JP2012011296A - Method for producing electrode catalyst - Google Patents

Method for producing electrode catalyst Download PDF

Info

Publication number
JP2012011296A
JP2012011296A JP2010149333A JP2010149333A JP2012011296A JP 2012011296 A JP2012011296 A JP 2012011296A JP 2010149333 A JP2010149333 A JP 2010149333A JP 2010149333 A JP2010149333 A JP 2010149333A JP 2012011296 A JP2012011296 A JP 2012011296A
Authority
JP
Japan
Prior art keywords
electrode catalyst
electrode
carbon
potential
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010149333A
Other languages
Japanese (ja)
Other versions
JP2012011296A5 (en
Inventor
Takeshi Hattori
武司 服部
Yutaka Ito
伊藤  豊
Hajime Maki
一 真木
Kenichiro Ota
健一郎 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2010149333A priority Critical patent/JP2012011296A/en
Publication of JP2012011296A publication Critical patent/JP2012011296A/en
Publication of JP2012011296A5 publication Critical patent/JP2012011296A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a highly-active electrode catalyst which can be obtained by using materials comparatively inexpensive and comparatively large in resource quantities, and can be used even in a high electrical potential in an acidic electrolyte.SOLUTION: The method for producing the electrode catalyst includes a step of firing a precursor of the electrode catalyst, which is obtained by subjecting a mixture containing the following first, second and third materials to a hydrothermal reaction in the presence of water in a supercritical or subcritical state, under such a condition that the following second material is changed into a carbon material. The first material is a metal compound constituted of one or more kinds of metallic elements selected from a group constituted of group 4A elements and group 5A elements, and one or more kinds of non-metallic elements selected from a group constituted of hydrogen, nitrogen, chlorine, carbon, boron, sulfur, and oxygen. The second material is a carbon material precursor, and the third material is a nitrogen-containing compound.

Description

本発明は、電極触媒の製造方法に関する。   The present invention relates to a method for producing an electrode catalyst.

電極触媒は、電極(特に電極の表面部位)に担持される固体触媒であり、例えば水の電解、有機物の電解、燃料電池の電気化学システムなどに用いられている。酸性電解質中で用いられる電極触媒としては、貴金属が挙げられる。貴金属の中でも特に白金は、酸性電解質中で、高電位であっても、安定であるため、広く用いられている。   The electrode catalyst is a solid catalyst supported on an electrode (particularly the surface portion of the electrode), and is used in, for example, water electrolysis, organic electrolysis, and fuel cell electrochemical systems. A noble metal is mentioned as an electrode catalyst used in an acidic electrolyte. Among noble metals, platinum is widely used because it is stable even at high potential in an acidic electrolyte.

しかし、白金は高価格で、資源量も限られているため、比較的安価であり、資源量が比較的多い材料からなる電極触媒が求められている。   However, since platinum is expensive and has a limited amount of resources, there is a need for an electrode catalyst made of a material that is relatively inexpensive and has a relatively large amount of resources.

比較的安価で酸性電解質中で用いることができる電極触媒としては、炭化タングステンが知られている(非特許文献1参照)。また、高電位での使用時に溶解し難い電極触媒としては、酸化ジルコニウムからなる電極触媒が知られている(非特許文献2参照)。   Tungsten carbide is known as an electrode catalyst that can be used in an acidic electrolyte at a relatively low cost (see Non-Patent Document 1). Further, as an electrode catalyst that is difficult to dissolve when used at a high potential, an electrode catalyst made of zirconium oxide is known (see Non-Patent Document 2).

米山宏ら、「電気化学」第41巻、第719頁(1973年)Hiroshi Yoneyama et al., “Electrochemistry”, 41, 719 (1973) Yan Liuら、「Electrochemical and Solid−State Letters」8(8)、2005、A400〜402Yan Liu et al., “Electrochemical and Solid-State Letters” 8 (8), 2005, A400-402.

上記の炭化タングステンからなる電極触媒は高電位において溶解してしまうという問題があり、また、酸化ジルコニウムからなる電極触媒は、取り出せる電流値が少なく、これらの電極触媒は、電極触媒としての使用に十分に耐えうるものではない。本発明の目的は、比較的安価で資源量も比較的多い材料を用いて得ることができ、また、酸性電解質中で高電位下においても使用することができる高活性な電極触媒を製造する方法を提供することにある。   The above-mentioned electrode catalyst made of tungsten carbide has a problem that it dissolves at a high potential, and the electrode catalyst made of zirconium oxide has a small current value that can be taken out, and these electrode catalysts are sufficient for use as an electrode catalyst. It can not withstand. An object of the present invention is a method for producing a highly active electrocatalyst that can be obtained using a material that is relatively inexpensive and has a relatively large amount of resources, and that can be used in an acidic electrolyte even at a high potential. Is to provide.

すなわち本発明は、下記の手段を提供する。
<1>以下の第一材料、以下の第二材料および以下の第三材料を含有する混合物を、超臨界状態または亜臨界状態の水の存在下において水熱反応させて得られる電極触媒の前駆体を、以下の第二材料が炭素材料に変化する条件にて焼成する工程を含む電極触媒の製造方法:
第一材料は、4A族元素および5A族元素からなる群より選択される1種以上の金属元素と、水素、窒素、塩素、炭素、硼素、硫黄および酸素からなる群より選択される1種以上の非金属元素とで構成される金属化合物であり、
第二材料は、炭素材料前駆体であり、
第三材料は、窒素含有化合物である。
<2>第一材料における前記金属元素が、ZrまたはTiである<1>に記載の方法。
<3>第三材料における窒素含有化合物が、アンモニアである<1>または<2>に記載の方法。
<4>前記焼成の雰囲気が、無酸素の雰囲気である<1>〜<3>のいずれかに記載の方法。
That is, the present invention provides the following means.
<1> Electrocatalyst precursor obtained by hydrothermal reaction of a mixture containing the following first material, the following second material, and the following third material in the presence of supercritical or subcritical water A method for producing an electrocatalyst comprising a step of calcining a body under conditions where the following second material is changed to a carbon material:
The first material is one or more metal elements selected from the group consisting of Group 4A elements and Group 5A elements, and one or more selected from the group consisting of hydrogen, nitrogen, chlorine, carbon, boron, sulfur and oxygen A non-metallic element composed of a metal compound,
The second material is a carbon material precursor,
The third material is a nitrogen-containing compound.
<2> The method according to <1>, wherein the metal element in the first material is Zr or Ti.
<3> The method according to <1> or <2>, wherein the nitrogen-containing compound in the third material is ammonia.
<4> The method according to any one of <1> to <3>, wherein the firing atmosphere is an oxygen-free atmosphere.

本発明によれば、酸性電解質中で高電位下においても使用することができ、高い活性を示す電極触媒を得ることができる。しかも、比較的安価で資源量も比較的多い材料を用いて電極触媒を得ることができ、本発明は工業的に極めて有用である。   According to the present invention, an electrode catalyst that can be used in an acidic electrolyte even at a high potential and exhibits high activity can be obtained. Moreover, an electrode catalyst can be obtained using a material that is relatively inexpensive and has a relatively large amount of resources, and the present invention is extremely useful industrially.

連続的に水熱反応を行うための反応装置(流通式反応装置)の概要を示す模式図。The schematic diagram which shows the outline | summary of the reaction apparatus (flow-type reaction apparatus) for performing a hydrothermal reaction continuously. 流通式反応装置における反応器の概要を示す模式図。The schematic diagram which shows the outline | summary of the reactor in a flow-type reaction apparatus. 本発明における電極触媒の一実施形態の粉末X線回折図形を示す。The powder X-ray diffraction pattern of one Embodiment of the electrode catalyst in this invention is shown. 本発明における電極触媒の一実施形態の粉末X線回折図形を示す。The powder X-ray diffraction pattern of one Embodiment of the electrode catalyst in this invention is shown. 本発明における電極触媒の一実施形態の粉末X線回折図形を示す。The powder X-ray diffraction pattern of one Embodiment of the electrode catalyst in this invention is shown. 本発明における電極触媒の一実施形態の粉末X線回折図形を示す。The powder X-ray diffraction pattern of one Embodiment of the electrode catalyst in this invention is shown. 本発明における第一材料の一実施形態の粉末X線回折図形を示す。The powder X-ray diffraction pattern of one embodiment of the first material in the present invention is shown. 本発明における電極触媒の一実施形態の粉末X線回折図形を示す。The powder X-ray diffraction pattern of one Embodiment of the electrode catalyst in this invention is shown.

本発明の電極触媒の製造方法は、以下の第一材料、以下の第二材料および以下の第三材料を含有する混合物を、超臨界状態または亜臨界状態の水の存在下において水熱反応させて得られる電極触媒の前駆体を、以下の第二材料が炭素材料に変化する条件にて焼成する工程を含む。
第一材料は、4A族元素および5A族元素からなる群より選択される1種以上の金属元素と、水素、窒素、塩素、炭素、硼素、硫黄および酸素からなる群より選択される1種以上の非金属元素とで構成される金属化合物であり、
第二材料は、炭素材料前駆体であり、
第三材料は、窒素含有化合物である。
The method for producing an electrocatalyst of the present invention comprises a hydrothermal reaction of a mixture containing the following first material, the following second material, and the following third material in the presence of water in a supercritical state or a subcritical state. A step of calcining the precursor of the electrode catalyst obtained in this manner under the condition that the following second material changes to a carbon material.
The first material is one or more metal elements selected from the group consisting of Group 4A elements and Group 5A elements, and one or more selected from the group consisting of hydrogen, nitrogen, chlorine, carbon, boron, sulfur and oxygen A non-metallic element composed of a metal compound,
The second material is a carbon material precursor,
The third material is a nitrogen-containing compound.

上記の本発明によれば、比較的安価で資源量も比較的多い材料を用いて電極触媒を得ることができ、また、酸性電解質中で、例えば、0.4V以上という比較的高い電位下においても、比較的高い活性を示す電極触媒が得られる。   According to the present invention described above, an electrode catalyst can be obtained using a material that is relatively inexpensive and has a relatively large amount of resources, and in an acidic electrolyte, for example, at a relatively high potential of 0.4 V or more. However, an electrode catalyst having a relatively high activity can be obtained.

本発明の方法で使用される第一材料は、4A族元素および5A族元素からなる群より選択される1種以上の金属元素と、水素、窒素、塩素、炭素、硼素、硫黄および酸素から選択される1種以上の非金属元素とで構成される金属化合物である。第一材料の金属化合物における金属元素は、4A族元素の金属元素または5A族元素の金属元素であることが好ましく、Zr、Ti、TaまたはNbであることがより好ましく、ZrまたはTiであることが好ましい。また、前記金属化合物における好ましい非金属元素は、水素、塩素および酸素から選択される1種以上の非金属元素である。金属元素がZrである場合の金属化合物としては、たとえば水酸化ジルコニウム、オキシ塩化ジルコニウムなどがあげられる。また、金属元素がTiである場合の金属化合物としては、たとえば水酸化チタン、四塩化チタン、メタチタン酸、オルソチタン酸、硫酸チタン、チタンアルコキシドなどがあげられる。   The first material used in the method of the present invention is selected from one or more metal elements selected from the group consisting of Group 4A elements and Group 5A elements, and hydrogen, nitrogen, chlorine, carbon, boron, sulfur and oxygen It is a metal compound comprised with 1 or more types of nonmetallic elements. The metal element in the metal compound of the first material is preferably a metal element of Group 4A element or a metal element of Group 5A element, more preferably Zr, Ti, Ta or Nb, and Zr or Ti. Is preferred. Moreover, the preferable nonmetallic element in the said metal compound is 1 or more types of nonmetallic elements selected from hydrogen, chlorine, and oxygen. Examples of the metal compound when the metal element is Zr include zirconium hydroxide and zirconium oxychloride. Examples of the metal compound when the metal element is Ti include titanium hydroxide, titanium tetrachloride, metatitanic acid, orthotitanic acid, titanium sulfate, and titanium alkoxide.

本発明の方法で使用される第二材料は炭素材料前駆体である。炭素材料前駆体は、焼成により炭素材料に変化させることができる。炭素材料前駆体としては、例えばグルコース、フルクトース、スクロース、セルロース、ハイドロプロピルセルロース、グルコサミン、キチン、キトサンなどの糖類、ポリビニルアルコールなどのアルコール類、ポリエチレングリコール、ポリプロピレングリコールなどのグリコール類、ポリエチレンテレフタレートなどのポリエステル類、アクリルニトリル、ポリアクリルニトリルなどのニトリル類、コラーゲン、ケラチン、フェリチン、ホルモン、ヘモグロビン、アルビミンなどの各種タンパク質、グリシン、アラニン、メチオニンなどのアミノ酸等の生体物質、ピロール、イミダゾール、ピラゾール、イソオキザゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、モルホリンなどの複素環類およびその誘導体、アセトアミド、シアナミドなどのアミド化合物、アスコルビン酸、クエン酸、ステアリン酸などがあげられる。   The second material used in the method of the present invention is a carbon material precursor. The carbon material precursor can be changed into a carbon material by firing. Examples of the carbon material precursor include sugars such as glucose, fructose, sucrose, cellulose, hydropropylcellulose, glucosamine, chitin, and chitosan, alcohols such as polyvinyl alcohol, glycols such as polyethylene glycol and polypropylene glycol, and polyethylene terephthalate. Nitriles such as polyesters, acrylonitrile, polyacrylonitrile, collagen, keratin, ferritin, various proteins such as hormones, hemoglobin, and albimine, biological materials such as amino acids such as glycine, alanine, methionine, pyrrole, imidazole, pyrazole, isooxazole , Pyridine, pyridazine, pyrimidine, pyrazine, piperidine, piperazine, morpholine and the like Conductor, acetamide, amide compounds such as cyanamide, ascorbic acid, citric acid, stearic acid.

本発明の方法で使用される第三材料は、窒素含有化合物である。窒素含有化合物としては、前記炭化材料前駆体を除く窒素元素を有する化合物であればよい。窒素含有化合物としては、例えばピロール、イミダゾール、ピラゾール、イソオキザゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、モルホリンなどの複素環類およびその誘導体、アセトアミド、シアナミドなどのアミド化合物、ヒロロキシルアミン、硫酸ヒドロキシルアミンなどのヒドロキシルアミン類、無水ヒドラジン、水加ヒドラジン、トリアザン、テトラザンなどのヒドラジン類、アンモニア、尿素などがあげられ、アンモニア、尿素等が特に好ましい。   The third material used in the method of the present invention is a nitrogen-containing compound. The nitrogen-containing compound may be a compound having a nitrogen element excluding the carbonized material precursor. Examples of nitrogen-containing compounds include pyrrole, imidazole, pyrazole, isooxazole, pyridine, pyridazine, pyrimidine, pyrazine, piperidine, piperazine, morpholine and other derivatives, amide compounds such as acetamide and cyanamide, hydroxylamine, sulfuric acid Examples include hydroxylamines such as hydroxylamine, hydrazine anhydride, hydrazine hydrate, hydrazines such as triazane and tetrazane, ammonia, urea, and the like, and ammonia, urea and the like are particularly preferable.

本発明の方法で使用される第三材料は、上記混合物に対し、1000ppm(ppmは、重量百万分率を表す。以下、同様。)以上含有されることが好ましく、1500ppm以上含有することがより好ましく、2000ppm以上含有することがさらに好ましい。   The third material used in the method of the present invention is preferably contained in an amount of 1000 ppm (ppm represents a part per million by weight, hereinafter the same), preferably 1500 ppm or more, based on the above mixture. More preferably, the content is more preferably 2000 ppm or more.

上記の第一の発明においては、上記第一材料、上記第二材料および上記第三材料を含有する混合物を、超臨界状態または亜臨界状態の水の存在下において水熱反応させて電極触媒の前駆体を得る。上記混合には、ボールミル、V型混合機、攪拌機等の、工業的に通常用いられている装置を用いることができる。このときの混合は、乾式混合、湿式混合のいずれによってもよい。また、湿式混合の後には、炭素材料前駆体が分解しない程度の温度で乾燥を行ってもよい。   In the first invention, the mixture containing the first material, the second material, and the third material is subjected to a hydrothermal reaction in the presence of water in a supercritical state or a subcritical state to produce an electrode catalyst. A precursor is obtained. For the above-described mixing, industrially used apparatuses such as a ball mill, a V-type mixer, and a stirrer can be used. The mixing at this time may be either dry mixing or wet mixing. In addition, after the wet mixing, drying may be performed at a temperature at which the carbon material precursor is not decomposed.

なお、水の超臨界点は、374℃、22MPaである。本発明において、超臨界状態の水とは、温度374℃以上である条件下の水のことを意味し、かつ圧力22MPa以上であることが好ましい。また、本発明において、亜臨界状態の水とは、温度250℃以上である条件下の水のことを意味し、かつ圧力20MPa以上であることが好ましい。また、本発明において、水熱反応を行うための反応装置としては、バッチ式の反応装置や連続式(流通式)の反応装置を用いることができる。バッチ式の反応装置を例にとって説明すると、反応容器内に水溶液またはスラリーを入れて密閉し、これを所定温度で所定時間保持した後、冷却し、容器内に生成した生成物を回収する。反応容器としては、所定温度に対して充分な耐熱性を持ち、反応時の圧力に対して充分な耐圧性を持ち、用いる水溶液またはスラリーや中間体、生成物に対して充分な耐食性を持つ構造、材質のものを選べばよい。反応容器の材質は、水溶液またはスラリーの種類や反応温度、圧力などの条件に基づき、適切なものを選択すればよいが、例えばSUS316などのステンレス鋼や、ハステロイ、インコネルなどのニッケル合金、あるいはチタン合金をあげることができる。また、金などの耐食性の高い材料で容器の内面をライニングしてもよい。所定温度に保持するためには、例えば電気炉を利用することができる。この場合、電気炉は、反応容器の設置、取出しなどの操作を行い易いように、電気炉の加熱部に反応容器を挿入できる構造にすればよい。また、昇温時および所定温度保持時に、内容物の均一性を保つ観点で、反応容器を振盪してもよい。所定温度に応じて、反応容器内に入れる水溶液またはスラリーの量を調整して、水熱反応時の反応容器内の圧力を調整する事ができる。所定時間保持した後、反応容器を冷却する方法としては、反応容器ごと水に浸けるなどして急冷する手法があげられる。生成物を回収する方法としては、容器内の内容物のスラリーを固液分離、洗浄、乾燥し、粉末状態で回収してもよいし、スラリー状態で回収することもできる。   The supercritical point of water is 374 ° C. and 22 MPa. In the present invention, supercritical water means water under a temperature of 374 ° C. or higher, and preferably has a pressure of 22 MPa or higher. In the present invention, subcritical water means water under a temperature of 250 ° C. or higher, and preferably has a pressure of 20 MPa or higher. In the present invention, as a reaction apparatus for performing the hydrothermal reaction, a batch-type reaction apparatus or a continuous (circulation type) reaction apparatus can be used. In the case of a batch type reaction apparatus, an aqueous solution or slurry is sealed in a reaction vessel, which is kept at a predetermined temperature for a predetermined time, then cooled, and a product produced in the vessel is recovered. As a reaction vessel, it has sufficient heat resistance for a given temperature, has sufficient pressure resistance for the pressure during the reaction, and has a structure with sufficient corrosion resistance for the aqueous solution, slurry, intermediate, or product used Select a material. The material of the reaction vessel may be selected appropriately based on conditions such as the type of aqueous solution or slurry, reaction temperature, pressure, etc. For example, stainless steel such as SUS316, nickel alloy such as Hastelloy and Inconel, or titanium An alloy can be given. Further, the inner surface of the container may be lined with a material having high corrosion resistance such as gold. In order to maintain at a predetermined temperature, for example, an electric furnace can be used. In this case, the electric furnace may be structured such that the reaction container can be inserted into the heating portion of the electric furnace so that operations such as installation and removal of the reaction container can be easily performed. In addition, the reaction vessel may be shaken from the viewpoint of maintaining the uniformity of the contents when raising the temperature and maintaining a predetermined temperature. The pressure in the reaction vessel during the hydrothermal reaction can be adjusted by adjusting the amount of the aqueous solution or slurry put in the reaction vessel according to the predetermined temperature. As a method of cooling the reaction vessel after being held for a predetermined time, there is a method of quenching the reaction vessel by immersing it in water. As a method for recovering the product, the slurry of the contents in the container may be solid-liquid separated, washed and dried, and recovered in a powder state or recovered in a slurry state.

以下に、本発明において連続的に水熱反応を行うための反応装置について、図面を参照しながら説明する。図1は、連続的に水熱反応を行うための流通式反応装置の概要を示す図である。水タンク11,21は、水を供給するためのタンクである。原料タンク22は、原料スラリーを供給するためのタンクである。弁110,210,220を開けることにより、これらのタンクから液が供給される。上記の第一の発明の場合、上記原料スラリーは第一材料および第二材料を含む混合物のスラリーまたは水溶液であり、また、上記の第二の発明の場合、上記原料スラリーは第一材料のスラリーまたは水溶液である。送液ポンプ13の駆動により水タンク11から加熱器14に液が送られ、送液ポンプ23の駆動により水タンク21または原料タンク22から加熱器24に液が送られる。送られたそれぞれの液は、混合部30で混合され、主に反応器40内で水熱反応する。図2は、反応器の概要を示す図である。反応器40内には、内部配管41とその配管を加熱する加熱器44があり、内部配管41は外部の配管に接続されている。水熱反応後、生成したスラリーは、冷却器51により冷却され、背圧弁53を通過して、回収容器60で回収される。   Below, the reaction apparatus for performing a hydrothermal reaction continuously in this invention is demonstrated, referring drawings. FIG. 1 is a diagram showing an outline of a flow reactor for continuously performing a hydrothermal reaction. The water tanks 11 and 21 are tanks for supplying water. The raw material tank 22 is a tank for supplying the raw material slurry. By opening the valves 110, 210, and 220, liquid is supplied from these tanks. In the case of the first invention, the raw material slurry is a slurry or an aqueous solution of a mixture containing the first material and the second material, and in the case of the second invention, the raw material slurry is a slurry of the first material. Or it is an aqueous solution. The liquid is sent from the water tank 11 to the heater 14 by driving the liquid feed pump 13, and the liquid is sent from the water tank 21 or the raw material tank 22 to the heater 24 by driving the liquid feed pump 23. The sent liquids are mixed in the mixing unit 30 and mainly hydrothermally react in the reactor 40. FIG. 2 is a diagram showing an outline of the reactor. In the reactor 40, there is an internal pipe 41 and a heater 44 for heating the pipe, and the internal pipe 41 is connected to an external pipe. After the hydrothermal reaction, the generated slurry is cooled by the cooler 51, passes through the back pressure valve 53, and is collected in the collection container 60.

図1において、弁110と、弁210(または弁220)とを開け、送液ポンプ13,23を動かし、さらに、背圧弁53を開閉することにより、これら送液ポンプ13,23から背圧弁53までの配管内の圧力を調節することができる。また加熱器14,24および反応器40内の加熱器44の温度を調節することにより、超臨界状態または亜臨界状態の水を得ることができる。   In FIG. 1, the valve 110 and the valve 210 (or valve 220) are opened, the liquid feed pumps 13 and 23 are moved, and the back pressure valve 53 is opened and closed to open the back pressure valve 53 from the liquid feed pumps 13 and 23. The pressure in the pipe can be adjusted. Further, by adjusting the temperatures of the heaters 14 and 24 and the heater 44 in the reactor 40, water in a supercritical state or a subcritical state can be obtained.

より具体的には、送液ポンプ13,23を駆動し、背圧弁53を用いて配管内の圧力を適宜調節して、加熱器14,24および反応器40内の加熱器44の温度を適宜調節して、反応器内の水を超臨界状態または亜臨界状態になるように調整する。原料タンク22から原料スラリーを送ると、混合部30以降の配管内で水熱反応が行われ、水熱反応物が生成し、生成したスラリーを回収容器60で回収することができる。また、原料スラリーを原料タンク22から送る前後に、水タンク21から水を送り、配管の予備加熱、配管の洗浄などを行うことも可能である。水熱反応後、生成したスラリーについて、フィルター52を用いて、粗大粒子の除去を行うことなどにより、スラリー中の粒子の粒度を調整してもよい。   More specifically, the liquid feed pumps 13 and 23 are driven, the pressure in the piping is adjusted as appropriate using the back pressure valve 53, and the temperatures of the heaters 14 and 24 and the heater 44 in the reactor 40 are appropriately adjusted. To adjust the water in the reactor to a supercritical or subcritical state. When the raw material slurry is sent from the raw material tank 22, a hydrothermal reaction is performed in the piping after the mixing unit 30, a hydrothermal reaction product is generated, and the generated slurry can be recovered in the recovery container 60. Further, before and after the raw material slurry is sent from the raw material tank 22, it is possible to send water from the water tank 21 and perform preheating of the piping, cleaning of the piping, and the like. After the hydrothermal reaction, the particle size of the particles in the slurry may be adjusted by removing coarse particles from the produced slurry using the filter 52.

また、反応器40内の内部配管41の長さを調節することで、反応時間を調節することができる。内部配管41の形状として、例えば、ジグザグ状、らせん状など、種々の形状を選択使用することにより、内部配管41の長さを調整することができる。   Further, the reaction time can be adjusted by adjusting the length of the internal piping 41 in the reactor 40. By selecting and using various shapes such as a zigzag shape and a spiral shape as the shape of the internal piping 41, the length of the internal piping 41 can be adjusted.

配管、内部配管の材質は、原料スラリーの種類や、水熱反応の温度、圧力などの条件に基づき、適切な材料を選択すればよいが、材料としては、例えばSUS316などのステンレス鋼や、ハステロイ、インコネルなどのニッケル合金、あるいはチタン合金をあげることができる。通過する液の特性に応じて、金などの耐食性の高い材料で配管の内面の一部または全部をライニングしてもよい。   The material of the piping and internal piping may be selected appropriately based on the type of raw slurry, the temperature and pressure of the hydrothermal reaction, etc., but as the material, for example, stainless steel such as SUS316 or Hastelloy And nickel alloys such as Inconel, and titanium alloys. Depending on the characteristics of the liquid passing therethrough, part or all of the inner surface of the pipe may be lined with a highly corrosion-resistant material such as gold.

回収容器60で回収された水熱反応の生成スラリーについては、固液分離、洗浄、乾燥して、粉末状態で用いてもよいし、スラリー状態で用いてもよい。上記水熱反応物が電極触媒の前駆体として用いられる。   About the production | generation slurry of the hydrothermal reaction collect | recovered with the collection | recovery container 60, you may use solid-liquid separation, washing | cleaning, and drying, and it may be used in a powder state, and may be used in a slurry state. The hydrothermal reactant is used as a precursor for the electrode catalyst.

前記電極触媒の前駆体を、第二材料が炭素材料に変化する条件にて焼成することにより本発明における電極触媒が得られる。焼成の雰囲気としては、電極触媒を効率的に合成するために無酸素の雰囲気であることが好ましく、コストの観点から無酸素の雰囲気は、窒素雰囲気であることが好ましい。この焼成の際に用いられる炉は、雰囲気を制御することができる炉であればよく、例えば、管状電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、ローラーハース炉、ロータリー炉などがあげられる。焼成は、回分式で行われてもよいし、連続式で行われてもよい。また電極触媒の前駆体を静置した状態で焼成する静止式で焼成してもよいし、電極触媒の前駆体を流動状態として焼成する流動式で焼成してもよい。   The electrode catalyst in the present invention is obtained by calcining the precursor of the electrode catalyst under conditions where the second material is changed to a carbon material. The firing atmosphere is preferably an oxygen-free atmosphere in order to efficiently synthesize the electrode catalyst, and from the viewpoint of cost, the oxygen-free atmosphere is preferably a nitrogen atmosphere. The furnace used for this firing may be any furnace that can control the atmosphere, such as a tubular electric furnace, tunnel furnace, far-infrared furnace, microwave heating furnace, roller hearth furnace, rotary furnace, etc. It is done. Firing may be performed batchwise or continuously. Alternatively, the electrode catalyst precursor may be fired in a stationary state, or may be fired in a fluid type where the electrode catalyst precursor is fired in a fluid state.

焼成温度は、炭素材料前駆体の種類および焼成雰囲気の種類を考慮して適宜設定すればよいが、炭素材料前駆体が炭素材料に変化する温度、すなわち炭素材料前駆体が分解し炭化する温度で行えばよく、焼成温度として、具体的には、例えば400℃〜1100℃、好ましくは、500℃〜1000℃、より好ましくは500℃〜900℃、さらにより好ましくは700℃〜900℃である。電極触媒のBET比表面積は、焼成温度制御により、制御することができる。なお、本発明において、第二材料が炭素材料に変化する条件とは、第二材料が分解することにより炭化して炭素材料になりうる条件のことを意味する。   The firing temperature may be appropriately set in consideration of the type of carbon material precursor and the type of firing atmosphere, but the temperature at which the carbon material precursor changes to a carbon material, that is, the temperature at which the carbon material precursor decomposes and carbonizes. Specifically, the firing temperature is, for example, 400 ° C to 1100 ° C, preferably 500 ° C to 1000 ° C, more preferably 500 ° C to 900 ° C, and still more preferably 700 ° C to 900 ° C. The BET specific surface area of the electrode catalyst can be controlled by controlling the calcination temperature. In the present invention, the condition under which the second material is changed to a carbon material means a condition that can be carbonized to become a carbon material by decomposition of the second material.

焼成の際の昇温速度は、実用的な範囲であれば特に限定されるものではなく、通常10℃/時間〜600℃/時間、好ましくは50℃/時間〜500℃/時間であり、このような昇温速度で、前記焼成温度まで昇温して、0.1時間〜24時間、好ましくは1時間〜12時間程度、保持して焼成を行えばよい。   The temperature raising rate during firing is not particularly limited as long as it is in a practical range, and is usually 10 ° C / hour to 600 ° C / hour, preferably 50 ° C / hour to 500 ° C / hour. The temperature may be raised to such a firing temperature at such a heating rate, and the firing may be carried out for 0.1 hours to 24 hours, preferably 1 hour to 12 hours.

本発明における電極触媒の炭素量としては、0.1質量%以上50質量%以下、より好ましくは0.5質量%以上45質量%以下、さらにより好ましくは3質量%以上40質量%以下、特に好ましくは15質量%以上35質量%以下である。本発明において、炭素量としてはイグロス値を用い、具体的には、電極触媒をアルミナ坩堝にいれ、大気雰囲気で1000℃で3時間焼成を行ったときに、次の式により算出される炭素量の値を用いる。
炭素量(質量%)=(W−W)/W×100
(ここで、Wは焼成前の電極触媒質量、Wは焼成後の質量である。)
The amount of carbon in the electrode catalyst in the present invention is 0.1% by mass or more and 50% by mass or less, more preferably 0.5% by mass or more and 45% by mass or less, and still more preferably 3% by mass or more and 40% by mass or less. Preferably they are 15 to 35 mass%. In the present invention, the Igros value is used as the carbon amount. Specifically, when the electrode catalyst is placed in an alumina crucible and calcined at 1000 ° C. for 3 hours in an air atmosphere, the carbon amount calculated by the following equation: The value of is used.
Carbon amount (mass%) = (W I −W A ) / W I × 100
(Wherein, W I is an electrode catalyst mass before calcining, the W A is the weight after baking.)

上述の本発明の方法により得られる電極触媒は、酸性電解液中で、高電位下においても使用することができ、高い活性を示すことのできる電極触媒である。   The electrode catalyst obtained by the above-described method of the present invention is an electrode catalyst that can be used in an acidic electrolytic solution even at a high potential and can exhibit high activity.

本発明において、電極触媒のBET比表面積は、15m/g以上500m/g以下であることが好ましく、より好ましくは、50m/g以上300m/g以下である。BET比表面積をこのように設定することで、活性をより高めることができる。 In the present invention, the BET specific surface area of the electrode catalyst is preferably 15 m 2 / g or more and 500 m 2 / g or less, and more preferably 50 m 2 / g or more and 300 m 2 / g or less. By setting the BET specific surface area in this way, the activity can be further increased.

本発明において、電極触媒の以下の式(1)により求めた炭素被覆率は、0.05以上0.5以下であることが好ましく、より好ましくは0.1以上0.3以下である。
炭素被覆率=炭素量(質量%)/BET比表面積(m/g) (1)
In this invention, it is preferable that the carbon coverage calculated | required by the following formula | equation (1) of an electrode catalyst is 0.05 or more and 0.5 or less, More preferably, it is 0.1 or more and 0.3 or less.
Carbon coverage = carbon content (mass%) / BET specific surface area (m 2 / g) (1)

本発明において、電極反応を促進するために、電極触媒の仕事関数値は2eV以上6eV以下であることが好ましく、より好ましくは3eV以上5eV以下である。仕事関数値として、理研計器(株)製の光電子分光装置「AC−2」を用い、光量測定500nW、測定エネルギー4.2eV〜6.2eVの条件で測定し、電流検出時のエネルギー値を用いることができる。   In the present invention, in order to promote the electrode reaction, the work function value of the electrode catalyst is preferably 2 eV or more and 6 eV or less, more preferably 3 eV or more and 5 eV or less. Using a photoelectron spectrometer “AC-2” manufactured by Riken Keiki Co., Ltd. as a work function value, measurement is performed under conditions of light quantity measurement of 500 nW and measurement energy of 4.2 eV to 6.2 eV, and the energy value at the time of current detection is used be able to.

上述の本発明の方法により得られる電極触媒は、チタンおよび酸素を含む金属化合物と、該化合物の表面の少なくとも一部を被覆する炭素材料とから構成され、BET比表面積が15m/g以上500m/g以下であることが好ましい。該電極触媒を電気化学システムの電極触媒として用いることで、より大きな酸素還元電流を取り出すことが可能となる。また、チタンは、資源量が豊富でもあり、このことは、燃料電池などの電気化学システムの普及もしくは大型化などに、有利にはたらく。該電極触媒における好ましいBET比表面積は、50m/g以上300m/g以下である。また、該チタン及び酸素を含む金属化合物としては、酸化チタンが好ましく、より好ましくは、正方晶系(アナターゼ)酸化チタンである。また、該電極触媒は、上記の第一の発明または第二の発明において、金属化合物における金属元素としてTiを用いることにより得ることができる。 The electrode catalyst obtained by the above-described method of the present invention is composed of a metal compound containing titanium and oxygen and a carbon material covering at least a part of the surface of the compound, and has a BET specific surface area of 15 m 2 / g or more and 500 m. 2 / g or less is preferable. By using the electrode catalyst as an electrode catalyst for an electrochemical system, a larger oxygen reduction current can be extracted. Titanium is also abundant in resources, which is advantageous for the spread or enlargement of electrochemical systems such as fuel cells. A preferable BET specific surface area of the electrode catalyst is 50 m 2 / g or more and 300 m 2 / g or less. The metal compound containing titanium and oxygen is preferably titanium oxide, more preferably tetragonal (anatase) titanium oxide. The electrode catalyst can be obtained by using Ti as a metal element in the metal compound in the first invention or the second invention.

上述の本発明の方法により得られる電極触媒は、ジルコニウムおよび酸素を含む金属化合物と、該化合物の表面の少なくとも一部を被覆する炭素材料とから構成され、BET比表面積が15m/g以上500m/g以下であることが好ましい。該電極触媒を電気化学システムの電極触媒として用いることで、より大きな酸素還元電流を取り出すことが可能となる。また、ジルコニウムは、資源量が豊富でもあり、このことは、燃料電池などの電気化学システムの普及もしくは大型化などに、有利にはたらく。該電極触媒における好ましいBET比表面積は、50m/g以上300m/g以下である。また、該ジルコニウム及び酸素を含む金属化合物としては、酸化ジルコニウムが好ましい。また、該電極触媒は、上記の金属化合物における金属元素としてZrを用いることにより得ることができる。 The electrode catalyst obtained by the above-described method of the present invention is composed of a metal compound containing zirconium and oxygen and a carbon material covering at least a part of the surface of the compound, and has a BET specific surface area of 15 m 2 / g or more and 500 m. 2 / g or less is preferable. By using the electrode catalyst as an electrode catalyst for an electrochemical system, a larger oxygen reduction current can be extracted. Zirconium also has abundant resources, which is advantageous for the spread or enlargement of electrochemical systems such as fuel cells. A preferable BET specific surface area of the electrode catalyst is 50 m 2 / g or more and 300 m 2 / g or less. The metal compound containing zirconium and oxygen is preferably zirconium oxide. The electrode catalyst can be obtained by using Zr as a metal element in the metal compound.

電極触媒を用いて、電極触媒を有する電極触媒組成物とすることもできる。電極触媒組成物は、通常、分散媒を有する。電極触媒組成物は、電極触媒を分散媒に分散させて得ることができる。分散媒としては、メタノール、エタノール、イソプロパノール、ノルマルプロパールなどのアルコール類やイオン交換水などの水等があげられる。   It can also be set as the electrode catalyst composition which has an electrode catalyst using an electrode catalyst. The electrode catalyst composition usually has a dispersion medium. The electrode catalyst composition can be obtained by dispersing the electrode catalyst in a dispersion medium. Examples of the dispersion medium include alcohols such as methanol, ethanol, isopropanol, and normal propal, and water such as ion exchange water.

分散の際には、分散剤を用いてもよい。分散剤としては、例えば硝酸、塩酸、硫酸などの無機酸、シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸などの有機酸、オキシ塩化ジルコニウムなどの水溶性ジルコニウム塩、ポリカルボン酸アンモニウム、ポリカルボン酸ナトリウムなどの界面活性剤、エピカテキン、エピガロカテキン、エピガロカテキンガレードなどのカテキン類があげられる。   In dispersing, a dispersing agent may be used. Examples of the dispersant include inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid, organic acids such as oxalic acid, citric acid, acetic acid, malic acid, and lactic acid, water-soluble zirconium salts such as zirconium oxychloride, ammonium polycarboxylate, and polycarboxylic acid. Examples include surfactants such as sodium acid, and catechins such as epicatechin, epigallocatechin, and epigallocatechin galade.

電極触媒組成物は、イオン交換樹脂を含有していてもよい。イオン交換樹脂を含有する場合は、電極触媒組成物は、燃料電池用として特に好適である。イオン交換樹脂としては、ナフィオン(デュポン社の登録商標)などのフッ素系イオン交換樹脂、スルホン化されたフェノールホルムアルデヒド樹脂などの炭化水素系イオン交換樹脂などのカチオン交換樹脂があげられる。   The electrode catalyst composition may contain an ion exchange resin. In the case of containing an ion exchange resin, the electrode catalyst composition is particularly suitable for a fuel cell. Examples of the ion exchange resin include cation exchange resins such as fluorine ion exchange resins such as Nafion (registered trademark of DuPont) and hydrocarbon ion exchange resins such as sulfonated phenol formaldehyde resins.

電極触媒組成物は、導電材を含有してもよい。導電材としてはカーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレン、導電性酸化物、導電性酸化物繊維または導電性樹脂などがあげられる。また、本発明の電極触媒組成物は、Pt、Ru等の貴金属や、Ni、Fe、Co等の遷移金属を含有することもできる。これらの貴金属、遷移金属を含有する場合には、その含有割合は、微量(例えば、電極触媒100質量部に対して、0.1質量部〜10質量部程度)であることが好ましい。   The electrode catalyst composition may contain a conductive material. Examples of the conductive material include carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, fullerene, conductive oxide, conductive oxide fiber, or conductive resin. The electrode catalyst composition of the present invention can also contain a noble metal such as Pt and Ru and a transition metal such as Ni, Fe and Co. When these noble metals and transition metals are contained, the content ratio is preferably a trace amount (for example, about 0.1 to 10 parts by mass with respect to 100 parts by mass of the electrode catalyst).

本発明において、電極触媒は、電気化学システムに用いることができ、好ましくは燃料電池用の電極触媒として、より好ましくは固体高分子形燃料電池用の電極触媒として、よりさらに好ましくは固体高分子形燃料電池のカソード部の電極触媒として用いることができる。   In the present invention, the electrode catalyst can be used in an electrochemical system, preferably as an electrode catalyst for a fuel cell, more preferably as an electrode catalyst for a polymer electrolyte fuel cell, and still more preferably as a polymer electrolyte. It can be used as an electrode catalyst for the cathode portion of a fuel cell.

本発明における電極触媒は、酸性電解質中において可逆水素電極電位に対して0.4V以上の電位で好適に使用することができ、かつ比較的高活性であるために、例えば電気化学システムにおいて、電極に担持され、酸素を還元するために用いられる酸素還元触媒として有用である。酸素還元触媒として用いる場合の電位の好適な上限は、電極触媒の安定性にもより、酸素発生する電位である1.6V程度まで使用可能である。1.6Vを越えると、酸素発生と同時に電極触媒が表面から除々に酸化されて、電極触媒が完全に酸化物になって、失活してしまうこともある。電位が0.4V未満では、電極触媒の安定性という観点では好適とはいえるものの、酸素還元触媒という観点からは有用性に乏しいこともある。   The electrode catalyst in the present invention can be suitably used at a potential of 0.4 V or more with respect to the reversible hydrogen electrode potential in an acidic electrolyte and is relatively high in activity. And is useful as an oxygen reduction catalyst used to reduce oxygen. A suitable upper limit of the potential when used as an oxygen reduction catalyst can be used up to about 1.6 V, which is a potential for generating oxygen, depending on the stability of the electrode catalyst. When the voltage exceeds 1.6 V, the electrode catalyst is gradually oxidized from the surface simultaneously with the generation of oxygen, and the electrode catalyst may be completely converted into an oxide and deactivated. If the potential is less than 0.4 V, it can be said that it is preferable from the viewpoint of stability of the electrode catalyst, but it may be less useful from the viewpoint of an oxygen reduction catalyst.

電極触媒組成物は、カーボンクロス、カーボンペーパー等の電極に担持させて、酸性電解質中での水の電気分解、有機物の電気分解などに用いることもできる。また、固体高分子形燃料電池やリン酸形燃料電池等の燃料電池を構成する電極に担持させて用いることもできる。   The electrode catalyst composition can be supported on an electrode such as carbon cloth or carbon paper and used for electrolysis of water in an acidic electrolyte, electrolysis of organic matter, or the like. It can also be used by being supported on an electrode constituting a fuel cell such as a polymer electrolyte fuel cell or a phosphoric acid fuel cell.

以下、実施例によって本発明をより詳細に説明するが、本発明はこれら実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by these Examples.

なお、各実施例における評価方法は以下の通りである。
(1)BET比表面積(m2/g)は、窒素吸着法により求めた。
(2)結晶構造は粉末X線回折装置を用いて行った。
(3)炭素量は、得られた電極触媒をアルミナ坩堝にいれ、箱型炉にて大気雰囲気で1000℃で3時間焼成し、次の式により算出される炭素量の値(イグロス値)を用いた。
炭素量(質量%)=(W−W)/W×100
(ここで、Wは焼成前の電極触媒質量、Wは焼成後の質量である。)
(4)炭素被覆率は次の式にて算出した。
炭素被覆率=炭素量(質量%)/BET比表面積(m2/g)
In addition, the evaluation method in each Example is as follows.
(1) The BET specific surface area (m 2 / g) was determined by a nitrogen adsorption method.
(2) The crystal structure was performed using a powder X-ray diffractometer.
(3) The amount of carbon is obtained by placing the obtained electrode catalyst in an alumina crucible, firing it in a box furnace at 1000 ° C. for 3 hours in the atmosphere, and calculating the carbon amount value (igross value) calculated by the following equation: Using.
Carbon amount (mass%) = (W I −W A ) / W I × 100
(Wherein, W I is an electrode catalyst mass before calcining, the W A is the weight after baking.)
(4) The carbon coverage was calculated by the following formula.
Carbon coverage = carbon content (mass%) / BET specific surface area (m 2 / g)

実施例1
〔電極触媒の調製〕
第一材料のスラリーとして、メタチタン酸スラリー溶液(チタン工業(株)製、AFスラリー)、第二材料として、グルコース(関東化学(株)製)、第三材料を含む水溶液として、NH水(関東化学(株)製、28.0〜30.0質量%)を用いた。純水に第一材料の固形分濃度が0.5質量%、第二材料のグルコースが2.0質量%、第三材料を含む水溶液であるNH水が0.7質量%、ケッチェンブラックEC300J(ライオン(株)製)が0.125質量%となるように添加し溶解および分散させ混合物を得た。内容積5ccのハステロイ製容器内に、混合物2.5mlを入れ容器を密閉した後、これを400℃に加熱した電気炉内に入れて超臨界状態とし、振盪しながら10分加熱して、水熱反応を行った。反応後に冷却を行い、60℃、3時間の条件で乾燥して、電極触媒の前駆体を得た。該前駆体を、アルミナ製ボートに入れ、内容積13.4Lの管状型電気炉〔(株)モトヤマ製〕中で、窒素流通下にて1.5L/分の流量で流通させながら、昇温速度300℃/時間で室温(約25℃)から800℃まで昇温し、800℃で1時間保持することで焼成して、電極触媒1を得た。得られた電極触媒1は、炭素で被覆された酸化チタンであった。電極触媒1のBET比表面積は101m2/g、炭素量は28質量%、炭素被覆率は0.28、結晶形は正方晶系(アナターゼ)であった。図3に、この電極触媒の粉末X線回折図形を示す。
Example 1
(Preparation of electrode catalyst)
As a slurry of the first material, metatitanic acid slurry solution (manufactured by Titanium Industry Co., Ltd., AF slurry), as the second material, glucose (manufactured by Kanto Chemical Co., Ltd.), as an aqueous solution containing the third material, NH 3 water ( Kanto Chemical Co., Ltd., 28.0-30.0 mass%) was used. The solid content concentration of the first material is 0.5% by mass in pure water, the second material glucose is 2.0% by mass, the aqueous NH 3 water containing the third material is 0.7% by mass, Ketjen Black EC300J (manufactured by Lion Corporation) was added so as to be 0.125% by mass, and dissolved and dispersed to obtain a mixture. After placing 2.5 ml of the mixture in a 5 cc Hastelloy container and sealing the container, the container is placed in an electric furnace heated to 400 ° C. to be in a supercritical state, heated for 10 minutes while shaking, A thermal reaction was performed. After the reaction, cooling was performed, and drying was performed at 60 ° C. for 3 hours to obtain an electrode catalyst precursor. The precursor was placed in an alumina boat and heated while flowing at a flow rate of 1.5 L / min under a nitrogen flow in a tubular electric furnace (manufactured by Motoyama Co., Ltd.) having an internal volume of 13.4 L. The temperature was raised from room temperature (about 25 ° C.) to 800 ° C. at a rate of 300 ° C./hour, and calcined by holding at 800 ° C. for 1 hour to obtain an electrode catalyst 1. The obtained electrode catalyst 1 was titanium oxide coated with carbon. Electrode catalyst 1 had a BET specific surface area of 101 m 2 / g, a carbon content of 28% by mass, a carbon coverage of 0.28, and a crystal form of tetragonal system (anatase). FIG. 3 shows a powder X-ray diffraction pattern of this electrode catalyst.

〔電気化学システムでの評価〕
電極触媒1を0.02g秤量し、純水5mLとイソプロピルアルコール5mLの混合溶媒に添加し、超音波を照射して懸濁液とした。この懸濁液20μLをグラッシーカーボン電極〔6mm径、電極面積は28.3mm2〕に塗布、乾燥し、その上に「ナフィオン(登録商標)」〔デュポン社製、固形分濃度5質量%の十倍希釈サンプル〕を13μL塗布、乾燥後、真空乾燥機にて1時間処理をすることで電極触媒をグラッシーカーボン電極上に担持させた修飾電極を得た。この修飾電極を濃度0.1モル/Lの硫酸水溶液中に浸漬し、室温、大気圧下、酸素雰囲気および窒素雰囲気において、銀塩化銀電極電位に対して−0.25〜0.75V(可逆水素電極電位換算0.025〜1.025V)の走査範囲で、50mV/sの走査速度で電位をサイクルした。サイクルごとの各電位における電流値を比較し、電極安定性を確認したところ、走査電位範囲内で電流値の変動はなく、安定していた。また、可逆水素電極電位に対して0.4Vの電位での酸素雰囲気と窒素雰囲気の電流値を比較し、酸素還元電流を求めたところ、電極の単位面積当たりで2345μA/cm2を示し、0.6Vの電位での酸素雰囲気と窒素雰囲気の電流値を比較し、酸素還元電流を求めたところ、電極の単位面積当たりで794μA/cm2を示した。
[Evaluation by electrochemical system]
0.02 g of electrode catalyst 1 was weighed, added to a mixed solvent of 5 mL of pure water and 5 mL of isopropyl alcohol, and irradiated with ultrasonic waves to form a suspension. 20 μL of this suspension was applied to a glassy carbon electrode (6 mm diameter, electrode area: 28.3 mm 2 ), dried, and then “Nafion (registered trademark)” (manufactured by DuPont, solid content concentration of 5% by mass). After applying 13 μL of the [double diluted sample] and drying, a modified electrode in which the electrode catalyst was supported on the glassy carbon electrode was obtained by treating with a vacuum dryer for 1 hour. This modified electrode is immersed in an aqueous sulfuric acid solution having a concentration of 0.1 mol / L, and is −0.25 to 0.75 V (reversible) with respect to the silver-silver chloride electrode potential at room temperature, atmospheric pressure, oxygen atmosphere and nitrogen atmosphere. The potential was cycled at a scanning speed of 50 mV / s in a scanning range of hydrogen electrode potential conversion 0.025 to 1.025 V). When the current stability at each potential for each cycle was compared and the electrode stability was confirmed, the current value did not fluctuate within the scanning potential range and was stable. Further, when the current values of the oxygen atmosphere and the nitrogen atmosphere at a potential of 0.4 V with respect to the reversible hydrogen electrode potential were compared and the oxygen reduction current was determined, it showed 2345 μA / cm 2 per unit area of the electrode. The oxygen reduction current was determined by comparing the current values of the oxygen atmosphere and the nitrogen atmosphere at a potential of .6 V, and it showed 794 μA / cm 2 per unit area of the electrode.

実施例2
〔電極触媒の調製〕
NH水が2.0質量%となるように添加した以外は実施例1と同様の条件で電極触媒2を得た。電極触媒1のBET比表面積は90m2/g、炭素量は22質量%、炭素被覆率は0.24、結晶形は正方晶系(アナターゼ)であった。図4に、この電極触媒の粉末X線回折図形を示す。
Example 2
(Preparation of electrode catalyst)
An electrode catalyst 2 was obtained under the same conditions as in Example 1 except that NH 3 water was added so as to be 2.0% by mass. Electrode catalyst 1 had a BET specific surface area of 90 m 2 / g, a carbon content of 22% by mass, a carbon coverage of 0.24, and a crystal form of tetragonal system (anatase). FIG. 4 shows a powder X-ray diffraction pattern of this electrode catalyst.

〔電気化学システムでの評価〕
電極触媒1を0.02g秤量し、純水5mLとイソプロピルアルコール5mLの混合溶媒に添加し、超音波を照射して懸濁液とした。この懸濁液20μLをグラッシーカーボン電極〔6mm径、電極面積は28.3mm2〕に塗布、乾燥し、その上に「ナフィオン(登録商標)」〔デュポン社製、固形分濃度5質量%の十倍希釈サンプル〕を13μL塗布、乾燥後、真空乾燥機にて1時間処理をすることで電極触媒をグラッシーカーボン電極上に担持させた修飾電極を得た。この修飾電極を濃度0.1モル/Lの硫酸水溶液中に浸漬し、室温、大気圧下、酸素雰囲気および窒素雰囲気において、銀塩化銀電極電位に対して−0.25〜0.75V(可逆水素電極電位換算0.025〜1.025V)の走査範囲で、50mV/sの走査速度で電位をサイクルした。サイクルごとの各電位における電流値を比較し、電極安定性を確認したところ、走査電位範囲内で電流値の変動はなく、安定していた。また、可逆水素電極電位に対して0.4Vの電位での酸素雰囲気と窒素雰囲気の電流値を比較し、酸素還元電流を求めたところ、電極の単位面積当たりで2512μA/cm2を示し、0.6Vの電位での酸素雰囲気と窒素雰囲気の電流値を比較し、酸素還元電流を求めたところ、電極の単位面積当たりで1125μA/cm2を示した。
[Evaluation by electrochemical system]
0.02 g of electrode catalyst 1 was weighed, added to a mixed solvent of 5 mL of pure water and 5 mL of isopropyl alcohol, and irradiated with ultrasonic waves to form a suspension. 20 μL of this suspension was applied to a glassy carbon electrode (6 mm diameter, electrode area: 28.3 mm 2 ), dried, and then “Nafion (registered trademark)” (manufactured by DuPont, solid content concentration of 5% by mass). After applying 13 μL of the [double diluted sample] and drying, a modified electrode in which the electrode catalyst was supported on the glassy carbon electrode was obtained by treating with a vacuum dryer for 1 hour. This modified electrode is immersed in an aqueous sulfuric acid solution having a concentration of 0.1 mol / L, and is −0.25 to 0.75 V (reversible) with respect to the silver-silver chloride electrode potential at room temperature, atmospheric pressure, oxygen atmosphere and nitrogen atmosphere. The potential was cycled at a scanning speed of 50 mV / s in a scanning range of hydrogen electrode potential conversion 0.025 to 1.025 V). When the current stability at each potential for each cycle was compared and the electrode stability was confirmed, the current value did not fluctuate within the scanning potential range and was stable. Further, when the current values of the oxygen atmosphere and the nitrogen atmosphere at a potential of 0.4 V with respect to the reversible hydrogen electrode potential were compared and the oxygen reduction current was determined, it showed 2512 μA / cm 2 per unit area of the electrode. The oxygen reduction current was determined by comparing the current values of the oxygen atmosphere and the nitrogen atmosphere at a potential of .6 V, and found to be 1125 μA / cm 2 per unit area of the electrode.

実施例3
〔電極触媒の調製〕
NH水が5.5質量%となるように添加した以外は実施例1と同様の条件で電極触媒2を得た。電極触媒1のBET比表面積は89m2/g、炭素量は18質量%、炭素被覆率は0.20、結晶形は正方晶系(アナターゼ)であった。図5に、この電極触媒の粉末X線回折図形を示す。
Example 3
(Preparation of electrode catalyst)
An electrode catalyst 2 was obtained under the same conditions as in Example 1 except that NH 3 water was added so as to be 5.5% by mass. Electrode catalyst 1 had a BET specific surface area of 89 m 2 / g, a carbon content of 18% by mass, a carbon coverage of 0.20, and a crystal form of tetragonal system (anatase). FIG. 5 shows a powder X-ray diffraction pattern of this electrode catalyst.

〔電気化学システムでの評価〕
電極触媒1を0.02g秤量し、純水5mLとイソプロピルアルコール5mLの混合溶媒に添加し、超音波を照射して懸濁液とした。この懸濁液20μLをグラッシーカーボン電極〔6mm径、電極面積は28.3mm2〕に塗布、乾燥し、その上に「ナフィオン(登録商標)」〔デュポン社製、固形分濃度5質量%の十倍希釈サンプル〕を13μL塗布、乾燥後、真空乾燥機にて1時間処理をすることで電極触媒をグラッシーカーボン電極上に担持させた修飾電極を得た。この修飾電極を濃度0.1モル/Lの硫酸水溶液中に浸漬し、室温、大気圧下、酸素雰囲気および窒素雰囲気において、銀塩化銀電極電位に対して−0.25〜0.75V(可逆水素電極電位換算0.025〜1.025V)の走査範囲で、50mV/sの走査速度で電位をサイクルした。サイクルごとの各電位における電流値を比較し、電極安定性を確認したところ、走査電位範囲内で電流値の変動はなく、安定していた。また、可逆水素電極電位に対して0.4Vの電位での酸素雰囲気と窒素雰囲気の電流値を比較し、酸素還元電流を求めたところ、電極の単位面積当たりで2674μA/cm2を示し、0.6Vの電位での酸素雰囲気と窒素雰囲気の電流値を比較し、酸素還元電流を求めたところ、電極の単位面積当たりで1095μA/cm2を示した。
[Evaluation by electrochemical system]
0.02 g of electrode catalyst 1 was weighed, added to a mixed solvent of 5 mL of pure water and 5 mL of isopropyl alcohol, and irradiated with ultrasonic waves to form a suspension. 20 μL of this suspension was applied to a glassy carbon electrode (6 mm diameter, electrode area: 28.3 mm 2 ), dried, and then “Nafion (registered trademark)” (manufactured by DuPont, solid content concentration of 5% by mass). After applying 13 μL of the [double diluted sample] and drying, a modified electrode in which the electrode catalyst was supported on the glassy carbon electrode was obtained by treating with a vacuum dryer for 1 hour. This modified electrode is immersed in an aqueous sulfuric acid solution having a concentration of 0.1 mol / L, and is −0.25 to 0.75 V (reversible) with respect to the silver-silver chloride electrode potential at room temperature, atmospheric pressure, oxygen atmosphere and nitrogen atmosphere. The potential was cycled at a scanning speed of 50 mV / s in a scanning range of hydrogen electrode potential conversion 0.025 to 1.025 V). When the current stability at each potential for each cycle was compared and the electrode stability was confirmed, the current value did not fluctuate within the scanning potential range and was stable. Further, the current value of the oxygen atmosphere and the nitrogen atmosphere at a potential of 0.4 V with respect to the reversible hydrogen electrode potential was compared, and the oxygen reduction current was obtained. As a result, it showed 2674 μA / cm 2 per unit area of the electrode, and 0 The oxygen reduction current was determined by comparing the current values of the oxygen atmosphere and the nitrogen atmosphere at a potential of .6 V. The result showed 1095 μA / cm 2 per unit area of the electrode.

実施例4
〔電極触媒の調製〕
NH水が12.3質量%となるように添加した以外は実施例1と同様の条件で電極触媒2を得た。電極触媒1のBET比表面積は81m2/g、炭素量は16質量%、炭素被覆率は0.20、結晶形は正方晶系(アナターゼ)であった。図6に、この電極触媒の粉末X線回折図形を示す。
Example 4
(Preparation of electrode catalyst)
An electrode catalyst 2 was obtained under the same conditions as in Example 1 except that NH 3 water was added so as to be 12.3% by mass. Electrode catalyst 1 had a BET specific surface area of 81 m 2 / g, a carbon content of 16% by mass, a carbon coverage of 0.20, and a crystal form of tetragonal system (anatase). FIG. 6 shows a powder X-ray diffraction pattern of this electrode catalyst.

〔電気化学システムでの評価〕
電極触媒1を0.02g秤量し、純水5mLとイソプロピルアルコール5mLの混合溶媒に添加し、超音波を照射して懸濁液とした。この懸濁液20μLをグラッシーカーボン電極〔6mm径、電極面積は28.3mm2〕に塗布、乾燥し、その上に「ナフィオン(登録商標)」〔デュポン社製、固形分濃度5質量%の十倍希釈サンプル〕を13μL塗布、乾燥後、真空乾燥機にて1時間処理をすることで電極触媒をグラッシーカーボン電極上に担持させた修飾電極を得た。この修飾電極を濃度0.1モル/Lの硫酸水溶液中に浸漬し、室温、大気圧下、酸素雰囲気および窒素雰囲気において、銀塩化銀電極電位に対して−0.25〜0.75V(可逆水素電極電位換算0.025〜1.025V)の走査範囲で、50mV/sの走査速度で電位をサイクルした。サイクルごとの各電位における電流値を比較し、電極安定性を確認したところ、走査電位範囲内で電流値の変動はなく、安定していた。また、可逆水素電極電位に対して0.4Vの電位での酸素雰囲気と窒素雰囲気の電流値を比較し、酸素還元電流を求めたところ、電極の単位面積当たりで2851μA/cm2を示し、0.6Vの電位での酸素雰囲気と窒素雰囲気の電流値を比較し、酸素還元電流を求めたところ、電極の単位面積当たりで980μA/cm2を示した。
[Evaluation by electrochemical system]
0.02 g of electrode catalyst 1 was weighed, added to a mixed solvent of 5 mL of pure water and 5 mL of isopropyl alcohol, and irradiated with ultrasonic waves to form a suspension. 20 μL of this suspension was applied to a glassy carbon electrode (6 mm diameter, electrode area: 28.3 mm 2 ), dried, and then “Nafion (registered trademark)” (manufactured by DuPont, solid content concentration of 5% by mass). After applying 13 μL of the [double diluted sample] and drying, a modified electrode in which the electrode catalyst was supported on the glassy carbon electrode was obtained by treating with a vacuum dryer for 1 hour. This modified electrode is immersed in an aqueous sulfuric acid solution having a concentration of 0.1 mol / L, and is −0.25 to 0.75 V (reversible) with respect to the silver-silver chloride electrode potential at room temperature, atmospheric pressure, oxygen atmosphere and nitrogen atmosphere. The potential was cycled at a scanning speed of 50 mV / s in a scanning range of hydrogen electrode potential conversion 0.025 to 1.025 V). When the current stability at each potential for each cycle was compared and the electrode stability was confirmed, the current value did not fluctuate within the scanning potential range and was stable. Further, when the current values of the oxygen atmosphere and the nitrogen atmosphere at a potential of 0.4 V with respect to the reversible hydrogen electrode potential were compared and the oxygen reduction current was determined, it showed 2851 μA / cm 2 per unit area of the electrode, and 0 The current values of the oxygen atmosphere and the nitrogen atmosphere at a potential of .6 V were compared, and the oxygen reduction current was determined to be 980 μA / cm 2 per unit area of the electrode.

製造例1:第一材料(Ti含有化合物)のスラリー調製
硫酸チタン(IV)溶液(関東化学(株)製、硫酸チタン24.0質量%)を、硫酸チタン濃度が12質量%になるように水で希釈した水溶液と、NH水(関東化学(株)製、28.0〜30.0質量%)を、NH濃度が4質量%になるように水で希釈した水溶液とを用いて、中和を行い、得られた沈殿物をろ過、洗浄して、第一材料(Ti含有化合物)を得た。図7に、この第一材料の粉末X線回折図形を示す。この第一材料を、NHが0.7質量%となるように水で調整した水溶液に1質量%の濃度で分散させTi含有化合物スラリーを得た。
Production Example 1: Slurry preparation of first material (Ti-containing compound) A titanium sulfate (IV) solution (manufactured by Kanto Chemical Co., Ltd., titanium sulfate 24.0% by mass) was adjusted so that the titanium sulfate concentration was 12% by mass. Using an aqueous solution diluted with water and an aqueous solution obtained by diluting NH 3 water (manufactured by Kanto Chemical Co., Ltd., 28.0 to 30.0% by mass) with water so that the NH 3 concentration becomes 4% by mass. Neutralization was performed, and the resulting precipitate was filtered and washed to obtain a first material (Ti-containing compound). FIG. 7 shows a powder X-ray diffraction pattern of the first material. This first material was dispersed at a concentration of 1% by mass in an aqueous solution prepared with water so that NH 3 was 0.7% by mass to obtain a Ti-containing compound slurry.

実施例5
〔電極触媒の調製〕
第一材料のスラリーとして、製造例1により得られたTi含有化合物スラリーを用いた。第二材料として、グルコース(関東化学(株)製)を用い、第三材料を含む水溶液として、NH水(関東化学(株)製、28.0〜30.0質量%)を用い、その他の材料として、ケッチェンブラックEC300J(ライオン(株)製)を用いた。第三材料を含む水溶液であるNH水が0.7質量%となるように水で調整した水溶液に、グルコースが4質量%、ケッチェンブラックEC300Jが0.025質量%となる濃度で溶解および分散させ、第二材料、第三材料およびその他の材料含有溶液を得た。内容積5ccのハステロイ製容器内に、Ti含有化合物スラリーと、第二材料、第三材料およびその他の材料含有溶液とを、それぞれ1.25mlずつ入れて、混合物を得た。前記容器を密閉した後、これを400℃に加熱した電気炉内に入れて超臨界状態とし、振盪しながら10分加熱して、水熱反応を行った。反応後に冷却を行い、60℃、3時間の条件で乾燥して、電極触媒の前駆体を得た。該前駆体を、アルミナ製ボートに入れ、内容積13.4Lの管状型電気炉〔(株)モトヤマ製〕中で、窒素流通下にて1.5L/分の流量で流通させながら、昇温速度300℃/時間で室温(約25℃)から800℃まで昇温し、800℃で1時間保持することで焼成して、電極触媒1を得た。得られた電極触媒1は、炭素で被覆された酸化チタンであった。電極触媒1のBET比表面積は100m2/g、炭素量は22質量%、炭素被覆率は0.22、結晶形は正方晶系(アナターゼ)であった。図8に、この電極触媒の粉末X線回折図形を示す。
Example 5
(Preparation of electrode catalyst)
The Ti-containing compound slurry obtained in Production Example 1 was used as the first material slurry. Glucose (manufactured by Kanto Chemical Co., Inc.) is used as the second material, NH 3 water (manufactured by Kanto Chemical Co., Ltd., 28.0 to 30.0% by mass) is used as the aqueous solution containing the third material, and others. As the material, Ketjen Black EC300J (manufactured by Lion Corporation) was used. In an aqueous solution adjusted with water so that NH 3 water, which is an aqueous solution containing the third material, is 0.7% by mass, glucose is dissolved at a concentration of 4% by mass and Ketjen Black EC300J is 0.025% by mass. Dispersion was performed to obtain second material, third material and other material-containing solutions. 1.25 ml each of the Ti-containing compound slurry, the second material, the third material, and the other material-containing solution were placed in a Hastelloy container having an internal volume of 5 cc to obtain a mixture. After sealing the vessel, it was placed in an electric furnace heated to 400 ° C. to be in a supercritical state, heated for 10 minutes with shaking, and subjected to a hydrothermal reaction. After the reaction, cooling was performed, and drying was performed at 60 ° C. for 3 hours to obtain an electrode catalyst precursor. The precursor was placed in an alumina boat and heated while flowing at a flow rate of 1.5 L / min under a nitrogen flow in a tubular electric furnace (manufactured by Motoyama Co., Ltd.) having an internal volume of 13.4 L. The temperature was raised from room temperature (about 25 ° C.) to 800 ° C. at a rate of 300 ° C./hour, and calcined by holding at 800 ° C. for 1 hour to obtain an electrode catalyst 1. The obtained electrode catalyst 1 was titanium oxide coated with carbon. Electrode catalyst 1 had a BET specific surface area of 100 m 2 / g, a carbon content of 22% by mass, a carbon coverage of 0.22, and a crystal form of tetragonal system (anatase). FIG. 8 shows a powder X-ray diffraction pattern of this electrode catalyst.

〔電気化学システムでの評価〕
電極触媒1を0.02g秤量し、純水5mLとイソプロピルアルコール5mLの混合溶媒に添加し、超音波を照射して懸濁液とした。この懸濁液20μLをグラッシーカーボン電極〔6mm径、電極面積は28.3mm2〕に塗布、乾燥し、その上に「ナフィオン(登録商標)」〔デュポン社製、固形分濃度5質量%の十倍希釈サンプル〕を13μL塗布、乾燥後、真空乾燥機にて1時間処理をすることで電極触媒をグラッシーカーボン電極上に担持させた修飾電極を得た。この修飾電極を濃度0.1モル/Lの硫酸水溶液中に浸漬し、室温、大気圧下、酸素雰囲気および窒素雰囲気において、銀塩化銀電極電位に対して−0.25〜0.75V(可逆水素電極電位換算0.025〜1.025V)の走査範囲で、50mV/sの走査速度で電位をサイクルした。サイクルごとの各電位における電流値を比較し、電極安定性を確認したところ、走査電位範囲内で電流値の変動はなく、安定していた。また、可逆水素電極電位に対して0.4Vの電位での酸素雰囲気と窒素雰囲気の電流値を比較し、酸素還元電流を求めたところ、電極の単位面積当たりで2228μA/cm2を示し、0.6Vの電位での酸素雰囲気と窒素雰囲気の電流値を比較し、酸素還元電流を求めたところ、電極の単位面積当たりで583μA/cm2を示した。
[Evaluation by electrochemical system]
0.02 g of electrode catalyst 1 was weighed, added to a mixed solvent of 5 mL of pure water and 5 mL of isopropyl alcohol, and irradiated with ultrasonic waves to form a suspension. 20 μL of this suspension was applied to a glassy carbon electrode (6 mm diameter, electrode area: 28.3 mm 2 ), dried, and then “Nafion (registered trademark)” (manufactured by DuPont, solid content concentration of 5% by mass). After applying 13 μL of the [double diluted sample] and drying, a modified electrode in which the electrode catalyst was supported on the glassy carbon electrode was obtained by treating with a vacuum dryer for 1 hour. This modified electrode is immersed in an aqueous sulfuric acid solution having a concentration of 0.1 mol / L, and is −0.25 to 0.75 V (reversible) with respect to the silver-silver chloride electrode potential at room temperature, atmospheric pressure, oxygen atmosphere and nitrogen atmosphere. The potential was cycled at a scanning speed of 50 mV / s in a scanning range of hydrogen electrode potential conversion 0.025 to 1.025 V). When the current stability at each potential for each cycle was compared and the electrode stability was confirmed, the current value did not fluctuate within the scanning potential range and was stable. Further, when the current values of the oxygen atmosphere and the nitrogen atmosphere at a potential of 0.4 V with respect to the reversible hydrogen electrode potential were compared and the oxygen reduction current was determined, it showed 2228 μA / cm 2 per unit area of the electrode, and 0 The oxygen reduction current was determined by comparing the current values of the oxygen atmosphere and the nitrogen atmosphere at a potential of .6 V, and it showed 583 μA / cm 2 per unit area of the electrode.

11,21・・・水タンク、22・・・原料タンク、13,23・・・送液ポンプ、14,24・・・加熱器、30・・・混合部、40・・・反応器、41・・・内部配管、44・・・加熱器、51・・・冷却器、52・・・フィルター、53・・・背圧弁、60・・・回収容器、110,210,220・・・弁 11, 21 ... Water tank, 22 ... Raw material tank, 13, 23 ... Liquid feed pump, 14, 24 ... Heater, 30 ... Mixing unit, 40 ... Reactor, 41 ... Internal piping, 44 ... Heater, 51 ... Cooler, 52 ... Filter, 53 ... Back pressure valve, 60 ... Collection container, 110, 210, 220 ... Valve

Claims (4)

以下の第一材料、以下の第二材料および以下の第三材料を含有する混合物を、超臨界状態または亜臨界状態の水の存在下において水熱反応させて得られる電極触媒の前駆体を、以下の第二材料が炭素材料に変化する条件にて焼成する工程を含む電極触媒の製造方法:
第一材料は、4A族元素および5A族元素からなる群より選択される1種以上の金属元素と、水素、窒素、塩素、炭素、硼素、硫黄および酸素からなる群より選択される1種以上の非金属元素とで構成される金属化合物であり、
第二材料は、炭素材料前駆体であり、
第三材料は、窒素含有化合物である。
A precursor of an electrocatalyst obtained by hydrothermal reaction of a mixture containing the following first material, the following second material, and the following third material in the presence of supercritical or subcritical water, A method for producing an electrocatalyst comprising a step of firing under the condition that the following second material changes to a carbon material:
The first material is one or more metal elements selected from the group consisting of Group 4A elements and Group 5A elements, and one or more selected from the group consisting of hydrogen, nitrogen, chlorine, carbon, boron, sulfur and oxygen A non-metallic element composed of a metal compound,
The second material is a carbon material precursor,
The third material is a nitrogen-containing compound.
第一材料における前記金属元素が、ZrまたはTiである請求項1に記載の方法。   The method according to claim 1, wherein the metal element in the first material is Zr or Ti. 第三材料における窒素含有化合物が、アンモニアである請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the nitrogen-containing compound in the third material is ammonia. 前記焼成の雰囲気が、無酸素の雰囲気である請求項1〜3のいずれかに記載の方法。   The method according to claim 1, wherein the firing atmosphere is an oxygen-free atmosphere.
JP2010149333A 2010-06-30 2010-06-30 Method for producing electrode catalyst Pending JP2012011296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149333A JP2012011296A (en) 2010-06-30 2010-06-30 Method for producing electrode catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149333A JP2012011296A (en) 2010-06-30 2010-06-30 Method for producing electrode catalyst

Publications (2)

Publication Number Publication Date
JP2012011296A true JP2012011296A (en) 2012-01-19
JP2012011296A5 JP2012011296A5 (en) 2013-06-06

Family

ID=45598374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149333A Pending JP2012011296A (en) 2010-06-30 2010-06-30 Method for producing electrode catalyst

Country Status (1)

Country Link
JP (1) JP2012011296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033600A (en) * 2018-08-30 2020-03-05 株式会社グラヴィトン Electrolyzer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298602A (en) * 2008-06-10 2009-12-24 Sumitomo Chemical Co Ltd Production method of metal carbonitride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298602A (en) * 2008-06-10 2009-12-24 Sumitomo Chemical Co Ltd Production method of metal carbonitride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033600A (en) * 2018-08-30 2020-03-05 株式会社グラヴィトン Electrolyzer
JP7179314B2 (en) 2018-08-30 2022-11-29 グローバル・リンク株式会社 Manufacturing method for anode and cathode of electrolyzer

Similar Documents

Publication Publication Date Title
Yu et al. Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis
JP5353287B2 (en) Electrocatalyst production method and electrode catalyst
Nikiforov et al. WC as a non-platinum hydrogen evolution electrocatalyst for high temperature PEM water electrolysers
CN106498435B (en) A kind of cathode of electrolytic tank of solid oxide material and preparation method thereof
CN101733095B (en) Catalyst for water electrolysis and preparation and application thereof
WO2010110469A1 (en) Method for producing electrode catalyst, and electrode catalyst
CN105244513A (en) Graphite-phase carbon nitride-modified carbon black-loaded platinum-palladium alloy nano electrocatalyst and preparation method
WO2008040222A1 (en) Nanometer powder catalyst and its prepartion method
KR101834109B1 (en) Nitrogen-containing carbon material and method for manufacturing same, and slurry, ink, and electrode for fuel cell
Huang et al. Synthesis of high-performance titanium sub-oxides for electrochemical applications using combination of sol–gel and vacuum-carbothermic processes
WO2010150793A1 (en) Method for producing electrode catalyst
CN111483999B (en) Preparation method of nitrogen-doped carbon nanotube, nitrogen-doped carbon nanotube and application of nitrogen-doped carbon nanotube
CN106241861A (en) A kind of bar-shaped sub-titanium oxide powder and preparation method thereof
Yang et al. Rh/RhO x nanosheets as pH-universal bifunctional catalysts for hydrazine oxidation and hydrogen evolution reactions
US20130192985A1 (en) Electrode catalyst
Singh et al. Preparation and electrochemical characterization of a new NiMoO 4 catalyst for electrochemical O 2 evolution
JP5146121B2 (en) Method for producing metal carbonitride
Bei et al. Efficient reduction of CO2 to formate using in situ prepared nano-sized Bi electrocatalyst
Rani et al. Binder free, robust and scalable CuO@ GCE modified electrodes for efficient electrochemical water oxidation
WO2012002550A1 (en) Method for producing electrode catalyst
Rho et al. Research trends on minimizing the size of noble metal catalysts for Li-CO2 batteries: From nanoparticle to single atom
WO2012020719A1 (en) Manufacturing method for electrode catalyst, and electrode catalyst
JP2013206651A (en) Method for manufacturing electrode catalyst, electrode catalyst, electrode catalyst composition, and fuel battery
JP2012011296A (en) Method for producing electrode catalyst
JP2012223693A (en) Method for producing electrode catalyst

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701