JP2012009885A - Lighting system - Google Patents

Lighting system Download PDF

Info

Publication number
JP2012009885A
JP2012009885A JP2011183561A JP2011183561A JP2012009885A JP 2012009885 A JP2012009885 A JP 2012009885A JP 2011183561 A JP2011183561 A JP 2011183561A JP 2011183561 A JP2011183561 A JP 2011183561A JP 2012009885 A JP2012009885 A JP 2012009885A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
light
light source
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011183561A
Other languages
Japanese (ja)
Other versions
JP5348203B2 (en
Inventor
Kiyoyuki Kaburagi
清幸 蕪木
Yoichi Mizukawa
洋一 水川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2011183561A priority Critical patent/JP5348203B2/en
Publication of JP2012009885A publication Critical patent/JP2012009885A/en
Application granted granted Critical
Publication of JP5348203B2 publication Critical patent/JP5348203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heating unit that effectively uses radiation from a heat transfer plate of the heating unit including a light source and the heat transfer plate.SOLUTION: In the heating unit that irradiates the heat transfer plate by a halogen lamp and heats a body to be heated with heat transferred from the irradiated heat transfer plate, the heat transfer plate comprises a holder which has optical transparency and a heat transfer body which is provided to the holder on the side of the body to be heated, and absorbs light transmitted through the holder to generate heat. A light source-side surface of the holder is processed into a mirror surface, and a surface roughness Ra (μm) of the surface processed into a mirror surface has a value smaller than a wavelength of 2.5 (μm) of the radiant light radiated by the heat transfer body.

Description

この発明は、半導体ウエハやディスプレイパネル等の基板の加熱処理、もしくは、ガラスやプラスチック等の加熱用の光照射式の加熱ユニットに関するものであり、特に、光源からの光を伝熱板に照射し、該伝熱板からの輻射により被加熱物を加熱する加熱ユニットに係わるものである。   The present invention relates to a light irradiation type heating unit for heating a substrate such as a semiconductor wafer or a display panel, or for heating glass or plastic, and in particular, irradiates a heat transfer plate with light from a light source. The present invention relates to a heating unit that heats an object to be heated by radiation from the heat transfer plate.

従来、半導体ウエハを処理するなどのプロセスにおいては、アニール処理、成膜処理、スパッタ処理等の各種の加熱処理が用いられている。また、ウエハ処理だけでなく、ディスプレイを製造するためのガラス基板処理プロセスにおいても加熱処理が行われている。   Conventionally, various processes such as annealing, film formation, and sputtering are used in processes such as processing semiconductor wafers. In addition to wafer processing, heat treatment is also performed in a glass substrate processing process for manufacturing a display.

このような加熱処理を行う加熱ユニットとしては、加熱処理を行うときに、ワーク表面の温度分布を均一になるように加熱するために、加熱源( 光照射式加熱ユニットにおいてはランプ) とワークの間に、均熱板といわれる部材を設けたものが知られている。均熱板としては、熱伝導性のよい金属製やカーボン製のものが使用される。特開平7−172996号公報には、均熱板としてステンレス板を用いたものが開示されている。   As a heating unit that performs such heat treatment, a heating source (a lamp in a light irradiation type heating unit) and a work piece are used to heat the work surface so that the temperature distribution on the work surface becomes uniform. A member provided with a so-called soaking plate is known. As the soaking plate, a metal or carbon plate having good thermal conductivity is used. Japanese Patent Application Laid-Open No. 7-172996 discloses one using a stainless steel plate as a soaking plate.

ところで、この均熱板( 伝熱板) を用いた加熱ユニットでは、外乱の影響を考慮して熱伝導率が高く、熱容量の大きな均熱板が用いられているが、反面で加熱源であるランプの出力変化への対応が鈍くなり、短時間での温度制御が困難になる。
このような観点から、加熱ユニットに用いられる均熱板は、熱容量が小さなものが望ましく、できるだけ薄い均熱板が求められる。
By the way, in the heating unit using this heat equalizing plate (heat transfer plate), a heat equalizing plate having high thermal conductivity and a large heat capacity is used in consideration of the influence of disturbance, but on the other hand, it is a heating source. The response to changes in lamp output becomes dull, and temperature control in a short time becomes difficult.
From such a viewpoint, it is desirable that the heat equalizing plate used in the heating unit has a small heat capacity, and a heat equalizing plate that is as thin as possible is required.

しかしながら、薄い均熱板、例えば、厚さ3mmといった金属製の均熱板を使用すると、熱容量が小さいが故に、均熱板の両面での温度差により熱歪が発生して反り(変形)が生じてくるという不具合がある。   However, if a thin heat equalizing plate, for example, a metal heat equalizing plate having a thickness of 3 mm is used, the heat capacity is small, so that thermal distortion occurs due to the temperature difference between the two surfaces of the heat equalizing plate and warpage (deformation) occurs. There is a defect that occurs.

また、均熱板としてカーボン板を用いると、高温での成形加工後の冷却時に、加工時の残留歪による反り(変形)が生じることがある。例えば、厚さ3mmのカーボン製の均熱板で、長さ300mmに対して1mm程度の反りが生じる。   In addition, when a carbon plate is used as the soaking plate, warpage (deformation) due to residual strain during processing may occur during cooling after molding at high temperature. For example, a carbon soaking plate having a thickness of 3 mm warps about 1 mm for a length of 300 mm.

このような反り( 変形) があると、均熱板と被加熱物であるワークとの間隔が一定でなくなり、均熱板からの熱がワークに不均一に伝熱されることになり、ワークの過熱が一様でなくなるという問題がある。   If there is such warpage (deformation), the distance between the heat equalizing plate and the work to be heated is not constant, and the heat from the heat equalizing plate is transferred to the work non-uniformly. There is a problem that overheating is not uniform.

均熱板を用いた加熱ユニットのこれらの不具合を解消するものとして、発明者らは、特願2003−364398号や特願2004−40744号を出願して、伝熱板を、光透過性保持体と、該保持体の表面に設けられ、光源からの光を吸収して発熱する伝熱体とから構成した加熱ユニットを提案している。   In order to solve these problems of the heating unit using the heat equalizing plate, the inventors filed Japanese Patent Application No. 2003-364398 and Japanese Patent Application No. 2004-40744 to hold the heat transfer plate with light transmittance. A heating unit is proposed that includes a body and a heat transfer body that is provided on the surface of the holding body and generates heat by absorbing light from a light source.

これらにより、伝熱体を薄くして加熱応答性を良くし、該伝熱体を光透過性保持体上に設けることにより、該伝熱体の反りなどの変形を抑止した伝熱ユニットを提供せんとするものである。   Thus, a heat transfer unit that suppresses deformation such as warpage of the heat transfer body by providing a thin heat transfer body to improve heat responsiveness and providing the heat transfer body on a light-transmissive holding body is provided. It is something to be done.

特開平7−172996号公報Japanese Patent Laid-Open No. 7-172996

上記の出願により、加熱応答性が良く、伝熱体の変形がない伝熱板を供えた加熱ユニットを提案したが、本発明はこれらの提案加熱ユニットの改良に関するものである。
すなわち、これらの加熱ユニットにおいては、伝熱体からの輻射はその表面、即ち、被加熱物側表面から被加熱物に向けたものしか利用されておらず、裏面側、即ち、光源( ランプ) 側表面側からの輻射が利用されていないので、光源のエネルギーが有効に利用されていない。
The above application has proposed a heating unit provided with a heat transfer plate having good heat responsiveness and no deformation of the heat transfer body, but the present invention relates to an improvement of these proposed heating units.
That is, in these heating units, the radiation from the heat transfer body is only used from the surface, that is, the surface to be heated to the object to be heated, and the back side, that is, the light source (lamp). Since the radiation from the side surface side is not used, the energy of the light source is not used effectively.

そこで、本発明の目的は、伝熱体から被加熱物側への輻射を増加させることにより、光源からの照射光のエネルギーを有効に利用することができる加熱ユニットを提供しようとするものである。   Therefore, an object of the present invention is to provide a heating unit that can effectively use the energy of irradiation light from a light source by increasing radiation from a heat transfer body to an object to be heated. .

この発明の課題を解決するための手段は、ハロゲンランプにより伝熱板を照射し、該照射された伝熱板からの伝熱により被加熱物を加熱する加熱ユニットにおいて、前記伝熱板が、光透過性を有する保持体と、該保持体の被加熱物側に設けられ、該保持体を透過した光を吸収して発熱する伝熱体とからなり、前記保持体の光源側表面が鏡面加工され、該鏡面加工した表面の面粗さRa(μm)は、該伝熱体より輻射される輻射光の波長2.5(μm)より小さな値であることを特徴とするものである。   Means for solving the problems of the present invention is a heating unit that irradiates a heat transfer plate with a halogen lamp and heats an object to be heated by heat transfer from the irradiated heat transfer plate. A holding body having light permeability and a heat transfer body that is provided on the heated object side of the holding body and absorbs light transmitted through the holding body to generate heat, and the light source side surface of the holding body has a mirror surface The surface roughness Ra (μm) of the processed and mirror-finished surface is a value smaller than the wavelength 2.5 (μm) of the radiated light radiated from the heat transfer body.

この発明によれば、保持体下面を鏡面加工することにより、伝熱板から光源側への輻射の少なくとも一部が、反射され伝熱体側に戻されてこれを再加熱することにより、被加熱物への輻射量を増加することができる。 According to the present invention, by mirror-treating the lower surface of the holding body, at least a part of the radiation from the heat transfer plate to the light source side is reflected and returned to the heat transfer body side and reheated to be heated. The amount of radiation to the object can be increased.

この発明の実施例1の全体図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. この発明の実施例1の詳細部分図。1 is a detailed partial view of Embodiment 1 of the present invention. (A)(B)(C)この発明の実施例1の実施形態の部分図。(A) (B) (C) The partial figure of embodiment of Example 1 of this invention. この発明の実施例2の詳細部分図。The detailed fragmentary diagram of Example 2 of this invention. この発明の実施例3の詳細部分図。FIG. 5 is a detailed partial view of Embodiment 3 of the present invention. 光源(ハロゲンランプ)のスペクトル。Spectrum of light source (halogen lamp). 伝熱体の発光スペクトル。The emission spectrum of the heat transfer body. (A)(B)実施例3の他の実施形態の詳細部分図。(A) (B) The detail fragmentary figure of other embodiment of Example 3. FIG.

本発明の実施例を図1乃至第8図を用いて説明する。
図1は、本発明の実施例1に係る加熱ユニットの構成を示す断面図である。
図において、光源1 がユニット本体5に複数本設けられている。該光源1は、例えば、ハロゲンランプ等の白熱ランプ、キセノンランプやメタルハライドランプ等の放電ランプなどである。本体5の光源1の上方には、前記光源1からの光を透過する保持体2と、その上面に設けられて、該保持体2 を透過した光源1からの光を吸収して発熱する伝熱体3 とからなる伝熱板4が設けられている。そして、半導体ウエハやガラス基板などの被加熱物6は該伝熱板4の上方に配置されている。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view illustrating a configuration of a heating unit according to Embodiment 1 of the present invention.
In the figure, a plurality of light sources 1 are provided in the unit body 5. The light source 1 is, for example, an incandescent lamp such as a halogen lamp, a discharge lamp such as a xenon lamp or a metal halide lamp. Above the light source 1 of the main body 5, a holding body 2 that transmits light from the light source 1 and an upper surface thereof, which absorbs light from the light source 1 that has transmitted through the holding body 2 and generates heat. A heat transfer plate 4 comprising a heat body 3 is provided. A heated object 6 such as a semiconductor wafer or a glass substrate is disposed above the heat transfer plate 4.

前記保持体2は、石英ガラス、硼珪酸ガラス、焼結石英ガラス、アルミノ珪酸ガラス等のガラス、ガラスセラミック、透光性アルミナ、サファイア等から成る。これら素材は、金属やカーボングラファイトに比べて熱膨張係数が小さいので、変形が起こりにくく、化学的に堅牢で耐熱性に優れており、紫外域または可視域の光を透過し発熱が少ない。 The holding body 2 is made of glass such as quartz glass, borosilicate glass, sintered quartz glass, and aluminosilicate glass, glass ceramic, translucent alumina, sapphire, and the like. Since these materials have a smaller coefficient of thermal expansion than metals and carbon graphite, they are less likely to deform, are chemically robust and have excellent heat resistance, transmit light in the ultraviolet region or visible region, and generate less heat.

また、伝熱体3はダイアモンドライクカーボン(DLC)、酸化クロム等の金属酸化物、窒化アルミニウムや窒化ボロン等の窒化物、炭化珪素、珪化モリブデン等のシリサイド、などから成る。または、モリブデン、クロム、カーボン等を含有した諸ガラスや諸セラミックスから成る。これら素材は、化学的に堅牢で耐熱性に優れており、紫外域から可視域の光を遮断して発熱し、熱伝導率が高い。 The heat transfer body 3 is made of diamond-like carbon (DLC), metal oxide such as chromium oxide, nitride such as aluminum nitride or boron nitride, silicide such as silicon carbide or molybdenum silicide, and the like. Or it consists of various glass and various ceramics containing molybdenum, chromium, carbon, etc. These materials are chemically robust and excellent in heat resistance, generate heat by blocking light from the ultraviolet region to the visible region, and have high thermal conductivity.

前記保持体2への伝熱体3の形成(コーティング等)は、ダイアモンドライクカーボン(DLC)の場合はCVDにより、また、金属酸化物、窒化物、炭化珪素の場合は、塗布・焼成やプラズマ溶射、印刷等により、そして、シリサイドの場合は、CVD、スパッタ、あるいは蒸着後に加熱して形成する。CVD、塗布、溶射、印刷、スパッタ、蒸着を利用すると、保持体2に多少の凹凸があった場合でも、伝熱体3の厚さを所望の厚さに制御して形成することができる。   Formation (coating, etc.) of the heat transfer body 3 on the holding body 2 is performed by CVD in the case of diamond-like carbon (DLC), and in the case of metal oxide, nitride, or silicon carbide, coating / firing or plasma. It is formed by thermal spraying, printing, etc., and in the case of silicide, it is formed by heating after CVD, sputtering or vapor deposition. When CVD, coating, thermal spraying, printing, sputtering, and vapor deposition are used, the heat transfer body 3 can be formed by controlling the thickness of the heat transfer body 3 to a desired thickness even if the holding body 2 has some unevenness.

図2は詳細部分図で、前記伝熱体3の上面、即ち、被加熱物6側の表面3Aを拡散面加工してある。一般に物体からの輻射量は、その表面積に比例するところ、上記拡散面加工により、該表面3Aの表面積は、裏面、即ち、光源1側の表面3Bより増大する。その結果、光源1から保持体2を透過してきた光により加熱される伝熱体3からの輻射は、下方、即ち、光源1側への輻射量より、上方、即ち、被加熱物6側への輻射量が増大する。そのため、光源1からの照射エネルギーがより有効に利用できる。   FIG. 2 is a detailed partial view, wherein the upper surface of the heat transfer body 3, that is, the surface 3A on the heated object 6 side is processed with a diffusion surface. In general, the amount of radiation from an object is proportional to the surface area, but the surface area of the surface 3A is increased from the back surface, that is, the surface 3B on the light source 1 side by the diffusion surface processing. As a result, the radiation from the heat transfer body 3 heated by the light transmitted from the light source 1 through the holding body 2 is lower, that is, higher than the radiation amount toward the light source 1 side, that is, toward the heated object 6 side. The amount of radiation increases. Therefore, the irradiation energy from the light source 1 can be used more effectively.

上記の伝熱体3の上面3Aの拡散面加工としては、機械的な粗研磨加工やフロスト加工、切削加工、または、化学的なエッチング加工などにより表面に凹凸を形成するものであればよい。そして、その凹凸形状としては、図3に示すように種々の形状であってよい。図3(A)は、山形の凸部7Aを多数形成したものであり、図3(B)は連続凸状部7Bを形成したものであり、図3(c)は多数の凹部7Cを形成したものである。   The diffusion surface processing of the upper surface 3A of the heat transfer body 3 may be any method that forms irregularities on the surface by mechanical rough polishing processing, frost processing, cutting processing, chemical etching processing, or the like. And as the uneven | corrugated shape, as shown in FIG. 3, various shapes may be sufficient. 3A shows a large number of mountain-shaped convex portions 7A, FIG. 3B shows a continuous convex portion 7B, and FIG. 3C shows a large number of concave portions 7C. It is a thing.

図4は異なる実施例2の詳細部分図で、保持体2の下面、即ち、光源1側の表面2Bを鏡面加工してある。該鏡面加工した表面2Bの面粗さ(Ra)は、輻射光の波長λより小さな値とする。こうすることにより、加熱された伝熱体3から輻射される輻射光のうち、一定の入射角以上の輻射光は該鏡面で全反射して伝熱体3方向に戻され、該伝熱体3を再加熱する。そして、その上表面3Aから被加熱物6に輻射される。
これにより、伝熱体3の下面3Bから下方への輻射光の少なくとも一部を被加熱物6側に戻すことにより、有効利用することができる。
FIG. 4 is a detailed partial view of a second embodiment in which the lower surface of the holding body 2, that is, the surface 2B on the light source 1 side is mirror-finished. The surface roughness (Ra) of the mirror-finished surface 2B is set to a value smaller than the wavelength λ of the radiation light. By doing this, among the radiant light radiated from the heated heat transfer body 3, the radiant light having a certain incident angle or more is totally reflected by the mirror surface and returned to the heat transfer body 3 direction. Reheat 3. And it is radiated | emitted to the to-be-heated material 6 from the upper surface 3A.
Thereby, at least a part of the radiation light downward from the lower surface 3 </ b> B of the heat transfer body 3 can be effectively used by returning it to the heated object 6 side.

図5は他の実施例3の詳細部分図で、伝熱板4の保持体2の下方、即ち、光源1側の下方に輻射反射層10を設けてある。該輻射反射層10は、光源1からの光は透過し、伝熱体3からの輻射光は反射するような多層膜反射層からなっている。光源1からの入射光は、光源1がハロゲンランプの場合、図6に示すようにタングステンフィラメントの色温度が、2200Kを越えると、2.5μm以上の波長域の放射は少なくなる。一方、伝熱体3からの輻射光は、図7に示すように2.5μm以上の波長域のスペクトルである。
従って、輻射反射層10は、これらの両スペクトルを考慮して、2.0〜2.5μmの領域以下の波長の光を透過し、該領域以上の波長の光を反射するような特性をもつものであればよく、このような条件を満たす多層膜の構成素材としては、Al、SiO、SiO、MgF、AlFなどの低屈折材と、TiO、Ta、Si、ZrO、Yなどの高屈折材から選択された材料の組み合わせで得られる。
FIG. 5 is a detailed partial view of another embodiment 3, in which a radiation reflection layer 10 is provided below the holder 2 of the heat transfer plate 4, that is, below the light source 1 side. The radiation reflection layer 10 is formed of a multilayer film reflection layer that transmits light from the light source 1 and reflects radiation light from the heat transfer body 3. When the light source 1 is a halogen lamp, the incident light from the light source 1 emits less in the wavelength region of 2.5 μm or more when the color temperature of the tungsten filament exceeds 2200 K as shown in FIG. On the other hand, the radiation from the heat transfer body 3 has a spectrum in a wavelength region of 2.5 μm or more as shown in FIG.
Therefore, the radiation reflection layer 10 has such characteristics that it transmits light having a wavelength of 2.0 to 2.5 μm or less and reflects light having a wavelength of more than this region in consideration of both of these spectra. Any material can be used as long as it satisfies such conditions, and examples of the constituent material for the multilayer film include low refractive materials such as Al 2 O 3 , SiO, SiO 2 , MgF 2 , and AlF 3 , TiO 2 , Ta 2 O 5 , It is obtained by a combination of materials selected from high refractive materials such as Si, ZrO 2 and Y 2 O 3 .

上記実施例3においては、前記図4の実施例2と同様に、加熱された伝熱体3から下方に向う輻射光を輻射反射層10によって伝熱体3方向に戻し、これを再加熱する。こうして、光源1により加熱された伝熱体3からの輻射光を有効に利用することができる。   In the third embodiment, as in the second embodiment of FIG. 4, the radiation light directed downward from the heated heat transfer body 3 is returned to the heat transfer body 3 by the radiation reflection layer 10 and reheated. . Thus, the radiant light from the heat transfer body 3 heated by the light source 1 can be used effectively.

なお、上記輻射反射層10の透過波長の特性を光源1としてハロゲンランプを用いた場合のスペクトルで説明したが、他のランプ、例えばキセノンランプやメタルハライドランプの場合であっても、2.0〜2.5μmの領域以下の波長の光を透過する特性であれば、これらのランプからの放射光に対してもその殆どを透過することになり、実用上まったく問題はない。   The transmission wavelength characteristics of the radiation reflection layer 10 have been described in the spectrum when a halogen lamp is used as the light source 1. However, even in the case of other lamps such as a xenon lamp and a metal halide lamp, 2.0 to If it is a characteristic that transmits light having a wavelength of 2.5 μm or less, most of the light emitted from these lamps is transmitted, and there is no practical problem.

ところで、上記実施例3においては、輻射反射層10を伝熱板4の下方に配置したものを示したが、これに限られない。
図8に他の実施形態を示し、図8(A)に示すものでは、輻射反射層10は、保持体2の上面、即ち、保持体2と伝熱体3の間に設けられている。
また、図8(B)に示すものでは、輻射反射層10は、伝熱板4の保持体2の下面に設けられている。
これら図8に示すいずれの輻射反射層10も、前記図5に示すものと同様の多層膜からなるものである。
By the way, in the said Example 3, although what has arrange | positioned the radiation reflection layer 10 under the heat exchanger plate 4 was shown, it is not restricted to this.
FIG. 8 shows another embodiment, and in the structure shown in FIG. 8A, the radiation reflection layer 10 is provided on the upper surface of the holding body 2, that is, between the holding body 2 and the heat transfer body 3.
8B, the radiation reflection layer 10 is provided on the lower surface of the holding body 2 of the heat transfer plate 4. As shown in FIG.
Any of these radiation reflecting layers 10 shown in FIG. 8 is made of a multilayer film similar to that shown in FIG.

これらの輻射反射層10が、前記図5の輻射反射層10と同様の機能を奏することは容易に理解できるであろう。
即ち、輻射反射層10は、伝熱体3から光源1方向への輻射を再度伝熱体3に戻すものであればよく、伝熱体3と光源1の間に設けられていればよい。
It will be easily understood that these radiation reflecting layers 10 have the same function as the radiation reflecting layer 10 of FIG.
That is, the radiation reflection layer 10 may be any layer as long as it returns radiation from the heat transfer body 3 toward the light source 1 to the heat transfer body 3 again, and may be provided between the heat transfer body 3 and the light source 1.

なお、本発明の伝熱板の実施例において、伝熱体は、保持体の上表面に形成された構成について説明してきたが、特願2004−40744号で示すように、伝熱体と保持体との間に間隙子を設けた構成でも良い。本構成においては、輻射光の反射の機能は、保持体の上表面に持たせることが好ましい。 In addition, in the Example of the heat exchanger plate of this invention, although the heat exchanger has demonstrated the structure formed in the upper surface of a holding body, as shown in Japanese Patent Application No. 2004-40744, it holds with a heat exchanger. The structure which provided the gap | interval between the bodies may be sufficient. In this configuration, it is preferable that the upper surface of the holder has a function of reflecting radiation.

また、上記各実施例においては、加熱ユニットは上向きに照射し、被加熱物6は該加熱ユニットの上方に配置するものとして説明したが、これに限られないことは勿論であり、加熱ユニットが下向き、或いは、横向きなど任意の向きであってよく、被加熱物6はその加熱ユニットの伝熱板4に対向配置されていればよい。 Further, in each of the above embodiments, the heating unit is irradiated upward, and the article 6 to be heated is disposed above the heating unit. However, the present invention is not limited to this. It may be in any direction such as downward or sideward, and the object to be heated 6 only needs to be disposed opposite to the heat transfer plate 4 of the heating unit.

以上のように、本発明においては、光源と伝熱板を供えた加熱ユニットにおいて、伝熱板を、光源光を透過する保持体と、その上面に設けた伝熱体とにより構成し、該伝熱体の上面を拡散面加工し、あるいは、保持体の下面を鏡面加工し、あるいは、伝熱体と光源の間に輻射反射層を設けたことにより、光源により加熱された伝熱体から被加熱物側へ輻射される輻射光を増大させることができるので、光源からの照射エネルギーを有効に利用して加熱処理ができるという優れた効果を奏するものである。   As described above, in the present invention, in the heating unit provided with the light source and the heat transfer plate, the heat transfer plate is constituted by the holding body that transmits the light source light and the heat transfer body provided on the upper surface thereof, From the heat transfer body heated by the light source by processing the diffusion surface on the upper surface of the heat transfer body, mirror-finishing the lower surface of the holding body, or providing a radiation reflection layer between the heat transfer body and the light source Since the radiant light radiated to the object to be heated can be increased, an excellent effect that the heat treatment can be performed by effectively using the irradiation energy from the light source is achieved.

1 光源
2 保持体
3 伝熱体
4 伝熱板
5 ユニット本体
6 被加熱物
10 輻射反射層
DESCRIPTION OF SYMBOLS 1 Light source 2 Holding body 3 Heat transfer body 4 Heat transfer plate 5 Unit main body 6 Heated object 10 Radiation reflection layer

Claims (1)

ハロゲンランプにより伝熱板を照射し、該照射された伝熱板からの伝熱により被加熱物を加熱する加熱ユニットにおいて、
前記伝熱板が、光透過性を有する保持体と、該保持体の被加熱物側に設けられ、該保持体を透過した光を吸収して発熱する伝熱体とからなり、
前記保持体の光源側表面が鏡面加工され、
該鏡面加工した表面の面粗さRa(μm)は、該伝熱体より輻射される輻射光の波長2.5(μm)より小さな値であることを特徴とする加熱ユニット。
In a heating unit that irradiates a heat transfer plate with a halogen lamp and heats an object to be heated by heat transfer from the irradiated heat transfer plate,
The heat transfer plate is composed of a holder having light permeability, and a heat transfer body that is provided on the heated object side of the holder and absorbs light transmitted through the holder to generate heat.
The light source side surface of the holding body is mirror-finished,
The heating unit characterized in that the surface roughness Ra (μm) of the mirror-finished surface is smaller than the wavelength 2.5 (μm) of the radiated light radiated from the heat transfer body.
JP2011183561A 2011-08-25 2011-08-25 Light source device Active JP5348203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011183561A JP5348203B2 (en) 2011-08-25 2011-08-25 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011183561A JP5348203B2 (en) 2011-08-25 2011-08-25 Light source device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005040939A Division JP4852852B2 (en) 2005-02-17 2005-02-17 Heating unit

Publications (2)

Publication Number Publication Date
JP2012009885A true JP2012009885A (en) 2012-01-12
JP5348203B2 JP5348203B2 (en) 2013-11-20

Family

ID=45539986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011183561A Active JP5348203B2 (en) 2011-08-25 2011-08-25 Light source device

Country Status (1)

Country Link
JP (1) JP5348203B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265425A (en) * 1987-04-23 1988-11-01 Seiko Epson Corp Selective heating method of transparent substrate
JPH05217930A (en) * 1992-01-30 1993-08-27 Fujitsu Ltd Wafer heating apparatus
JPH0750273A (en) * 1994-07-13 1995-02-21 Sony Corp Short time annealing equipment
JP2000091257A (en) * 1998-09-07 2000-03-31 Kokusai Electric Co Ltd Heat treatment device
JP2002006125A (en) * 2000-06-26 2002-01-09 Toshiba Ceramics Co Ltd Reflecting plate
JP2005235874A (en) * 2004-02-18 2005-09-02 Ushio Inc Heating unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265425A (en) * 1987-04-23 1988-11-01 Seiko Epson Corp Selective heating method of transparent substrate
JPH05217930A (en) * 1992-01-30 1993-08-27 Fujitsu Ltd Wafer heating apparatus
JPH0750273A (en) * 1994-07-13 1995-02-21 Sony Corp Short time annealing equipment
JP2000091257A (en) * 1998-09-07 2000-03-31 Kokusai Electric Co Ltd Heat treatment device
JP2002006125A (en) * 2000-06-26 2002-01-09 Toshiba Ceramics Co Ltd Reflecting plate
JP2005235874A (en) * 2004-02-18 2005-09-02 Ushio Inc Heating unit

Also Published As

Publication number Publication date
JP5348203B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP4852852B2 (en) Heating unit
JP6742366B2 (en) Apparatus and method for improved control of substrate heating and cooling
JP4904287B2 (en) Thermally stable multilayer mirror for EUV spectral range
JP6688865B2 (en) Support cylinder for heat treatment chamber
US10147623B2 (en) Pyrometry filter for thermal process chamber
KR100811390B1 (en) Heating unit
CA2640511C (en) Thermally stable multilayer mirror for the euv spectral range
JP5348203B2 (en) Light source device
CN101822122A (en) Apparatus for irradiation unit
WO2023210656A1 (en) Heating processing device and method for operating same
JP7211029B2 (en) Method for manufacturing glass article and method for heating thin glass
US10873991B2 (en) Photonic near infrared heater
JP2005235874A (en) Heating unit
JP5065306B2 (en) SiC jig for vapor phase growth
JPH05102077A (en) Manufacture of semiconductor device
TWI751428B (en) Processing chamber comprising transparent end effector with anti-reflective coating
JP4935002B2 (en) Heating unit
JP2003012329A (en) Directional infrared radiator
JP2005050604A (en) Far-infrared-ray radiant body
JP6762533B2 (en) Thermal radiation light source and light source device
JP4277706B2 (en) Glass substrate heating device
TW201445658A (en) Apparatus for improved substrate heating

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5348203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250