JP2012011387A - Method for manufacturing catalyst material, and catalyst material and catalyst body manufactured by the same - Google Patents

Method for manufacturing catalyst material, and catalyst material and catalyst body manufactured by the same Download PDF

Info

Publication number
JP2012011387A
JP2012011387A JP2011190947A JP2011190947A JP2012011387A JP 2012011387 A JP2012011387 A JP 2012011387A JP 2011190947 A JP2011190947 A JP 2011190947A JP 2011190947 A JP2011190947 A JP 2011190947A JP 2012011387 A JP2012011387 A JP 2012011387A
Authority
JP
Japan
Prior art keywords
particles
catalyst
dispersion
particle
catalyst material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011190947A
Other languages
Japanese (ja)
Other versions
JP4883241B2 (en
Inventor
Tomoya Itakura
智也 板倉
Hiroaki Seto
裕明 世登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011190947A priority Critical patent/JP4883241B2/en
Publication of JP2012011387A publication Critical patent/JP2012011387A/en
Application granted granted Critical
Publication of JP4883241B2 publication Critical patent/JP4883241B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a catalyst material which inhibits sintering of a catalyst component, and can raise heat resistance, and to provide a catalyst material and a catalyst body which are manufactured by the same.SOLUTION: The method for manufacturing a catalyst material includes: a first process which prepares a dispersion of a particle which has an oxygen occlusion discharge function, and consists of a composite oxide of two or more elements chosen from the group consisting of Ce, Zr, Al, Ti, Si, Mg, Y, and La, and a dispersion of a particle which has heat resistance, and consists of a composite oxide of Al and La; and a second process in which the dispersion of a particle which has an oxygen occlusion discharge function and the dispersion of a particle which has heat resistance are mixed, and which distributes the particle which has an oxygen occlusion discharge function, and the particle which has heat resistance in a mixed liquid, wherein low molecule amines are used as at least one dispersant of the particle which has an oxygen occlusion discharge function and the particle which has heat resistance.

Description

本発明は、有害ガス浄化用、燃料電池用、環境浄化用等に使用される触媒材料の製造方法およびそれによって製造される触媒材料並びに触媒体に関する。   The present invention relates to a method for producing a catalyst material used for harmful gas purification, fuel cell, environmental purification, and the like, and a catalyst material and a catalyst body produced thereby.

従来、内燃機関の排ガス等に含まれるHC、CO、NOx等の有害成分を浄化するための触媒成分としては、一般にPt、Pd、Rh等の貴金属が使用されている。そして、このような触媒成分においては、ハニカム担体を用いることにより、当該触媒成分をこのハニカム担体の表面に高分散に担持することが行われている。しかし、ハニカム担体の表面積では、上記触媒成分を高分散に担持させるためには十分でなく、必要な担持量を確保することができない。   Conventionally, noble metals such as Pt, Pd, and Rh are generally used as catalyst components for purifying harmful components such as HC, CO, and NOx contained in exhaust gas of an internal combustion engine. In such a catalyst component, a honeycomb carrier is used to carry the catalyst component on the surface of the honeycomb carrier with high dispersion. However, the surface area of the honeycomb carrier is not sufficient to support the catalyst component in a highly dispersed state, and a necessary loading amount cannot be ensured.

そこで、従来、γ−アルミナ(Al)を代表とする、高い比表面積を有する粒子状の酸化物粒子を担体として、上記触媒成分の担持を行う前に、この酸化物粒子をハニカム担体の表面上に約数10μmという厚さでコーティングし、その後、コーティングされた酸化物粒子のコート層に対して触媒成分をさらに担持していた。 Therefore, conventionally, particulate oxide particles having a high specific surface area represented by γ-alumina (Al 2 O 3 ) are used as a carrier, and the oxide particles are supported on the honeycomb carrier before carrying the catalyst component. Then, the catalyst component was further supported on the coated layer of the coated oxide particles.

しかしながら、ハニカム担体の上にγ−アルミナからなる酸化物粒子のコート層を形成し、さらにこの酸化物粒子のコート層に触媒成分を担持させる従来の構成では、次に述べるような問題点がある。
まず、γ−アルミナは、高い比表面積を有するが、それ自体は耐熱性が低いため、長時間の使用によってγ−アルミナが形状変化を起こし、そのため、触媒成分がγ−アルミナの内部に埋没し、触媒機能を失活することになっていた。
However, the conventional configuration in which a coating layer of oxide particles made of γ-alumina is formed on a honeycomb carrier and the catalyst component is supported on the coating layer of oxide particles has the following problems. .
First, γ-alumina has a high specific surface area, but itself has low heat resistance, so that the shape of γ-alumina changes due to long-term use, so that the catalyst component is buried in the inside of γ-alumina. The catalyst function was to be deactivated.

このため、必要な排ガスの浄化性能すなわち十分な触媒機能を達成するためには、初期の段階より、過剰な触媒成分を担持させる必要があり、触媒成分の使用量が多く、利用効率が低くなってしまうという問題があった。
また、従来の触媒体を内燃機関の排気ガス浄化用の触媒体に用いた場合、約1000℃付近の高温下で使用されるため、この高温での使用に伴って、上述した触媒成分のγ−アルミナの内部への埋没という問題に加えて、熱によるシンタリングが発生するという問題が生じる。
For this reason, in order to achieve the necessary exhaust gas purification performance, that is, sufficient catalyst function, it is necessary to carry an excess catalyst component from the initial stage, and the amount of catalyst component used is large and the utilization efficiency is low. There was a problem that.
In addition, when the conventional catalyst body is used as a catalyst body for exhaust gas purification of an internal combustion engine, it is used at a high temperature of about 1000 ° C. Therefore, with the use at this high temperature, the above-mentioned catalyst component γ -In addition to the problem of burying in the interior of alumina, there arises a problem that sintering due to heat occurs.

すると、このシンタリングによって、触媒成分が移動、あるいは、触媒成分同士が結合してしまい、反応活性な比表面積が低下してしまい、浄化性能が劣化してしまう。このことからも、初期に必要とされる触媒量より多く触媒成分を担持する必要があり、環境負荷とコスト高という問題があった。   Then, due to this sintering, the catalyst components move or the catalyst components are combined with each other, the reaction-active specific surface area is reduced, and the purification performance is deteriorated. For this reason as well, it is necessary to carry more catalyst components than the amount of catalyst required in the initial stage, and there are problems of environmental burden and high cost.

これに対し、担体粒子と触媒成分とを混合し、触媒成分同士を担体粒子で分離、ブロックした状態でハニカム担体に担持することで、触媒性能を向上させる手法が考えられている。例えば、液相中で分散した触媒成分と担体粒子とを混合し、乾燥・焼成すると、触媒成分は担体粒子間の隙間に固定・担持されるが、このときに担体粒子間の隙間に触媒成分を均一に配置することができれば、担体粒子がブロック剤の役割を果たし、シンタリング等による触媒成分の移動や触媒成分同士の結合を阻害することができると考えられる。   On the other hand, a method of improving the catalyst performance by mixing the carrier particles and the catalyst component, separating the catalyst components with the carrier particles, and supporting them on the honeycomb carrier in a blocked state is considered. For example, when a catalyst component dispersed in a liquid phase and carrier particles are mixed, dried and calcined, the catalyst component is fixed and supported in the gaps between the carrier particles. If it can arrange | position uniformly, it will be thought that a support | carrier particle | grain plays the role of a blocking agent and can inhibit the movement of a catalyst component by a sintering etc., and the coupling | bonding of catalyst components.

しかしながら、上記手法の実現のためには、触媒成分と担体粒子とを精密に分離して配置する必要がある。したがって、二種以上の粒子を溶液中で分散した後、減圧や熱風による濃縮乾燥もしくは焼成する従来の方法では、二種以上の粒子を均一に配置させることができないという問題がある。   However, in order to realize the above-described method, it is necessary to dispose the catalyst component and the carrier particles separately precisely. Therefore, in the conventional method of dispersing two or more kinds of particles in a solution and then concentrating and drying or baking with reduced pressure or hot air, there is a problem that the two or more kinds of particles cannot be arranged uniformly.

本発明は、上記点に鑑み、触媒成分のシンタリングを防止し、耐熱性を向上させることができる触媒材料の製造方法およびそれによって製造される触媒材料並びに触媒体を提供することを目的とする。   In view of the above points, an object of the present invention is to provide a method for producing a catalyst material capable of preventing sintering of catalyst components and improving heat resistance, a catalyst material produced thereby, and a catalyst body. .

上記目的を達成するため、本発明者は、同種の粒子同士が互いに反発するような条件で分散している分散液を二種以上用意した後、当該二種以上の分散液を混合することによって、二種以上の粒子を混合液中に均一に分散させればよいと考え、実験検討を行った。その結果、後述する実施例に示すように、二種以上の粒子を同種の粒子同士が接触しないように配置できることがわかった。   In order to achieve the above object, the present inventor prepared two or more kinds of dispersion liquids dispersed under the condition that the same kind of particles repel each other, and then mixed the two or more kinds of dispersion liquids. An experiment was conducted on the assumption that two or more kinds of particles should be uniformly dispersed in the mixed solution. As a result, it was found that two or more kinds of particles can be arranged so that the same kind of particles do not come into contact with each other, as shown in Examples described later.

すなわち、請求項1に記載の発明では、Ce、Zr、Al、Ti、Si、Mg、Y、Laよりなる群から選ばれる複数種の元素の複合酸化物からなる酸素吸蔵放出機能を有する粒子の分散液と、AlとLaとの複合酸化物からなる耐熱性を有する粒子の分散液とを用意する第1工程と、酸素吸蔵放出機能を有する粒子の分散液および耐熱性を有する粒子の分散液を混合して、酸素吸蔵放出機能を有する粒子および耐熱性を有する粒子を混合液中に分散させる第2工程とを備える触媒材料の製造方法において、酸素吸蔵放出機能を有する粒子および耐熱性を有する粒子の少なくとも一方の分散剤として、低分子アミン類を用いることを特徴としている。   That is, in the first aspect of the invention, the particles having an oxygen storage / release function composed of a complex oxide of a plurality of elements selected from the group consisting of Ce, Zr, Al, Ti, Si, Mg, Y, and La. A first step of preparing a dispersion and a dispersion of heat-resistant particles made of a composite oxide of Al and La; a dispersion of particles having an oxygen storage / release function; and a dispersion of particles having heat resistance And a second step of dispersing the particles having the oxygen storage / release function and the heat-resistant particles in the mixed solution, and the particles having the oxygen storage / release function and the heat resistance. As a dispersant for at least one of the particles, low molecular amines are used.

これによれば、二種以上の粒子(1、2)を、同種の粒子同士が接触しないように均一に配置することができる。ここで、二種以上の粒子(1、2)に触媒成分および担体粒子が含まれている場合、触媒成分は担体粒子間の隙間に均一に配置されるので、担体粒子がブロック剤の役割を果たし、シンタリング等による触媒成分の移動や触媒成分同士の結合を阻害することができる。したがって、触媒成分のシンタリングを防止し、耐熱性を向上させることができる。さらに、酸素吸蔵放出機能を有する粒子が、Ce、Zr、Al、Ti、Si、Mg、Y、Laからなる元素群から選ばれる複数種の元素の複合酸化物である場合、分散剤をアミン類としてもよい。このとき、酸素吸蔵放出機能を有する粒子の表面電位はプラスになっているため、プラスの電荷を持っているアミン類を分散剤として用いることで、酸素吸蔵放出機能を有する粒子の表面電位をよりプラスにすることができる。これにより、酸素吸蔵放出機能を有する粒子をより効果的に分散させることができる。さらに、耐熱性を有する粒子がAlとLaとの複合酸化物である場合、分散剤をアミン類としてもよい。このとき、耐熱性を有する粒子の表面電位はプラスになっているため、プラスの電荷を持っているアミン類を分散剤として用いることで、耐熱性を有する粒子の表面電位をよりプラスにすることができる。これにより、耐熱性を有する粒子をより効果的に分散させることができる。   According to this, two or more kinds of particles (1, 2) can be uniformly arranged so that the same kind of particles do not contact each other. Here, when the catalyst component and the carrier particle are contained in two or more kinds of particles (1, 2), the catalyst component is uniformly arranged in the gap between the carrier particles, so that the carrier particle serves as a blocking agent. As a result, it is possible to inhibit the movement of the catalyst components and the binding between the catalyst components due to sintering and the like. Therefore, sintering of the catalyst component can be prevented and heat resistance can be improved. Further, when the particles having an oxygen storage / release function are a complex oxide of a plurality of elements selected from the element group consisting of Ce, Zr, Al, Ti, Si, Mg, Y, and La, the dispersant is an amine. It is good. At this time, since the surface potential of the particles having the oxygen storage / release function is positive, by using amines having a positive charge as the dispersant, the surface potential of the particles having the oxygen storage / release function can be further increased. Can be a plus. Thereby, particles having an oxygen storage / release function can be more effectively dispersed. Furthermore, when the particles having heat resistance are a composite oxide of Al and La, the dispersant may be an amine. At this time, since the surface potential of the particles having heat resistance is positive, the surface potential of the particles having heat resistance can be made more positive by using a positively charged amine as a dispersant. Can do. Thereby, the particles having heat resistance can be more effectively dispersed.

また、同一あるいは二種以上の粒子間に働く斥力を変化させる手法としては、二種以上の粒子間に働く静電斥力を変化させることにより行うことができる。静電斥力は、測定可能なζ電位で説明することができる。異なる粒子のζ電位が共に正または共に負の場合は、その粒子間には斥力が作用する。一方、異なる粒子のζ電位が正と負の場合には、その粒子間には引力が作用する。   Moreover, as a method of changing the repulsive force acting between two or more kinds of particles, it can be performed by changing the electrostatic repulsive force acting between two or more kinds of particles. The electrostatic repulsion can be described by a measurable ζ potential. When the ζ potentials of different particles are both positive or negative, repulsive force acts between the particles. On the other hand, when the ζ potentials of different particles are positive and negative, an attractive force acts between the particles.

すなわち、請求項2に記載の発明のように、分散剤の量を調整することにより、酸素吸蔵放出機能を有する粒子および耐熱性を有する粒子のζ電位を同程度にすることで、二種以上の粒子(1、2)間により大きい静電斥力を作用させることができる。このため、二種以上の粒子(1、2)の分散性をより向上させることができる。   That is, as in the invention described in claim 2, by adjusting the amount of the dispersant, the particles having the oxygen storage / release function and the heat-resistant particles have the same ζ potential, so that two or more kinds can be obtained. A larger electrostatic repulsive force can be applied between the particles (1, 2). For this reason, the dispersibility of 2 or more types of particle | grains (1, 2) can be improved more.

また、請求項3に記載の発明のように、酸素吸蔵放出機能を有する粒子は、貴金属を少なくとも一種含んでいてもよい。   Further, as in the invention described in claim 3, the particles having an oxygen storage / release function may contain at least one noble metal.

また、請求項4に記載の発明のように、触媒材料を、請求項1ないし3のいずれか1つの方法で製造することができる。また、請求項5に記載の発明のように、この触媒材料が、ハニカム状の担体の表層面もしくは細孔内にコーティングされていてもよい。   Moreover, like the invention of Claim 4, a catalyst material can be manufactured by the method of any one of Claims 1 thru | or 3. Further, as in the invention described in claim 5, the catalyst material may be coated on the surface layer or pores of the honeycomb-shaped carrier.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

第1実施形態に係る触媒材料の模式的な構成を示す図であり、(a)は分散時、(b)は配列時、(c)は乾燥・焼成後を示している。It is a figure which shows the typical structure of the catalyst material which concerns on 1st Embodiment, (a) at the time of dispersion | distribution, (b) at the time of arrangement | sequence, (c) has shown after drying and baking. 実施例1における各分散液のpHと粒子のζ電位との関係を示す特性図である。FIG. 3 is a characteristic diagram showing the relationship between the pH of each dispersion and the ζ potential of particles in Example 1. 実施例1におけるアルミナ粒子分散液中の分散剤量とアルミナ粒子のζ電位との関係を示す特性図である。FIG. 3 is a characteristic diagram showing the relationship between the amount of dispersant in the alumina particle dispersion and the ζ potential of alumina particles in Example 1.

(第1実施形態)
以下、本発明の第1実施形態について図1に基づいて説明する。図1は本第1実施形態に係る触媒材料の模式的な構成を示す図であり、(a)は分散時、(b)は配列時、(c)は乾燥・焼成後を示している。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing a schematic configuration of a catalyst material according to the first embodiment, where (a) shows a state after dispersion, (b) shows an arrangement, and (c) shows a state after drying and firing.

本実施形態では、本発明の二種以上の粒子として、触媒機能を有する粒子1(以下、触媒粒子1ともいう)と金属酸化物粒子2とを採用している。   In the present embodiment, particles 1 having a catalytic function (hereinafter also referred to as catalyst particles 1) and metal oxide particles 2 are employed as the two or more types of particles of the present invention.

ここで、触媒粒子1としては、貴金属3および貴金属3の合金または酸化物、複合酸化物を付着させた助触媒粒子(助触媒成分)4を採用することができる。より具体的にいうならば、貴金属3としては、Pt、Rh、Pd、Ru、Ir、Os等を採用することができる。また、助触媒粒子4としては、CeO、ZrO、Al、TiO、SiO、MgO、Y、La23およびこれらの誘導体から選ばれる一種または二種以上の化合物のうちのいずれかから構成されるものを採用することができる。 Here, as the catalyst particles 1, promoter particles (promoter components) 4 to which the noble metal 3 and an alloy or oxide of the noble metal 3 or a composite oxide are attached can be employed. More specifically, the noble metal 3 may be Pt, Rh, Pd, Ru, Ir, Os, or the like. Further, as the cocatalyst particles 4, one or more selected from CeO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , SiO 2 , MgO, Y 2 O 3 , La 2 O 3 and derivatives thereof. Those composed of any of the compounds can be employed.

また、金属酸化物粒子2としては、CeO2、ZrO2、Al23、TiO2、SiO2、MgO、Y23、La23およびこれらの誘導体から選ばれる一種または二種以上の化合物のうちのいずれかから構成されるものを採用することができる。 The metal oxide particles 2 may be one or more selected from CeO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , SiO 2 , MgO, Y 2 O 3 , La 2 O 3 and derivatives thereof. Those composed of any of the compounds can be employed.

次に、本実施形態の触媒材料の製造方法について述べる。   Next, the manufacturing method of the catalyst material of this embodiment is described.

まず、図1(a)に示すように、触媒粒子1同士が反発するような条件で均一に分散している触媒粒子1の分散液(以下、第1分散液ともいう)と、金属酸化物粒子2同士が反発するような条件で均一に分散している金属酸化物粒子2の分散液(以下、第2分散液ともいう)の、二種の分散液を用意する。   First, as shown in FIG. 1 (a), a dispersion of catalyst particles 1 (hereinafter also referred to as a first dispersion) uniformly dispersed under conditions such that the catalyst particles 1 repel each other, and a metal oxide Two types of dispersions of a dispersion of metal oxide particles 2 (hereinafter also referred to as a second dispersion) that are uniformly dispersed under conditions where the particles 2 repel each other are prepared.

ここで、触媒粒子1、金属酸化物粒子2それぞれを各分散液中に均一に分散させる方法としては、触媒粒子1および金属酸化物粒子2の同一および異種粒子間に静電斥力が働く状態、すなわち触媒粒子1および金属酸化物粒子2のζ電位が共に正、または負になるような状態に、分散液の状態を調整する方法を採用することができる。より具体的にいうならば、一般的に粒子のζ電位はpHによって変化するため、触媒粒子1および金属酸化物粒子2のζ電位が共に正、または負になるように各分散液のpHを調整する方法を採用することができる。   Here, as a method of uniformly dispersing each of the catalyst particles 1 and the metal oxide particles 2 in each dispersion, a state in which electrostatic repulsion acts between the same and different particles of the catalyst particles 1 and the metal oxide particles 2; That is, a method of adjusting the state of the dispersion so that the ζ potentials of the catalyst particles 1 and the metal oxide particles 2 are both positive or negative can be employed. More specifically, since the ζ potential of the particles generally changes depending on the pH, the pH of each dispersion is adjusted so that both the ζ potentials of the catalyst particles 1 and the metal oxide particles 2 are positive or negative. The adjustment method can be adopted.

続いて、図1(b)に示すように、第1分散液と第2分散液とを混合することで、触媒粒子1同士が接触しないように各粒子1、2を配列する。これにより、触媒粒子1および金属酸化物粒子2から構成された触媒複合粒子が生成される。   Subsequently, as shown in FIG. 1B, the first dispersion liquid and the second dispersion liquid are mixed to arrange the particles 1 and 2 so that the catalyst particles 1 do not contact each other. Thereby, catalyst composite particles composed of the catalyst particles 1 and the metal oxide particles 2 are generated.

続いて、図1(c)に示すように、上述のようにして得た触媒複合粒子を乾燥・焼成することによって、粉末の触媒複合粒子、すなわち触媒材料を得ることができる。   Subsequently, as shown in FIG. 1C, the catalyst composite particles obtained as described above are dried and calcined to obtain powdered catalyst composite particles, that is, a catalyst material.

(第2実施形態)
次に、本発明の第2実施形態について説明する。本第2実施形態では、溶液内に分散している粒子の表面に、電荷を有する新たな分子(以下、分散剤ともいう)を付着させるとともに、分散剤の量を調整することで、その粒子のζ電位を変化させ、これにより二種以上の粒子の分散性の向上を図ることを試みた。上記第1実施形態と同様の部分については説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In the second embodiment, a new molecule having a charge (hereinafter also referred to as a dispersant) is attached to the surface of the particle dispersed in the solution, and the amount of the dispersant is adjusted to adjust the particle. Attempts were made to improve the dispersibility of two or more kinds of particles by changing the ζ potential. Description of the same parts as those in the first embodiment is omitted.

まず、二種以上の粒子の分散性の向上を図るために、各粒子の合成時より分散剤を添加するとともに、各粒子の分散液において、粒子表面に付着している分散剤の量を調整する。   First, in order to improve the dispersibility of two or more types of particles, a dispersant is added at the time of synthesis of each particle, and the amount of the dispersant adhering to the particle surface in the dispersion of each particle is adjusted. To do.

ここで、分散剤の量を調整する方法としては、粒子合成時より含まれる分散剤を、反応液の遠心分離での洗浄回数を変化させることにより行うことができる。
ここで、正の電荷を有する分子としては、アミンや4級アンモニウム塩、ピリジニウム塩を含む材料等を採用することができる。より具体的にいうならば、ポリエチレンイミンを含む材料、第4級アンモニウムヒドロオキシドを含む材料、アルカノールアミン等を採用することができる。
Here, as a method for adjusting the amount of the dispersing agent, the dispersing agent contained at the time of particle synthesis can be changed by changing the number of times of washing in centrifugation of the reaction solution.
Here, as a molecule having a positive charge, a material containing an amine, a quaternary ammonium salt, or a pyridinium salt can be employed. More specifically, a material containing polyethyleneimine, a material containing quaternary ammonium hydroxide, an alkanolamine, or the like can be employed.

また、負の電荷を有する分子としては、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩等を含む材料を採用することができ、具体的には、ポリカルボン酸アンモニウム塩を含む材料、ポリカルボン酸ナトリウムを含む材料、ポリカルボン酸アンモニウムを含む材料、ポリアクリル酸ナトリウムを含む材料、ポリアクリル酸マレイン酸共重合体を含む材料等を採用することができる。   Moreover, as a molecule | numerator which has a negative charge, the material containing carboxylate, a sulfonate, a sulfate ester salt, a phosphate ester salt, etc. can be employ | adopted, Specifically, polycarboxylic acid ammonium salt is included. A material, a material containing sodium polycarboxylate, a material containing ammonium polycarboxylate, a material containing sodium polyacrylate, a material containing a polyacrylic maleic acid copolymer, or the like can be employed.

また、pHにより電位が変化するノニオン系の分子を採用することができる。   Further, nonionic molecules whose potential changes with pH can be employed.

なお、分散剤としては、各粒子との吸着力が強いものを採用することが望ましい。   In addition, as a dispersing agent, it is desirable to employ | adopt a thing with strong adsorption power with each particle | grain.

次に、限定するものではないが、上記各実施形態の触媒材料の製造方法について、以下の各実施例および比較例を参照して、より具体的に説明する。   Next, although it does not limit, the manufacturing method of the catalyst material of each said embodiment is demonstrated more concretely with reference to the following each Examples and comparative examples.

(実施例1)
本実施例1は、上記第1、第2実施形態に対応している。
Example 1
Example 1 corresponds to the first and second embodiments.

本実施例1では、貴金属としてPtを用い、助触媒粒子(助触媒成分)として酸素吸蔵放出機能を有するCeO2/ZrO2固溶体を用い、金属酸化物粒子としてアルミナ(Al2O3)を用いた。   In Example 1, Pt was used as the noble metal, CeO2 / ZrO2 solid solution having an oxygen storage / release function was used as the promoter particles (promoter component), and alumina (Al2O3) was used as the metal oxide particles.

CeO2/ZrO2固溶体は、液相法で硝酸セリウムと、オキシ硝酸ジルコニウムを混合した水溶液に、共沈剤としてジエタノールアミンを混合し、室温で攪拌することにより合成した。なお、ジエタノールアミンは合成粒子の分散剤としても作用する。   The CeO2 / ZrO2 solid solution was synthesized by mixing diethanolamine as a coprecipitation agent in an aqueous solution in which cerium nitrate and zirconium oxynitrate were mixed by a liquid phase method and stirring at room temperature. Diethanolamine also acts as a dispersant for the synthetic particles.

そして、この反応液を遠心分離し、得られたゾルを分散させた液中に塩化白金と還元剤を加え、CeO2/ZrO2固溶体にPtを担持させることで、粒子径5nm前後の触媒粒子を形成した。   Then, the reaction solution is centrifuged, platinum chloride and a reducing agent are added to the resulting sol-dispersed solution, and Pt is supported on the CeO2 / ZrO2 solid solution to form catalyst particles having a particle diameter of about 5 nm. did.

また、CeO2/ZrO2固溶体と同様の合成方法で、粒子径10nm前後のアルミナ粒子を形成した。   Further, alumina particles having a particle diameter of around 10 nm were formed by the same synthesis method as that for the CeO2 / ZrO2 solid solution.

このとき、触媒粒子(Ptが担持されたCeO2/ZrO2固溶体)の分散剤およびアルミナ粒子の分散剤は、ともにジエタノールアミンである。このため、触媒粒子の表面電位とアルミナ粒子との表面電位とが同程度になるため、二種の粒子の分散液を混合した際に、二種の粒子の分散性をより向上させることができる。   At this time, the dispersant for the catalyst particles (CeO2 / ZrO2 solid solution carrying Pt) and the dispersant for the alumina particles are both diethanolamine. For this reason, since the surface potential of the catalyst particles and the surface potential of the alumina particles are approximately the same, the dispersibility of the two types of particles can be further improved when the dispersion of the two types of particles is mixed. .

ここで、触媒粒子(Ptが担持されたCeO2/ZrO2固溶体)およびアルミナ粒子のζ電位を測定した。この測定結果を図2に示す。なお、図2中の実線aが触媒粒子の分散液の測定結果を示しており、破線bがアルミナ粒子の分散液の測定結果を示している。   Here, the zeta potential of the catalyst particles (CeO2 / ZrO2 solid solution carrying Pt) and alumina particles was measured. The measurement results are shown in FIG. In FIG. 2, the solid line a indicates the measurement result of the catalyst particle dispersion, and the broken line b indicates the measurement result of the alumina particle dispersion.

図2に示すように、触媒粒子は安定に分散できるpH1〜2の領域において20mV以上の静電位であり、アルミナ粒子はpH1〜3の領域において30mV以上の正電位であった。   As shown in FIG. 2, the catalyst particles had an electrostatic potential of 20 mV or higher in the pH 1-2 region where the particles can be stably dispersed, and the alumina particles had a positive potential of 30 mV or higher in the pH 1-3 region.

このため、上記のpHの範囲内で、触媒粒子の分散液とアルミナ粒子の分散液とを混合することによって、触媒粒子同士(より詳細には貴金属同士および助触媒粒子同士)およびアルミナ粒子同士がそれぞれ接触しないように配列された複合触媒粒子を得ることができると考えられる。   Therefore, by mixing the dispersion of catalyst particles and the dispersion of alumina particles within the above pH range, catalyst particles (more specifically, noble metals and promoter particles) and alumina particles can be mixed. It is considered that composite catalyst particles arranged so as not to contact each other can be obtained.

そこで本実施例1では、まず、触媒粒子の分散液としてpH2、混合するアルミナ粒子の分散液としてそれぞれpH1、2、3を用い、各々の粒子固形分が1:3となるように混合し、得られた混合液の透過電子顕微鏡観察により、二種の粒子の分散性について検証を行った。この結果、混合時におけるアルミナ粒子のpHの違いにより、触媒粒子の分散状態が異なり、pH3で混合したものにおいて、分散性は最も良好であった。   Therefore, in Example 1, first, pH 2 is used as a dispersion of catalyst particles, pHs 1, 2, and 3 are used as dispersions of alumina particles to be mixed, and mixing is performed so that each particle solid content is 1: 3. The dispersibility of the two kinds of particles was verified by observation with a transmission electron microscope of the obtained liquid mixture. As a result, the dispersion state of the catalyst particles differed depending on the difference in pH of the alumina particles during mixing, and the dispersibility was the best when the particles were mixed at pH 3.

続いて、上記混合pH条件において、アルミナ粒子に付着している分散剤量を調整した実験を行い、アルミナ粒子の分散液のζ電位の測定、および各粒子の分散液を混合した後における二種の粒子の分散状態の観察を行った。   Subsequently, under the above mixed pH conditions, an experiment was conducted in which the amount of the dispersant adhering to the alumina particles was adjusted, the measurement of the ζ potential of the alumina particle dispersion, and the two types after mixing the dispersion of each particle The dispersion state of the particles was observed.

図3は、アルミナ粒子分散液中の分散剤量とアルミナ粒子のζ電位との関係を示す特性図である。図3に示すように、アルミナ粒子分散液中の分散剤の量の違いにより、アルミナ粒子のζ電位が変化することが明らかになった。また、各粒子の分散液を混合した後における二種の粒子の分散状態の観察結果によると、アルミナ粒子分散液中の分散剤の量の違いにより、触媒粒子の分散状態も異なることがわかった。そして、図3中のc点に示すように、アルミナ粒子の分散液中の分散剤量が33036mV・s/mgのとき、二種の粒子の分散性が最も良好となった。   FIG. 3 is a characteristic diagram showing the relationship between the amount of dispersant in the alumina particle dispersion and the ζ potential of the alumina particles. As shown in FIG. 3, it became clear that the ζ potential of the alumina particles changes depending on the amount of the dispersant in the alumina particle dispersion. Moreover, according to the observation result of the dispersion state of the two kinds of particles after mixing the dispersion liquid of each particle, it was found that the dispersion state of the catalyst particles also differs depending on the amount of the dispersant in the alumina particle dispersion liquid. . As indicated by point c in FIG. 3, the dispersibility of the two kinds of particles was the best when the amount of the dispersant in the dispersion of alumina particles was 33036 mV · s / mg.

上述のようにして得られた各種混合液を、フリーズドライにより乾燥させ、800℃、5時間で大気焼成を行い、触媒複合粒子(触媒材料)を得た。   Various mixed liquids obtained as described above were dried by freeze drying and subjected to atmospheric firing at 800 ° C. for 5 hours to obtain catalyst composite particles (catalyst material).

(比較例)
上記実施例1と同様の触媒粒子(Ptが担持されたCeO/ZrO固溶体)を含むスラリーとアルミナとを、各々の粒子数の比率が3:1となるように混合した混合スラリーを、pHが3から4になるように硝酸で調整し、2時間攪拌して、触媒粒子とアルミナとを分散させる。この溶液を、ロータリーエバポレータにより濃縮し、乾燥させた。さらに、上記第1実施例と同様にこの乾燥物を焼成して、触媒複合粒子(触媒材料)を得た。
(Comparative example)
A mixed slurry in which a slurry containing the same catalyst particles as in Example 1 (CeO 2 / ZrO 2 solid solution carrying Pt) and alumina were mixed so that the ratio of the number of each particle was 3: 1, The pH is adjusted to 3 to 4 with nitric acid and stirred for 2 hours to disperse the catalyst particles and alumina. This solution was concentrated by a rotary evaporator and dried. Further, the dried product was fired in the same manner as in the first example to obtain catalyst composite particles (catalyst material).

(浄化性能評価)
上記実施例1および比較例で得られた触媒複合粒子を、それぞれハニカム担体にコートして触媒体を作製し、モデルガスによって各触媒複合粒子の浄化性能を評価した。
(Purification performance evaluation)
The catalyst composite particles obtained in Example 1 and the comparative example were each coated on a honeycomb carrier to prepare a catalyst body, and the purification performance of each catalyst composite particle was evaluated using a model gas.

具体的には、φ30mm×長さ50mmのコージェライトからなるハニカム担体を用い、各触媒複合粒子をハニカム担体上に2g/Lの担持量で担持させた。そして、各触媒複合粒子が担持されたハニカム担体を、実使用に近い熱履歴を加えるために、950℃で5時間熱処理した後、それぞれにモデルガスを流し評価した。   Specifically, a honeycomb carrier made of cordierite having a diameter of 30 mm and a length of 50 mm was used, and each catalyst composite particle was supported on the honeycomb carrier at a loading amount of 2 g / L. And in order to add the thermal history close | similar to actual use, the honeycomb support | carrier with which each catalyst composite particle was carry | supported was heat-treated at 950 degreeC for 5 hours, Then, each model gas was flowed and evaluated.

ここで、モデルガスとしては、O、N、C、C、NO、COの各成分を含むものを用いた。このモデルガスをハニカム担体の前方部から流し、ハニカム担体流入前後のガスの成分を分析した。そして、ハニカム担体流入前のCO、NO、HC成分トータルのガス量の分析値と、流入後のCO、NO、HC成分トータルのガス量の分析値との割合から浄化率を算出し、CO、NO、HC成分トータルの平均をとった。この浄化率は、ハニカム担体の温度が高いほど向上し、より低温で高い浄化率を示す程、触媒性能が高いことがわかっている。 Here, as the model gas, a gas containing O 2 , N 2 , C 3 H 6 , C 3 H 8 , NO, and CO components was used. This model gas was flowed from the front part of the honeycomb carrier, and the components of the gas before and after the inflow of the honeycomb carrier were analyzed. Then, the purification rate is calculated from the ratio between the analysis value of the total gas amount of CO, NO, and HC components before the inflow of the honeycomb carrier and the analysis value of the total gas amount of CO, NO, and HC components after the inflow, The average of total NO and HC components was taken. It has been found that this purification rate improves as the temperature of the honeycomb carrier increases, and that the higher the purification rate at a lower temperature, the higher the catalyst performance.

そして、評価は、流入ガスおよびハニカム担体を加熱し、流入ガスおよびハニカム担体の温度と浄化率との関係を測定することにより行った。   The evaluation was performed by heating the inflow gas and the honeycomb carrier, and measuring the relationship between the temperature of the inflow gas and the honeycomb carrier and the purification rate.

その結果、実施例1で得られた触媒複合粒子のうち、最も分散状態が不良であったアルミナ粒子のpHを1として混合し得られた触媒複合粒子を用いてコートした担体では、浄化率が50%になる温度は325℃であった。また実施例1で得られた触媒複合粒子のうち、最も分散状態が良好であったアルミナ粒子のpHを3として、さらに分散剤の量を33036mV・s/mgに調整して混合し得られた触媒複合粒子を用いてコートした担体では、浄化率が50%になる温度は313℃であった。一方、比較例で得られた触媒複合粒子をコートした触媒体では、浄化率が50%になる温度は333℃であった。   As a result, the carrier coated with the catalyst composite particles obtained by mixing the catalyst composite particles obtained in Example 1 with the pH of the alumina particles having the poorest dispersion state being set to 1, has a purification rate. The temperature at which it reached 50% was 325 ° C. Moreover, among the catalyst composite particles obtained in Example 1, the pH of the alumina particles having the best dispersion state was set to 3, and the amount of the dispersant was further adjusted to 33036 mV · s / mg and mixed. In the carrier coated with the catalyst composite particles, the temperature at which the purification rate was 50% was 313 ° C. On the other hand, in the catalyst body coated with the catalyst composite particles obtained in the comparative example, the temperature at which the purification rate was 50% was 333 ° C.

これにより、二種粒子の分散液のpH、分散剤量を調整することで分散性を向上させて作製した触媒複合粒子をコートした触媒体は、比較例で得られた触媒複合粒子をコートした触媒体に比較して、浄化率が50%に達する温度が低下しており、触媒性能が向上できているといえる。すなわち、触媒粒子が金属酸化物粒子間の隙間に均一に配置されており、金属酸化物粒子がブロック材の役割を果たして、熱履歴時のシンタリング等による触媒粒子の移動や、触媒粒子同士の結合が阻害されていると考えられる。   Thus, the catalyst body coated with the catalyst composite particles produced by improving the dispersibility by adjusting the pH of the dispersion of the two kinds of particles and the amount of the dispersant was coated with the catalyst composite particles obtained in the comparative example. Compared with the catalyst body, the temperature at which the purification rate reaches 50% is lowered, and it can be said that the catalyst performance is improved. That is, the catalyst particles are uniformly arranged in the gaps between the metal oxide particles, the metal oxide particles serve as a block material, and the catalyst particles move due to sintering during thermal history, or between the catalyst particles. The binding is thought to be inhibited.

以上説明したように、二種の粒子(触媒粒子および金属酸化物粒子)間をそれぞれ斥力状態にし、さらに粒子表面に付着する分散剤の量を調整した後、それぞれの粒子の分散液を混合することで、二種以上の粒子を同種の粒子同士が接触しないように均一に配置することができる。   As described above, the two types of particles (catalyst particles and metal oxide particles) are made repulsive, the amount of the dispersant adhering to the particle surface is adjusted, and then the dispersion liquid of each particle is mixed. Thus, two or more kinds of particles can be arranged uniformly so that the same kind of particles do not contact each other.

上記各実施形態では、二種以上の粒子として触媒粒子(触媒成分)および金属酸化物粒子(担体粒子)を採用したので、触媒粒子を金属酸化物粒子間の隙間に均一に配置することができる。このため、金属酸化物粒子がブロック剤の役割を果たし、シンタリング等による触媒粒子の移動や触媒粒子同士の結合を阻害することができる。したがって、触媒粒子のシンタリングを防止し、耐熱性を向上させることが可能となる。   In each of the above embodiments, catalyst particles (catalyst components) and metal oxide particles (carrier particles) are employed as two or more kinds of particles, so that the catalyst particles can be uniformly arranged in the gaps between the metal oxide particles. . For this reason, the metal oxide particles serve as a blocking agent and can inhibit the movement of the catalyst particles due to sintering or the like and the bonding between the catalyst particles. Therefore, sintering of the catalyst particles can be prevented and the heat resistance can be improved.

(実施例2)
本実施例2では、貴金属としてRhを用い、助触媒粒子(触媒成分)として酸素吸蔵放出機能を有するCeO/ZrO固溶体を用い、金属酸化物粒子としてアルミナを用いた。
(Example 2)
In Example 2, Rh was used as the noble metal, CeO 2 / ZrO 2 solid solution having an oxygen storage / release function was used as the promoter particles (catalyst component), and alumina was used as the metal oxide particles.

そして、実施例1と同様の方法でCeO/ZrO固溶体を合成するとともに、合成されたCeO/ZrO固溶体にRhを担持させることで、粒子径5nm前後の触媒粒子を得た。また、CeO/ZrO固溶体と同様の合成方法で、粒子径10nm前後のアルミナ粒子を得た。 Then, a CeO 2 / ZrO 2 solid solution was synthesized by the same method as in Example 1, and Rh was supported on the synthesized CeO 2 / ZrO 2 solid solution, thereby obtaining catalyst particles having a particle diameter of about 5 nm. In addition, alumina particles having a particle diameter of around 10 nm were obtained by the same synthesis method as that for the CeO 2 / ZrO 2 solid solution.

ここで、触媒粒子のζ電位を測定したところ、pH1〜2の領域において、20mV以上の静電位であった。   Here, when the ζ potential of the catalyst particles was measured, it was an electrostatic potential of 20 mV or more in the pH 1-2 region.

したがって、触媒粒子の分散液のpHが1〜2、かつ、アルミナ粒子の分散液のpHが1〜3の範囲内で、触媒粒子の分散液とアルミナ粒子の分散液とを混合することによって、触媒粒子同士(より詳細には貴金属同士および助触媒粒子同士)およびアルミナ粒子同士がそれぞれ接触しないように配列された複合触媒粒子を得ることができると考えられる。   Therefore, by mixing the dispersion of catalyst particles and the dispersion of alumina particles within the range where the pH of the dispersion of catalyst particles is 1-2 and the pH of the dispersion of alumina particles is 1-3, It is considered that composite catalyst particles arranged such that catalyst particles (more specifically, noble metals and promoter particles) and alumina particles do not contact each other can be obtained.

そこで、本実施例2では、触媒粒子の分散液としてpH1、混合するアルミナ粒子の分散液としてそれぞれpH1、2、3を用い、各々の粒子固形分が1:3となるように混合し、得られた分散液の透過電子顕微鏡観察により、二種粒子の分散性について検証を行った。この結果、アルミナ分散液をpH3、分散剤量を33036mV・s/mgとして混合したものにおいて最も分散性が良好となることがわかった。   Therefore, in Example 2, pH 1 is used as a dispersion of catalyst particles, pH 1, 2, and 3 are used as dispersions of alumina particles to be mixed, and mixing is performed so that the solid content of each particle is 1: 3. The dispersibility of the two kinds of particles was verified by observation with a transmission electron microscope of the obtained dispersion. As a result, it was found that the dispersibility was the best when the alumina dispersion was mixed at pH 3 and the amount of the dispersant was 33036 mV · s / mg.

(実施例3)
本実施例3では、貴金属としてPdを用い、助触媒粒子(触媒成分)として酸素吸蔵放出機能を有するCeO/ZrO固溶体を用い、金属酸化物粒子としてアルミナを用いた。
(Example 3)
In Example 3, Pd was used as the noble metal, CeO 2 / ZrO 2 solid solution having an oxygen storage / release function was used as the promoter particles (catalyst component), and alumina was used as the metal oxide particles.

そして、実施例1と同様の方法でCeO/ZrO固溶体を合成するとともに、合成されたCeO/ZrO固溶体にPdを担持させることで、粒子径5nm前後の触媒粒子を得た。またCeO/ZrO固溶体と同様の合成方法で、粒子径10nm前後のアルミナ粒子を得た。 Then, a CeO 2 / ZrO 2 solid solution was synthesized by the same method as in Example 1, and Pd was supported on the synthesized CeO 2 / ZrO 2 solid solution to obtain catalyst particles having a particle diameter of about 5 nm. Further, alumina particles having a particle diameter of around 10 nm were obtained by the same synthesis method as that for the CeO 2 / ZrO 2 solid solution.

ここで、触媒粒子のζ電位を測定したところ、pH1〜2.5の領域において、20mV以上の静電位であった。   Here, when the ζ potential of the catalyst particles was measured, it was an electrostatic potential of 20 mV or more in the pH range of 1 to 2.5.

したがって、触媒粒子の分散液のpHが1〜2.5、かつ、アルミナ粒子の分散液のpHが1〜3の範囲内で、触媒粒子の分散液とアルミナ粒子の分散液とを混合することによって、触媒粒子同士(より詳細には貴金属同士および助触媒粒子同士)およびアルミナ粒子同士がそれぞれ接触しないように配列された複合触媒粒子を得ることができると考えられる。   Therefore, the catalyst particle dispersion and the alumina particle dispersion are mixed within a range of pH 1 to 2.5 of the catalyst particle dispersion and pH 1 to 3 of the alumina particle dispersion. Thus, it is considered that composite catalyst particles arranged so that catalyst particles (more specifically, noble metals and promoter particles) and alumina particles do not contact each other can be obtained.

そこで、本実施例3では、触媒粒子の分散液としてpH1、混合するアルミナ粒子の分散液としてそれぞれpH1、2、3を用い、各々の粒子固形分が1:3となるように混合し、得られた分散液の透過電子顕微鏡観察により、二種粒子の分散性について検証を行った。この結果、アルミナ分散液をpH3、分散剤量を33036mV・s/mgで混合したものにおいて最も分散性が良好となることがわかった。   Therefore, in Example 3, pH 1 is used as the dispersion of catalyst particles, pH 1, 2, and 3 are used as the dispersion of alumina particles to be mixed, and mixing is performed so that the solid content of each particle is 1: 3. The dispersibility of the two kinds of particles was verified by observation with a transmission electron microscope of the obtained dispersion. As a result, it was found that the dispersibility was the best when the alumina dispersion was mixed at pH 3 and the amount of the dispersant was 33036 mV · s / mg.

(実施例4)
本実施例4では、貴金属としてRu、Ir、Osを用い、助触媒粒子(触媒成分)として、CeO2、ZrO2、Al23、TiO2、SiO2、MgO、Y23、La23およびこれらの誘導体から選ばれる一種または二種以上の化合物を用い、金属酸化物粒子2としてCeO、ZrO、Al、TiO、SiO、MgO、Y、La23およびこれらの誘導体を用いた。この場合であっても、実施例1と同様の分散状態が確認できた。
Example 4
In Example 4, Ru, Ir, and Os are used as noble metals, and CeO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , SiO 2 , MgO, Y 2 O 3 , and La are used as promoter particles (catalyst components). Using one or two or more compounds selected from 2 O 3 and derivatives thereof, the metal oxide particles 2 are CeO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , SiO 2 , MgO, Y 2 O 3 , La 2 O 3 and derivatives thereof were used. Even in this case, the same dispersion state as in Example 1 could be confirmed.

(他の実施形態)
上記各実施形態では、触媒複合粒子をコージェライトからなるハニカム担体に担持させた例について説明したが、これに限らず、SiCやアルミナ等のセラミックスや、アルミ等の金属からなるハニカム担体に担持させてもよい。
(Other embodiments)
In each of the above embodiments, the example in which the catalyst composite particles are supported on the honeycomb carrier made of cordierite has been described. However, the present invention is not limited to this, and the catalyst composite particles are supported on the honeycomb carrier made of ceramics such as SiC or alumina, or metal such as aluminum. May be.

1 触媒粒子
2 金属酸化物粒子
1 catalyst particles 2 metal oxide particles

Claims (5)

Ce、Zr、Al、Ti、Si、Mg、Y、Laよりなる群から選ばれる複数種の元素の複合酸化物からなる酸素吸蔵放出機能を有する粒子の分散液と、AlとLaとの複合酸化物からなる耐熱性を有する粒子の分散液とを用意する第1工程と、
前記酸素吸蔵放出機能を有する粒子の分散液および前記耐熱性を有する粒子の分散液を混合して、前記酸素吸蔵放出機能を有する粒子および前記耐熱性を有する粒子を混合液中に分散させる第2工程とを備える触媒材料の製造方法であって、
前記酸素吸蔵放出機能を有する粒子および前記耐熱性を有する粒子の少なくとも一方の分散剤として、低分子アミン類を用いることを特徴とする触媒材料の製造方法。
A dispersion of particles having an oxygen storage / release function composed of a composite oxide of a plurality of types of elements selected from the group consisting of Ce, Zr, Al, Ti, Si, Mg, Y, La, and composite oxidation of Al and La A first step of preparing a dispersion of heat-resistant particles made of a material,
Secondly, the dispersion liquid of the particles having the oxygen storage / release function and the dispersion liquid of the heat resistant particles are mixed to disperse the particles having the oxygen storage / release function and the heat resistant particles in the mixed liquid. A process for producing a catalyst material comprising the steps of:
A method for producing a catalyst material, wherein a low molecular amine is used as a dispersant for at least one of the particles having an oxygen storage / release function and the heat-resistant particles.
前記分散剤の量を調整することにより、前記酸素吸蔵放出機能を有する粒子および前記耐熱性を有する粒子のζ電位を同程度にすることを特徴とする請求項1に記載の触媒材料の製造方法。   2. The method for producing a catalyst material according to claim 1, wherein the amount of the dispersant is adjusted so that the ζ potential of the particles having the oxygen storage / release function and the particles having the heat resistance are substantially equal. . 前記酸素吸蔵放出機能を有する粒子は、貴金属を少なくとも一種含んでいることを特徴とする請求項1または2に記載の触媒材料の製造方法。   The method for producing a catalyst material according to claim 1 or 2, wherein the particles having an oxygen storage / release function include at least one kind of noble metal. 請求項1ないし3のいずれか1つの方法で製造されることを特徴とする触媒材料。   A catalyst material produced by the method according to any one of claims 1 to 3. 請求項4に記載の触媒材料が、ハニカム状の担体の表層面もしくは細孔内にコーティングされていることを特徴とする触媒体。   5. A catalyst body, wherein the catalyst material according to claim 4 is coated on a surface layer or pores of a honeycomb-shaped carrier.
JP2011190947A 2011-09-01 2011-09-01 Method for producing catalyst material, catalyst material produced thereby, and catalyst body Expired - Fee Related JP4883241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011190947A JP4883241B2 (en) 2011-09-01 2011-09-01 Method for producing catalyst material, catalyst material produced thereby, and catalyst body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011190947A JP4883241B2 (en) 2011-09-01 2011-09-01 Method for producing catalyst material, catalyst material produced thereby, and catalyst body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008014957A Division JP2009172529A (en) 2008-01-25 2008-01-25 Method for producing catalytic material, catalytic material produced thereby and catalytic body

Publications (2)

Publication Number Publication Date
JP2012011387A true JP2012011387A (en) 2012-01-19
JP4883241B2 JP4883241B2 (en) 2012-02-22

Family

ID=45598444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190947A Expired - Fee Related JP4883241B2 (en) 2011-09-01 2011-09-01 Method for producing catalyst material, catalyst material produced thereby, and catalyst body

Country Status (1)

Country Link
JP (1) JP4883241B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9120084B2 (en) 2013-02-26 2015-09-01 Honda Motor Co., Ltd. Catalyst device for exhaust gas
JP2018190659A (en) * 2017-05-10 2018-11-29 株式会社デンソー Control module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272250A (en) * 2005-03-30 2006-10-12 Nissan Motor Co Ltd Method for arraying fine particle, catalyst for cleaning exhaust gas, electrode catalyst and magnetic material
JP2008012527A (en) * 2006-06-06 2008-01-24 Denso Corp Catalyst-bearing particle and manufacturing method of catalytic material using this particle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272250A (en) * 2005-03-30 2006-10-12 Nissan Motor Co Ltd Method for arraying fine particle, catalyst for cleaning exhaust gas, electrode catalyst and magnetic material
JP2008012527A (en) * 2006-06-06 2008-01-24 Denso Corp Catalyst-bearing particle and manufacturing method of catalytic material using this particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9120084B2 (en) 2013-02-26 2015-09-01 Honda Motor Co., Ltd. Catalyst device for exhaust gas
JP2018190659A (en) * 2017-05-10 2018-11-29 株式会社デンソー Control module

Also Published As

Publication number Publication date
JP4883241B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
RU2731104C2 (en) Catalysts based on platinum group metals (pgm) for automotive exhaust treatment
JP6499683B2 (en) Core-shell type oxide material, manufacturing method thereof, exhaust gas purification catalyst using the same, and exhaust gas purification method
JP2000189799A (en) Catalyst for purifying exhaust gas and its production
JP6670386B2 (en) Methane oxidation catalyst
WO2015075875A1 (en) Catalyst material for exhaust gas purification and method for producing same
US20070281856A1 (en) Method of producing catalyst support particles and a catalyzer using the catalyst support particles
JP2009247968A (en) Manufacturing method of catalyst material, catalyst material manufactured by the method, and catalyst body
JP2024511688A (en) Preparation of supported metal nanoparticles using polyamines for three-way catalyst applications
JP4883241B2 (en) Method for producing catalyst material, catalyst material produced thereby, and catalyst body
JP5827286B2 (en) Automotive exhaust gas purification catalyst
JP2011098258A (en) Catalyst for cleaning exhaust gas and method for manufacturing the same
JP6491004B2 (en) Exhaust gas purification catalyst and honeycomb catalyst structure for exhaust gas purification
JP2008200603A (en) Catalyst material manufacturing method and catalyst material manufactured by the same
JP2009172529A (en) Method for producing catalytic material, catalytic material produced thereby and catalytic body
JP2009061383A (en) Heat-resistant alumina carrier and its manufacturing method
KR20150093203A (en) Zoned diesel oxidation catalyst
JP2533703B2 (en) Catalyst for high temperature steam reforming reaction of hydrocarbon and method of using the same
JP2022182662A (en) Exhaust gas purification catalyst
JP4200768B2 (en) Three way catalyst for exhaust gas purification
JP4577408B2 (en) Exhaust gas purification catalyst
JP2570647B2 (en) Nitrogen oxide reduction catalyst and nitrogen oxide reduction method
JP5705785B2 (en) Exhaust gas purification catalyst
JP6206115B2 (en) Method for producing exhaust gas purification catalyst material
JP2012179573A (en) Catalyst for purifying exhaust gas, and method for producing the same
JP6010325B2 (en) Exhaust gas purifying catalyst, catalyst supporting structure, and production method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4883241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees