JP2012011394A - Method of manufacturing deformed cross-section bar, and deformed cross-section bar for mounting led chip manufactured by the method - Google Patents

Method of manufacturing deformed cross-section bar, and deformed cross-section bar for mounting led chip manufactured by the method Download PDF

Info

Publication number
JP2012011394A
JP2012011394A JP2010147380A JP2010147380A JP2012011394A JP 2012011394 A JP2012011394 A JP 2012011394A JP 2010147380 A JP2010147380 A JP 2010147380A JP 2010147380 A JP2010147380 A JP 2010147380A JP 2012011394 A JP2012011394 A JP 2012011394A
Authority
JP
Japan
Prior art keywords
thick
section
roll
thickness
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010147380A
Other languages
Japanese (ja)
Inventor
Takeshi Sakurai
健 櫻井
俊緑 ▲すくも▼田
Shunroku Sukumoda
Shinichi Funaki
真一 船木
Taku Omura
卓 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2010147380A priority Critical patent/JP2012011394A/en
Publication of JP2012011394A publication Critical patent/JP2012011394A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin deformed cross-section bar of satisfactory dimensional precision, allowing LED-chip on board without depending on the processing such as half-etching or press working while preventing a yield from getting low caused by a material loss and a facility cost from increasing etc.SOLUTION: At least one part of an end edge part of a thick-walled part 7 is press-worked directed width-directionally inwards by each protrusion part 12 protruded from each small-diametric part 4, while forming the thick-walled part 7 by the small-diametric part 4 of a stepped roll 1, in width-directional both end parts of a planar material 5, when rolling the planar material 5 between the stepped roll 1 arrayed alternately with a plurality of large-diametric parts 3 and the plurality of small-diametric parts 4, and a flat roll 2 arranged parallel to the stepped roll 1, a residual thickness is set in a range of 0.3×T to 0.95×T of an edge groove part formed by press-working each end edge part of the thick-walled part, where T denotes a thickness of the thick-walled part, and a thickness of a thin-walled part is made to be 0.20 mm or less and the dimensional precision is made to be ±0.010 mm or less.

Description

本発明は、厚肉部と薄肉部とが幅方向に並んで形成された薄くて寸法精度の良好な異形断面条を製造する方法、および、その製造方法により製造されたLEDチップ搭載用の基板に適した異形断面銅合金条に関する。   The present invention relates to a method for manufacturing a thin section having a thick portion and a thin portion arranged side by side in the width direction and having a good dimensional accuracy, and a substrate for mounting an LED chip manufactured by the manufacturing method. The present invention relates to a deformed cross-section copper alloy strip suitable for use in the manufacturing process.

周知のように、例えば、LEDやパワートランジスタ等のリードフレームや基板に、銅合金等の金属からなる異形断面条が用いられている。この異形断面条を製造する場合、一組のロールの一方を複数の大径部と小径部とが交互に並べられた段付きロールとし、他方を平ロールとして、これらロールの間に平板状素材を送り込んで圧延することにより、大径部によって成形される薄肉部と小径部によって成形される厚肉部とを有する異形断面条が製造される。
このような異形断面条の成形において、大径部の両側面は適宜角度の傾斜面とされている。この場合、この傾斜面と小径部表面との間の角部に材料が十分に充満する必要があるが、幅方向の両端部(条の両側部)では、材料が自由端である端縁に流れ易いため、その端縁に近い位置の厚肉部では、ロールの小径部の表面と大径部の傾斜面とのなす形状と一致せず、幅方向の中央部の厚肉部に比べ、角部がだれた形状になり易いという問題がある。
As is well known, for example, a deformed cross section made of a metal such as a copper alloy is used for a lead frame or a substrate such as an LED or a power transistor. When manufacturing this modified cross-section strip, one set of rolls is a stepped roll in which a plurality of large-diameter portions and small-diameter portions are alternately arranged, and the other is a flat roll. By feeding and rolling, a deformed section having a thin part formed by the large diameter part and a thick part formed by the small diameter part is manufactured.
In forming such a modified cross-section strip, both side surfaces of the large-diameter portion are appropriately inclined surfaces. In this case, it is necessary to sufficiently fill the corner portion between the inclined surface and the surface of the small-diameter portion. However, at both end portions in the width direction (both side portions of the strip), the material has a free end. Because it is easy to flow, in the thick part near the edge, it does not match the shape formed by the surface of the small diameter part of the roll and the inclined surface of the large diameter part, compared to the thick part of the central part in the width direction, There is a problem that the corners are likely to have a bent shape.

このような問題を解決するため、特許文献1、特許文献2記載の技術がある。
特許文献1記載の技術は、複数個の大径部を同じ断面形状で並べた段付きロールとし、幅方向の最も両端位置に、中央部の厚肉部とその両側の薄肉部との間の傾斜面と同じ角度の傾斜面で薄肉部から連続する端部側厚肉部を形成することにより、この端部側厚肉部では材料の充満が不十分となるが、製品となる中央部の厚肉部では十分に材料を充満させることができるようにしている。
また、特許文献2に記載の技術では、ロールの幅方向の両端部に、材料のメタルフローを規制するために、端部側の厚肉部の断面積を中央部の厚肉部の断面積のほぼ1/2とする位置に、薄肉部形成用の凸条部(大径部)よりも高いメタルフロー規制用凸条部と、このメタルフロー規制用凸条部に対応する凹条部とを配置することにより、このメタルフロー規制用凸条部と凹条部との間では圧延が行われないようにして、材料の流れ込みが生じないようにしている。
In order to solve such a problem, there are technologies described in Patent Document 1 and Patent Document 2.
The technique described in Patent Document 1 is a stepped roll in which a plurality of large-diameter portions are arranged in the same cross-sectional shape, and at the most end positions in the width direction, between the thick portion at the center and the thin portions on both sides thereof. By forming an end-side thick part that continues from the thin part on the inclined surface at the same angle as the inclined surface, the end-side thick part is insufficiently filled with material, In the thick part, the material can be sufficiently filled.
Moreover, in the technique described in Patent Document 2, in order to restrict the metal flow of the material at both ends in the width direction of the roll, the cross-sectional area of the thick part on the end side is changed to the cross-sectional area of the thick part on the center part. A metal flow restricting ridge that is higher than the ridge for forming the thin portion (large diameter portion), and a recess corresponding to the metal flow restricting ridge. By disposing, the rolling is not performed between the metal flow regulating ridges and the ridges, so that no material flows in.

特開平6−328153号公報JP-A-6-328153 特開平7−39979号公報JP-A-7-39979

特許文献1記載の技術では、端部側厚肉部は材料が十分に充満しないため使用できない部分であり、その分、材料にロスが生じて歩留まりが悪い。また、特許文献2記載の技術も、メタルフロー規制用凸条部と凹条部とで成形した部分は、使用に供される部分ではないため、特許文献1記載の技術と同様に、材料ロスとなって歩留まりを低下させるとともに、メタルフローを生じさせないように成形することが難しく、また、二つのロールともが段付き形状となるため、設備費がかさむ問題も生じていた。
更に、このような銅条材を段付きロールにて異形断面状に加工する製造方法では、異形断面条材の厚みが薄くなるにしたがって加工の寸法精度が低下し、厚肉部で0.80mm以下、薄肉部で0.20mm以下の厚みを有する薄型の異形断面条を±0.010mm以下の寸法精度にて形成することは技術的に困難であった。
In the technique described in Patent Document 1, the end-side thick portion is a portion that cannot be used because the material is not sufficiently filled, and accordingly, a loss occurs in the material and the yield is poor. Further, in the technique described in Patent Document 2, since the portion formed by the metal flow regulating ridges and the ridges is not a part to be used, material loss is similar to the technique described in Patent Document 1. As a result, it is difficult to form so as not to cause a metal flow, and the two rolls have a stepped shape, resulting in a problem of increased equipment costs.
Furthermore, in the manufacturing method in which such a copper strip material is processed into a modified cross-section shape with a stepped roll, the dimensional accuracy of the processing decreases as the thickness of the irregular cross-section strip material decreases, and 0.80 mm at the thick portion. In the following, it was technically difficult to form a thin deformed cross section having a thickness of 0.20 mm or less at a thin portion with a dimensional accuracy of ± 0.010 mm or less.

最近では、発光ダイオードを用いたLEDランプの更なる進化に伴い、基板(ボード)の上に複数のLEDチップを搭載し、樹脂層により被覆したチップオンボード(COB)タイプのものが開発されており、この様なチップオンボードに使用される基板には、熱伝導性、プレス加工性、導電性、機械的強度とのバランスが取れた薄型(厚肉部で0.80mm以下、薄肉部で0.20mm以下の厚み)の異形断面の銅合金条、或いは、その最表面に光沢、耐熱性、接触抵抗性を付与するめっき処理が施された異形断面の銅合金条が使用されている。
この様な薄型のチップオンボードタイプの異形断面の銅合金条を、従来の異形断面条の製造方法にて寸法精度良く製造するのは非常に難しく、平薄銅板をハーフエッチング或いはプレス加工して凸凹をつけて異形断面を有する条材としており、加工の手間がかかり、製造コストも高くなっていた。
Recently, with the further evolution of LED lamps using light-emitting diodes, a chip-on-board (COB) type in which a plurality of LED chips are mounted on a substrate (board) and covered with a resin layer has been developed. The board used for such chip-on-board is thin (with a thickness of 0.80 mm or less, with a thickness of less than 0.80 mm, which is balanced with thermal conductivity, press workability, conductivity, and mechanical strength. A copper alloy strip having a deformed cross section with a thickness of 0.20 mm or less, or a copper alloy strip having a deformed cross section having a plating treatment that imparts gloss, heat resistance and contact resistance to the outermost surface thereof is used.
It is very difficult to produce such thin chip-on-board type copper alloy strips with irregular cross-sections with the conventional method for producing irregular cross-section strips, and half-etching or pressing a flat thin copper plate The strips have irregular shapes with irregularities, which takes time for processing and increases the manufacturing cost.

本発明は、材料ロスにより歩留まり低下させることがなく、設備費の増大等を招くことがなく、ハーフエッチング或いはプレス加工等の加工に頼ることなしに、LEDチップ等がチップオンボードできる薄型で寸法精度の良好な異形断面条を製造する方法、及び、その製造方法により製造されたLEDチップ搭載用の基板に適した異形断面銅合金条を提供することを目的とする。   The present invention does not cause a decrease in yield due to material loss, does not cause an increase in equipment costs, etc., and is thin and dimensioned so that an LED chip or the like can be chip-on-board without relying on processing such as half etching or pressing. It is an object of the present invention to provide a method for producing a modified cross-section strip with good accuracy, and a modified cross-section copper alloy strip suitable for a substrate for mounting an LED chip manufactured by the manufacturing method.

従来の異形断面条の製造技術は、製品部の外側に、製品部と同じ形状の端部側厚肉部を付加し(特許文献1)、あるいはメタルフロー規制用凸条部と凹条部とで成形される部分を付加(特許文献2)することにより、製品部には充満不十分となる部分を発生させないようにしたものであり、製品部以外に付加する部分があるため、材料ロスの発生は避けられなかった。
本発明者らは、鋭意検討の結果、厚肉部が充満不十分となるのは、材料が幅方向の両端方向に逃げるようにメタルフローするからであり、これを解決するために、逃げる分に対応して、材料を逆に両端部から厚肉部に寄せるように流動させてやれば、厚肉部のだれを防止できると考えた。
In the conventional manufacturing technology of the irregular cross-section strip, the end portion side thick wall portion having the same shape as the product portion is added to the outside of the product portion (Patent Document 1), or the metal flow regulating convex strip portion and the concave strip portion By adding the part that is molded in (Patent Document 2), the product part is made not to generate a part that becomes insufficiently filled, and there is a part to be added other than the product part. Occurrence was inevitable.
As a result of diligent study, the inventors of the present invention are that the thick portion becomes insufficiently filled because the metal flows so that the material escapes in both end directions in the width direction. Corresponding to the above, it was thought that if the material was made to flow from both ends to the thick part, dripping of the thick part could be prevented.

本発明の異形断面条の製造方法は、複数の大径部と小径部とが交互に並んだ段付きロールと、該段付きロールと平行に配置した平ロールとの間で平板状素材を圧延して、複数の厚肉部と薄肉部とが幅方向に並んだ異形断面条を製造する方法であって、前記段付きロールと平ロールとの間で前記平板状素材を圧延するに際し、該平板状素材の幅方向の両端部に、前記段付きロールの小径部により厚肉部を形成しつつ、該小径部から突出する凸条部により前記厚肉部の端縁部の少なくとも一部を幅方向の内方に向けて押圧加工し、前記厚肉部の端縁部を押圧加工して形成される端縁溝部により残る部分の厚さが、該厚肉部の厚さをTmmとするとき、0.3×Tmm〜0.95×Tmmの範囲内に設定され、前記薄肉部の厚さが0.20mm以下、厚さの寸法精度が±0.010mm以下とされる異形断面条を製造することを特徴とする。   The method for producing a modified cross-section strip according to the present invention rolls a flat plate material between a stepped roll in which a plurality of large diameter portions and small diameter portions are alternately arranged and a flat roll arranged in parallel with the stepped roll. A method of manufacturing a deformed cross-section in which a plurality of thick portions and thin portions are arranged in the width direction, and when rolling the flat plate material between the step roll and flat roll, At the both ends in the width direction of the flat plate-shaped material, while forming thick portions by the small diameter portion of the stepped roll, at least a part of the edge portion of the thick portion is formed by the projecting ridge portion protruding from the small diameter portion. The thickness of the portion remaining by the edge groove formed by pressing the inner edge in the width direction and pressing the edge of the thick portion is Tmm. Is set within a range of 0.3 × Tmm to 0.95 × Tmm, and the thickness of the thin portion is 0.20 mm or less, It is characterized in that a deformed cross section having a thickness dimensional accuracy of ± 0.010 mm or less is manufactured.

この異形断面条では、幅方向の両端部に位置する厚肉部とその内側に隣接する薄肉部との間の段差部において、厚肉部の上面と側面との間の角部(当該厚肉部における条の幅方向内方側の端部)の欠肉を避けるため、厚肉部の端縁部の少なくとも一部を幅方向の内方に向けて押圧加工して、該厚肉部の端縁部から幅方向内方側の角部に向けて材料を寄せるようにメタルフローを生じさせることにより、その部分の欠肉を防止する。   In this deformed cross section, in the step portion between the thick portion located at both ends in the width direction and the thin portion adjacent to the inside, the corner portion between the upper surface and the side surface of the thick portion (the thick portion) In order to avoid a lack of thickness at the end of the strip in the width direction of the strip), at least a part of the end edge of the thick portion is pressed inward in the width direction, By causing the metal flow to move the material from the edge portion toward the corner portion on the inner side in the width direction, the lack of the portion is prevented.

更に、厚肉部の端縁部を押圧加工することにより、その部分には溝部が形成されるが、この端縁溝部により残る部分の厚さを厚肉部の厚さTmmに対して0.3×Tmm〜0.95×Tmmの範囲とすることにより、その部分の材料を上記角部に向けて有効にフローさせることが可能となる。
端縁溝部により残る部分の厚さが0.3×Tmm未満では、薄肉部に変形が生じ易く、0.95×Tmmを超えてもメタルフローが十分ではなく、加工の寸法精度が悪くなる。
また、本発明の異形断面条の製造方法においても、異形断面条の厚肉部の厚さで0.2mm、薄肉部の厚さで0.1mmが寸法精度良く(±0.010mm以下)加工できる厚さ及び幅の限度であり、これら未満の厚さでは寸法精度が悪くなり、割れや変形が生じ易くなる。
このような製造方法とすることにより、ハーフエッチング或いはプレス加工等の加工なしに、厚肉部と薄肉部とを有する薄型で寸法精度の良好な異形断面条を製造することができる。
Further, by pressing the edge portion of the thick portion, a groove portion is formed in that portion, and the thickness of the portion remaining by this edge groove portion is set to 0. 0 mm with respect to the thickness Tmm of the thick portion. By setting the range of 3 × Tmm to 0.95 × Tmm, it becomes possible to effectively flow the material of the portion toward the corner portion.
If the thickness of the portion remaining by the edge groove portion is less than 0.3 × Tmm, the thin portion is likely to be deformed, and even if it exceeds 0.95 × Tmm, the metal flow is not sufficient, and the dimensional accuracy of processing deteriorates.
Also, in the method for manufacturing a deformed section strip according to the present invention, the thickness of the thick section of the deformed section strip is 0.2 mm, and the thickness of the thin section is 0.1 mm with good dimensional accuracy (± 0.010 mm or less). It is the limit of the thickness and width that can be made, and if the thickness is less than these, the dimensional accuracy is deteriorated, and cracking and deformation are likely to occur.
By adopting such a manufacturing method, it is possible to manufacture a thin profile section having a thick portion and a thin portion and good dimensional accuracy without processing such as half etching or pressing.

更に、本発明のLEDチップ搭載用異形断面条は、本発明の製造方法により製造された異形断面条であって、前記厚肉部の上面にLEDチップが搭載される凹部を有することを特徴とする。
厚肉部の上面にエッチング或いはプレス加工等にて適当な凹部を有する異形断面条を得ることにより、多様なバリュエーションを有するLEDランプに対応可能となる。
Further, the irregular cross-section for mounting the LED chip of the present invention is an irregular cross-section manufactured by the manufacturing method of the present invention, and has a recess in which the LED chip is mounted on the upper surface of the thick portion. To do.
By obtaining an irregular cross-section having an appropriate concave portion on the upper surface of the thick portion by etching or pressing, it becomes possible to deal with LED lamps having various valuations.

また、本発明のLEDチップ搭載用異形断面条は、本発明の製造方法により製造された異形断面条であって、表面に光沢度が80%以上であるめっき層が形成されていること特徴とする
この様なチップオンボードに使用される基板としては、熱伝導性、プレス加工性、導電性、機械的強度とのバランスが取れた薄型(厚肉部で0.8mm以下、薄肉部で0.2mm以下の厚み)の異形断面の銅合金条、或いは、その最表面に光沢、耐熱性、接触抵抗性を付与するめっき処理が施された異形断面の銅合金条が好適であり、その表面に付与されるめっきは、特にLEDランプとして光の良好な反射性を得る観点から、光沢度が80%以上であることが好ましい。光沢度が120%を超えると効果が飽和し、コスト面で無駄となる傾向が見られる。
Also, the irregular cross-section strip for mounting the LED chip of the present invention is an irregular cross-section strip manufactured by the manufacturing method of the present invention, and a plating layer having a glossiness of 80% or more is formed on the surface. The substrate used for such a chip-on-board is a thin type (0.8 mm or less at the thick portion and 0 at the thin portion) that balances thermal conductivity, press workability, conductivity, and mechanical strength. (2 mm or less thickness), or a copper alloy strip having a modified cross-section, or a copper alloy strip having a modified cross-section that is plated on the outermost surface to impart gloss, heat resistance, and contact resistance. It is preferable that the glossiness is 80% or more, particularly from the viewpoint of obtaining good light reflectivity as an LED lamp. When the glossiness exceeds 120%, the effect is saturated, and there is a tendency that the cost is wasted.

更に、めっき処理により、複数のめっき層が異形断面の銅合金条の表面に施されていても良く、その最外層に厚みが0.01〜2.0μmで光沢度が80〜120%である、Sn−Ag、Sn−Ag−Au、Sn−Au、Sn−Pt、Ni−Au、Ni−Ag、Ni−Pd、或いは、Ni−Ptめっきが施されていることが特に好ましい。
また、LEDチップ搭載用の異形断面条は、本発明の製造方法により製造された異形断面条であって、前記厚肉部の上面に凹部を有し、表面に光沢度が80%以上であるめっき層が形成されていることを特徴とする。
この様なチップオンボードに使用される基板としては、熱伝導性、プレス加工性、導電性、機械的強度とのバランスが取れた薄型(厚肉部で0.80mm以下、薄肉部で0.20mm以下の厚み)の異形断面の銅合金条、或いは、その最表面に光沢、耐熱性、接触抵抗性を付与するめっき処理が施された異形断面の銅合金条が好適であり、その最表面に付与されるめっきは、特にLEDランプとして光の良好な反射性を得る観点から、光沢度が80%以上であることが好ましい。光沢度が120%を超えると効果が飽和しコスト面で無駄となる傾向が見られる。
Furthermore, a plurality of plating layers may be applied to the surface of the copper alloy strip having an irregular cross section by plating treatment, and the outermost layer has a thickness of 0.01 to 2.0 μm and a glossiness of 80 to 120%. Sn-Ag, Sn-Ag-Au, Sn-Au, Sn-Pt, Ni-Au, Ni-Ag, Ni-Pd, or Ni-Pt plating is particularly preferable.
Further, the irregular cross-section strip for mounting the LED chip is a deformed cross-section strip manufactured by the manufacturing method of the present invention, having a concave portion on the upper surface of the thick portion, and having a glossiness of 80% or more on the surface. A plating layer is formed.
As a substrate used for such a chip-on-board, a thin shape (0.80 mm or less at the thick portion and 0. 0 mm at the thin portion) in which the thermal conductivity, press workability, conductivity, and mechanical strength are balanced. A copper alloy strip having a deformed cross section with a thickness of 20 mm or less) or a copper alloy strip having a deformed cross section whose outermost surface is plated with gloss, heat resistance and contact resistance is suitable. It is preferable that the glossiness is 80% or more, particularly from the viewpoint of obtaining good light reflectivity as an LED lamp. When the glossiness exceeds 120%, the effect is saturated, and there is a tendency that the cost is wasted.

また、LEDチップ搭載用異形断面条は、本発明の製造方法により製造された異形断面条であって、前記厚肉部の上面に凹部を有し、表面に光沢度が80%以上であるめっき層が形成されていること特徴とする。
厚肉部内にエッチング或いはプレス加工等にて適当な凹部を有する異形断面条により、複雑な形状の多様なバリュエーションを有するLEDランプに対応することが可能となる。
Moreover, the irregular cross-section strip for LED chip mounting is a irregular cross-section strip manufactured by the manufacturing method of the present invention, and has a concave portion on the upper surface of the thick portion, and the surface has a glossiness of 80% or more. A layer is formed.
The irregular cross section having an appropriate recess in the thick portion by etching or press working makes it possible to deal with LED lamps having various valuations of complicated shapes.

本発明によれば、材料ロスにより歩留まりを低下させることがなく、設備費の増大等を招くことがなく、ハーフエッチング或いはプレス加工等の加工に頼ることなしに、LEDチップ等がチップオンボードできる薄型で寸法精度の良好な異形断面条を製造する方法、及び、その製造方法により製造されたLEDチップ搭載用の基板に適した異形断面銅合金条を提供することが出来る。   According to the present invention, it is possible to chip-on-board an LED chip or the like without reducing yield due to material loss, without causing an increase in equipment cost, and without relying on processing such as half etching or pressing. It is possible to provide a method for producing a thin cross-section strip with good dimensional accuracy and a cross-section copper alloy strip suitable for a substrate for mounting an LED chip manufactured by the manufacturing method.

本発明に係る異形断面条の製造方法の一実施形態において用いられる段付きロールと平ロールとの間で平板状素材を圧延している状態を示す斜視図である。It is a perspective view which shows the state which is rolling the plate-shaped raw material between the step roll and flat roll used in one Embodiment of the manufacturing method of the irregular cross-section strip which concerns on this invention. 図1の段付きロールと平ロールとの圧延部分を示す縦断面図である。It is a longitudinal cross-sectional view which shows the rolling part of the stepped roll and flat roll of FIG. 図1の段付きロールの正面図である。It is a front view of the stepped roll of FIG. 一実施形態の方法で製造された異形断面条の縦断面図であり、(a)が圧延後の状態、(b)が圧延後に両端縁部を切り落とした状態を示す。It is a longitudinal cross-sectional view of the irregular cross-section manufactured by the method of one Embodiment, (a) is the state after rolling, (b) shows the state which cut off the both-ends edge part after rolling. 一実施形態の方法で製造された異形断面条の変形例であり、厚肉部の上面に凹部を有する異形断面条の縦断面図である。It is a modification of the irregular cross-section manufactured with the method of one Embodiment, and is a longitudinal cross-sectional view of the irregular cross-section which has a recessed part in the upper surface of a thick part. 一実施形態の方法で製造された異形断面条のさらなる変形例であり、表面にめっき処理が施された異形断面条の縦断面図である。It is the further modification of the irregular cross-section manufactured with the method of one Embodiment, and is a longitudinal cross-sectional view of the irregular cross-section with which the plating process was performed to the surface. 段付きロールの凸条部についての変形例を示す部分断面図である。It is a fragmentary sectional view which shows the modification about the protruding item | line part of a stepped roll.

次に本発明の実施形態につき図を参照に説明する。
本実施形態では、図1に示す製造装置を使用することが好ましい。
この製造装置は、図1に示すように、段付きロール1と平ロール2とを備えている。段付きロール1は、半径R1とされた複数の大径部3と、半径R2とされた複数の小径部4とが幅方向に交互に並んだ形状とされ、平ロール2は、幅方向にわたって均一な半径R3とされることにより、外周面が凹凸のない平坦な円周面とされている。これら両ロール1,2は、その間に間隙を開けて両軸線P1,P2を平行にして配置され、図示略の駆動機構によって回転駆動される構成とされている。
そして、これら段付きロール1と平ロール2との間に平板状素材5を通すことにより、段付きロール1の大径部3と小径部4とに対応して、薄肉部6と厚肉部7とが幅方向に並んだ異形断面条8が形成されるようになっている。
Next, an embodiment of the present invention will be described with reference to the drawings.
In this embodiment, it is preferable to use the manufacturing apparatus shown in FIG.
As shown in FIG. 1, the manufacturing apparatus includes a step roll 1 and a flat roll 2. The step roll 1 has a shape in which a plurality of large diameter portions 3 having a radius R1 and a plurality of small diameter portions 4 having a radius R2 are alternately arranged in the width direction. By setting the uniform radius R3, the outer circumferential surface is a flat circumferential surface without irregularities. The two rolls 1 and 2 are arranged with a gap therebetween and the axes P1 and P2 being parallel to each other, and are configured to be rotationally driven by a drive mechanism (not shown).
Then, by passing the flat plate material 5 between the stepped roll 1 and the flat roll 2, the thin portion 6 and the thick portion correspond to the large diameter portion 3 and the small diameter portion 4 of the stepped roll 1. 7 is formed.

段付きロール1は、図示例では3個の大径部3が小径部4を介して幅方向に並んで配置され、両端部が小径部4とされている。各大径部3は、その外周面が軸線P1方向に平行に形成され、図2及び図3に示すように、両側面11が半径内方に向かうにしたがって漸次大径部3の幅を大きくするように半径方向に対して所定の角度θ1で傾斜した傾斜面とされ、また、小径部4は、その外周面が軸線P1方向に平行に形成されている。したがって、小径部4の外周面と大径部3の側面11との間の角部のなす角度は90°よりも大きく、また、大径部3の外周面と側面11との間の角部のなす角度も90°より大きく形成されており、大径部3は台形状の断面となるように形成されている。さらに、大径部3の外周面と側面11との間は例えば0.05〜0.2mmの曲率半径r1で面取り加工されている。   In the illustrated example, the stepped roll 1 includes three large-diameter portions 3 arranged in the width direction via small-diameter portions 4, and both end portions are small-diameter portions 4. Each large-diameter portion 3 has an outer peripheral surface formed in parallel to the direction of the axis P1, and as shown in FIGS. 2 and 3, the width of the large-diameter portion 3 gradually increases as both side surfaces 11 go radially inward. Thus, the inclined surface is inclined at a predetermined angle θ1 with respect to the radial direction, and the outer peripheral surface of the small diameter portion 4 is formed in parallel to the direction of the axis P1. Therefore, the angle formed by the corner portion between the outer peripheral surface of the small diameter portion 4 and the side surface 11 of the large diameter portion 3 is larger than 90 °, and the corner portion between the outer peripheral surface of the large diameter portion 3 and the side surface 11. Is formed to be larger than 90 °, and the large-diameter portion 3 is formed to have a trapezoidal cross section. Further, the outer peripheral surface of the large diameter portion 3 and the side surface 11 are chamfered with a curvature radius r1 of 0.05 to 0.2 mm, for example.

また、この段付きロール1の両端部の小径部4には、大径部3の半径R1より小さいが小径部4の半径R2より大きい半径R4を有し、小径部4から若干の高さで突出する凸条部12が形成されている。この凸条部12は、平板状素材5の幅方向両端部に形成される厚肉部7の端縁部を押圧加工するようになっている。
この場合、凸条部12は、段付きロール1の幅方向内方に位置する側縁部で平板状素材5を押圧加工するようになっており、その部分の側面13は、半径方向内方に向かうにしたがって隣接する大径部3の側面11に近づくように、半径方向に対して所定の角度θ2で傾斜した傾斜面とされ、この側面13と外周面との間の角度が90°よりも大きく形成されている。また、その傾斜面13と外周面との間は0.1〜0.2mmの曲率半径r2で面取り加工されている。
なお、大径部3の側面11の角度θ1、凸条部12の側面13の角度θ2は、特に限定するものではないが、5〜60°が好適であり、その角度範囲内で、両方を同じ角度としてもよいし、異なる角度に設定してもよい。
Further, the small diameter portions 4 at both ends of the stepped roll 1 have a radius R4 that is smaller than the radius R1 of the large diameter portion 3 but larger than the radius R2 of the small diameter portion 4, and is slightly higher than the small diameter portion 4. A protruding ridge portion 12 is formed. The ridges 12 press the edge portions of the thick portions 7 formed at both ends in the width direction of the flat plate-like material 5.
In this case, the ridge portion 12 is configured to press the flat plate material 5 at the side edge portion located inward in the width direction of the stepped roll 1, and the side surface 13 of the portion is inward in the radial direction. The inclined surface is inclined at a predetermined angle θ2 with respect to the radial direction so as to approach the side surface 11 of the adjacent large-diameter portion 3 as it goes to the angle, and the angle between the side surface 13 and the outer peripheral surface is more than 90 °. Is also formed large. Further, chamfering is performed between the inclined surface 13 and the outer peripheral surface with a curvature radius r2 of 0.1 to 0.2 mm.
The angle θ1 of the side surface 11 of the large-diameter portion 3 and the angle θ2 of the side surface 13 of the ridge portion 12 are not particularly limited, but are preferably 5 to 60 °, and within the angle range, both The same angle may be set, or different angles may be set.

次に、このように構成した製造装置によって平板状素材5から異形断面条8を製造する方法について説明する。
平板状素材5は、銅を97.0質量%以上含有し、Fe,P,Mg,Zn,Si,Ni,Sn,Zr等の金属を少なくとも一種以上含み、他が不可避不純物である組成の厚さ0.3〜1.0mm銅合金条を用途に応じて適宜選択することが好ましい。
具体的には、三菱伸銅(株)製の商品名OFC、TC、C151、TAMAC194、TAMAC4、TAMAC2、DC1B、ZC、MZC1等の銅合金条である。
特に、強度と導電率のバランスの優れた、Cu−Fe−P系のTAMAC194、TAMAC4、TAMAC2、或いは、Cu−Zr系のZC、MZC1を適用するのが好ましい。
図1に示すように、段付きロール1と平ロール2との間に平板状素材5を通過させて圧延すると、段付きロール1の大径部3によって薄肉部6が形成され、小径部4によって厚肉部7が形成され、これら薄肉部6と厚肉部7とが幅方向に交互に並んだ異形断面条8が形成される。
Next, a method for manufacturing the modified cross-section strip 8 from the flat plate material 5 by the manufacturing apparatus configured as described above will be described.
The flat plate material 5 contains 97.0% by mass or more of copper, contains at least one metal such as Fe, P, Mg, Zn, Si, Ni, Sn, Zr, etc., and has a composition with the other being inevitable impurities. It is preferable to appropriately select a 0.3 to 1.0 mm copper alloy strip depending on the application.
Specifically, it is a copper alloy strip such as trade names OFC, TC, C151, TAMAC194, TAMAC4, TAMAC2, DC1B, ZC, and MZC1 manufactured by Mitsubishi Shindoh Co., Ltd.
In particular, it is preferable to apply Cu-Fe-P-based TAMAC194, TAMAC4, TAMAC2, or Cu-Zr-based ZC or MZC1 having an excellent balance between strength and conductivity.
As shown in FIG. 1, when the flat plate material 5 is passed between the step roll 1 and the flat roll 2 and rolled, a thin portion 6 is formed by the large diameter portion 3 of the step roll 1, and the small diameter portion 4. Thus, the thick-walled portion 7 is formed, and the deformed cross-section strip 8 in which the thin-walled portions 6 and the thick-walled portions 7 are alternately arranged in the width direction is formed.

この場合、図2に示すように、平ロール2の上で段付きロール1の大径部3によって平板状素材5が圧縮されることにより、この平板状素材5が異形断面条8に変形される過程で、大径部3に押圧される部分には破線矢印に示すようにメタルフローが生じる。このうち、大径部3の外周面で押圧される部分では、この大径部3の外周面と平ロール2との間の薄い部分から、隣接する小径部4と平ロール2との間の厚い部分へ回り込むように材料が流動し、また、大径部3の側面11で押圧される部分では、この側面11が傾斜面であることから、この大径部3に小径部4を介して隣接する他方の大径部3に向けて材料が流動する。このようなメタルフローにおいて、小径部4の両側に大径部3が配置されている部分、例えば図2の右側半分の部分では、両大径部3の間で、その一方の大径部3から他方の大径部3に向けて材料が相互に押圧されるので、大径部3と小径部4との間で形成される溝状部分に緊密に材料が充満して、精度よく厚肉部7を形成することができる。   In this case, as shown in FIG. 2, when the flat plate material 5 is compressed on the flat roll 2 by the large diameter portion 3 of the stepped roll 1, the flat plate material 5 is deformed into a deformed section strip 8. In the process, a metal flow is generated at the portion pressed by the large diameter portion 3 as indicated by a broken line arrow. Among these, in the part pressed by the outer peripheral surface of the large diameter part 3, from the thin part between the outer peripheral surface of this large diameter part 3 and the flat roll 2, between the adjacent small diameter part 4 and the flat roll 2 is provided. The material flows so as to wrap around the thick portion, and in the portion pressed by the side surface 11 of the large diameter portion 3, since the side surface 11 is an inclined surface, the large diameter portion 3 is interposed through the small diameter portion 4. The material flows toward the other adjacent large diameter portion 3. In such a metal flow, in the portion where the large diameter portion 3 is arranged on both sides of the small diameter portion 4, for example, the right half portion in FIG. Since the materials are pressed against each other toward the other large-diameter portion 3, the material is tightly filled in the groove-like portion formed between the large-diameter portion 3 and the small-diameter portion 4, so that the thickness is high. The part 7 can be formed.

一方、段付きロール1の両端部に位置する小径部4の部分(図2の左側半分の部分)では、その内側の大径部3の側面11によって材料が押圧されるので、凸条部12がなければ外側に材料が逃げてしまい、大径部3と小径部4との間に鎖線で示すような欠肉部Aが生じることになるが、凸条部12が平板状素材5の端縁部を押圧することにより、図2に実線矢印で示したように、この凸条部12の外周面と平ロール2との間で材料が、小径部4と平ロール2との間に回り込むように流動し、また、凸条部12の内側の側面13は傾斜面であるので、この側面13が、小径部4を介して隣接する大径部3に向けて材料を押圧する。   On the other hand, since the material is pressed by the side surface 11 of the large-diameter portion 3 on the inside of the small-diameter portion 4 (the left half portion in FIG. 2) located at both ends of the stepped roll 1, the ridge portion 12. If there is no material, the material will escape to the outside, and a thinned portion A as shown by a chain line will be formed between the large diameter portion 3 and the small diameter portion 4. By pressing the edge portion, as shown by the solid line arrow in FIG. 2, the material wraps between the small diameter portion 4 and the flat roll 2 between the outer peripheral surface of the ridge portion 12 and the flat roll 2. Since the inner side surface 13 of the ridge 12 is an inclined surface, the side surface 13 presses the material toward the adjacent large diameter portion 3 via the small diameter portion 4.

したがって、この幅方向の両端部では、段付きロール1の大径部3の側面11と小径部4の外周面との間に形成される角部にも緊密に材料が充満し、前述したような欠肉部Aの発生を確実に防止し、精度よく厚肉部7を形成することができる。
なお、この幅方向両端部の厚肉部7の端縁部には、凸条部12によって押圧加工されることにより、図4(a)に示すように若干窪んだ端縁溝部14が形成されるが、この端縁溝部14の部分は図4(b)に示すように切り落としてもよいし、0〜3mmの範囲で残しておいてもよい。
Therefore, at both end portions in the width direction, the corner portion formed between the side surface 11 of the large diameter portion 3 of the stepped roll 1 and the outer peripheral surface of the small diameter portion 4 is also closely filled with the material, as described above. It is possible to reliably prevent the occurrence of the thin part A and to form the thick part 7 with high accuracy.
In addition, the edge groove part 14 slightly depressed as shown in FIG. 4A is formed at the edge part of the thick part 7 at both ends in the width direction by pressing with the protruding line part 12. However, the edge groove portion 14 may be cut off as shown in FIG. 4B or may be left in the range of 0 to 3 mm.

このように、この製造方法によれば、異形断面条8の幅方向両端部に形成される厚肉部7の端縁部を凸条部12によって押圧して材料を内側に寄せるように加工するので、この厚肉部7の内側の角部に材料が緊密に充満して、高精度の異形断面条8を製造することができ、厚肉部7で0.80mm以下、薄肉部6で0.20mm以下の厚みで、その寸法精度が±0.010mm以下の薄型の異形断面条8とすることができる。厚肉部7の厚さで0.20mm、薄肉部6の厚さで0.10mmが寸法精度良く(±0.010mm以下)加工できる限度であり、これら未満の厚さでは寸法精度が悪くなり、割れや変形が生じ易くなる。   Thus, according to this manufacturing method, the edge part of the thick part 7 formed in the width direction both ends of the irregular cross-section strip 8 is pressed with the convex strip part 12, and it processes so that a material may be brought inside. Therefore, the inner corner of the thick portion 7 is closely filled with the material, so that a highly accurate deformed cross section 8 can be manufactured. The thick portion 7 is 0.80 mm or less, and the thin portion 6 is 0. It is possible to obtain a thin deformed section strip 8 having a thickness of 20 mm or less and a dimensional accuracy of ± 0.010 mm or less. The thickness of the thick part 7 is 0.20 mm, and the thickness of the thin part 6 is 0.10 mm, which is the limit that can be processed with good dimensional accuracy (± 0.010 mm or less). , Cracking and deformation are likely to occur.

特に、LEDチップが搭載される基板として使用する場合には、前述したFe;1.5〜2.6質量%、P;0.008〜0.08質量%およびZn;0.01〜0.5質量%を含有し、残部がCu及び不可避不純物からなる銅合金条材において、段付きロール1と平ロール2とによる圧延加工した後に、LEDチップが搭載される部分以外の部分(樹脂がモールドされる部分)を表面処理剤によって粗化するとよい。そして、銅合金条材の表面より10μmまでの深さの範囲の結晶組織内のEBSD法にて測定したCube方位の方位密度が10〜20%であり、EBSD法にて測定した平均結晶粒径が12〜20μmであり、銅合金条材の表面が表面処理剤により粗化された部位の表面の最大高さRzが1.0〜2.0μmであり、粗化されていない部位の表面の算術平均粗さRaが0.02〜0.05μmで、最大高さRzが0.20〜0.40μmであり、二乗平均平方根粗さRqと最大高さRzの比Rq/Rzが0.10〜0.25である放熱性及び樹脂密着性に優れた銅合金条材を使用することが、特にLEDチップ搭載用として好ましい。   In particular, when used as a substrate on which an LED chip is mounted, the aforementioned Fe: 1.5 to 2.6 mass%, P: 0.008 to 0.08 mass%, and Zn: 0.01 to 0.00. In a copper alloy strip containing 5% by mass, the balance being Cu and inevitable impurities, after rolling with the stepped roll 1 and the flat roll 2, parts other than the part where the LED chip is mounted (resin is molded The portion to be roughened may be roughened with a surface treatment agent. And the orientation density of the Cube orientation measured by the EBSD method in the crystal structure in the depth range of 10 μm from the surface of the copper alloy strip is 10 to 20%, and the average crystal grain size measured by the EBSD method 12 to 20 μm, the maximum height Rz of the surface of the portion where the surface of the copper alloy strip has been roughened by the surface treatment agent is 1.0 to 2.0 μm, and the surface of the portion that has not been roughened The arithmetic average roughness Ra is 0.02 to 0.05 μm, the maximum height Rz is 0.20 to 0.40 μm, and the ratio Rq / Rz of the root mean square roughness Rq to the maximum height Rz is 0.10. The use of a copper alloy strip excellent in heat dissipation and resin adhesion of ˜0.25 is particularly preferable for LED chip mounting.

図5は異形断面条の変形例を示している。この異形断面条31では、一実施形態の製造方法と同様に段付きロール1と平ロール2との圧延加工により製造された異形断面条の厚肉部7の上面に、若干の深さの凹部32が形成されている。この凹部32は、段付きロール1と平ロール2とによる圧延加工の後に、厚肉部7の上面部をエッチング或いはプレス加工等することにより形成される。
そして、その厚肉部7の凹部32内に鎖線で示すようにLEDチップLが固着される。
FIG. 5 shows a modification of the irregular cross-section strip. In this modified cross-section strip 31, a concave portion having a slight depth is formed on the upper surface of the thick section 7 of the modified cross-section strip manufactured by rolling the stepped roll 1 and the flat roll 2 in the same manner as the manufacturing method of the embodiment. 32 is formed. The concave portion 32 is formed by etching or pressing the upper surface portion of the thick portion 7 after rolling with the stepped roll 1 and the flat roll 2.
Then, the LED chip L is fixed in the concave portion 32 of the thick portion 7 as indicated by a chain line.

また、図6は異形断面条のさらなる変形例を示している。この異形断面条35は、一実施形態の製造方法と同様に段付きロール1と平ロール2との圧延加工により製造された異形断面条の最表面に、光沢、耐熱性、接触抵抗性を付与するめっき処理が施されている。その最表面に付与されるめっき層36は、特にLEDランプとして光の良好な反射性を得る観点から、光沢度が80%以上であることが好ましく、光沢度が120%を超えると効果が飽和しコスト面で無駄となる傾向が見られる。
このめっき層36は、銀めっき層或いは錫めっき層など、一層からなるものでもよいが、複数のめっき層が異形断面条の表面に施されていても良く、その最外層に厚みが0.01〜2.0μmで光沢度が80〜120%である、Sn−Ag、Sn−Ag−Au、Sn−Au、Sn−Pt、Ni−Au、Ni−Ag、Ni−Pd、或いは、Ni−Ptからなる光沢めっき層が形成されていることが好ましい。
Sn−Agめっき層については、次の方法にて、下層となるSnめっき層上にAgSn合金層が形成されていることが特に好ましい。
先ず、電気化学還元法にてSnめっき層の表面の酸化膜を除去した後、その表面にシアン系化合物を使用した銀ストライクめっき法にてAgめっき層を形成する。電解処理液としては弱アルカリ電解脱脂液を使用する。
また、銀ストライクめっきの条件は、次の表1に示す通りである。
FIG. 6 shows a further modification of the irregular cross section. This modified cross-section 35 gives gloss, heat resistance, and contact resistance to the outermost surface of the modified cross-section manufactured by rolling the stepped roll 1 and the flat roll 2 in the same manner as the manufacturing method of one embodiment. Plating treatment is applied. The plating layer 36 provided on the outermost surface preferably has a glossiness of 80% or more from the viewpoint of obtaining good light reflectivity as an LED lamp, and the effect is saturated when the glossiness exceeds 120%. However, there is a tendency to be wasted in terms of cost.
The plating layer 36 may be composed of a single layer such as a silver plating layer or a tin plating layer, but a plurality of plating layers may be applied to the surface of the irregular cross-section, and the outermost layer has a thickness of 0.01. Sn-Ag, Sn-Ag-Au, Sn-Au, Sn-Pt, Ni-Au, Ni-Ag, Ni-Pd, or Ni-Pt having a gloss of 80 to 120% at ~ 2.0 μm It is preferable that the bright plating layer which consists of is formed.
As for the Sn—Ag plating layer, it is particularly preferable that an Ag 3 Sn alloy layer is formed on the Sn plating layer as a lower layer by the following method.
First, after removing the oxide film on the surface of the Sn plating layer by an electrochemical reduction method, an Ag plating layer is formed on the surface by a silver strike plating method using a cyan compound. A weak alkaline electrolytic degreasing solution is used as the electrolytic treatment solution.
The conditions for silver strike plating are as shown in Table 1 below.

Figure 2012011394
Figure 2012011394

ここで、シアン化銀カリウムの濃度は1g/L未満であると、Sn系めっき層に対して所望の面積被覆率が得られず、また8g/Lを超えると、Agめっき表面が粗くなるので、1〜8g/Lが好ましい。そして、この銀ストライクめっきにより形成されるAgめっき層の厚さは0.01〜0.5μmとする。この範囲のAgめっき層とすることにより、最終的なAgSn合金層を所望の膜厚とすることができる。
次に、このAgめっきした処理材に、ベンゾチアゾール化合物を含む水溶液中にて合金化及び変色防止処理を施す。その合金化及び変色防止処理の条件を次の表2に示す。
Here, when the concentration of potassium potassium cyanide is less than 1 g / L, a desired area coverage cannot be obtained for the Sn-based plating layer, and when it exceeds 8 g / L, the Ag plating surface becomes rough. 1-8 g / L is preferable. And the thickness of the Ag plating layer formed by this silver strike plating shall be 0.01-0.5 micrometer. With Ag plating layer in this range, the final Ag 3 Sn alloy layer can be set to a desired thickness.
Next, this Ag-plated treatment material is subjected to alloying and discoloration prevention treatment in an aqueous solution containing a benzothiazole compound. The alloying and discoloration prevention treatment conditions are shown in Table 2 below.

Figure 2012011394
Figure 2012011394

Agめっきした処理材をこの処理液に浸漬することにより、表面のAgとその下のSnとが相互拡散して合金化し、表面にAgSn合金層が形成される。また、このベンゾチアゾール処理液中に浸漬されることで、AgSn合金層の表面に疎水性保護膜が形成され、酸化及び変色が防止される。 By immersing the Ag-plated treatment material in this treatment solution, Ag on the surface and Sn underneath are diffused and alloyed to form an Ag 3 Sn alloy layer on the surface. Furthermore, the benzothiazole treatment solution by being immersed in the hydrophobic protective film is formed on the surface of the Ag 3 Sn alloy layer, oxidation and discoloration are prevented.

幅50mmで厚さ0.12mmの三菱伸銅(株)TAMAC194銅合金条(質量にてCu:97.0%以上、Fe:2.3%、P:0.03%、Zn:0.12%)を使用し、図1に示す製造装置を使用して、本発明の製造方法にて、幅方向両端部の端縁部の残厚tについて、厚肉部の厚さTに対する加工割合を表3の様に変えて、薄肉部の厚さが0.15mm、幅が4.0mm、厚肉部7の厚さが0.60mm、幅が1.0mmの異形断面条を製造し、各部の厚さの加工精度を測定した。その結果を表3に示す。   Mitsubishi Shindoh Co., Ltd. TAMAC194 copper alloy strip with a width of 50 mm and a thickness of 0.12 mm (Cu: 97.0% or more by mass, Fe: 2.3%, P: 0.03%, Zn: 0.12 1), and using the manufacturing apparatus shown in FIG. 1, in the manufacturing method of the present invention, with respect to the remaining thickness t of the edge portion at both ends in the width direction, the processing ratio with respect to the thickness T of the thick portion As shown in Table 3, a thin section having a thickness of 0.15 mm, a width of 4.0 mm, a thickness of the thick section 7 of 0.60 mm, and a width of 1.0 mm is manufactured. The processing accuracy of the thickness of was measured. The results are shown in Table 3.

Figure 2012011394
Figure 2012011394

また、薄肉部の厚さが0.09mm、幅が4.0mm、厚肉部7の厚さが0.15mm、幅が1.0mm異形断面条を、端縁溝部の深さを0.50Tにて製造したところ、異形断面条全体に微細なねじれ変形が生じ、加工精度は±0.18mmであった。   Moreover, the thickness of the thin portion is 0.09 mm, the width is 4.0 mm, the thickness of the thick portion 7 is 0.15 mm, the width is 1.0 mm, and the depth of the edge groove portion is 0.50T. As a result, a fine torsional deformation occurred in the entire deformed cross section, and the processing accuracy was ± 0.18 mm.

以上、本発明の実施形態の製造方法について説明したが、本発明はこの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、凸条部12に、その側面13と外周面との間の角部を若干の曲率半径r2で面取りしたが、図7に示す段付きロール21の凸条部22のように、曲率半径r3をさらに大きくして、断面が凸円弧面となる側面23としてもよい。
要は、凸条部は、段付きロールの幅方向内方に向く側面が、その外周端から半径方向内方に向かうにしたがって隣接する大径部の側面に漸次近づく方向に傾斜している形状であればよく、平坦面、凸円弧面のいずれでもよい。
また、厚肉部と薄肉部との数や寸法等は図示例に限定されるものではなく、複数の厚肉部どうし、薄肉部どうしの厚さや幅をそれぞれ同じ寸法に設定してもよいし、それぞれ異なる寸法に設定したものとしてもよい。
The manufacturing method of the embodiment of the present invention has been described above, but the present invention is not limited to this embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the said embodiment, although the corner | angular part between the side surface 13 and an outer peripheral surface was chamfered with the some curvature radius r2 to the protruding item | line part 12, of the protruding item | line part 22 of the stepped roll 21 shown in FIG. As described above, the radius of curvature r3 may be further increased so that the side surface 23 has a convex arc surface in cross section.
In short, the shape of the ridge portion is such that the side surface facing the inner side in the width direction of the stepped roll is inclined in a direction gradually approaching the side surface of the adjacent large diameter portion from the outer peripheral end toward the inner side in the radial direction. Any of a flat surface and a convex arc surface may be used.
Further, the number and dimensions of the thick and thin portions are not limited to the illustrated example, and the thickness and width of the plurality of thick portions may be set to the same size. These may be set to different dimensions.

1 段付きロール
2 平ロール
3 大径部
4 小径部
5 平板状素材
6 薄肉部
7 厚肉部
8 異形断面条
11 側面(傾斜面)
12 凸条部
13 側面(傾斜面)
14 溝状部
21 段付きロール
22 凸条部
23 側面(傾斜面)
31 異形断面条
32 凹部
35 異形断面条
36 めっき層
DESCRIPTION OF SYMBOLS 1 Step roll 2 Flat roll 3 Large diameter part 4 Small diameter part 5 Flat material 6 Thin part 7 Thick part 8 Deformed cross section 11 Side surface (inclined surface)
12 ridges 13 side surface (inclined surface)
14 Grooved portion 21 Stepped roll 22 Convex portion 23 Side surface (inclined surface)
31 Deformed section 32 Recess 35 Deformed section 36 Plating layer

Claims (4)

複数の大径部と小径部とが交互に並んだ段付きロールと、該段付きロールと平行に配置した平ロールとの間で銅合金からなる平板状素材を圧延して、複数の厚肉部と薄肉部とが幅方向に並んだ異形断面条を製造する方法であって、前記段付きロールと平ロールとの間で前記平板状素材を圧延するに際し、該平板状素材の幅方向の両端部に、前記段付きロールの小径部により厚肉部を形成しつつ、該小径部から突出する凸条部により前記厚肉部の端縁部の少なくとも一部を幅方向の内方に向けて押圧加工し、前記厚肉部の端縁部を押圧加工して形成される端縁溝部により残る厚さが、該厚肉部の厚さをTとするとき、0.3×T〜0.95×Tの範囲内に設定され、前記薄肉部の厚さが0.20mm以下、寸法精度が±0.010mm以下とされる異形断面条を製造することを特徴とする異形断面条の製造方法。   A plate-shaped material made of a copper alloy is rolled between a stepped roll in which a plurality of large-diameter portions and small-diameter portions are alternately arranged, and a flat roll arranged in parallel with the stepped roll, thereby producing a plurality of thick walls Is a method of manufacturing a deformed cross-section in which a thin portion and a thin portion are aligned in the width direction, and when rolling the flat material between the stepped roll and a flat roll, the width direction of the flat material At both ends, a thick portion is formed by the small-diameter portion of the stepped roll, and at least a part of the edge portion of the thick-wall portion is directed inward in the width direction by the projecting ridge portion protruding from the small-diameter portion. The thickness remaining by the edge groove formed by pressing the edge portion of the thick portion is 0.3 × T to 0, where T is the thickness of the thick portion. .95 × T, the thickness of the thin portion is 0.20 mm or less, and the dimensional accuracy is ± 0.010 mm or less. Method for producing a modified cross-strip, characterized in that to produce a modified cross-section strip. 請求項1の製造方法により製造された異形断面条であって、前記厚肉部の上面にLEDチップが搭載される凹部を有することを特徴とするLEDチップ搭載用異形断面条。   A deformed cross-section manufactured by the manufacturing method according to claim 1, wherein a concave section for mounting the LED chip is provided on an upper surface of the thick portion. 請求項1の製造方法により製造された異形断面条であって、表面に光沢度が80%以上であるめっき層が形成されていること特徴とするLEDチップ搭載用異形断面条   An irregular cross-section strip manufactured by the manufacturing method according to claim 1, wherein a plating layer having a glossiness of 80% or more is formed on the surface. 請求項2に記載の異形断面条であり、その表面上に光沢度が80%以上であるめっき層が形成されていること特徴とするLEDチップ搭載用異形断面条。   3. The irregular cross-section for mounting an LED chip according to claim 2, wherein a plating layer having a glossiness of 80% or more is formed on the surface thereof.
JP2010147380A 2010-06-29 2010-06-29 Method of manufacturing deformed cross-section bar, and deformed cross-section bar for mounting led chip manufactured by the method Pending JP2012011394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010147380A JP2012011394A (en) 2010-06-29 2010-06-29 Method of manufacturing deformed cross-section bar, and deformed cross-section bar for mounting led chip manufactured by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010147380A JP2012011394A (en) 2010-06-29 2010-06-29 Method of manufacturing deformed cross-section bar, and deformed cross-section bar for mounting led chip manufactured by the method

Publications (1)

Publication Number Publication Date
JP2012011394A true JP2012011394A (en) 2012-01-19

Family

ID=45598448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010147380A Pending JP2012011394A (en) 2010-06-29 2010-06-29 Method of manufacturing deformed cross-section bar, and deformed cross-section bar for mounting led chip manufactured by the method

Country Status (1)

Country Link
JP (1) JP2012011394A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192266A (en) * 2013-04-03 2013-07-10 哈尔滨理工大学 Extruding and rolling composite forming device and method of integral panel skin with ribs
KR101374644B1 (en) 2013-06-11 2014-03-21 박성균 A rolling mill for metal plate edge
CN112387798A (en) * 2019-08-13 2021-02-23 青岛海尔多媒体有限公司 Method and system for manufacturing electronic equipment shell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291798A (en) * 2008-06-03 2009-12-17 Mitsubishi Shindoh Co Ltd Method for manufacturing deformed bar material, and deformed bar material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291798A (en) * 2008-06-03 2009-12-17 Mitsubishi Shindoh Co Ltd Method for manufacturing deformed bar material, and deformed bar material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192266A (en) * 2013-04-03 2013-07-10 哈尔滨理工大学 Extruding and rolling composite forming device and method of integral panel skin with ribs
KR101374644B1 (en) 2013-06-11 2014-03-21 박성균 A rolling mill for metal plate edge
CN112387798A (en) * 2019-08-13 2021-02-23 青岛海尔多媒体有限公司 Method and system for manufacturing electronic equipment shell
CN112387798B (en) * 2019-08-13 2024-05-14 青岛海尔多媒体有限公司 Method and system for manufacturing electronic equipment shell

Similar Documents

Publication Publication Date Title
US7754973B2 (en) Electrode wire for solar cell
WO2011152327A1 (en) Electrode wire for electrical discharge machining
JP5025122B2 (en) ELECTRODE WIRE FOR SOLAR CELL AND METHOD FOR PRODUCING THE SAME
CN1447478A (en) Connector terminal
TWI681825B (en) Heat radiating plate and method for producing same
JP2012011394A (en) Method of manufacturing deformed cross-section bar, and deformed cross-section bar for mounting led chip manufactured by the method
CN108026657B (en) Lead frame material and method for producing same
KR101649056B1 (en) Commutator material, method for manufacturing same, and micromotor using same
JP5395301B1 (en) Ironing die and molding material manufacturing method
US9416433B2 (en) Copper alloy strip for lead frame of LED
JP6026935B2 (en) Copper alloy strip for LED lead frame
JP5140171B2 (en) Copper alloy strip used for battery tab material for charging
CN109274231B (en) Machining process for producing motor shell by using titanium metal
JP5237341B2 (en) Battery safety valve
JPWO2020137874A1 (en) Ni-plated steel sheet with excellent post-processing corrosion resistance and method for manufacturing Ni-plated steel sheet
JP5623169B2 (en) Method for producing irregular cross-section copper alloy strip
JP6141708B2 (en) Plated copper alloy plate with excellent gloss
JP2006212699A (en) Method for manufacturing stepped shaft component of titanium alloy
KR20170007620A (en) Clad metal manufacturing method
US20220184923A1 (en) Roll-bonded laminate and method for producing the same
JP2015079841A (en) Lead frame base for optical semiconductor devices, lead frame for optical semiconductor devices and method for manufacturing lead frame for optical semiconductor devices
JP2013151024A (en) Method and apparatus for manufacturing safety valve of battery
US20170330811A1 (en) Method for manufacturing hermetic sealing lid member, hermetic sealing lid member, and method for manufacturing electronic component housing package
JP2007297678A (en) Steel sheet superior in appearance characteristics for container
JPWO2023171143A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140715