JP2012009613A - Wiring board formation method, and wiring board - Google Patents

Wiring board formation method, and wiring board Download PDF

Info

Publication number
JP2012009613A
JP2012009613A JP2010144057A JP2010144057A JP2012009613A JP 2012009613 A JP2012009613 A JP 2012009613A JP 2010144057 A JP2010144057 A JP 2010144057A JP 2010144057 A JP2010144057 A JP 2010144057A JP 2012009613 A JP2012009613 A JP 2012009613A
Authority
JP
Japan
Prior art keywords
wiring
insulating
substrate
forming
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010144057A
Other languages
Japanese (ja)
Other versions
JP5569840B2 (en
Inventor
Hajime Tomokage
肇 友景
Koichi Fujishiro
光一 藤城
Shunei Itahara
俊英 板原
Toru Saito
齋藤  亨
Shigehiro Hayashi
繁宏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Industry Science and Technology Foundation
Nippon Steel Chemical and Materials Co Ltd
Fukuoka University
Original Assignee
Fukuoka Industry Science and Technology Foundation
Nippon Steel Chemical Co Ltd
Fukuoka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Industry Science and Technology Foundation, Nippon Steel Chemical Co Ltd, Fukuoka University filed Critical Fukuoka Industry Science and Technology Foundation
Priority to JP2010144057A priority Critical patent/JP5569840B2/en
Publication of JP2012009613A publication Critical patent/JP2012009613A/en
Application granted granted Critical
Publication of JP5569840B2 publication Critical patent/JP5569840B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board formation method and the like capable of significantly reducing labor and cost for manufacturing a wiring board, by forming a decoupling capacitor at the same time a wiring pattern is formed.SOLUTION: The wiring board formation method includes steps of: forming cylindrical via insulation parts 3a and 3b and via conduction parts 4a and 4b on a silicon substrate 2; forming an induction part 5a by extending an insulation material which is laminated on a peripheral region of the via conduction part 4a to be connected to a tubular end part of the via insulation part 3a across the entire circumference; forming an insulation part 5b by extending the insulation material laminated in the peripheral region of the via conduction part 4b so that a portion does not come in contact with the tubular end part of the via insulation part 3b; and forming wiring parts 6a and 6b which are connected to the via conduction parts 4a and 4b while being laminated on surfaces of the induction part 5a and the insulation part 5b. The wiring part 6a is connected to a power source, the wiring part 6b is connected to the ground, and then the wiring part 6a and the silicon substrate 2 sandwich the induction part 5a to form a capacitor.

Description

本発明は、導電性を有する基板の表面に配線パターンを形成する配線基板形成方法に関し、特に配線パターンを形成する際にデカップリングキャパシタを同時に形成する配線基板形成方法等に関する。   The present invention relates to a wiring board forming method for forming a wiring pattern on the surface of a conductive substrate, and more particularly to a wiring board forming method for simultaneously forming a decoupling capacitor when forming a wiring pattern.

電源電圧の変動に伴い生じる回路の誤動作をなくすために、基板付近にデカップリングキャパシタを接続することでノイズを抑制する技術が一般的に知られている。デカップリングキャパシタは、基板に近接させて配設する必要があり、配設するための領域を確保する必要があるため、半導体の小型化を阻害する要因となっていた。   In order to eliminate a malfunction of a circuit caused by fluctuations in power supply voltage, a technique for suppressing noise by connecting a decoupling capacitor near the substrate is generally known. The decoupling capacitor needs to be arranged close to the substrate, and it is necessary to secure a region for the arrangement, which has been a factor that hinders downsizing of the semiconductor.

上記要因に関連して、デカップリングキャパシタを内蔵する配線基板が開示されている(例えば、特許文献1、2を参照)。特許文献1に示す技術は、入力側電極層と出力側電極層との間に層間絶縁層を介しデカップリングキャパシタを形成するとともに、このデカップリングキャパシタを、接地層および電源層の間に誘電体層を設けることにより形成し、半導体素子への電源供給に用いる複数の電源供給端子を出力側電極層をパターニングすることにより形成するとともに、これらの電源供給端子をキャパシタ用ビアによって電源層と接続するものである。   In connection with the above factors, a wiring board incorporating a decoupling capacitor is disclosed (for example, see Patent Documents 1 and 2). In the technique shown in Patent Document 1, a decoupling capacitor is formed between an input-side electrode layer and an output-side electrode layer via an interlayer insulating layer, and this decoupling capacitor is connected between a ground layer and a power supply layer. A plurality of power supply terminals used to supply power to the semiconductor element are formed by patterning the output-side electrode layer, and these power supply terminals are connected to the power supply layer by capacitor vias. Is.

特許文献2に示す技術は、表面と裏面との間を貫通して形成された電源ビア、グランド・ビア、信号ビア等の複数のスルー・ビアと、前記スルー・ビアのピッチ間に形成され高誘電率材、電源電極面、グランド電極面が前記表面と略直交する方向に延在するキャパシタとをもつセラミックからなるインターポーザである。   The technique shown in Patent Document 2 is formed between a plurality of through vias such as power supply vias, ground vias, signal vias and the like formed between the front and back surfaces and the pitch of the through vias. It is an interposer made of ceramic having a dielectric constant material, a power electrode surface and a ground electrode surface extending in a direction substantially orthogonal to the surface.

特開2005−310814号公報JP 2005-310814 A 特開2001−326298号公報JP 2001-326298 A

しかしながら、上記各特許文献に示す技術は、デカップリングキャパシタを内蔵するため、製造工程が複雑になり、手間とコストが増大してしまうという課題を有する。
そこで、本発明は配線パターンを形成する際に、同時にデカップリングキャパシタを形成することで、配線基板の製造の手間とコストを大幅に削減することができる配線基板形成方法、及び配線基板を提供する。
However, since the technique shown in each of the above patent documents incorporates a decoupling capacitor, the manufacturing process becomes complicated, and there is a problem that labor and cost increase.
Therefore, the present invention provides a wiring board forming method and a wiring board that can greatly reduce the labor and cost of manufacturing a wiring board by simultaneously forming a decoupling capacitor when forming a wiring pattern. .

(1)本願に開示する配線基板形成方法は、導電性を有する基板の少なくとも一側面側に回路素子が載置される配線基板を形成する配線基板形成方法において、前記基板に形成された第1のビアの内側に、前記基板の一側面側から他側面側の全面を絶縁被覆する筒状の第1のビア絶縁部、及び当該第1のビア絶縁部内に導電性を有する導電材を封入した第1のビア導電部を形成するビア形成工程と、前記基板の他側面側において、少なくとも前記第1のビア導電部の周囲領域に積層され、前記第1のビア絶縁部の筒状端部の全周に亘って接続する絶縁材を延在させて誘電部を形成する誘電部形成工程と、前記誘電部の表面に積層されると共に前記第1のビア導電部に接続される第1の配線部を形成する配線形成工程とを含み、前記第1の配線部が電源と接続され、前記基板がグランドと接続され、前
記第1の配線部と前記基板とで前記誘電部を挟むキャパシタが形成されることを特徴とするものである。
(1) The wiring board forming method disclosed in the present application is a wiring board forming method for forming a wiring board on which a circuit element is placed on at least one side surface of a conductive substrate. A cylindrical first via insulating portion for insulatingly covering the entire surface from one side surface to the other side surface of the substrate, and a conductive material having conductivity in the first via insulating portion are sealed inside the via. A via forming step for forming a first via conductive portion; and at least a peripheral region of the first via conductive portion on the other side surface of the substrate; and a cylindrical end portion of the first via insulating portion. A dielectric part forming step of forming a dielectric part by extending an insulating material to be connected over the entire circumference, and a first wiring layered on the surface of the dielectric part and connected to the first via conductive part Wiring forming step of forming a portion, and the first wiring There is connected to the power supply, the substrate is connected to the ground, is characterized in that the capacitor sandwiching the dielectric portion is formed by the substrate and the first wiring portion.

このように、本願に開示する配線基板形成方法においては、グランドに接続する基板と、第1のビア導電部に接続されると共に電源に接続される第1の配線部との間で、第1のビア絶縁部の筒状端部の全周に亘って接続する絶縁材を延在させて形成される誘電部を挟んでキャパシタが形成されるため、配線部を形成するのと同時にデカップリングキャパシタを形成することができ、当該デカップリングキャパシタを形成するための特別な処理が不要となり、製造の手間とコストを大幅に削減することができるという効果を奏する。   As described above, in the wiring substrate forming method disclosed in the present application, the first wiring portion is connected between the substrate connected to the ground and the first wiring portion connected to the first via conductive portion and connected to the power source. Since a capacitor is formed with a dielectric portion formed by extending an insulating material connected over the entire circumference of the cylindrical end portion of the via insulating portion, a decoupling capacitor is formed at the same time as the wiring portion is formed Thus, there is no need for a special process for forming the decoupling capacitor, and it is possible to significantly reduce manufacturing labor and cost.

(2)本願に開示する配線基板形成方法は、前記ビア形成工程が、前記基板に形成された第2のビアの内側に、前記基板の一側面側から他側面側の全面を絶縁被覆する筒状の第2のビア絶縁部、及び当該第2のビア絶縁部内に導電性を有する導電材を封入した第2のビア導電部を形成し、前記基板の他側面側において、少なくとも前記第2のビア導電部の周囲領域に積層され、前記第2のビア絶縁部の筒状端部に少なくとも一部が接触しないように絶縁材を延在させて絶縁部を形成する絶縁部形成工程を含み、前記配線形成工程が、前記絶縁部の表面に積層されると共に前記第2のビア導電部及び前記基板に接続されて形成される第2の配線部を形成し、前記第2の配線部がグランドと接続され、前記第1の配線部と前記基板とで前記誘電部を挟むキャパシタが形成されることを特徴とするものである。   (2) In the wiring board forming method disclosed in the present application, in the via forming step, the entire surface from the one side surface to the other side surface of the substrate is insulated and coated inside the second via formed in the substrate. A second via-conductive portion having a shape and a second via-conductive portion in which a conductive material having conductivity is enclosed in the second via-insulating portion. An insulating part forming step of forming an insulating part by extending an insulating material so as not to be in contact with at least a part of the cylindrical end part of the second via insulating part, which is laminated in a peripheral region of the via conductive part; The wiring forming step forms a second wiring portion formed on the surface of the insulating portion and connected to the second via conductive portion and the substrate, and the second wiring portion is grounded. And the dielectric portion is connected to the first wiring portion and the substrate. It is characterized in that the capacitor sandwiching is formed.

このように、本願に開示する配線基板形成方法においては、第2のビア絶縁部、及び第2のビア導電部を形成し、第2のビア絶縁部の筒状端部に少なくとも一部が接触しないように絶縁材を延在させて絶縁部を形成し、絶縁部の表面に積層されると共に第2のビア導電部及び基板に接続されて形成される第2の配線部を形成し、第2の配線部がグランドと接続され、第1の配線部と基板とで誘電部を挟むキャパシタが形成されるため、配線部を形成するのと同時に、電源電極となる第1の配線部とグランド電極となる第2の配線部とを利用してデカップリングキャパシタを形成することができ、当該デカップリングキャパシタを形成するための特別な処理が不要となり、製造の手間とコストを大幅に削減することができるという効果を奏する。   As described above, in the wiring board forming method disclosed in the present application, the second via insulating portion and the second via conductive portion are formed, and at least a part of the second via insulating portion is in contact with the cylindrical end portion. Forming an insulating portion by extending an insulating material so as not to be laminated, forming a second wiring portion formed on the surface of the insulating portion and connected to the second via conductive portion and the substrate; 2 is connected to the ground, and a capacitor sandwiching the dielectric portion between the first wiring portion and the substrate is formed. Therefore, at the same time as forming the wiring portion, the first wiring portion serving as a power supply electrode and the ground A decoupling capacitor can be formed by using the second wiring portion serving as an electrode, and a special process for forming the decoupling capacitor is not required, thereby greatly reducing manufacturing labor and cost. Has the effect of being able to

(3)本願に開示する配線基板形成方法は、前記誘電部形成工程、及び前記絶縁部形成工程が、前記絶縁材の液滴をインクジェット法により吐出して断面凹溝状を形成し、前記絶縁材の断面凹溝状の溝内に前記インクジェット法により、無電解めっきの触媒となる液滴を吐出する触媒形成工程を含み、前記配線形成工程が、前記触媒の表面に無電解めっきにより前記第1の配線部、及び第2の配線部を形成することを特徴とするものである。   (3) In the wiring substrate forming method disclosed in the present application, the dielectric portion forming step and the insulating portion forming step form a groove having a cross-sectional shape by discharging droplets of the insulating material by an ink jet method. Including a catalyst forming step of discharging droplets serving as a catalyst for electroless plating into the groove having a cross-sectional groove shape of the material by the inkjet method, wherein the wiring forming step is performed by electroless plating on the surface of the catalyst. The first wiring portion and the second wiring portion are formed.

このように、本願に開示する配線基板形成方法においては、誘電部及び絶縁部を形成する際の絶縁材の液滴をインクジェット法により吐出して断面凹溝状を形成し、その溝内に無電解めっきの触媒となる液滴を吐出するため、無電解めっきの触媒を絶縁材からはみ出すことなく確実に吐出し、断面凹溝状の範囲内で配線部が形成されるのと同時にデカップリングキャパシタを簡単に形成することができ、作業の手間を省くことができるという効果を奏する。また、インクジェット法により、基板の内部ではなく表面にデカップリングキャパシタを形成することができ、製造の手間とコストを大幅に削減することができるという効果を奏する。   As described above, in the method for forming a wiring board disclosed in the present application, a droplet of an insulating material for forming a dielectric portion and an insulating portion is ejected by an ink jet method to form a concave groove shape, and there is nothing in the groove. Since the droplets that serve as the catalyst for electroplating are discharged, the electroless plating catalyst is reliably discharged without protruding from the insulating material, and the decoupling capacitor is formed at the same time as the wiring part is formed within the range of the groove in the cross section Can be formed easily, and the work can be saved. Further, the decoupling capacitor can be formed not on the inside of the substrate but on the surface by the ink jet method, and the manufacturing labor and cost can be greatly reduced.

(4)本願に開示する配線基板形成方法は、前記絶縁材の液滴が、前記ビア内に形成される第1の導電部、及び第2の導電部と撥液性となる液滴であることを特徴とするものである。   (4) In the wiring board forming method disclosed in the present application, the droplet of the insulating material is a droplet that becomes liquid repellent with the first conductive portion and the second conductive portion formed in the via. It is characterized by this.

このように、本願に開示する配線基板形成方法においては、絶縁材の液滴が、ビア内に形成される第1の導電部、及び第2の導電部と撥液性となる液滴であるため、第1の導電部、及び第2の導電部の表面に絶縁材が残ることで、導電性が悪くなってしまうようなことがなく、導電性を確保することができるという効果を奏する。   As described above, in the wiring substrate forming method disclosed in the present application, the droplets of the insulating material are droplets that become liquid repellent with the first conductive portion and the second conductive portion formed in the via. Therefore, the insulating material remains on the surfaces of the first conductive portion and the second conductive portion, so that the conductivity is not deteriorated, and the conductivity can be ensured.

(5)本願に開示する配線基板形成方法は、前記誘電部形成工程、及び前記絶縁部形成工程の後に、前記第1の導電部、及び第2の導電部の表面に塗布された前記絶縁材の液滴を洗浄する洗浄工程を含むことを特徴とするものである。   (5) In the wiring board forming method disclosed in the present application, the insulating material applied to the surfaces of the first conductive portion and the second conductive portion after the dielectric portion forming step and the insulating portion forming step. And a cleaning process for cleaning the droplets.

このように、本願に開示する配線基板形成方法においては、誘電部形成、及び絶縁部形成後に、第1の導電部、及び第2の導電部の表面に塗布された絶縁材の液滴を洗浄するため、第1の導電部、及び第2の導電部の表面に絶縁材が残ることを防止して、導電性を確保することができるという効果を奏する。   As described above, in the wiring board forming method disclosed in the present application, after forming the dielectric portion and the insulating portion, the droplets of the insulating material applied to the surfaces of the first conductive portion and the second conductive portion are washed. Therefore, it is possible to prevent the insulating material from remaining on the surfaces of the first conductive portion and the second conductive portion, thereby ensuring the conductivity.

(6)本願に開示する配線基板形成方法は、前記誘電部形成工程で吐出される絶縁性の液滴が誘電体であり、前記絶縁部形成工程で吐出される絶縁性の液滴が絶縁体であり、前記誘電体と前記絶縁体とが、異なる吐出口から一の工程で吐出されることを特徴とするものである。   (6) In the wiring board forming method disclosed in the present application, the insulating droplets discharged in the dielectric portion forming step are dielectrics, and the insulating droplets discharged in the insulating portion forming step are insulators. The dielectric and the insulator are discharged from different discharge ports in a single step.

このように、本願に開示する配線基板形成方法においては、誘電部形成工程で吐出される絶縁性の液滴と、絶縁部形成工程で吐出される絶縁性の液滴とが異なる液滴であっても、異なる吐出口から一の工程で吐出するため、それぞれを別の工程で行うことなく、製造工程を簡略化して作業効率を上げることができるという効果を奏する。   As described above, in the wiring board forming method disclosed in the present application, the insulating droplets ejected in the dielectric portion forming step and the insulating droplets ejected in the insulating portion forming step are different droplets. However, since the discharge is performed in one process from different discharge ports, the manufacturing process can be simplified and the working efficiency can be improved without performing each process in a separate process.

(7)本願に開示する配線基板は、基板の少なくとも一側面側に回路素子が載置される配線基板において、前記基板の少なくとも他側面側の表面が導電性を有するものであり、前記基板に形成された第1のビアの内側に、前記基板の一側面側から他側面側の全面を絶縁被覆して筒状に形成される第1のビア絶縁部と、前記第1のビア絶縁部内に導電性を有する導電材を封入して形成される第1のビア導電部と、前記基板の他側面側において、少なくとも前記第1のビア導電部の周囲領域に積層され、前記第1のビア絶縁部の筒状端部の全周に亘って接続する絶縁材を延在させて形成される誘電部と、前記誘電部の表面に積層されると共に前記第1のビア導電部に接続されて形成される第1の配線部とを備え、前記基板がグランドと接続され、前記第1の配線部と前記基板とで前記誘電部を挟むキャパシタが形成されることを特徴とするものである。   (7) A wiring board disclosed in the present application is a wiring board in which a circuit element is placed on at least one side surface of the board, and at least the surface on the other side surface of the board has conductivity. A first via insulating portion formed in a cylindrical shape by insulatively covering the entire surface from one side surface to the other side surface of the substrate inside the formed first via, and in the first via insulating portion A first via conductive portion formed by encapsulating a conductive material having conductivity, and laminated on at least a peripheral region of the first via conductive portion on the other side surface of the substrate; A dielectric portion formed by extending an insulating material to be connected over the entire circumference of the cylindrical end portion of the portion, and formed by being laminated on the surface of the dielectric portion and connected to the first via conductive portion. A first wiring portion, wherein the substrate is connected to the ground, Serial and is characterized in that the capacitor sandwiching the dielectric portion is formed and the substrate first wiring portion.

(8)本願に開示する配線基板は、前記基板に形成された第2のビアの内側に、前記基板の一側面側から他側面側の全面を絶縁被覆する筒状の第2のビア絶縁部と、前記第2のビア絶縁部内に導電性を有する導電材を封入した第2のビア導電部と、前記基板の他側面側において、少なくとも前記第2のビア導電部の周囲領域に積層され、前記第2のビア絶縁部の筒状端部に少なくとも一部が接触しないように絶縁材を延在させて形成される絶縁部と、前記絶縁部の表面に積層されると共に前記第2のビア導電部及び前記基板に接続されて形成される第2の配線部とを備え、前記第2のビア導電部がグランドと接続され、前記第1の配線部と前記基板とで前記誘電部を挟むキャパシタが形成されることを特徴とするものである。   (8) The wiring board disclosed in the present application is a cylindrical second via insulating portion that covers and covers the entire surface from one side surface to the other side surface of the substrate inside the second via formed in the substrate. And a second via conductive portion encapsulating a conductive material in the second via insulating portion, and laminated on at least the peripheral region of the second via conductive portion on the other side of the substrate, An insulating portion formed by extending an insulating material so that at least a portion thereof does not contact the cylindrical end portion of the second via insulating portion; and the second via that is laminated on a surface of the insulating portion. A conductive part and a second wiring part formed to be connected to the substrate, wherein the second via conductive part is connected to the ground, and the dielectric part is sandwiched between the first wiring part and the substrate. A capacitor is formed.

本発明の実施形態に係る配線基板の断面図及び等価回路図である。It is sectional drawing and the equivalent circuit schematic of the wiring board which concerns on embodiment of this invention. 本発明の実施形態に係る配線基板形成方法に用いる装置の機能ブロック図である。It is a functional block diagram of the apparatus used for the wiring board formation method which concerns on embodiment of this invention. 本発明の実施形態に係る配線基板形成方法に用いるインクジェット法の工程を示す図である。It is a figure which shows the process of the inkjet method used for the wiring board formation method which concerns on embodiment of this invention. 本発明の実施形態に係る配線基板形成方法を示すフローチャートである。It is a flowchart which shows the wiring board formation method which concerns on embodiment of this invention. 本発明の実施形態に係る配線基板形成方法の各工程を示す図である。It is a figure which shows each process of the wiring board formation method which concerns on embodiment of this invention.

以下、本発明の実施の形態を説明する。本発明は多くの異なる形態で実施可能である。また、本実施形態の全体を通して同じ要素には同じ符号を付けている。   Embodiments of the present invention will be described below. The present invention can be implemented in many different forms. Also, the same reference numerals are given to the same elements throughout the present embodiment.

(本発明の実施形態)
本実施形態に係る配線基板、及び配線基板形成方法について、図1ないし図5を用いて説明する。図1は、本実施形態に係る配線基板の断面図及び等価回路図、図2は、本実施形態に係る配線基板形成方法に用いる装置の機能ブロック図、図3は、本実施形態に係る配線基板形成方法に用いるインクジェット法の工程を示す図、図4は、本実施形態に係る配線基板形成方法を示すフローチャート、図5は、本実施形態に係る配線基板形成方法の各工程を示す図である。
(Embodiment of the present invention)
A wiring board and a wiring board forming method according to this embodiment will be described with reference to FIGS. 1 is a cross-sectional view and an equivalent circuit diagram of a wiring board according to the present embodiment, FIG. 2 is a functional block diagram of an apparatus used for the wiring board forming method according to the present embodiment, and FIG. 3 is a wiring according to the present embodiment. FIG. 4 is a flowchart showing a wiring board forming method according to this embodiment, and FIG. 5 is a drawing showing each process of the wiring board forming method according to this embodiment. is there.

図1(A)において、配線基板1は、導電性を有するシリコン基板2と、シリコン基板2に形成されるビア7a,7bと、ビア7a,7bの内側にシリコン基板2の一側面側から他側面側の全面を絶縁被覆する筒状のビア絶縁部3a,3bと、ビア絶縁部3a,3b内に導電性を有する導電材を封入したビア導電部4a,4bと、シリコン基板2の下面側において、少なくともビア導電部4aの周囲領域に積層され、ビア絶縁部3aの筒状端部の全周に亘って接続する絶縁材を延在させて形成された誘電部5aと、シリコン基板2の下面側において、少なくともビア導電部4bの周囲領域に積層され、ビア絶縁部3bの筒状端部に少なくとも一部が接触しないように絶縁材を延在させて形成された絶縁部5bと、誘電部5a又は絶縁部5bの表面に積層されると共にビア導電部4a,4bに接続される配線部6a,6bとを備える。   In FIG. 1A, a wiring substrate 1 includes a silicon substrate 2 having conductivity, vias 7a and 7b formed in the silicon substrate 2, and other sides from the one side of the silicon substrate 2 inside the vias 7a and 7b. Cylindrical via insulating portions 3a and 3b that insulate and coat the entire side surface, via conductive portions 4a and 4b enclosing conductive materials in the via insulating portions 3a and 3b, and the lower surface side of the silicon substrate 2 The dielectric portion 5a is formed by extending an insulating material that is stacked at least in the peripheral region of the via conductive portion 4a and connected over the entire circumference of the cylindrical end portion of the via insulating portion 3a. On the lower surface side, an insulating portion 5b is formed that is laminated at least in the peripheral region of the via conductive portion 4b and is formed by extending an insulating material so that at least a part thereof does not contact the cylindrical end portion of the via insulating portion 3b; Part 5a or insulating part 5b Provided via conductor portion 4a while being laminated on the surface, the wiring portion 6a which is connected to 4b, and the 6b.

配線部6aは電源に接続されて電源電極として機能し、配線部6bはグランド(GNDとする)に接続されてGND電極として機能する。つまり、配線部6bはシリコン基板2と接触しているため、シリコン基板2がGNDとなり、配線部6aとシリコン基板2とで誘電部5aを挟むデカップリングキャパシタが形成される。図1(B)は、この構成を等価回路にして示したものであり、電源とGNDの間でキャパシタが構成されている。   The wiring portion 6a is connected to a power supply and functions as a power supply electrode, and the wiring portion 6b is connected to the ground (GND) and functions as a GND electrode. That is, since the wiring part 6b is in contact with the silicon substrate 2, the silicon substrate 2 becomes GND, and a decoupling capacitor is formed in which the dielectric part 5a is sandwiched between the wiring part 6a and the silicon substrate 2. FIG. 1B shows this configuration as an equivalent circuit, and a capacitor is configured between the power supply and GND.

なお、図1においては、絶縁部5bをビア絶縁部3bの筒状端部に少なくとも一部が接触しないように絶縁材を延在させて形成することで、シリコン基板2をGNDに接続されるようにしているが、必ずしもこのような構成にしなくても、図1(C)に示すように、シリコン基板2をGNDに接続する構成であればよい。   In FIG. 1, the insulating portion 5 b is formed by extending an insulating material so that at least part of the insulating portion 5 b does not contact the cylindrical end portion of the via insulating portion 3 b, thereby connecting the silicon substrate 2 to the GND. However, it is not always necessary to use such a configuration as long as the silicon substrate 2 is connected to GND as shown in FIG.

また、誘電部5a及び絶縁部5bは、いずれも絶縁性を有している必要があるため、同一の絶縁材で形成するようにしてもよいが、デカップリングキャパシタの性能向上(デカップリングキャパシタの容量を大きくする)のためには、誘電部5aを誘電体(例えば、チタン酸バリウム等)で形成することが望ましい。   In addition, since both the dielectric portion 5a and the insulating portion 5b need to have insulating properties, they may be formed of the same insulating material, but the performance of the decoupling capacitor is improved (decoupling capacitor performance). In order to increase the capacitance, it is desirable to form the dielectric portion 5a with a dielectric (eg, barium titanate).

本実施形態においては、誘電部5a、絶縁部5b、及び配線部6a,6bを形成する際にインクジェット法を用いる。誘電部5a、及び絶縁部5bについては、インクジェット法により液滴を吐出することで形成し、配線部6a,6bについては、インクジェット法により誘電部5a、及び絶縁部5bの表面に無電解めっきの触媒となる液滴を吐出した後に、無電解めっきにより配線部6a,6bを形成するものである。   In the present embodiment, an inkjet method is used when forming the dielectric portion 5a, the insulating portion 5b, and the wiring portions 6a and 6b. The dielectric part 5a and the insulating part 5b are formed by discharging droplets by an ink jet method, and the wiring parts 6a and 6b are formed by electroless plating on the surfaces of the dielectric part 5a and the insulating part 5b by the ink jet method. After discharging droplets serving as a catalyst, the wiring portions 6a and 6b are formed by electroless plating.

ここで、本実施形態に用いるインクジェット法について詳細に説明する。図2に、イン
クジェット法を実現する装置の構成を示す。インクジェット装置100は、描画情報70に記憶される配線パターン情報に基づいて液滴を吐出する吐出口を移動制御し、吐出口から吐出される液滴により配線パターンを描画するインクジェット10と、配線パターンを形成するシリコン基板2と、無電解めっきを行うことで導電性の配線が形成された配線基板1を形成するめっき部30と、インクジェット10の吐出口の移動を制御する移動制御部50と、当該移動制御部50の制御に基づいて吐出口の移動を行う駆動部60とを備える。
Here, the ink jet method used in the present embodiment will be described in detail. FIG. 2 shows a configuration of an apparatus for realizing the ink jet method. The inkjet apparatus 100 controls the movement of the ejection port that ejects droplets based on the wiring pattern information stored in the drawing information 70, and draws the wiring pattern with the droplets ejected from the ejection port. A silicon substrate 2 that forms the conductive substrate, a plating unit 30 that forms the wiring substrate 1 on which conductive wiring is formed by performing electroless plating, a movement control unit 50 that controls the movement of the discharge port of the inkjet 10, And a drive unit 60 that moves the discharge port based on the control of the movement control unit 50.

さらに、インクジェット10は、絶縁体の液滴を断面凹溝状に吐出して絶縁部5bを形成する絶縁体吐出部11と、誘電体の液滴を断面凹溝状に吐出して誘電部5aを形成する誘電体吐出部14と、絶縁体吐出部11や誘電体吐出部14が形成した断面凹溝状の溝内に無電解めっきの触媒となる液滴を吐出して触媒部を形成する触媒吐出部12と、各吐出部の吐出動作を制御する吐出制御部13とを備える。   Further, the ink jet 10 discharges the insulator droplets in the cross-sectional groove shape to form the insulating portion 5b, and discharges the dielectric droplets in the cross-sectional groove shape to discharge the dielectric portion 5a. And forming a catalyst portion by discharging droplets serving as a catalyst for electroless plating into a groove having a cross-sectional groove shape formed by the insulator discharge portion 11 and the dielectric discharge portion 14. The catalyst discharge part 12 and the discharge control part 13 which controls the discharge operation of each discharge part are provided.

絶縁性を有する誘電部5a、及び絶縁部5bを形成するための液滴を供するインクジェットインキ(以下、インキとする)としては、液滴乾燥後に絶縁性を有し、インクジェットヘッド(以下、ヘッドとする)から安定的に連続して吐出できる液滴にする必要がある。絶縁性インキの構成については、公知の材料を構成成分として選定し、後述する適正な物性に調整することで生成することができる。   As the ink jet ink (hereinafter referred to as ink) that provides droplets for forming the dielectric portion 5a and the insulating portion 5b having insulating properties, the ink jet ink (hereinafter referred to as the head) has an insulating property after drying the droplets. Therefore, it is necessary to form liquid droplets that can be ejected stably and continuously. About the structure of insulating ink, it can produce | generate by selecting a well-known material as a structural component and adjusting to the appropriate physical property mentioned later.

一般的に圧電素子のヘッドにおいて安定的に液滴が形成されるインキの物性は、ヘッドの構成によって異なるが、ヘッド内部における温度において、粘度が3mPa・secないし150mPa・sec、好ましくは4mPa・secないし30mPa・secである。これよりも値が大きくなると液滴を吐出ができなくなり、値が小さくなると液滴の吐出量が安定しない。   In general, the physical properties of ink on which droplets are stably formed in a head of a piezoelectric element vary depending on the configuration of the head, but the viscosity is 3 mPa · sec to 150 mPa · sec, preferably 4 mPa · sec at the temperature inside the head. Or 30 mPa · sec. When the value is larger than this, it becomes impossible to eject the droplet, and when the value is smaller, the ejection amount of the droplet is not stable.

表面張力は、ヘッド内部における温度において、20mN/mないし40mN/mである。これより値が大きくなると液滴が吐出ができなくなり、値が小さくなると連続吐出時の液滴量が安定しない。   The surface tension is 20 mN / m to 40 mN / m at the temperature inside the head. If the value is larger than this, the droplets cannot be ejected, and if the value is smaller, the droplet amount during continuous ejection is not stable.

ヘッド内部の温度は、材料安定性依存するが、室温20℃から45℃で用いられる。インキ中の固形分を多くして膜厚を向上させるために40℃程度の温度が用いられる事がある。   The temperature inside the head depends on the material stability, but is used at a room temperature of 20 ° C. to 45 ° C. In order to increase the solid content in the ink and improve the film thickness, a temperature of about 40 ° C. is sometimes used.

インクジェットによる誘電部5a、及び絶縁部5bの描画は、液滴を連続的に着弾させる必要があり、着弾後の個々の液滴が合体する必要がある。そのために、着弾時の液滴拡がり直径Dに対して液滴着弾間のピッチp1が、D>p1となるように設定する。この着弾時の液滴拡がり径Dは、ヘッドから飛翔してきた液滴の直径dよりも常に大きい。また、着弾直後はその運動エネルギーが消費された後に接触基板と静的な安定状態に至る。したがって、着弾直後の拡がり径は測定することは困難であるから、1滴が基板に着弾した後に安定して観察される拡がり径D1を用いて、D1>p1とする。 In order to draw the dielectric portion 5a and the insulating portion 5b by ink jet, it is necessary to land the droplets continuously, and the individual droplets after landing need to be combined. Therefore, the pitch p 1 between droplet landings is set so that D> p 1 with respect to the droplet spreading diameter D at the time of landing. The droplet spreading diameter D at the time of landing is always larger than the diameter d of the droplet flying from the head. Further, immediately after the landing, the kinetic energy is consumed and the contact substrate and the static stable state are reached. Therefore, since it is difficult to measure the spread diameter immediately after landing, D 1 > p 1 is set using the spread diameter D 1 that is stably observed after one drop has landed on the substrate.

一方、発明者らは、液滴が合体した後に良好な形状になるには、その静的接触角度が重要であることを見出した。接触角度が30°を超えた場合、ラインが流動性を持っていると、形状を形成後、一部にバルジが形成され、更には液滴に分裂し、良好な形状を保つことができない。   On the other hand, the inventors have found that the static contact angle is important in order to obtain a good shape after the droplets coalesce. When the contact angle exceeds 30 °, if the line has fluidity, after forming the shape, a bulge is formed in part, and further, it breaks up into droplets, and a good shape cannot be maintained.

形成後に絶縁性を有するためのインキの構成成分として、後続処理である触媒部を形成するための触媒インキの塗布において形状を安定させるために、絶縁性を示す樹脂組成物が用いられ、前述した粘度、表面張力の調整に用いられる溶媒に可溶、又はナノ分散可能
であり、溶媒蒸発後に流動性を示さないように調製される必要がある。
As a constituent component of the ink for having insulating properties after formation, a resin composition showing insulating properties is used to stabilize the shape in the application of the catalyst ink for forming the catalyst portion which is the subsequent treatment, as described above. It should be prepared so that it is soluble or nanodispersible in the solvent used for adjusting the viscosity and surface tension and does not exhibit fluidity after evaporation of the solvent.

特に、断面凹溝状を優位に形成するインキ組成物として、溶媒蒸発途中に流動性を示さないように調製されることが好ましい。また、基板との接触角を30°未満に設定すると、溶剤蒸発過程において優位に断面凹溝状を形成することができる。   In particular, the ink composition that preferentially forms a cross-sectional groove shape is preferably prepared so as not to exhibit fluidity during solvent evaporation. Further, when the contact angle with the substrate is set to be less than 30 °, it is possible to form a concave groove shape preferentially in the solvent evaporation process.

無電解めっきの触媒となる成分を含む触媒インキの物性値についても、インクジェットにて安定的に吐出されるために、絶縁性インキの物性と同等にする。触媒成分として一般的にパラジウム塩が用いられ、さらにその錯体安定に必要な塩基を含んだ水溶液を用いる。これに、インクジェットに適した粘度にするために安定を損なわないエチレングリコール系の溶媒を添加すると共に、表面張力を調整するためにノニオン系界面活性剤を添加する。   The physical property value of the catalyst ink containing a component that becomes a catalyst for electroless plating is also made equal to the physical property of the insulating ink in order to be stably ejected by inkjet. As the catalyst component, a palladium salt is generally used, and an aqueous solution containing a base necessary for stabilizing the complex is used. To this, an ethylene glycol solvent that does not impair stability in order to obtain a viscosity suitable for inkjet is added, and a nonionic surfactant is added to adjust the surface tension.

また、無電解メッキに供される触媒インキも均一溶液に限定されること無く、ナノ金属触媒粒子、触媒金属コロイドを含有するもの(例えば、参考文献:林忠夫、松岡政夫、縄船秀美、「無電解めっき−基礎と応用」、(電気鍍金研究会)、日刊工業新聞社発行に記載のもの)であって、前記インキの物性値を有し、ヘッドの吐出安定性やヘッド材料の腐食などに影響を与えなければ適用可能である。   In addition, the catalyst ink used for electroless plating is not limited to a uniform solution, and contains nano metal catalyst particles and catalyst metal colloids (for example, reference materials: Tadao Hayashi, Masao Matsuoka, Hidemi Rope Fune, “ Electroless Plating—Basics and Applications ”(described in the“ Electroplating Research Society ”, published by Nikkan Kogyo Shimbun), which has the ink physical properties, head ejection stability, head material corrosion, etc. It is applicable if it does not affect.

触媒インキの液滴着弾ピッチp2は、誘電部5a、及び絶縁部5bに対する液滴拡がり径D2に対して、D2>p2に設定される。この時、誘電部5a、及び絶縁部5bは断面凹溝状を有しているので、左右の土手から溢れない程度の液量を充填すれば良い。 The droplet landing pitch p 2 of the catalyst ink is set such that D 2 > p 2 with respect to the droplet spreading diameter D 2 for the dielectric portion 5a and the insulating portion 5b. At this time, since the dielectric part 5a and the insulating part 5b have a groove shape in cross section, it is sufficient to fill the liquid so as not to overflow from the left and right banks.

図3は、インクジェット法の工程を示しており、まず、シリコン基板2の表面処理を行う(図3(A))。この表面処理においては、Deep−UV照射装置37を用いてシリコン基板2の表面にDeep−UVを照射することで、シリコン基板2の表面に光化学反応を起こし、有機物等を酸化除去して洗浄する。   FIG. 3 shows the steps of the ink jet method. First, the surface treatment of the silicon substrate 2 is performed (FIG. 3A). In this surface treatment, the Deep-UV irradiation device 37 is used to irradiate the surface of the silicon substrate 2 with Deep-UV, thereby causing a photochemical reaction on the surface of the silicon substrate 2 to oxidize and remove organic substances. .

シリコン基板2の表面が洗浄されると、絶縁性配線33を形成する(図3(B))。上述したような絶縁性インキの物性値でヘッド32から絶縁性インキ33aを吐出する。このとき、配線パターン情報と同じパターンで絶縁性インキ33aを吐出する。絶縁性配線を描画後、シリコン基板2をホットプレート上で乾燥する。この工程により、図1に示す誘電部5a、及び絶縁部5bが形成され、それぞれの絶縁性配線は、断面凹溝状を有するものとなる。   When the surface of the silicon substrate 2 is cleaned, the insulating wiring 33 is formed (FIG. 3B). The insulating ink 33a is discharged from the head 32 with the physical property values of the insulating ink as described above. At this time, the insulating ink 33a is ejected in the same pattern as the wiring pattern information. After drawing the insulating wiring, the silicon substrate 2 is dried on a hot plate. By this step, the dielectric portion 5a and the insulating portion 5b shown in FIG. 1 are formed, and each insulating wiring has a concave groove shape in cross section.

絶縁性配線33が形成されると、触媒部(パラジウム塩)34のラインを形成する(図3(C))。上述したような触媒インキの物性値でヘッド32から触媒インキ34aを、前段の工程で形成された絶縁性配線33の凹溝内に吐出する。触媒部34のライン描画後、室温で乾燥を行う。絶縁性配線33における凹溝内に触媒部34が形成され、左右の土手により触媒インキ34がはみ出すことがない。   When the insulating wiring 33 is formed, a line of the catalyst portion (palladium salt) 34 is formed (FIG. 3C). The catalyst ink 34a is ejected from the head 32 into the concave groove of the insulating wiring 33 formed in the previous step with the physical property values of the catalyst ink as described above. After line drawing of the catalyst part 34, drying is performed at room temperature. The catalyst part 34 is formed in the concave groove in the insulating wiring 33, and the catalyst ink 34 does not protrude from the left and right banks.

触媒部34のラインが形成されると、絶縁樹脂の光硬化を行う(図3(D))。ここでは、紫外線露光装置38により紫外線を照射し、純水での洗浄後にエアブロー乾燥を行う。   When the line of the catalyst part 34 is formed, the photocuring of the insulating resin is performed (FIG. 3D). Here, ultraviolet rays are irradiated by the ultraviolet exposure device 38, and air blow drying is performed after washing with pure water.

絶縁樹脂の光硬化が行われると、アルカリ還元処理を行う(図3(E))。ここでは、ジメチルアミノボランDMAB水溶液中に浸漬し、水洗、エアブロー乾燥を行う。   When the photocuring of the insulating resin is performed, an alkali reduction treatment is performed (FIG. 3E). Here, it is immersed in a dimethylaminoborane DMAB aqueous solution, washed with water and air blow dried.

アルカリ還元処理が行われると、無電解めっき処理を行う(図3(F))。ここでは、めっき液中に浸漬し、無電解めっきを行い水洗する。絶縁性配線33における凹溝内にめ
っき層36が形成される。
When the alkali reduction treatment is performed, an electroless plating treatment is performed (FIG. 3F). Here, it is immersed in a plating solution, subjected to electroless plating and washed with water. A plating layer 36 is formed in the concave groove in the insulating wiring 33.

なお、ここでは絶縁性配線の描画と触媒部の描画はそれぞれ個別に行っているが、それぞれの液滴を個々の隣接配設される、又は所定の距離だけ離隔して配設されるヘッドに充填し、絶縁性配線を形成する工程で吐出する絶縁性インキと、触媒部を形成する工程で吐出する触媒インキとが、隣接配設された、又は所定の距離だけ離隔して配設されたそれぞれ異なる吐出口から吐出され、少なくとも絶縁性配線を形成する工程を先行して、絶縁性インキと触媒インキとが1回の描画処理で順次吐出されるようにすることもできる。この場合、絶縁液滴の流動性を抑えるために基板を30℃ないし100℃程度まで加熱しておくと好ましい。   Here, the drawing of the insulating wiring and the drawing of the catalyst portion are performed separately, but the respective droplets are arranged on the heads arranged adjacent to each other or separated by a predetermined distance. The insulating ink that is filled and discharged in the process of forming the insulating wiring and the catalyst ink that is discharged in the process of forming the catalyst part are disposed adjacent to each other or separated by a predetermined distance. Insulating ink and catalyst ink may be sequentially discharged by one drawing process, preceded by a step of forming at least insulating wiring, which are discharged from different discharge ports. In this case, it is preferable to heat the substrate to about 30 ° C. to 100 ° C. in order to suppress the fluidity of the insulating droplets.

また、本実施形態においては、絶縁性配線の描画の際に誘電部5aと絶縁部5bとを形成する。そのため、それぞれの液滴をさらに2つの隣接配設される、又は所定の距離だけ離隔して配設されるヘッドに充填し、誘電部5aを形成する工程で吐出する絶縁性インキと、絶縁部5bを形成する工程で吐出する絶縁性インキとが、隣接配設された、又は所定の距離だけ離隔して配設されたそれぞれ異なる吐出口から吐出され、1回の描画処理で誘電部5a、及び絶縁部5bを同時に描画するようにしてもよい。つまり、誘電部5aを形成するインキを吐出するヘッド、絶縁部5bを形成するインキを吐出するヘッド、及び触媒部を形成するインキを吐出するヘッドをそれぞれ個別に用意して、1回の描画処理で絶縁性配線の描画と触媒部の描画を行うようにしてもよい。   In the present embodiment, the dielectric portion 5a and the insulating portion 5b are formed when the insulating wiring is drawn. Therefore, an insulating ink which is discharged in the process of forming the dielectric portion 5a by filling each of the droplets into two heads that are arranged adjacent to each other or separated by a predetermined distance, and the insulating portion Insulating ink ejected in the step of forming 5b is ejected from different ejection ports disposed adjacent to each other or separated by a predetermined distance, and the dielectric portion 5a, The insulating portion 5b may be drawn at the same time. In other words, a head for ejecting ink for forming the dielectric portion 5a, a head for ejecting ink for forming the insulating portion 5b, and a head for ejecting ink for forming the catalyst portion are individually prepared, and one drawing process is performed. Then, the insulating wiring and the catalyst portion may be drawn.

さらに、本実施形態における配線パターン形成方法は、絶縁性の配線が硬化性樹脂組成物であり、触媒形成工程後に、触媒部の還元及び/もしくは無電解めっき時に施される触媒の固定化又はめっき層の安定形成を目的に、絶縁性配線に紫外線を照射、又は80℃ないし160℃にて熱処理を行うことで、硬化性樹脂組成物を硬化し、触媒部を固定化する固定化工程を含むことで、還元液やめっき液がアルカリ性であっても触媒が溶出してしまうようなことがなく、確実に線状の触媒部を形成し、無電解めっきによる高精度な配線パターンを形成することができるようにしてもよい。   Furthermore, in the wiring pattern forming method in the present embodiment, the insulating wiring is a curable resin composition, and after the catalyst forming step, the catalyst is fixed or plated at the time of reduction of the catalyst portion and / or electroless plating. For the purpose of stably forming the layer, it includes an immobilization step of curing the curable resin composition and immobilizing the catalyst portion by irradiating the insulating wiring with ultraviolet rays or performing heat treatment at 80 ° C. to 160 ° C. Therefore, even if the reducing solution or plating solution is alkaline, the catalyst will not be eluted, and a linear catalyst part is surely formed, and a highly accurate wiring pattern is formed by electroless plating. You may be able to.

さらにまた、無電解めっきにおいて使用される触媒、その還元法、めっき浴、及びめっき方法は上記の記載されるものに限定されることなく、公知の方法を使用できる(例えば参考文献を参照)。   Furthermore, the catalyst used in electroless plating, its reduction method, plating bath, and plating method are not limited to those described above, and known methods can be used (see, for example, references).

さらにまた、本実施形態においては、絶縁性配線を形成した後に触媒部の形成と無電解めっきを行っているが、触媒部の形成と無電解めっきを行わずに、絶縁性配線を形成した後に導電性のペーストを絶縁性配線の上に塗布することで導電性の配線パターンを形成するようにしてもよい。   Furthermore, in this embodiment, the formation of the catalyst portion and the electroless plating are performed after forming the insulating wiring, but the formation of the insulating wiring without performing the formation of the catalyst portion and the electroless plating is performed. A conductive wiring pattern may be formed by applying a conductive paste on the insulating wiring.

以上が、本実施形態で用いるインクジェット法に関する詳細な説明である。本実施形態においては、上記インクジェット法を用いて誘電部5a、絶縁部5b、及び触媒部を描画し、配線部6a,6bを形成して、同時にデカップリングキャパシタを形成する。   The above is the detailed description regarding the ink jet method used in the present embodiment. In the present embodiment, the dielectric part 5a, the insulating part 5b, and the catalyst part are drawn using the inkjet method to form the wiring parts 6a and 6b, and the decoupling capacitor is simultaneously formed.

次に、図4及び図5を用いて、本実施形態に係る配線基板形成方法の処理工程を説明する。まず、シリコン基板2にビア7a,7bを形成し(S21)、ビア7a,7bの内側にシリコン基板2の一側面側から他側面側の全面を絶縁被覆する筒状のビア絶縁部3a,3bを形成し(S22)、ビア絶縁部3a,3b内に導電性を有する導電材を封入したビア導電部4a,4bを形成し(S23)、シリコン基板2の裏面を研磨する(S24)。ここまでの工程で形成された配線基板を図5(A)に示す。   Next, processing steps of the wiring board forming method according to the present embodiment will be described with reference to FIGS. First, vias 7a and 7b are formed in the silicon substrate 2 (S21), and cylindrical via insulating portions 3a and 3b that insulate and cover the entire surface from one side to the other side of the silicon substrate 2 inside the vias 7a and 7b. (S22), via conductive portions 4a and 4b in which a conductive material having conductivity is enclosed are formed in the via insulating portions 3a and 3b (S23), and the back surface of the silicon substrate 2 is polished (S24). FIG. 5A shows the wiring board formed through the steps up to here.

研磨されたシリコン基板2の裏面に誘電部5a、及び絶縁部5bを描画し(S25、S
26)、ビア導電部4a,4bの表面を洗浄する(S27)。ここでの描画は、上記で説明したインクジェット法を用いる。ここまでの工程で形成された配線基板を図5(B)に示す。図5(B)に示すように、誘電部5aは、少なくともビア導電部4aの周囲領域に所定の幅d1をもって積層され、ビア絶縁部3aの筒状端部3a’の全周に亘って接続する絶縁材を延在させて形成され、絶縁部5bは、少なくともビア導電部4bの周囲領域に積層され、ビア絶縁部3bの筒状端部3b’に少なくとも一部が接触しないように、筒状端部3b’から幅d2を確保して絶縁材を延在させて形成されている。
The dielectric part 5a and the insulating part 5b are drawn on the back surface of the polished silicon substrate 2 (S25, S
26) The surfaces of the via conductive portions 4a and 4b are cleaned (S27). The drawing here uses the ink jet method described above. A wiring substrate formed through the steps up to here is illustrated in FIG. As shown in FIG. 5 (B), the dielectric portion 5a is stacked with a predetermined width d 1 in the peripheral region of at least via conductor portion 4a, the entire circumference of the cylindrical end portion 3a of the via insulating portion 3a ' Formed by extending the insulating material to be connected, the insulating portion 5b is laminated at least in the peripheral region of the via conductive portion 4b, and at least partly does not contact the cylindrical end portion 3b ′ of the via insulating portion 3b. to secure the width d 2 from the tubular end portion 3b 'is formed by extending the insulating material.

このように形成することで、電源に接続される配線部6aは、シリコン基板2と完全に絶縁されると共に、GNDに接続される配線部6bの電極は、シリコン基板2と接続され、結果的にシリコン基板2がGNDに接続される。   By forming in this way, the wiring part 6a connected to the power source is completely insulated from the silicon substrate 2, and the electrode of the wiring part 6b connected to GND is connected to the silicon substrate 2, and as a result In addition, the silicon substrate 2 is connected to GND.

なお、誘電部5a、及び絶縁部5bを描画する絶縁材の液滴が、ビア導電部4a,4bと撥液性となる液滴に調製することで、ビア導電部4a,4bの表面を簡単に洗浄することができ、導電性を確保することができる。また、誘電部5a、及び絶縁部5bを描画する際に、ビア導電部4a,4bの表面に予め絶縁材と撥液性となる材料を塗布するようにしてもよい。また、この誘電部5aの厚さは、配線部6aの接続を考慮して10μm以下であることが望ましい。   In addition, the surface of the via conductive portions 4a and 4b can be simplified by preparing the droplets of the insulating material for drawing the dielectric portion 5a and the insulating portion 5b to be liquid repellent with the via conductive portions 4a and 4b. It is possible to ensure the conductivity. Further, when drawing the dielectric portion 5a and the insulating portion 5b, an insulating material and a liquid repellent material may be applied in advance to the surfaces of the via conductive portions 4a and 4b. The thickness of the dielectric part 5a is preferably 10 μm or less in consideration of the connection of the wiring part 6a.

誘電部5a、及び絶縁部5bが形成されると、上記で説明したインクジェット法により触媒部を形成する(S28)。この工程で形成された配線基板を図5(C)に示す。誘電部5a、及び絶縁部5bは、上記のインクジェット法により断面が凹溝状となっているため、触媒部が、ビア導電部4a,4bの方向とは逆の方向(誘電部5a、及び絶縁部5bの外側方向)に溢れることがない。逆に、ビア導電部4a,4bの方向(誘電部5a、及び絶縁部5bの内側方向)は、配線部6a,6bを形成する必要があるため、描画の対象となる。   When the dielectric portion 5a and the insulating portion 5b are formed, a catalyst portion is formed by the ink jet method described above (S28). The wiring board formed in this step is shown in FIG. Since the dielectric part 5a and the insulating part 5b are formed in a concave groove shape by the above-described ink jet method, the catalyst part has a direction opposite to the direction of the via conductive parts 4a and 4b (the dielectric part 5a and the insulating part 5b). There is no overflow in the outer direction of the portion 5b. On the contrary, the direction of the via conductive parts 4a and 4b (the inner direction of the dielectric part 5a and the insulating part 5b) needs to be formed with the wiring parts 6a and 6b.

触媒部が形成されると、無電解めっきにより配線部6a,6bを形成する(S29)。この工程で形成された配線基板を図5(D)に示す。触媒部が形成された箇所にめっきにより配線部6a,6bが形成され、それと同時に配線部6aと基板2との間でデカップリングキャパシタが形成される。   When the catalyst portion is formed, the wiring portions 6a and 6b are formed by electroless plating (S29). A wiring board formed in this step is shown in FIG. Wiring portions 6a and 6b are formed by plating at the portion where the catalyst portion is formed, and at the same time, a decoupling capacitor is formed between the wiring portion 6a and the substrate 2.

1 配線基板
2 シリコン基板
3a,3b ビア絶縁部
4a,4b ビア導電部
5a 誘電部
5b 絶縁部
6a,6b 配線部
7a,7b ビア
10 インクジェット
11 絶縁体吐出部
12 触媒吐出部
13 吐出制御部
14 誘電体吐出部
30 めっき部
32 ヘッド
33 絶縁性配線
33a 絶縁性インキ
34 触媒部
34a 触媒インキ
35 触媒部(Pd0
36 めっき層
37 Deep−UV装置
38 紫外線露光装置
50 移動制御部
60 駆動部
70 描画情報
100 インクジェット装置
DESCRIPTION OF SYMBOLS 1 Wiring board 2 Silicon substrate 3a, 3b Via insulation part 4a, 4b Via conductive part 5a Dielectric part 5b Insulation part 6a, 6b Wiring part 7a, 7b Via 10 Inkjet 11 Insulator discharge part 12 Catalyst discharge part 13 Discharge control part 14 Dielectric Body discharging part 30 Plating part 32 Head 33 Insulating wiring 33a Insulating ink 34 Catalyst part 34a Catalyst ink 35 Catalyst part (Pd 0 )
36 Plating Layer 37 Deep-UV Device 38 Ultraviolet Exposure Device 50 Movement Control Unit 60 Drive Unit 70 Drawing Information 100 Inkjet Device

Claims (8)

導電性を有する基板の少なくとも一側面側に回路素子が載置される配線基板を形成する配線基板形成方法において、
前記基板に形成された第1のビアの内側に、前記基板の一側面側から他側面側の全面を絶縁被覆する筒状の第1のビア絶縁部、及び当該第1のビア絶縁部内に導電性を有する導電材を封入した第1のビア導電部を形成するビア形成工程と、
前記基板の他側面側において、少なくとも前記第1のビア導電部の周囲領域に積層され、前記第1のビア絶縁部の筒状端部の全周に亘って接続する絶縁材を延在させて誘電部を形成する誘電部形成工程と、
前記誘電部の表面に積層されると共に前記第1のビア導電部に接続される第1の配線部を形成する配線形成工程とを含み、
前記第1の配線部が電源と接続され、前記基板がグランドと接続され、前記第1の配線部と前記基板とで前記誘電部を挟むキャパシタが形成されることを特徴とする配線基板形成方法。
In a wiring board forming method for forming a wiring board on which a circuit element is placed on at least one side surface of a conductive board,
Inside the first via formed in the substrate, a cylindrical first via insulating portion that covers and covers the entire surface from the one side surface to the other side surface of the substrate, and conductive in the first via insulating portion. A via forming step of forming a first via conductive portion enclosing a conductive material having a property;
On the other side surface of the substrate, an insulating material that is stacked at least in the peripheral region of the first via conductive portion and is connected over the entire circumference of the cylindrical end portion of the first via insulating portion is extended. A dielectric part forming step for forming the dielectric part;
Forming a first wiring portion that is laminated on the surface of the dielectric portion and connected to the first via conductive portion; and
The wiring substrate forming method, wherein the first wiring portion is connected to a power source, the substrate is connected to a ground, and a capacitor sandwiching the dielectric portion between the first wiring portion and the substrate is formed. .
請求項1に記載の配線基板形成方法において、
前記ビア形成工程が、前記基板に形成された第2のビアの内側に、前記基板の一側面側から他側面側の全面を絶縁被覆する筒状の第2のビア絶縁部、及び当該第2のビア絶縁部内に導電性を有する導電材を封入した第2のビア導電部を形成し、
前記基板の他側面側において、少なくとも前記第2のビア導電部の周囲領域に積層され、前記第2のビア絶縁部の筒状端部に少なくとも一部が接触しないように絶縁材を延在させて絶縁部を形成する絶縁部形成工程を含み、
前記配線形成工程が、前記絶縁部の表面に積層されると共に前記第2のビア導電部及び前記基板に接続されて形成される第2の配線部を形成し、
前記第2の配線部がグランドと接続され、前記第1の配線部と前記基板とで前記誘電部を挟むキャパシタが形成されることを特徴とする配線基板形成方法。
In the wiring board formation method according to claim 1,
In the via forming step, a cylindrical second via insulating portion that covers and covers the entire surface from one side surface to the other side surface of the substrate inside the second via formed in the substrate, and the second Forming a second via conductive portion encapsulating a conductive material in the via insulating portion of
On the other side surface of the substrate, an insulating material is extended so that at least a part is not in contact with the cylindrical end portion of the second via insulating portion, which is stacked at least around the second via conductive portion. Including an insulating portion forming step of forming an insulating portion,
The wiring forming step forms a second wiring part formed on the surface of the insulating part and connected to the second via conductive part and the substrate;
A method of forming a wiring board, wherein the second wiring part is connected to a ground, and a capacitor sandwiching the dielectric part between the first wiring part and the substrate is formed.
請求項2に記載の配線基板形成方法において、
前記誘電部形成工程、及び前記絶縁部形成工程が、前記絶縁材の液滴をインクジェット法により吐出して断面凹溝状を形成し、
前記絶縁材の断面凹溝状の溝内に前記インクジェット法により、無電解めっきの触媒となる液滴を吐出する触媒形成工程を含み、
前記配線形成工程が、前記触媒の表面に無電解めっきにより前記第1の配線部、及び第2の配線部を形成することを特徴とする配線基板形成方法。
In the wiring board formation method according to claim 2,
In the dielectric part forming step and the insulating part forming step, a droplet of the insulating material is ejected by an inkjet method to form a cross-sectional groove shape,
Including a catalyst forming step of discharging droplets serving as a catalyst for electroless plating by the ink-jet method into the groove having a cross-sectional groove shape of the insulating material;
The wiring board forming method, wherein the wiring forming step forms the first wiring part and the second wiring part on the surface of the catalyst by electroless plating.
請求項3に記載の配線基板形成方法において、
前記絶縁材の液滴が、前記ビア内に形成される第1の導電部、及び第2の導電部と撥液性となる液滴であることを特徴とする配線基板形成方法。
In the wiring board formation method according to claim 3,
A method of forming a wiring board, wherein the droplets of the insulating material are droplets that become liquid repellent with the first conductive portion and the second conductive portion formed in the via.
請求項4に記載の配線基板形成方法において、
前記誘電部形成工程、及び前記絶縁部形成工程の後に、前記第1の導電部、及び第2の導電部の表面に塗布された前記絶縁材の液滴を洗浄する洗浄工程を含むことを特徴とする配線基板形成方法。
In the wiring board formation method of Claim 4,
After the dielectric portion forming step and the insulating portion forming step, a cleaning step of cleaning droplets of the insulating material applied to the surfaces of the first conductive portion and the second conductive portion is included. A wiring board forming method.
請求項2ないし5のいずれかに記載の配線基板形成方法において、
前記誘電部形成工程で吐出される絶縁性の液滴が誘電体であり、前記絶縁部形成工程で吐出される絶縁性の液滴が絶縁体であり、
前記誘電体と前記絶縁体とが、異なる吐出口から一の工程で吐出されることを特徴とする配線基板形成方法。
In the wiring board formation method in any one of Claim 2 thru | or 5,
Insulating droplets discharged in the dielectric portion forming step are dielectrics, and insulating droplets discharged in the insulating portion forming step are insulators,
The wiring substrate forming method, wherein the dielectric and the insulator are discharged from different discharge ports in one step.
基板の少なくとも一側面側に回路素子が載置される配線基板において、
前記基板の少なくとも他側面側の表面が導電性を有するものであり、
前記基板に形成された第1のビアの内側に、前記基板の一側面側から他側面側の全面を絶縁被覆して筒状に形成される第1のビア絶縁部と、
前記第1のビア絶縁部内に導電性を有する導電材を封入して形成される第1のビア導電部と、
前記基板の他側面側において、少なくとも前記第1のビア導電部の周囲領域に積層され、前記第1のビア絶縁部の筒状端部の全周に亘って接続する絶縁材を延在させて形成される誘電部と、
前記誘電部の表面に積層されると共に前記第1のビア導電部に接続されて形成される第1の配線部とを備え、
前記基板がグランドと接続され、前記第1の配線部と前記基板とで前記誘電部を挟むキャパシタが形成されることを特徴とする配線基板。
In the wiring board on which the circuit element is placed on at least one side surface of the board,
The surface of at least the other side surface of the substrate has conductivity,
A first via insulating portion formed in a cylindrical shape by insulatively covering the entire surface from one side of the substrate to the other side from the inside of the first via formed in the substrate;
A first via conductive portion formed by encapsulating a conductive material having conductivity in the first via insulating portion;
On the other side surface of the substrate, an insulating material that is stacked at least in the peripheral region of the first via conductive portion and is connected over the entire circumference of the cylindrical end portion of the first via insulating portion is extended. A dielectric part to be formed;
A first wiring part formed on the surface of the dielectric part and connected to the first via conductive part;
The wiring board, wherein the substrate is connected to a ground, and a capacitor sandwiching the dielectric portion between the first wiring portion and the substrate is formed.
請求項7に記載の配線基板において、
前記基板に形成された第2のビアの内側に、前記基板の一側面側から他側面側の全面を絶縁被覆する筒状の第2のビア絶縁部と、
前記第2のビア絶縁部内に導電性を有する導電材を封入した第2のビア導電部と、
前記基板の他側面側において、少なくとも前記第2のビア導電部の周囲領域に積層され、前記第2のビア絶縁部の筒状端部に少なくとも一部が接触しないように絶縁材を延在させて形成される絶縁部と、
前記絶縁部の表面に積層されると共に前記第2のビア導電部及び前記基板に接続されて形成される第2の配線部とを備え、
前記第2のビア導電部がグランドと接続され、前記第1の配線部と前記基板とで前記誘電部を挟むキャパシタが形成されることを特徴とする配線基板。
The wiring board according to claim 7,
A cylindrical second via insulating part that covers and covers the entire surface from one side surface of the substrate to the other side surface inside the second via formed in the substrate;
A second via conductive portion in which a conductive material having conductivity is enclosed in the second via insulating portion;
On the other side surface of the substrate, an insulating material is extended so that at least a part is not in contact with the cylindrical end portion of the second via insulating portion, which is stacked at least around the second via conductive portion. An insulating part formed by
A second wiring portion formed on the surface of the insulating portion and connected to the second via conductive portion and the substrate;
The wiring board, wherein the second via conductive portion is connected to a ground, and a capacitor is formed that sandwiches the dielectric portion between the first wiring portion and the substrate.
JP2010144057A 2010-06-24 2010-06-24 Wiring board forming method and wiring board Expired - Fee Related JP5569840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010144057A JP5569840B2 (en) 2010-06-24 2010-06-24 Wiring board forming method and wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010144057A JP5569840B2 (en) 2010-06-24 2010-06-24 Wiring board forming method and wiring board

Publications (2)

Publication Number Publication Date
JP2012009613A true JP2012009613A (en) 2012-01-12
JP5569840B2 JP5569840B2 (en) 2014-08-13

Family

ID=45539838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010144057A Expired - Fee Related JP5569840B2 (en) 2010-06-24 2010-06-24 Wiring board forming method and wiring board

Country Status (1)

Country Link
JP (1) JP5569840B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018103559A (en) * 2016-12-28 2018-07-05 エスアイアイ・プリンテック株式会社 Plating method of groove structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188571A (en) * 1992-12-17 1994-07-08 Fujitsu Ltd Multilayer wiring board
JP2001298123A (en) * 2000-04-17 2001-10-26 Hitachi Ltd Wiring substrate for high frequency
JP2001358248A (en) * 2000-06-13 2001-12-26 Hitachi Ltd Circuit board incorporating capacitor, and method of manufacturing the same
JP2004327690A (en) * 2003-04-24 2004-11-18 Fuji Xerox Co Ltd Printed circuit board
JP2005175189A (en) * 2003-12-11 2005-06-30 Fuji Xerox Co Ltd Printed wiring board
WO2008013054A1 (en) * 2006-07-24 2008-01-31 Ibiden Co., Ltd. Interposer and electronic device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188571A (en) * 1992-12-17 1994-07-08 Fujitsu Ltd Multilayer wiring board
JP2001298123A (en) * 2000-04-17 2001-10-26 Hitachi Ltd Wiring substrate for high frequency
JP2001358248A (en) * 2000-06-13 2001-12-26 Hitachi Ltd Circuit board incorporating capacitor, and method of manufacturing the same
JP2004327690A (en) * 2003-04-24 2004-11-18 Fuji Xerox Co Ltd Printed circuit board
JP2005175189A (en) * 2003-12-11 2005-06-30 Fuji Xerox Co Ltd Printed wiring board
WO2008013054A1 (en) * 2006-07-24 2008-01-31 Ibiden Co., Ltd. Interposer and electronic device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018103559A (en) * 2016-12-28 2018-07-05 エスアイアイ・プリンテック株式会社 Plating method of groove structure

Also Published As

Publication number Publication date
JP5569840B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP4059260B2 (en) Multilayer structure forming method, wiring board manufacturing method, and electronic device manufacturing method
JP4096962B2 (en) MULTILAYER STRUCTURE FORMING METHOD, WIRING BOARD AND ELECTRONIC DEVICE MANUFACTURING METHOD
US8585937B2 (en) Glass thick film embedded passive material
JP4100385B2 (en) Multilayer structure forming method, wiring board manufacturing method, and electronic device manufacturing method
JP4379386B2 (en) Multilayer structure forming method
JP5734737B2 (en) Method and apparatus for manufacturing functionally gradient material
JP2013110315A5 (en)
JP4207860B2 (en) Layer forming method, wiring board, electro-optical device, and electronic apparatus
JP5569840B2 (en) Wiring board forming method and wiring board
JP2008147614A (en) Method of manufacturing multilevel interconnect structure and multilevel interconnect structure
JP2011134879A (en) Method for producing build-up substrate
US20170207026A1 (en) Electrode pattern forming method and electric component manufacturing method
WO2010001715A1 (en) Wiring forming method
JP2005057140A (en) Multilayer wiring board and its manufacturing method
JP2005057139A (en) Multilayer wiring board and its manufacturing method
JP5219612B2 (en) Semiconductor through electrode forming method
JP2004207510A (en) Multilayered circuit board and manufacturing method thereof
JP2008034880A (en) Method of forming multilayer structure, and method of manufacturing wiring substrate and electronic device
JP2010080866A (en) Multilayer wiring board and method for manufacturing the same
JP5467246B2 (en) Wiring pattern forming method and wiring board
JP2008016643A (en) Method for manufacturing multilayer wiring substrate
WO2023047671A1 (en) Method of producing printed circuit board, and method of forming electroconductive underlayer
JP2008294244A (en) Wiring pattern connecting method, wiring sheet, and wiring sheet laminate
JP2004148604A (en) Ink jet head and its manufacturing process
JP2007210115A (en) Nozzle plate manufacturing method and nozzle plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140613

R150 Certificate of patent or registration of utility model

Ref document number: 5569840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees