する方法であって、
前記溶接トーチを、溶接進行方向に沿って移動できるように台車に取り付け、台車の移動速度を測定して、一定の間隔ごとに予め設定された基準の溶接速度との差を算出し、差がある場合は、前記溶接トーチを一定距離上昇あるいは下降させて、溶接ワイヤの突き出し長さを変化させ、その際に生じた溶接電流の変化に応じてワイヤ送給速度を変化させて溶接電流が一定となるよう制御し、溶融プールの上昇速度を基準の溶接速度と一致させて溶接時の入熱を一定にして2電極立向エレクトロガスアーク溶接することを特徴とする溶接継手の製造方法。
(2)板厚50mm超の鋼板を溶接することを特徴とする(1)に記載の溶接継手の製造方法。
(3)2本の溶接トーチを搭載し、溶接しようとする鋼板の開先に沿って上昇する台車と、各溶接トーチに案内される溶接ワイヤと鋼板との間に一定の電圧を供給する溶接電源と、溶接ワイヤ送給手段と、溶接電流を検知する電流検知手段と、検知された溶接電流に基づいて前記台車が溶融プールの上昇速度に追随して上昇するように台車の走行速度を制御する台車走行速度制御手段と有する2電極立向エレクトロガスアーク溶接装置であって、
該溶接装置は、さらに、前記溶接トーチを支持し、台車の進行方向に沿って上下に移動できるように台車に取り付けられた溶接トーチ支持台と、台車の移動速度測定手段と、一定の間隔ごとに台車の移動速度と予め設定された基準の溶接速度との速度差を算出し、該速度差が設定範囲にあるかどうかを判別する演算手段と、前記速度差が設定値を超えている場合に前記溶接トーチ支持台を一定距離上昇あるいは下降させるように制御するとともに、その際に変化した溶接電流が予め設定された値になるように溶接ワイヤ送給速度を制御して、前記速度差が設定範囲内なるようにする制御手段と、を有することを特徴とする(1)または(2)に記載の溶接継手の製造方法を実施するための2電極立向エレクトロガスアーク溶接装置。
(1) A carriage equipped with two welding torches is raised along the groove of the steel sheet to be welded and welding is performed at a constant voltage, and the carriage is brought to the rising speed of the molten pool based on the welding current. A method of manufacturing a welded joint by performing two-electrode vertical electrogas arc welding with control to follow and rise,
The welding torch is attached to a carriage so that the welding torch can be moved along the welding direction, the movement speed of the carriage is measured, and a difference from a preset reference welding speed is calculated at regular intervals. In some cases, the welding torch is raised or lowered by a certain distance to change the protruding length of the welding wire, and the welding current is made constant by changing the wire feeding speed according to the change in welding current generated at that time. A method for manufacturing a welded joint, characterized in that two-electrode vertical electrogas arc welding is performed with the heat input during welding kept constant by matching the ascending speed of the molten pool with the reference welding speed.
(2) The method for manufacturing a welded joint according to (1), wherein a steel plate having a thickness of more than 50 mm is welded.
(3) Welding that mounts two welding torches and supplies a constant voltage between the carriage that rises along the groove of the steel sheet to be welded and the welding wire and the steel sheet guided by each welding torch. A power source, a welding wire feeding means, a current detection means for detecting a welding current, and a traveling speed of the carriage is controlled based on the detected welding current so that the carriage rises following the rising speed of the molten pool. A two-electrode vertical electrogas arc welding device having a dolly traveling speed control means,
The welding apparatus further supports the welding torch and is attached to the carriage so that the welding torch can be moved up and down along the traveling direction of the carriage, the moving speed measuring means of the carriage, and at regular intervals. Calculating the speed difference between the moving speed of the carriage and a preset reference welding speed, and determining whether the speed difference is within a set range; and when the speed difference exceeds the set value The welding torch support base is controlled to be raised or lowered by a certain distance, and the welding wire feeding speed is controlled so that the welding current changed at that time becomes a preset value. A two-electrode vertical electrogas arc welding apparatus for carrying out the method for manufacturing a welded joint according to (1) or (2).

厚鋼板の2電極エレクトロガス溶接方法において、開先断面積が変動しても、入熱量が変動しないような溶接制御手段を、費用のかかる特別な機器を用いることなく提供することができるので、特に板厚が50mmを超えるような厚鋼板の溶接においても、靭性に優れた溶接継手を得ることができる。   In the two-electrode electrogas welding method for thick steel plates, even if the groove cross-sectional area varies, a welding control means that does not change the heat input amount can be provided without using expensive special equipment. In particular, a welded joint having excellent toughness can be obtained even in welding thick steel plates having a thickness exceeding 50 mm.

2電極立向エレクトロガスアーク溶接による従来の溶接継手の製造方法及びその製造方法の実施に用いる装置を説明するための図である。It is a figure for demonstrating the apparatus used for implementation of the manufacturing method of the conventional welding joint by 2 electrode standing electrogas arc welding, and its manufacturing method. 2電極立向エレクトロガスアーク溶接による本発明の溶接継手の製造方法及びその製造方法の実施に用いる装置を説明するための図である。It is a figure for demonstrating the apparatus used for implementation of the manufacturing method of the welding joint of this invention by 2 electrode standing electrogas arc welding, and its manufacturing method. 本発明の2電極立向エレクトロガスアーク溶接方法で用いる制御フローを説明するための図である。It is a figure for demonstrating the control flow used with the two-electrode standing electrogas arc welding method of this invention. 実施例で用いた開先の1例を示す図である。It is a figure which shows one example of the groove | channel used in the Example. 実施例で用いた開先の他の例を示す図である。It is a figure which shows the other example of the groove | channel used in the Example. 実施例における試験片の採取位置を示す図である。It is a figure which shows the collection position of the test piece in an Example.

本発明者らは、2電極立向エレクトロガスアーク溶接を用いて溶接継手を製造するにあたり、溶融プールの上昇速度に応じてワイヤ送給速度を変化できるようにして、溶接速度を一定にし、開先断面積が変動しても入熱を一定とする方法について検討した。
入熱を一定とするためには、基準の溶接速度を予め設定しておき、溶融プールの上昇速度(実際の溶接速度)と基準の溶接速度との差を検出し、その差を検出した場合、溶接ワイヤの送給量を変化させて、溶融プールの上昇速度が基準の溶接速度に一致するようにする必要がある。
In manufacturing a welded joint using two-electrode vertical electrogas arc welding, the inventors have made it possible to change the wire feeding speed according to the rising speed of the molten pool, to keep the welding speed constant, A method for keeping the heat input constant even when the cross-sectional area fluctuated was studied.
In order to make the heat input constant, the reference welding speed is set in advance, the difference between the melting pool ascending speed (actual welding speed) and the reference welding speed is detected, and the difference is detected It is necessary to change the feed rate of the welding wire so that the rising speed of the molten pool matches the reference welding speed.

そのために、本発明では、上記で説明したように、溶接電流に基づいて台車6の上昇を湯面の上昇に追随するように制御するに当たり、一定間隔ごとに台車の上昇速度を算出し、その上昇速度と基準の溶接速度を比較してその差を算出する。
さらに、2本の溶接トーチ4、5を台車6に対して所定範囲移動できるように溶接トーチ支持台18取り付けておき、台車の上昇速度と基準の溶接速度との間に一定の差が検出された場合には、溶接トーチを上下のいずれかに移動させ、ワイヤの突き出し長さを強制的に変化させる。すると、それに応じて溶接電流が変化するので、ワイヤ送給速度を変化させて溶接電流が予め設定した一定値に戻るように制御する。これにより、湯面の上昇速度を基準の溶接速度と一致するようにする。
Therefore, in the present invention, as described above, when controlling the rise of the carriage 6 to follow the rise of the molten metal surface based on the welding current, the rising speed of the carriage is calculated at regular intervals, The difference between the ascending speed and the standard welding speed is calculated.
Further, the welding torch support base 18 is attached so that the two welding torches 4 and 5 can move within a predetermined range with respect to the carriage 6, and a certain difference is detected between the rising speed of the carriage and the reference welding speed. If this happens, the welding torch is moved either up or down to forcibly change the protruding length of the wire. Then, since a welding current changes according to it, it controls so that a wire feed speed is changed and a welding current returns to the preset fixed value. Thereby, the rising speed of the molten metal surface is made to coincide with the reference welding speed.

以下、そのような本発明の実施の態様の一例を、図2及び図3を用いて説明する。
本発明は、基本的に、図1で示したものと同様に、2本の溶接トーチ4、5を搭載し、溶接しようとする鋼板1の開先2に沿って上昇する台車6と、各溶接トーチ4、5に案内される溶接ワイヤ3、4と鋼板1との間に一定の電圧を供給する溶接電源10、11と、溶接ワイヤ送給手段と、溶接電流を検知する電流検知手段14と、台車の走行速度を制御する台車走行速度制御手段16と、検知された溶接電流に基づいて台車6が溶融プールの上昇速度に追随して上昇するように台車走行速度制御手段16に指令を出力する溶接制御装置15と、からなる溶接装置を用いて2電極立向エレクトロガスアーク溶接を行う。
Hereinafter, an example of such an embodiment of the present invention will be described with reference to FIGS.
The present invention basically has two welding torches 4 and 5 mounted on the same way as shown in FIG. 1, and a carriage 6 rising along the groove 2 of the steel plate 1 to be welded, Welding power sources 10 and 11 for supplying a constant voltage between the welding wires 3 and 4 guided by the welding torches 4 and 5 and the steel plate 1, welding wire feeding means, and current detection means 14 for detecting welding current. And a command for the carriage traveling speed control means 16 for controlling the traveling speed of the carriage, and a command for the carriage traveling speed control means 16 so that the carriage 6 rises following the rising speed of the molten pool based on the detected welding current. A two-electrode vertical electrogas arc welding is performed using a welding device comprising a welding control device 15 for outputting.

さらに、本発明では、入熱量を一定にするために、図2(a)に示すように、前記溶接トーチを台車の進行方向に沿って矢印方向に移動する溶接トーチ支持台18に取付ける。
この溶接トーチ支持台18は、台車に対し一定範囲で上下動できるように取り付けられており、ねじ機構やシリンダ装置などの駆動機構によって、一定距離上昇あるいは下降される。図2では、シリンダ装置を用いた支持台駆動手段19を示している。この支持台駆動手段19は、支持台駆動制御手段20によってその動作が制御される。
Further, in the present invention, in order to make the heat input constant, as shown in FIG. 2A, the welding torch is attached to a welding torch support base 18 that moves in the direction of the arrow along the traveling direction of the carriage.
The welding torch support base 18 is attached to the carriage so as to move up and down within a certain range, and is raised or lowered by a certain distance by a drive mechanism such as a screw mechanism or a cylinder device. In FIG. 2, the support stand drive means 19 using a cylinder apparatus is shown. The operation of the support base drive means 19 is controlled by the support base drive control means 20.

そして、図2(b)に示すように、溶接中に台車6の移動速度を測定する測定手段21を設けるとともに、その測定手段21の出力を受けて、台車が一定の距離移動するごとに、台車の移動速度と予め設定された基準の溶接速度との速度差を算出し、算出された速度差が設定範囲にあるかどうかを判別する演算手段22と、前記速度差が設定値を超えている場合には、支持台駆動制御手段20に対して前記溶接トーチ支持台18を一定距離上昇あるいは下降させる指令を出力するとともに、溶接トーチの上昇あるいは下降にともなって変化する溶接電流を検知して、溶接電流が予め設定された値になるように溶接ワイヤ送給制御手段17に対して、ワイヤ送給速度を加速あるいは減速する指令を出力する制御手段23を有する溶接制御装置15を設け、このように構成された装置を用いて溶接を行うようする。   And as shown in FIG.2 (b), while providing the measurement means 21 which measures the moving speed of the trolley | bogie 6 during welding, the output of the measurement means 21 is received, and whenever a trolley moves a fixed distance, A calculating means 22 for calculating a speed difference between the moving speed of the carriage and a preset reference welding speed and determining whether the calculated speed difference is within a setting range; and the speed difference exceeds a set value. If the welding torch support control means 20 outputs a command to raise or lower the welding torch support base 18 by a certain distance, a welding current that changes as the welding torch rises or falls is detected. The welding control apparatus 1 having a control means 23 for outputting a command for accelerating or decelerating the wire feed speed to the welding wire feed control means 17 so that the welding current becomes a preset value. The provided to to perform welding by using thus configured apparatus.

なお、定電圧を維持して溶接を行うことができるとともに、溶接電流の変化に応じて、ワイヤ送給速度を制御して、溶接電流が予め設定された値になるようにする制御機能を有する溶接電源12、13及び溶接制御装置15としては、市販されているデジタルインバータ制御方式の溶接電源を有する溶接装置(例えば、ダイヘン社のデジタルオートDM500(登録商標)など)を用いることにより、実現することができる。
また、従来の定電圧インバータ溶接電源においては、特開2007−190594号公報、特許第3886029号公報等に開示されている電流一定の制御機構を別途追加することで上述の制御機能を実現することができる。
In addition, while maintaining constant voltage, it can have welding, and has a control function which controls a wire feed speed according to the change of welding current, and makes welding current become a preset value. The welding power sources 12 and 13 and the welding control device 15 are realized by using a commercially available welding device having a digital inverter control type welding power source (for example, DAIHEN Digital Auto DM500 (registered trademark)). be able to.
In addition, in the conventional constant voltage inverter welding power source, the above-described control function is realized by separately adding a constant current control mechanism disclosed in Japanese Patent Application Laid-Open No. 2007-190594, Japanese Patent No. 3886029, and the like. Can do.

次に、以上のように構成される溶接装置を用いて入熱量を一定に維持するように溶接する態様について、開先断面積が広い場合と開先断面積が狭い場合を例に、図2及び図3を用いて詳細に説明する。   Next, with respect to an aspect in which welding is performed so as to maintain a constant heat input using the welding apparatus configured as described above, a case where the groove cross-sectional area is wide and a case where the groove cross-sectional area is narrow are illustrated in FIG. And it demonstrates in detail using FIG.

まず、開先断面積が広い場合を説明する。
溶接が開始されると、上記で説明した従来の場合と同様に、台車6上の溶接トーチ4、5は溶接開始前に予め設定された基準の溶接速度と一致する速度で湯面の上昇に追随して上昇を始める。台車6の上昇にともない、台車の移動距離が測定され、演算手段22は、台車が一定間隔上昇するごとに台車の上昇速度(実際の溶接速度)を算出し、その上昇速度と基準の溶接速度を比較してその差を算出する。開先断面積が基準どおり一定の場合は、実際の溶接速度とは設定溶接速度との間に差は生じないので、その溶接速度で溶接が進行する。
First, a case where the groove cross-sectional area is large will be described.
When welding is started, similarly to the conventional case described above, the welding torches 4 and 5 on the carriage 6 rise to the molten metal surface at a speed that matches the reference welding speed set in advance before starting welding. Follow and start rising. As the carriage 6 rises, the movement distance of the carriage is measured, and the calculation means 22 calculates the raising speed (actual welding speed) of the carriage every time the carriage rises at a fixed interval, and the rising speed and the reference welding speed. And the difference is calculated. When the groove cross-sectional area is constant according to the standard, there is no difference between the actual welding speed and the set welding speed, so that welding proceeds at the welding speed.

開先断面積が基準よりも広い箇所に溶接トーチが到達すると、湯面の上昇速度は設定された溶接速度より遅くなる。このため、演算手段22では、台車の上昇速度が設定溶接速度よりも遅い(両者の差が0より小)と判定されるようになる。その場合は、制御手段23は、溶接トーチを台車に対して上昇させる指令を支持台駆動制御手段20に対して出力する。そうすると、定電圧特性の電源を用いた溶接では、溶接トーチのチップからのワイヤの突き出し長さが増加し、溶接電流が低下する。そこで、制御手段23は、溶接電流の低下に応じて、ワイヤの送給制御手段17に対してワイヤの送給速度を増加させる指令を出力し、溶接電流が予め設定した一定値になるようにする。これにより、ワイヤ供給量が増加して、湯面の上昇速度も増加する。この結果、速くなった湯面上昇速度に追随して溶接トーチも上昇する。   When the welding torch reaches a location where the groove cross-sectional area is wider than the reference, the rising speed of the molten metal surface becomes slower than the set welding speed. For this reason, the calculating means 22 determines that the rising speed of the carriage is slower than the set welding speed (the difference between the two is smaller than 0). In that case, the control means 23 outputs a command to raise the welding torch relative to the carriage to the support base drive control means 20. If it does so, in the welding using the power supply of a constant voltage characteristic, the protrusion length of the wire from the tip of a welding torch will increase, and welding current will fall. Therefore, the control means 23 outputs a command to increase the wire feed speed to the wire feed control means 17 in accordance with the decrease in the welding current so that the welding current becomes a predetermined constant value. To do. Thereby, the wire supply amount increases and the rising speed of the hot water surface also increases. As a result, the welding torch also rises following the faster rise speed.

次に、溶接トーチが開先断面積の狭い箇所に到達した場合は、湯面の上昇速度は設定された溶接速度より速くなる。このため、台車の上昇速度が設定溶接速度よりも速い(両者の差が0より大)と判定されるようになる。速いと判定された場合は、広い箇所とは反対に溶接トーチを台車に対して下降させる。そうすると、チップからのワイヤの突き出し長さが短くなり、溶接電流が増加する。そこで、溶接電流の増加に応じて溶接ワイヤの送給速度を減少させて、溶接電流が予め設定した一定値になるようにする。これにより、ワイヤ供給量が減少して、湯面の上昇速度も低下する。この結果、遅くなった湯面上昇速度に追随して溶接トーチも上昇する。   Next, when the welding torch reaches a portion having a narrow groove sectional area, the rising speed of the molten metal surface becomes faster than the set welding speed. For this reason, the rising speed of the carriage is determined to be faster than the set welding speed (the difference between the two is greater than 0). If it is determined to be fast, the welding torch is lowered with respect to the carriage as opposed to the wide area. If it does so, the protrusion length of the wire from a chip | tip will become short, and a welding current will increase. Therefore, the feeding speed of the welding wire is decreased according to the increase in the welding current so that the welding current becomes a predetermined constant value. Thereby, the amount of wire supply decreases and the rising speed of the hot water surface also decreases. As a result, the welding torch also rises following the slow rise speed.

以上の制御動作を所定間隔ごとに実際の溶接速度を検出して繰り返していくと、やがて設定溶接速度へと収斂して、設定溶接速度での溶接が可能となり、以降、通常の台車上昇速度制御に戻る。   When the above control operation is repeated at predetermined intervals, the actual welding speed is detected and repeated until it converges to the set welding speed, and welding at the set welding speed becomes possible. Return to.

1回の制御動作での、溶接トーチの移動量は、1mm以上、5mm以下の範囲が適当である。その理由は、溶接トーチの移動量が1mm未満の場合には変化量が少なすぎて設定された溶接速度へ到達するまでの時間が長くなるからである。逆に、溶接トーチの移動量が5mmを超える場合には、溶接速度を調整する制御が過剰に作用しすぎるため、適正溶接速度を飛び越えて、例えば遅すぎる溶接速度から速すぎる溶接速度へと(逆の場合も起こりうる)極端に溶接速度が変化する場合が生じてくるからである。   The amount of movement of the welding torch in one control operation is suitably in the range of 1 mm or more and 5 mm or less. The reason is that when the amount of movement of the welding torch is less than 1 mm, the amount of change is too small and the time required to reach the set welding speed becomes long. On the other hand, when the moving amount of the welding torch exceeds 5 mm, the control for adjusting the welding speed is excessively performed, so that the appropriate welding speed is exceeded, for example, from a welding speed that is too slow to a welding speed that is too fast ( This is because the welding speed may change extremely.

開先断面積が増大した範囲が連続して長い場合(あるいはその逆の場合)は、溶接トーチが可動範囲の上端(下端)に到達することになる。これを回避するため、トーチが移動できるストローク長は基準位置から±10mm以上の長さを有することが好ましい。ストローク長の上限値は特に制限はなく、設備操作性の観点から適宜決定すればよいが、基準位置から±50mm(総長で100mm)のストローク長があれば十分である。   When the range in which the groove cross-sectional area increases is continuously long (or vice versa), the welding torch reaches the upper end (lower end) of the movable range. In order to avoid this, it is preferable that the stroke length that the torch can move has a length of ± 10 mm or more from the reference position. The upper limit value of the stroke length is not particularly limited and may be appropriately determined from the viewpoint of facility operability. However, a stroke length of ± 50 mm (100 mm in total length) from the reference position is sufficient.

なお、実際の溶接速度を目標の溶接速度と比較して、その速度が速いのか遅いのかの判定は、ビード長が10cm以下、好ましくは5cm以下の範囲で移動平均を算出し判定することが望ましい。その理由は、溶融プールの溶接方向の深さが約8cm程度であるためである。溶接速度判定に関するビード長の下限値は特になく、微小範囲で行えばそれだけ精度の高い制御となる。しかしながら1mm以下の判定を繰り返すのは制御の負荷を上げ、実用的ではない。
また、速いのか遅いのかの判定は、図では、実際の溶接速度と目標の溶接速度との差を、0を基準に判定するようなっているが、実際は、差の範囲を決めて、両者の差がその範囲を超えているかどうかで判定する。
It should be noted that the actual welding speed is compared with the target welding speed to determine whether the speed is fast or slow by calculating a moving average in a range where the bead length is 10 cm or less, preferably 5 cm or less. . The reason is that the depth of the molten pool in the welding direction is about 8 cm. There is no particular lower limit value for the bead length with respect to the welding speed determination. However, repeating the determination of 1 mm or less increases the control load and is not practical.
In addition, in the figure, whether the speed is fast or slow is determined based on 0 as a difference between the actual welding speed and the target welding speed. Judges whether the difference exceeds the range.

以上のようにして本発明では、開先断面積が変動しても、一定の入熱量で溶接した溶接継手が製造できる。
なお、本発明の製造方法では、以上説明した工作精度が原因でルートギャップ等が変動している場合に限らず、溶接途中において熱変形が原因で開先形状が変形しても、入熱が一定の状態を維持して溶接することができる。
As described above, in the present invention, a welded joint welded with a constant heat input can be manufactured even if the groove cross-sectional area varies.
In the manufacturing method of the present invention, heat input is not limited even when the groove shape is deformed due to thermal deformation during welding, not only when the root gap or the like fluctuates due to the work accuracy described above. It is possible to perform welding while maintaining a certain state.

なお、上記では特に明記していないが、2本の溶接ワイヤの送給を同時に制御することはいうまでもない。また、2本の溶接ワイヤの極性や、溶接電流の検出方法は、図1、2図に関して説明したものに限定されるものではなく適宜変更することができる。   In addition, although it does not specify in particular above, it cannot be overemphasized that feeding of two welding wires is controlled simultaneously. Further, the polarity of the two welding wires and the method for detecting the welding current are not limited to those described with reference to FIGS. 1 and 2 and can be appropriately changed.

次に実施例を用いて、本発明の実施可能性及び効果についてさらに説明する。
表1に示す供試鋼材と溶接ワイヤを用いて、表2に示す溶接条件によって2電極での立向エレクトロスラグ溶接を実施して溶接継手を製造した。
なお、用いた供試鋼材は、日本海事協会が定めるKE47−H鋼の規格に準ずる鋼材であり、溶接ワイヤは、日本海事協会が定めるKEW63Y47に準ずる1.6mmφのフラックス入りワイヤである。
Next, the feasibility and effects of the present invention will be further described using examples.
Using the test steel materials and welding wires shown in Table 1, vertical electroslag welding with two electrodes was carried out under the welding conditions shown in Table 2 to produce welded joints.
The test steel used was a steel material conforming to the standard of KE47-H steel defined by the Japan Maritime Association, and the welding wire was a 1.6 mmφ flux cored wire conforming to KEW63Y47 defined by the Japan Maritime Association.

図4及び図5に示すように、ルートギャップを変化させた溶接試験体及び開先角度を変化させた溶接試験体を準備し、図1、2に示されるような、開先に沿って上昇する台車に2個の溶接トーチと、試験体の開先表側に密着する水冷式銅当金を取付けた溶接装置を用い、開先裏面にセラミックス製の耐火裏当材を取付けて、2電極立向エレクトロスラグ溶接を実施した。その際、シールドガスは炭酸ガスを使用した。
本発明の溶接では、2本の溶接トーチを、台車の進行方向と平行に所定範囲移動できるように取り付けておき、台車の上昇速度と基準の溶接速度との間に一定の差が検出された場合には、溶接トーチを上下のいずれかに移動させ、ワイヤの突き出し長さを強制的に変化させ、その際に変化した溶接電流を、ワイヤ送給速度を変化させて強制的に一定値に戻るように制御する方式を採用した。なお、1回の制御で上下させるトーチの移動は2mmとし、溶接速度は10mm毎の移動平均速度を求めて、目標となる溶接速度との差を判定した。
これに対し、比較例の溶接では、本発明例のような溶接トーチの上下移動は行わず、ワイヤ送給速度を一定速度とし、溶接電流に応じて台車の上昇速度を2段階に切り替える方式を採用した。
As shown in FIG. 4 and FIG. 5, prepare a weld specimen with a changed root gap and a weld specimen with a changed groove angle, and rise along the groove as shown in FIGS. A welding device with two welding torches and a water-cooled copper alloy attached to the front side of the groove surface of the specimen is attached to the trolley, and a ceramic refractory backing material is attached to the rear surface of the groove. Electro-slag welding was performed. At that time, carbon dioxide gas was used as the shielding gas.
In the welding according to the present invention, two welding torches are attached so as to be movable within a predetermined range in parallel with the traveling direction of the carriage, and a certain difference is detected between the rising speed of the carriage and the reference welding speed. In this case, move the welding torch either up or down to forcibly change the protruding length of the wire, and change the welding current forcibly to a constant value by changing the wire feed speed. A method of controlling to return is adopted. In addition, the movement of the torch to be moved up and down by one control was 2 mm, and the welding speed was determined as a moving average speed every 10 mm to determine a difference from the target welding speed.
On the other hand, in the welding of the comparative example, the welding torch is not moved up and down like the example of the present invention, the wire feeding speed is set to a constant speed, and the rising speed of the carriage is switched in two steps according to the welding current. Adopted.

Figure 2012011407
Figure 2012011407
Figure 2012011407
Figure 2012011407

溶接後の溶接試験体の溶接継手における区分A〜Gの溶接金属部分から、図6(a)に示す要領で引張試験片(JIS A2号丸棒試験片)を、図6(b)に示す要領でシャルピー試験片(2mmVノッチ、10mmフルサイズ)をそれぞれ採取した。
なお、溶接長方向において開先形状が変化する変わり目部分(例えばAとBの境目)の前後10cmは不安定域であるため、当該部分からは試験片採取は行っていない。
そして、採取した試験片を用いて引張試験とシャルピー試験を実施した。
FIG. 6B shows a tensile test piece (JIS A2 round bar test piece) in the manner shown in FIG. 6A from the weld metal parts of sections A to G in the welded joint of the welded test specimen after welding. Charpy specimens (2 mm V notch, 10 mm full size) were collected in the same manner.
In addition, since 10 cm before and after the change part (for example, the boundary of A and B) where a groove shape changes in the welding length direction is an unstable region, specimen collection is not performed from the part.
And the tension test and the Charpy test were implemented using the extract | collected test piece.

次に、得られた試験結果を次のような評価基準で評価した。
まず、個々の溶接試験体のA〜Gから採取した試験片の降伏強度(YP)、引張強度(TS)、シャルピー試験の結果を次の基準で評価した。
YP;400MPa以上を合格とした。
TS;600MPa以上を合格とした。
シャルピー試験;-20℃での吸収エネルギーが50J以上を合格とした。
さらに、1つの溶接試験体において、AからE、又はFからGの全ての採取位置で以上の合否基準を満たすものを合格とした。逆に何れかの位置で1か所でも基準を満たさない試験体は不合格とした。
表3に、評価結果を示す。
Next, the obtained test results were evaluated according to the following evaluation criteria.
First, the yield strength (YP), tensile strength (TS), and Charpy test results of the test specimens collected from A to G of the individual weld specimens were evaluated according to the following criteria.
YP: 400 MPa or more was regarded as acceptable.
TS: 600 MPa or more was regarded as acceptable.
Charpy test; absorbed energy at −20 ° C. was determined to be 50 J or more.
Furthermore, in one welding test body, what satisfied the above pass / fail criteria at all sampling positions from A to E or F to G was regarded as acceptable. Conversely, a test specimen that did not satisfy the criteria at any one position was rejected.
Table 3 shows the evaluation results.

本発明例では、 、開先幅に応じた溶着金属量が得られるように、ワイヤ送給速度を制御した結果、開先のルートギャップや開先角度が変動しても、一定の溶接速度で溶接が行われるため、開先ごとの入熱の変動が無く、溶接金属の特性は殆ど変動せず安定した溶接継手が得られていた。
なお、本発明で検討した実施例では溶接開始後から約80秒以内で所定の溶接速度へ収斂し、これ以降は設定された目標溶接速度で溶接が実行された。既存の溶接方法でも溶接開始から10cm程度のビードは不安定領域として削除されるのが通常であり、本発明での収斂時間は実用上何ら問題ないと考えられる。
In the example of the present invention, as a result of controlling the wire feed speed so that the amount of deposited metal corresponding to the groove width can be obtained, even if the groove gap and groove angle of the groove fluctuate, the welding speed is constant. Since welding is performed, there is no fluctuation in heat input for each groove, and the characteristics of the weld metal hardly change, and a stable weld joint is obtained.
In the examples examined in the present invention, the welding was converged to a predetermined welding speed within about 80 seconds after the start of welding, and thereafter welding was performed at the set target welding speed. Even in the existing welding method, a bead of about 10 cm from the start of welding is usually deleted as an unstable region, and the convergence time in the present invention is considered to have no problem in practice.

一方、比較例では、台車の走行速度を2段階に切り替える既存の2電極立向エレクトロガス溶接制御を行ったため、溶接速度が溶融プールの湯面上昇に追随してしまった。この結果、開先のルートギャップ8mmのA部分では溶接速度が速くなりすぎて、70mm厚の鋼板には入熱が過少となり、強度が過剰で靭性が劣化した溶接継手となった。
また、ルートギャップが14mmのD部分と16mmのE部分では溶接速度が遅くなり、70mmという極厚鋼板使用による入熱増加と、ルートギャップが広くなったことによる入熱増加が重畳したため、入熱が過大となり、必要な焼入れ性が確保されず、溶接金属の引張強さとシャルピー衝撃吸収エネルギーが共に劣化した溶接継手となった。
On the other hand, in the comparative example, since the existing two-electrode vertical electrogas welding control for switching the traveling speed of the carriage to two stages was performed, the welding speed followed the rise in the molten pool surface. As a result, the welding speed was too high in the portion A having a groove root gap of 8 mm, and the heat input was excessively reduced in the 70 mm-thick steel sheet, resulting in a welded joint with excessive strength and deteriorated toughness.
In addition, the welding speed is slow at the D portion with a root gap of 14 mm and the E portion with 16 mm, and the increase in heat input due to the use of an extremely thick steel plate of 70 mm overlaps with the increase in heat input due to the wide root gap. As a result, the required hardenability could not be ensured, resulting in a welded joint in which both the tensile strength and Charpy impact absorption energy of the weld metal deteriorated.

Figure 2012011407
Figure 2012011407

以上に記したように、本発明を用いると開先形状の変動に左右されず、常に安定した靭性を有する溶接継手が製造できるので、産業界における価値はきわめて高い。   As described above, when the present invention is used, a welded joint having always stable toughness can be manufactured without being influenced by fluctuations in the groove shape, and thus the value in the industry is extremely high.

1 鋼板(被溶接物)
2 開先
3 溶接ワイヤ
4 第1の溶接トーチ
5 第2の溶接トーチ
6 レール
7 台車
8 銅当金
9 裏当材
10、11 ワイヤ送給装置
12、13 溶接電源
14 電流検出手段
15 溶接制御装置
16 台車走行制御手段
17 ワイヤ送給制御手段
18 溶接トーチ支持台
19 溶接トーチ支持台駆動装置
20 支持台駆動制御手段
21 台車の移動速度測定手段
22 演算手段
23 制御手段
1 Steel plate (workpiece)
2 Groove 3 Welding wire 4 First welding torch 5 Second welding torch 6 Rail 7 Carriage 8 Copper metal 9 Backing material 10, 11 Wire feeding device 12, 13 Welding power supply 14 Current detecting means 15 Welding control device 16 Carriage Travel Control Means 17 Wire Feed Control Means 18 Welding Torch Support Base 19 Welding Torch Support Base Drive Device 20 Support Base Drive Control Means 21 Cart Movement Speed Measuring Means 22 Calculation Means 23 Control Means

Claims (3)

2本の溶接トーチを搭載する台車を、溶接しようとする鋼板の開先に沿って上昇させて定電圧で溶接を行うとともに、溶接電流に基づいて前記台車が溶融プールの上昇速度に追随して上昇するように制御して2電極立向エレクトロガスアーク溶接を行うことによって溶接継手を製造する方法であって、
前記溶接トーチを、溶接進行方向に沿って移動できるように台車に取り付け、台車の移動速度を測定して、一定の間隔ごとに予め設定された基準の溶接速度との差を算出し、差がある場合は、前記溶接トーチを一定距離上昇あるいは下降させて、溶接ワイヤの突き出し長さを変化させ、その際に生じた溶接電流の変化に応じてワイヤ送給速度を変化させて溶接電流が一定となるよう制御し、溶融プールの上昇速度を基準の溶接速度と一致させて溶接時の入熱を一定にして2電極立向エレクトロガスアーク溶接することを特徴とする溶接継手の製造方法。
The carriage carrying two welding torches is raised along the groove of the steel plate to be welded and welding is performed at a constant voltage, and the carriage follows the rising speed of the molten pool based on the welding current. A method of manufacturing a welded joint by performing two-electrode vertical electrogas arc welding with control to rise,
The welding torch is attached to a carriage so that the welding torch can be moved along the welding direction, the movement speed of the carriage is measured, and a difference from a preset reference welding speed is calculated at regular intervals. In some cases, the welding torch is raised or lowered by a certain distance to change the protruding length of the welding wire, and the welding current is made constant by changing the wire feeding speed according to the change in welding current generated at that time. A method for manufacturing a welded joint, characterized in that two-electrode vertical electrogas arc welding is performed with the heat input during welding kept constant by matching the ascending speed of the molten pool with the reference welding speed.
板厚50mm超の鋼板を溶接することを特徴とする請求項1に記載の溶接継手の製造方法。   The method for manufacturing a welded joint according to claim 1, wherein a steel plate having a thickness of more than 50 mm is welded. 2本の溶接トーチを搭載し、溶接しようとする鋼板の開先に沿って上昇する台車と、各溶接トーチに案内される溶接ワイヤと鋼板との間に一定の電圧を供給する溶接電源と、溶接ワイヤ送給手段と、溶接電流を検知する電流検知手段と、検知された溶接電流に基づいて前記台車が溶融プールの上昇速度に追随して上昇するように台車の走行速度を制御する台車走行速度制御手段と有する2電極立向エレクトロガスアーク溶接装置であって、
該溶接装置は、さらに、前記溶接トーチを支持し、台車の進行方向に沿って上下に移動できるように台車に取り付けられた溶接トーチ支持台と、台車の移動速度測定手段と、一定の間隔ごとに台車の移動速度と予め設定された基準の溶接速度との速度差を算出し、該速度差が設定範囲にあるかどうかを判別する演算手段と、前記速度差が設定値を超えている場合に前記溶接トーチ支持台を一定距離上昇あるいは下降させるように制御するとともに、その際に変化した溶接電流が予め設定された値になるように溶接ワイヤ送給速度を制御して、前記速度差が設定範囲内になるようにする制御手段と、を有することを特徴とする請求項1または2に記載の溶接継手の製造方法を実施するための2電極立向エレクトロガスアーク溶接装置。
A carriage that carries two welding torches and rises along the groove of the steel sheet to be welded; a welding power source that supplies a constant voltage between the welding wire and the steel sheet guided by each welding torch; Welding wire feeding means, current detection means for detecting welding current, and cart running for controlling the running speed of the cart so that the cart rises following the rising speed of the molten pool based on the detected welding current A two-electrode vertical electrogas arc welding apparatus having a speed control means,
The welding apparatus further supports the welding torch and is attached to the carriage so that the welding torch can be moved up and down along the traveling direction of the carriage, the moving speed measuring means of the carriage, and at regular intervals. Calculating the speed difference between the moving speed of the carriage and a preset reference welding speed, and determining whether the speed difference is within a set range; and when the speed difference exceeds the set value The welding torch support base is controlled to be raised or lowered by a certain distance, and the welding wire feeding speed is controlled so that the welding current changed at that time becomes a preset value. A two-electrode vertical electrogas arc welding apparatus for carrying out the method for manufacturing a welded joint according to claim 1 or 2, further comprising a control unit configured to be within a set range.
JP2010148787A 2010-06-30 2010-06-30 Manufacturing method of welded joint and welding apparatus for carrying out the manufacturing method Expired - Fee Related JP5494292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148787A JP5494292B2 (en) 2010-06-30 2010-06-30 Manufacturing method of welded joint and welding apparatus for carrying out the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148787A JP5494292B2 (en) 2010-06-30 2010-06-30 Manufacturing method of welded joint and welding apparatus for carrying out the manufacturing method

Publications (2)

Publication Number Publication Date
JP2012011407A true JP2012011407A (en) 2012-01-19
JP5494292B2 JP5494292B2 (en) 2014-05-14

Family

ID=45598460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148787A Expired - Fee Related JP5494292B2 (en) 2010-06-30 2010-06-30 Manufacturing method of welded joint and welding apparatus for carrying out the manufacturing method

Country Status (1)

Country Link
JP (1) JP5494292B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122789A1 (en) 2013-02-06 2014-08-14 新日鐵住金株式会社 Multi-electrode electrogas arc welding method for thick steel plates and multi-electrode electrogas arc circumferential welding method for steel pipes
CN104985284A (en) * 2015-06-30 2015-10-21 苏州华日金菱机械有限公司 Double-wire electrogas welding machine
US9403232B2 (en) 2012-10-31 2016-08-02 Kobe Steel, Ltd. Arc welding apparatus, constant voltage characteristic welding power source, and method for performing arc welding
CN106041380A (en) * 2016-06-16 2016-10-26 嘉兴职业技术学院 Seam tracking system and method based on off-line programming

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188576A (en) * 1982-04-30 1983-11-04 Nippon Steel Weld Prod & Eng Co Ltd Electrogas welding method
JPH1058142A (en) * 1996-08-12 1998-03-03 Mitsubishi Heavy Ind Ltd Electrogas arc welding method
JPH10118771A (en) * 1996-10-17 1998-05-12 Nippon Steel Weld Prod & Eng Co Ltd Vertical electro-gas welding device
JP2004167600A (en) * 2002-10-31 2004-06-17 Kobe Steel Ltd Flux-cored wire, welding method and equipment for two-electrode electrogas arc welding
JP2005074442A (en) * 2003-08-28 2005-03-24 Katayama Stratec Kk Multiple electrode circumference electro-gas arc welding method
JP2007030019A (en) * 2005-07-29 2007-02-08 Jfe Steel Kk Electrogas arc welding method
JP2007069256A (en) * 2005-09-08 2007-03-22 Ishikawajima Harima Heavy Ind Co Ltd Welding apparatus
JP2008087045A (en) * 2006-10-02 2008-04-17 Kobe Steel Ltd Flux-cored wire for electrogas arc welding and two-electrode electrolgas arc welding method
JP2008173664A (en) * 2007-01-18 2008-07-31 Ihi Corp Vertical position welding method
JP2009202225A (en) * 2008-02-29 2009-09-10 Mitsubishi Heavy Ind Ltd Electrogas arc welding method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188576A (en) * 1982-04-30 1983-11-04 Nippon Steel Weld Prod & Eng Co Ltd Electrogas welding method
JPH1058142A (en) * 1996-08-12 1998-03-03 Mitsubishi Heavy Ind Ltd Electrogas arc welding method
JPH10118771A (en) * 1996-10-17 1998-05-12 Nippon Steel Weld Prod & Eng Co Ltd Vertical electro-gas welding device
JP2004167600A (en) * 2002-10-31 2004-06-17 Kobe Steel Ltd Flux-cored wire, welding method and equipment for two-electrode electrogas arc welding
JP2005074442A (en) * 2003-08-28 2005-03-24 Katayama Stratec Kk Multiple electrode circumference electro-gas arc welding method
JP2007030019A (en) * 2005-07-29 2007-02-08 Jfe Steel Kk Electrogas arc welding method
JP2007069256A (en) * 2005-09-08 2007-03-22 Ishikawajima Harima Heavy Ind Co Ltd Welding apparatus
JP2008087045A (en) * 2006-10-02 2008-04-17 Kobe Steel Ltd Flux-cored wire for electrogas arc welding and two-electrode electrolgas arc welding method
JP2008173664A (en) * 2007-01-18 2008-07-31 Ihi Corp Vertical position welding method
JP2009202225A (en) * 2008-02-29 2009-09-10 Mitsubishi Heavy Ind Ltd Electrogas arc welding method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403232B2 (en) 2012-10-31 2016-08-02 Kobe Steel, Ltd. Arc welding apparatus, constant voltage characteristic welding power source, and method for performing arc welding
WO2014122789A1 (en) 2013-02-06 2014-08-14 新日鐵住金株式会社 Multi-electrode electrogas arc welding method for thick steel plates and multi-electrode electrogas arc circumferential welding method for steel pipes
JP5692413B2 (en) * 2013-02-06 2015-04-01 新日鐵住金株式会社 Multi-electrode electrogas arc welding method for thick steel plate and multi-electrode electrogas arc circumferential welding method for steel pipe
KR20150103213A (en) 2013-02-06 2015-09-09 신닛테츠스미킨 카부시키카이샤 Multi-electrode electrogas arc welding method for thick steel plates and multi-electrode electrogas arc circumferential welding method for steel pipes
CN104985284A (en) * 2015-06-30 2015-10-21 苏州华日金菱机械有限公司 Double-wire electrogas welding machine
CN106041380A (en) * 2016-06-16 2016-10-26 嘉兴职业技术学院 Seam tracking system and method based on off-line programming

Also Published As

Publication number Publication date
JP5494292B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
Meng et al. High speed TIG–MAG hybrid arc welding of mild steel plate
US8809740B2 (en) Two-electrode welding method
KR101538209B1 (en) Multielectrode gas-shield arc welding method and device
JP4998703B2 (en) Control system for vertical position welding equipment
JP5408055B2 (en) Manufacturing method of welded joint and welding apparatus for carrying out the method
JP5494292B2 (en) Manufacturing method of welded joint and welding apparatus for carrying out the manufacturing method
JP6119940B1 (en) Vertical narrow groove gas shielded arc welding method
WO2019146318A1 (en) Arc welding controlling method
JP4420863B2 (en) Control method of laser arc composite welding
JPWO2013179614A1 (en) Laser-arc hybrid welding method
JP6460910B2 (en) Electroslag welding method and electroslag welding apparatus
CN104842048A (en) Argon tungsten-arc welding and cold metal transition welding composite heat source welding device and method and application
JP6060604B2 (en) Submerged arc welding method
JP6439882B2 (en) Vertical narrow groove gas shielded arc welding method
JP5987737B2 (en) Narrow groove welding method for steel
KR101608975B1 (en) Tandem GMAW device for welding thick plate
KR100584967B1 (en) Automatic Plasma Welding Method for the Lap Joint of Membrane Sheets
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
RU2497644C2 (en) Multiarc welding of welded blanks
KR101271872B1 (en) Tandem electro gas arc welder and stick-out control method for it
CN111683780B (en) Single-side submerged arc welding method and single-side submerged arc welding device
JP2014046316A (en) Arc welding method, and arc welding apparatus
KR20120074231A (en) Butt welding apparatus and butt welding method
KR20210061206A (en) Electro gas welding apparatus and heat input control method thereof
JP4784091B2 (en) Composite welding apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R151 Written notification of patent or utility model registration

Ref document number: 5494292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees