JP2012008084A - Measuring method for active oxygen and measuring apparatus therefor - Google Patents

Measuring method for active oxygen and measuring apparatus therefor Download PDF

Info

Publication number
JP2012008084A
JP2012008084A JP2010146275A JP2010146275A JP2012008084A JP 2012008084 A JP2012008084 A JP 2012008084A JP 2010146275 A JP2010146275 A JP 2010146275A JP 2010146275 A JP2010146275 A JP 2010146275A JP 2012008084 A JP2012008084 A JP 2012008084A
Authority
JP
Japan
Prior art keywords
group
active oxygen
compound
measuring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010146275A
Other languages
Japanese (ja)
Inventor
Katsunori Teranishi
克倫 寺西
Katsuro Hagiwara
克郎 萩原
Takashi Hori
隆司 堀
Atsushi Asakawa
篤 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAKUNO GAKUEN
Atto Corp
Mie University NUC
Original Assignee
RAKUNO GAKUEN
Atto Corp
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAKUNO GAKUEN, Atto Corp, Mie University NUC filed Critical RAKUNO GAKUEN
Priority to JP2010146275A priority Critical patent/JP2012008084A/en
Publication of JP2012008084A publication Critical patent/JP2012008084A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply and accurately measure the active oxygen of specimens without performing pretreatment such as fractionation and dilution of a predetermined cell and removal of measurement interfering substance, etc. by using the specimens derived from animals including humans and plants.SOLUTION: A measuring method for active oxygen includes a process for adding a near infrared luminescent compound to a specimen and a process for measuring the emission intensity of the specimen adding the near infrared luminescent compound by using a sensor cooled -5 to 20°C.

Description

本発明は、検体中の活性酸素を測定する方法及び測定装置に関する。   The present invention relates to a method and an apparatus for measuring active oxygen in a specimen.

従来、血中の免疫細胞等から発生する活性酸素の測定は、採血した血液から、好中球、顆粒球等の目的とする細胞を分画した上で、薬剤等の刺激により発生した活性酸素と発光化合物との反応により生じた微弱発光を、発光測定装置にて測定するか、血液を希釈し、薬剤等の刺激により血中の細胞から発生した活性酸素と発光化合物との反応により生じた微弱発光を、発光測定装置にて測定する方法により行われていた。   Conventionally, active oxygen generated from immune cells in blood is measured by fractionating target cells such as neutrophils and granulocytes from the collected blood, and then reactive oxygen generated by stimulation with drugs, etc. The weak luminescence generated by the reaction between the luminescent compound and the luminescent compound was measured by a luminescence measuring device, or the blood was diluted and generated by the reaction between the active oxygen generated from the cells in the blood by stimulating the drug and the luminescent compound. The weak light emission has been performed by a method of measuring with a light emission measuring device.

また、動物の生体組織から発生する活性酸素の測定は、採取した生体組織から、活性酸素発生および活性酸素測定を妨害する血液成分や組織成分等を除去する必要があった。   In addition, the measurement of active oxygen generated from animal biological tissues requires removal of blood components, tissue components, and the like that interfere with the generation of active oxygen and the measurement of active oxygen from the collected biological tissues.

あるいは、植物由来の検体においての活性酸素測定では、活性酸素測定の妨害となるクロロフィルや植物成分、特に色素を除去する必要があった。   Alternatively, in the measurement of active oxygen in a plant-derived specimen, it was necessary to remove chlorophyll and plant components that interfere with the measurement of active oxygen, particularly pigments.

これらの検体における活性酸素測定方法においては、発光化合物として、Luminol、MCLA等が用いられていたが、その発光波長は、400〜500nmであり、多くが血液成分、生体組織成分、植物成分に吸収され、正確な活性酸素測定は行うことが困難である。従って、上記のような検体の前処理が必要であった。   In the method for measuring active oxygen in these specimens, Luminol, MCLA, etc. were used as luminescent compounds, but the emission wavelength was 400 to 500 nm, and most of them were absorbed by blood components, biological tissue components, and plant components. Therefore, it is difficult to accurately measure active oxygen. Therefore, pretreatment of the specimen as described above is necessary.

例えば、血液から特定の細胞を分画する操作は、非常に煩雑である。また、操作に時間がかかるため、細胞の生物活性が低下する。よって、細胞から発生する活性酸素量は、採血してからの経過時間の影響をうける。さらに、操作が煩雑であることから、複数個体の活性酸素測定をすることには、不向きであるといった欠点があった。生体組織からの血液成分、色素成分の除去は、煩雑であり、その間に短寿命な活性酸素は消滅し、本来の目的とする活性酸素を測定することは不可能となる。また、植物由来の検体の場合には、植物由来色素や植物組織の除去を行う必要があり、その操作は、煩雑であり、その間に短寿命な活性酸素は消滅し、本来の目的とする活性酸素を測定することは不可能となる。   For example, the operation of fractionating specific cells from blood is very complicated. In addition, since the operation takes time, the biological activity of the cells is reduced. Therefore, the amount of active oxygen generated from the cells is affected by the elapsed time after blood collection. Furthermore, since the operation is complicated, there is a disadvantage that it is not suitable for measuring the active oxygen of a plurality of individuals. Removal of blood components and pigment components from living tissue is complicated, and the active oxygen with a short lifetime disappears during that time, making it impossible to measure the intended active oxygen. In the case of plant-derived specimens, it is necessary to remove plant-derived pigments and plant tissues, and the operation is complicated. During this period, the short-lived active oxygen disappears, and the original intended activity is eliminated. It is impossible to measure oxygen.

かかる状況のもと、本発明者らは、光透過性に優れる近赤外光の発光を誘導する発光化合物の合成に成功している(特許文献1)。   Under such circumstances, the present inventors have succeeded in synthesizing a light-emitting compound that induces near-infrared light emission excellent in light transmittance (Patent Document 1).

しかし、従来の測定装置及び測定方法では、かかる発光化合物を用いても、S/N比(Signal to Noise ratio)が小さいため、精度よく活性酸素の測定をすることができなかった。   However, in the conventional measuring apparatus and measuring method, even when such a luminescent compound is used, the S / N ratio (Signal to Noise ratio) is small, so that active oxygen cannot be accurately measured.

特開2009−215174号公報   JP 2009-215174 A

本発明が解決しようとする課題は、ヒトを含む動物、植物等に由来する検体から、特定の細胞の分画、希釈、測定妨害物質除去等の前処理をすることなく、精度よく検体の活性酸素の測定をすることである。   The problem to be solved by the present invention is to accurately analyze the activity of a sample from a sample derived from an animal including humans, plants, etc. without pretreatment such as fractionation, dilution, and removal of measurement interfering substances. It is to measure oxygen.

上記のような状況の下、本発明者らは、鋭意研究した結果、発光化合物として、光透過性に優れる近赤外光を発する近赤外発光化合物を用い、活性酸素と発光化合物との反応により生じた近赤外光の発光強度を、特定の温度に冷却したセンサーを用いて、高い時間分解で、高感度で、高いS/N比で、生体に近い状態で、リアルタイムで測定することにより、精度よく目的とする活性酸素の測定ができることを見出した。本発明は、係る新規の知見に基づくものである。   Under the circumstances as described above, as a result of intensive studies, the present inventors have used a near-infrared light-emitting compound that emits near-infrared light with excellent light transmission as the light-emitting compound, and the reaction between active oxygen and the light-emitting compound. Measure the intensity of near-infrared light generated by the sensor in real time using a sensor cooled to a specific temperature with high time resolution, high sensitivity, high S / N ratio, and close to the living body. Thus, it was found that the target active oxygen can be accurately measured. The present invention is based on such new knowledge.

従って、本発明は、以下の項を提供する:
項1.近赤外発光化合物を検体に添加する工程、及び
当該近赤外発光化合物を添加した検体の発光強度を、−5〜20℃に冷却したセンサーを用いて測定する工程
を含む、活性酸素の測定方法。
Accordingly, the present invention provides the following sections:
Item 1. Measurement of active oxygen, including a step of adding a near-infrared luminescent compound to a specimen, and a step of measuring the luminescence intensity of the specimen to which the near-infrared luminescent compound is added using a sensor cooled to −5 to 20 ° C. Method.

項2.前記近赤外発光化合物が、下記一般式(I)で表わされるインドシアニン結合型イミダゾ[1,2-a]ピラジン-3-オン化合物又はその塩である、項1に記載の活性酸素測定方法:
A−B−C (I)
[式中、Aは、下記一般式(II)で表わされるイミダゾ[1,2-a]ピラジン-3-オン基を示す:
Item 2. Item 2. The active oxygen measurement method according to Item 1, wherein the near-infrared light-emitting compound is an indocyanine-linked imidazo [1,2-a] pyrazin-3-one compound represented by the following general formula (I) or a salt thereof: :
A-B-C (I)
[Wherein A represents an imidazo [1,2-a] pyrazin-3-one group represented by the following general formula (II):

Figure 2012008084
Figure 2012008084

(式中、R、R、R、及びRは、同一又は異なって、水素原子、アルキル基、アリール基、ハロゲン原子、アルコキシル基、カルボキシル基、ホルミル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニル基、アリールカルボニル基又は複素環を示す。
但し、R、R、R、及びRのうち1つがスペーサー基Bに共有結合する。)
基Bは、スペーサー基を示す。
基Cは、下記式(III)で表わされるインドシアニン基を示す:
(Wherein R 1 , R 2 , R 3 , and R 4 are the same or different and are a hydrogen atom, alkyl group, aryl group, halogen atom, alkoxyl group, carboxyl group, formyl group, alkyloxycarbonyl group, aryl. An oxycarbonyl group, an alkylcarbonyl group, an arylcarbonyl group or a heterocyclic ring is shown.
However, one of R 1 , R 2 , R 3 , and R 4 is covalently bonded to the spacer group B. )
Group B represents a spacer group.
The group C represents an indocyanine group represented by the following formula (III):

Figure 2012008084
Figure 2012008084

(式中、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、R21、R22、R23、R24、及びR25は、同一又は異なって、水素原子、アルキル基、アリール基、ハロゲン原子、アルコキシル基、カルボキシル基、ホルミル基、スルホニル基、スルホン酸基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニル基、アリールカルボニル基、アリールオキシ基、アルキルペルオキシ基又は複素環を示す。
15及びR17は、これらが互いに結合して、不飽和4〜10員環を形成してもよい。
但し、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、R21、R22、R23、R24、及びR25のうち1つがスペーサー基Bに共有結合する。)]
項3.前記近赤外発光化合物が、下記式(IV)又は(V)で表わされるインドシアニン結合型イミダゾ[1,2-a]ピラジン-3-オン化合物である、項1に記載の活性酸素測定方法。
(In the formula, R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 , R 24 , and R 25 are the same or different and are a hydrogen atom, alkyl group, aryl group, halogen atom, alkoxyl group, carboxyl group, formyl group, sulfonyl group, sulfonic acid A group, an alkyloxycarbonyl group, an aryloxycarbonyl group, an alkylcarbonyl group, an arylcarbonyl group, an aryloxy group, an alkylperoxy group or a heterocyclic ring;
R 15 and R 17 may be bonded to each other to form an unsaturated 4- to 10-membered ring.
However, R 5, R 6, R 7, R 8, R 9, R 10, R 11, R 12, R 13, R 14, R 15, R 16, R 17, R 18, R 19, R 20, One of R 21 , R 22 , R 23 , R 24 , and R 25 is covalently bonded to the spacer group B. ]]
Item 3. Item 2. The active oxygen measurement method according to Item 1, wherein the near-infrared light-emitting compound is an indocyanine-linked imidazo [1,2-a] pyrazin-3-one compound represented by the following formula (IV) or (V): .

Figure 2012008084
Figure 2012008084

[式中、R16’は、アルキル基、アルコキシル基又はアリール基を示す。
Mは、水素、アルカリ金属又はアルカリ土類金属を示す。
kは、1〜7の整数を示す。
lは、1〜7の整数を示す。
mは、1〜7の整数を示す。
[Wherein, R 16 ′ represents an alkyl group, an alkoxyl group or an aryl group.
M represents hydrogen, an alkali metal or an alkaline earth metal.
k shows the integer of 1-7.
l shows the integer of 1-7.
m shows the integer of 1-7.

Figure 2012008084
Figure 2012008084

[式中、Mは、同一又は異なって、水素、アルカリ金属又はアルカリ土類金属を示す。
k及びmは前記に同じ。
n及びpは、同一又は異なって、1〜7の整数を示す。
[In formula, M is the same or different and shows hydrogen, an alkali metal, or an alkaline-earth metal.
k and m are the same as above.
n and p are the same or different and represent an integer of 1 to 7.

項4.前記近赤外発光化合物が、下記式(VI)又は(VII)で示されるインドシアニン結合型イミダゾ[1,2-a]ピラジン-3-オン化合物である、項1に記載の活性酸素測定方法。   Item 4. Item 2. The active oxygen measurement method according to Item 1, wherein the near-infrared light-emitting compound is an indocyanine-linked imidazo [1,2-a] pyrazin-3-one compound represented by the following formula (VI) or (VII): .

Figure 2012008084
Figure 2012008084

[式中、Mは、同一又は異なって、水素、アルカリ金属又はアルカリ土類金属を示す。]。 [In formula, M is the same or different and shows hydrogen, an alkali metal, or an alkaline-earth metal. ].

Figure 2012008084
Figure 2012008084

項5.近赤外発光化合物を導入するセル、
発光強度を測定するための手段、及び
当該発光強度測定手段を−5〜20℃に冷却する冷却手段、
を備えた、活性酸素の測定装置。
Item 5. A cell for introducing a near-infrared light emitting compound,
Means for measuring the emission intensity, and cooling means for cooling the emission intensity measurement means to -5 to 20 ° C,
A device for measuring active oxygen, comprising:

項6.近赤外発光化合物及び請求項5に記載の活性酸素の測定装置を含む、活性酸素を測定するためのキット。   Item 6. A kit for measuring active oxygen, comprising a near-infrared light emitting compound and the active oxygen measuring device according to claim 5.

本発明の方法によれば、ヒトを含む動物から採血した血液から、特定の細胞の分画、希釈等の前処理をすることなく、簡便かつ精度よく活性酸素を測定することができる。従って、細胞が潜在的に有する活性酸素を発生する能力を、より生体内に近い状態で評価することが可能となる。   According to the method of the present invention, active oxygen can be easily and accurately measured from blood collected from animals including humans without pretreatment such as fractionation and dilution of specific cells. Therefore, it becomes possible to evaluate the ability of the cells to generate the active oxygen that is potentially present in a state closer to the living body.

また、本発明の方法によれば、動物の生体組織から発生する活性酸素の測定を、採取した生体組織から、活性酸素発生および活性酸素測定を妨害する血液成分や組織成分あるいは組織固定物等を除去する必要なく簡便かつ精度よく活性酸素を測定することができる。   Further, according to the method of the present invention, the measurement of active oxygen generated from the living tissue of the animal is performed. From the collected biological tissue, the generation of active oxygen and the blood component, tissue component or tissue fixed substance that interferes with the measurement of active oxygen are removed. Active oxygen can be measured easily and accurately without the need for removal.

さらには、本発明の方法によれば、植物由来の検体においての活性酸素測定では、活性酸素測定の妨害となるクロロフィルや植物成分、特に色素を除去する必要なく簡便かつ精度よく活性酸素を測定することができる。   Furthermore, according to the method of the present invention, in the measurement of active oxygen in a plant-derived specimen, active oxygen is measured easily and accurately without the need to remove chlorophyll and plant components that interfere with the measurement of active oxygen, particularly pigments. be able to.

また、本発明の方法によれば、検体から自発的に発生するか、又は検体が含有する活性酸素の測定だけでなく、検体に活性酸素の発生又は活性酸素自体を添加した後に活性酸素の測定を行うことにより、検体の抗酸化能を測定・評価することもできる。例えば、ワイン等の検体に、活性酸素の発生系、例えば、キサンチン及びキサンチンオキシダーゼを添加した後、活性酸素を経時的に測定することにより、検体の抗酸化能を測定・評価することもできる。   Further, according to the method of the present invention, not only the measurement of active oxygen spontaneously generated from or contained in the sample, but also the measurement of active oxygen after the generation of active oxygen or the addition of active oxygen itself to the sample By performing the above, it is also possible to measure and evaluate the antioxidant ability of the specimen. For example, after adding an active oxygen generation system such as xanthine and xanthine oxidase to a sample such as wine, the antioxidant ability of the sample can be measured and evaluated by measuring the active oxygen over time.

図1は、本発明の一つの実施形態における活性酸素測定装置の概略図を示す。FIG. 1 shows a schematic diagram of an active oxygen measuring device according to one embodiment of the present invention. 図2は、実施例1において、ヒト全血試料から発生した活性酸素と近赤外発光化合物との反応により生じた近赤外光の発光強度の経時的変化を示す。FIG. 2 shows the change with time of the emission intensity of near-infrared light generated by the reaction between active oxygen generated from a human whole blood sample and a near-infrared light-emitting compound in Example 1. 図3は、実施例3において、ウシ血液試料から発生した活性酸素と近赤外発光化合物との反応により生じた近赤外光の発光強度の経時的変化を示す。FIG. 3 shows the change with time of the emission intensity of near-infrared light generated by the reaction between active oxygen generated from a bovine blood sample and a near-infrared light-emitting compound in Example 3.

近赤外発光化合物
本発明において用いる、近赤外発光化合物としては、活性酸素と反応して、近赤外発光波長で発光を生じるものであればよい。
Near-infrared light-emitting compound The near-infrared light-emitting compound used in the present invention may be any compound that reacts with active oxygen and emits light at a near-infrared light emission wavelength.

好ましい実施形態において、近赤外発光化合物としては、一般式(I)で表わされるインドシアニン結合型イミダゾ[1,2-a]ピラジン-3-オン化合物又はその塩を挙げることができる:
A−B−C (I)。
[式中、A、B及びCは前記の通り]。
In a preferred embodiment, the near-infrared light emitting compound may include an indocyanine-linked imidazo [1,2-a] pyrazin-3-one compound represented by the general formula (I) or a salt thereof:
A-B-C (I).
[Wherein A, B and C are as described above].

ここで、スペーサー基Bとしては、基Aと基Cとを結合することができるものであれば、特に限定されず、例えば、下記一般式(VIII)で示される基を挙げることができる:
−(CH−(C=O)NH−(CH−NH(C=O)−(CH
(VIII)
[式中、k、n及びpは前記に同じ。]。
Here, the spacer group B is not particularly limited as long as it can bond the group A and the group C, and examples thereof include a group represented by the following general formula (VIII):
- (CH 2) n - ( C = O) NH- (CH 2) p -NH (C = O) - (CH 2) k -
(VIII)
[Wherein, k, n and p are the same as above. ].

また、前記一般式において示される各基は、具体的には次の通りである。   Moreover, each group shown in the said general formula is specifically as follows.

アルキル基としては、炭素数1〜20、の直鎖状又は分岐鎖状のアルキル基を挙げることができる。より具体的には、例えば、メチル、エチル、プロピル、ブチル、イソブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、イコサニル等が含まれる。   Examples of the alkyl group include linear or branched alkyl groups having 1 to 20 carbon atoms. More specifically, for example, methyl, ethyl, propyl, butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosanyl, etc. It is.

アリール基としては、炭素数6〜20個の芳香族炭化水素を挙げることができる。より具体的には、例えば、フェニル、ナフチル等が含まれる。   Examples of the aryl group include aromatic hydrocarbons having 6 to 20 carbon atoms. More specifically, for example, phenyl, naphthyl and the like are included.

ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。   Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

アルコキシル基としては、炭素数1〜20の直鎖状又は分岐鎖状のアルコキシル基を挙げることができる。より具体的には、例えば、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、メチキシエトキシ、メトキシプロポキシ、エトキシエトキシ、エトキシプロポキシ、メトキシエトキシエトキシ基等が含まれる。   As an alkoxyl group, a C1-C20 linear or branched alkoxyl group can be mentioned. More specifically, for example, methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, methoxyethoxy, methoxypropoxy, ethoxyethoxy, ethoxypropoxy, methoxyethoxyethoxy groups and the like are included.

アルキルオキシカルボニル基としては、アルキル部分が前記で例示したアルキル基であるアルキルオキシカルボニル基を挙げることができる。   Examples of the alkyloxycarbonyl group include an alkyloxycarbonyl group in which the alkyl moiety is the alkyl group exemplified above.

アリールカルボニル基としては、アリール部分が前記で例示したアリール基であるアリールカルボニル基を挙げることができる。   Examples of the arylcarbonyl group include an arylcarbonyl group in which the aryl moiety is the aryl group exemplified above.

複素環基としては、窒素原子、酸素原子または硫黄原子を1〜4個有する5〜15員の単環、二項環または三項環の飽和または不飽和の複素環基を挙げることができる。このような複素環基としては、例えば、ピロリル、イミダゾリル、ピラゾリル、ジヒドロピラゾリル、ピリジル、ピリジルN−オキシド、ジヒドロピリジル、ピリミジニル、テトラヒドロピリミジニル、ピラジニル、ピリダジニル、トリアジニル、トリアゾリル、テトラジニル、テトラゾリル、ピロリジニル、ピペリジル、ピペラジニル、ジアゼパニル、インドリル、イソインドリル、インドリニル、ベンゾイミダゾリル、キノリル、ジヒドロキノリル、イソキノリル、インダゾリル、チエニル、テトラヒドロチエニル、フリル、ジオキソール、テトラヒドロフリル、テトラヒドロピラニル等が挙げられる。   Examples of the heterocyclic group include 5- to 15-membered monocyclic, binary or ternary saturated or unsaturated heterocyclic groups having 1 to 4 nitrogen atoms, oxygen atoms or sulfur atoms. Examples of such heterocyclic groups include pyrrolyl, imidazolyl, pyrazolyl, dihydropyrazolyl, pyridyl, pyridyl N-oxide, dihydropyridyl, pyrimidinyl, tetrahydropyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, triazolyl, tetrazinyl, tetrazolyl, pyrrolidinyl, piperidyl , Piperazinyl, diazepanyl, indolyl, isoindolyl, indolinyl, benzimidazolyl, quinolyl, dihydroquinolyl, isoquinolyl, indazolyl, thienyl, tetrahydrothienyl, furyl, dioxol, tetrahydrofuryl, tetrahydropyranyl and the like.

アリールオキシ基としては、アリール部分が前記で例示したアリール基であるアリールオキシ基を挙げることができる。   Examples of the aryloxy group include an aryloxy group in which the aryl moiety is the aryl group exemplified above.

アルキルペルオキシ基としては、アルキル部分が前記で例示したアルキル基であるアルキルペルオキシ基を挙げることができる。   Examples of the alkylperoxy group include an alkylperoxy group in which the alkyl moiety is the alkyl group exemplified above.

アルカリ金属としては、ナトリウム、カリウム等が挙げられる。   Examples of the alkali metal include sodium and potassium.

アルカリ土類金属としては、マグネシウム、カルシウム等が挙げられる。   Examples of the alkaline earth metal include magnesium and calcium.

近赤外発光化合物の製造方法
一般式(I)で表されるインドシアニン結合型イミダゾ[1,2-a]ピラジン-3-オン化合物は、種々の方法により製造され得るが、その一例を示せば、例えば、下記反応式−1で示される方法により製造される:
反応式−1
A−B01 + B02−C → A−B−C
ここで、基B01及びB02基は、互いに反応してスペーサー基Bを形成するものであれば、特に限定されない。
Production method of near-infrared light emitting compound The indocyanine-linked imidazo [1,2-a] pyrazin-3-one compound represented by the general formula (I) can be produced by various methods. For example, it is manufactured by the method shown in the following reaction formula-1:
Reaction Formula-1
A-B 01 + B 02 -C → A-B-C
Here, the groups B 01 and B 02 are not particularly limited as long as they react with each other to form the spacer group B.

基B01としては、例えば、基−(CH−(C=O)NH−(CH−NH
[式中、n及びpは前記に同じ。]、
基−(CH−COOH
[式中、nは前記に同じ。]
等を挙げることができる。
Examples of the group B 01 include the group — (CH 2 ) n — (C═O) NH— (CH 2 ) p —NH 2.
[Wherein, n and p are the same as above. ],
Group - (CH 2) n -COOH
[Wherein n is the same as defined above. ]
Etc.

基B02としては、例えば、基−(CH−(C=O)NH−(CH−NH
[式中、k及びpは前記に同じ。]、
基−(CH−COOH
[式中、kは前記に同じ。]
等を挙げることができる。
Examples of the group B 02 include a group — (CH 2 ) k — (C═O) NH— (CH 2 ) p —NH 2.
[Wherein, k and p are the same as above. ],
Based on - (CH 2) k -COOH
[Wherein k is the same as defined above. ]
Etc.

本反応は、通常、反応に悪影響を及ぼさない慣用の溶媒、例えば、水;メタノール、エタノール、イソプロパノール、n−ブタノール、トリフルオロエタノール、エチレングリコール等のアルコール系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;テトラヒドロフラン、ジオキサン、ジエチルエーテル、ジグライム等のエーテル系溶媒;酢酸メチル、酢酸エチル等のエステル系溶媒;アセトニトリル、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶媒;塩化メチレン、塩化エチレン等のハロゲン化炭化水素系溶媒;または他の有機溶媒中で行われる。さらに、本反応は、これらの慣用の溶媒の混合溶媒中で行われる。   This reaction is usually a conventional solvent that does not adversely influence the reaction, such as water; alcohol solvents such as methanol, ethanol, isopropanol, n-butanol, trifluoroethanol, ethylene glycol; ketone solvents such as acetone and methyl ethyl ketone. Ether solvents such as tetrahydrofuran, dioxane, diethyl ether and diglyme; ester solvents such as methyl acetate and ethyl acetate; aprotic polar solvents such as acetonitrile, N, N-dimethylformamide and dimethyl sulfoxide; methylene chloride and ethylene chloride In a halogenated hydrocarbon-based solvent; or other organic solvents. Furthermore, this reaction is carried out in a mixed solvent of these conventional solvents.

上記反応式−1における化合物A−B01と化合物B02−Cとの使用割合は、通常前者1モルに対し後者を1〜10モル、好ましくは1〜2モルとすればよい。 The proportion of compound AB01 and compound B02- C used in the above reaction scheme-1 is usually 1 to 10 moles, preferably 1 to 2 moles per mole of the former.

反応温度は特に限定されず、通常、冷却下、室温下及び加熱下のいずれでも反応が行われる。上記反応は、好ましくは、室温付近の温度条件下に1〜30時間行うのがよい。   The reaction temperature is not particularly limited, and the reaction is usually carried out under cooling, at room temperature, or under heating. The above reaction is preferably carried out for 1 to 30 hours under temperature conditions around room temperature.

本発明の好ましい実施形態において用いられる、前述の一般式(IV)で表わされるインドシアニン結合型イミダゾ[1,2-a]ピラジン-3-オン化合物は、例えば、以下の工程1〜5により、製造することができる。   The indocyanine-linked imidazo [1,2-a] pyrazin-3-one compound represented by the aforementioned general formula (IV), which is used in a preferred embodiment of the present invention, is obtained by, for example, the following steps 1 to 5: Can be manufactured.

Figure 2012008084
Figure 2012008084

<工程1>
新規インドシアニン化合物である一般式(XII)で表わされる化合物(以下、単に化合物(XII)と示すこともある。同様に、一般式(I)〜(XV)で表わされる化合物もそれぞれ、単に化合物(I)〜(XV)と示すこともある。)は、例えば文献Cyaninedye labeling reagents: sulfoindocyanine succinimidyl esters, R. B. Mujumdar, L.A. Ernst, S. R. Mujumdar, C. J. Lewis, A. S. Waggoner, Bioconjugate Chem., 4,105-111 (1993).に記載の方法に準じて、化合物(IX)、化合物(X)及び化合物(XI)より合成することができる。例えば、化合物(IX)、化合物(X)及び、2-[6-acethlphenylamino]1,3,5-hexatrienyl]-3,3-dimethyl-5-sulfo-1-(4-sulfobutyl)3-H-indoliumをモル比1:1:1の混合比で、メタノール中、酢酸ナトリウム及び化合物(XI)を加え、室温から70℃で1時間から3時間反応することにより得ることができる。
<Step 1>
A compound represented by general formula (XII) which is a novel indocyanine compound (hereinafter sometimes simply referred to as compound (XII). Similarly, each of compounds represented by general formulas (I) to (XV) is also simply a compound. (I) to (XV) may also be indicated, for example, in the literature Cyaninedye labeling reagents: sulfoindocyanine succinimidyl esters, RB Mujumdar, LA Ernst, SR Mujumdar, CJ Lewis, AS Waggoner, Bioconjugate Chem., 4, 105-111 (1993). The compound can be synthesized from compound (IX), compound (X) and compound (XI). For example, compound (IX), compound (X), and 2- [6-acethlphenylamino] 1,3,5-hexatrienyl] -3,3-dimethyl-5-sulfo-1- (4-sulfobutyl) 3-H- Indolium can be obtained by adding sodium acetate and compound (XI) in methanol at a molar ratio of 1: 1: 1 and reacting at room temperature to 70 ° C. for 1 to 3 hours.

<工程2>
新規インドシアニン化合物である化合物(XIII)は、例えば、化合物(XII)をメタノール中、ナトリウムメトキシドやカリウムメトキシド等の金属アルコキシドを加え、室温から70℃で1時間から50時間反応することにより得ることができる。
<Process 2>
Compound (XIII), which is a novel indocyanine compound, is obtained, for example, by reacting compound (XII) in methanol with a metal alkoxide such as sodium methoxide or potassium methoxide and reacting at room temperature to 70 ° C. for 1 hour to 50 hours. Obtainable.

<工程3>
化合物(XIV)は、化合物(XIII)をピリジンとN,N-ジメチルホルムアミドとの混合液中で、室温から80℃で30分から2時間、N,N-ジスクシイミジルカーボネートと反応することにより得ることができる。
<Step 3>
Compound (XIV) is obtained by reacting Compound (XIII) with N, N-disuccimidyl carbonate in a mixture of pyridine and N, N-dimethylformamide at room temperature to 80 ° C. for 30 minutes to 2 hours. Obtainable.
.

<工程4>
一般式(IV)で示される発光化合物は、化合物(XIV)と化合物(XV)とをピリジンと燐酸緩衝液の混合液中で、0℃から50℃で30分から24時間、反応することによって得ることができる。
<Step 4>
The light-emitting compound represented by the general formula (IV) is obtained by reacting compound (XIV) and compound (XV) in a mixed solution of pyridine and phosphate buffer at 0 ° C. to 50 ° C. for 30 minutes to 24 hours. be able to.

<工程5>
一般式(IV)で示される発光化合物は、化合物(XIII)と化合物(XV)とをピリジンと燐酸緩衝液の混合液中で、0℃から50℃で30分から24時間、例えばジシクロヘキシルカルボジイミドやWSCなどの脱水縮合剤を加えることにより得ることができる。
<Step 5>
The luminescent compound represented by the general formula (IV) is prepared by mixing compound (XIII) and compound (XV) in a mixed solution of pyridine and phosphate buffer at 0 ° C. to 50 ° C. for 30 minutes to 24 hours, for example, dicyclohexylcarbodiimide or WSC. It can be obtained by adding a dehydrating condensation agent such as

一般式(V)で表わされる発光化合物は、特開2009−215174号公報に記載の方法を用いて、又はこれに準じて製造することができる。   The light-emitting compound represented by the general formula (V) can be produced using the method described in JP-A-2009-215174 or according to this method.

上記に示す各反応式で得られる各々の目的化合物は、反応混合物を、例えば、冷却した後、濾過、濃縮、抽出等の単離操作によって粗反応生成物を分離し、カラムクロマトグラフィー、再結晶等の通常の精製操作によって、反応混合物から単離精製することができる。   Each target compound obtained by each reaction formula shown above is prepared by cooling the reaction mixture, for example, and then separating the crude reaction product by an isolation operation such as filtration, concentration, extraction, etc., column chromatography, recrystallization The reaction mixture can be isolated and purified by a usual purification operation such as.

活性酸素の測定方法
本発明は、近赤外発光化合物を検体に添加する工程、及び
当該近赤外発光化合物を添加した検体の発光強度を、−5〜20℃に冷却したセンサーを用いて測定する工程
を含む、活性酸素の測定方法を提供する。
Method for Measuring Active Oxygen The present invention measures the step of adding a near-infrared luminescent compound to a specimen, and the luminescence intensity of the specimen to which the near-infrared luminescent compound is added, using a sensor cooled to −5 to 20 ° C. A method for measuring active oxygen is provided.

本発明の方法において用いられる検体としては、例えば、ヒトを含む動物、植物等に由来するものが挙げられる。ここで、ヒトを含む動物、植物等に由来する検体としては、例えば、動物の体液、植物からの抽出液、これらを希釈、特定の画分、酵素等を分離したもの、その他の加工品(植物由来のブドウ酒等)等が挙げられる。   Examples of the specimen used in the method of the present invention include those derived from animals including humans, plants and the like. Here, specimens derived from animals including humans, plants, etc. include, for example, animal body fluids, plant extracts, dilutions of these, specific fractions, separated enzymes, and other processed products ( Plant-derived wine, etc.).

また、かかる検体は、活性酸素を発生させる酵素、細胞等を含むものであっても、これを含まないものであってもよい。   Further, such a specimen may contain an enzyme, a cell, or the like that generates active oxygen, or may not contain this.

さらには、上記のような血液、生体組織、植物由来の検体以外にも、活性酸素を近赤外化学発光で測定できるものであれば、検体の種類は特に限定されない。たとえば、加工食品、未加工食品、化成品、化粧品、医薬品、農薬、プラスチック、ゴムなどがその他の検体としてあげられる。   Furthermore, in addition to the blood, biological tissue, and plant-derived specimens as described above, the type of specimen is not particularly limited as long as active oxygen can be measured by near infrared chemiluminescence. For example, processed foods, unprocessed foods, chemical products, cosmetics, pharmaceuticals, agricultural chemicals, plastics, rubbers and the like are listed as other samples.

本発明において用いられる、細胞を含む検体としては、活性酸素を発生させる細胞を含む検体であれば特に限定されない。好ましい検体としては、ヒトを含む動物の血液が挙げられる。血液由来の検体としては、好中球、顆粒球等の目的とする細胞を分画したものでも、当該血液を希釈したものでもよいが、前処理の手間が不要である点、また、生体内に近い状態での活性酸素発生能を評価できる点から、これらの処理をしていない全血が好ましい。   The specimen containing cells used in the present invention is not particularly limited as long as the specimen contains cells that generate active oxygen. A preferable sample includes blood of animals including humans. The blood-derived specimen may be obtained by fractionating the target cells such as neutrophils and granulocytes, or by diluting the blood. However, there is no need for pretreatment, and in vivo. In view of the ability to evaluate the ability to generate active oxygen in a state close to the above, whole blood not subjected to these treatments is preferable.

本発明の方法においては、検体から自発的に発生するか、又は検体が含有する活性酸素を測定しても、検体を刺激剤等で処理し、これにより発生した活性酸素を測定しても、検体に活性酸素を発生させる物質又は活性酸素自体を添加してその経時的変化を測定してもよい。   In the method of the present invention, either spontaneously generated from the specimen, or even if the active oxygen contained in the specimen is measured, the specimen is treated with a stimulant, etc., and the generated reactive oxygen is measured, A substance that generates active oxygen or active oxygen itself may be added to the specimen, and its change with time may be measured.

刺激剤としては、例えば、酵母、黄色ブドウ球菌、大腸菌などの細菌や、これら由来の化合物、例えば、酵母であればZymosanがあげられる。また、これらの物質をオプソニン化したものもあげられる。さらには、化合物としてホルボールエステル、白血球走化性因子のひとつであるformyl-methionyl-leucyl-phenylalanin(fMLP)、白血球の遊走能や炎症に関与するケモカインやインターロイキン-1(IL-1) 等が挙げられる。さらには、通常の知られている刺激剤に限定されることなく、各研究で見出された、あるいは今後見出される刺激活性を有する物質があげられる。   Examples of the stimulant include bacteria such as yeast, Staphylococcus aureus, and Escherichia coli, and compounds derived therefrom, such as Zymosan for yeast. Moreover, the thing which opsonized these substances is also mentioned. In addition, phorbol esters as compounds, formyl-methionyl-leucyl-phenylalanin (fMLP), one of leukocyte chemotactic factors, chemokines and interleukin-1 (IL-1) involved in leukocyte migration and inflammation, etc. Is mentioned. Furthermore, the substance which has the stimulating activity discovered by each research or discovered in the future is mention | raise | lifted without being limited to a normal known stimulant.

刺激剤を添加する場合、サンプル1mlに対し、刺激剤を、有効成分の重量として、0.000001mg〜100mg添加するのが好ましい。また、分子量が既知の化合物である場合、0.001 iM-100mMの範囲で添加することができる。ただし、添加量は、それぞれの測定に適した量であれば、特に限定させることはなく、上記の量の範囲以外で使用することには限定されない。   When adding a stimulant, it is preferable to add 0.000001 mg to 100 mg of the stimulant as the weight of the active ingredient per 1 ml of the sample. When the molecular weight is a known compound, it can be added in the range of 0.001 iM-100 mM. However, the addition amount is not particularly limited as long as it is an amount suitable for each measurement, and is not limited to use outside the above range.

上記検体に、近赤外発光化合物を添加する際、近赤外発光化合物の量は、発光測定および検体の質を低下させない範囲であれば特に限定されないが、例えば、添加後の最終濃度として、0.001-1000μMとなるように添加するのが好ましい。   When adding a near-infrared luminescent compound to the sample, the amount of the near-infrared luminescent compound is not particularly limited as long as it does not reduce the luminescence measurement and the quality of the sample. For example, as the final concentration after addition, It is preferable to add so that it may become 0.001-1000 micromol.

本発明の方法において、近赤外発光化合物は、これを単体で添加しても、賦形剤と混合した発光剤の形態で添加しても、さらに活性酸素測定に有用な成分を配合した活性酸素測定剤の形態で添加してもよい。当該実施形態においては、近赤外発光化合物は、化学発光反応基質の主成分となる。発光剤及び活性酸素測定剤は、固体、液体、及び気体のいずれの状態であってもよい。   In the method of the present invention, the near-infrared light-emitting compound can be added alone or in the form of a light-emitting agent mixed with an excipient, and an active compound containing components useful for active oxygen measurement. You may add in the form of an oxygen measuring agent. In this embodiment, the near-infrared light emitting compound is the main component of the chemiluminescent reaction substrate. The luminescent agent and the active oxygen measuring agent may be in any state of solid, liquid, and gas.

また、検体に、近赤外発光化合物、発光剤及び活性酸素測定剤以外の成分を同時あるいはこれらに前後して、添加してもよい。例えば、検体に、活性酸素の発生系、例えば、キサンチン及びキサンチンオキシダーゼを添加した後、活性酸素を経時的に測定することにより、検体の抗酸化能を測定・評価することもできる。近赤外発光化合物、発光剤及び活性酸素測定剤以外の成分は、固体、液体及び気体のいずれの状態のものでもよい。また、このようなその他成分としては、活性酸素発生系の物質だけでなく、活性酸素そのものを添加してもよい。   In addition, components other than the near-infrared luminescent compound, the luminescent agent and the active oxygen measuring agent may be added to the specimen simultaneously or before and after these. For example, after adding an active oxygen generating system, for example, xanthine and xanthine oxidase, to the specimen, the antioxidant capacity of the specimen can be measured and evaluated by measuring the active oxygen over time. Components other than the near-infrared luminescent compound, the luminescent agent, and the active oxygen measuring agent may be in a solid, liquid, or gaseous state. As such other components, not only active oxygen generating substances but also active oxygen itself may be added.

そして、活性酸素と近赤外発光化合物との反応により生じた近赤外発光の発光強度を、冷却したセンサーを用いて測定する。その際、検体に近赤外発光化合物を添加し、当該センサーを含む測定装置にこれを導入しても、先に検体を測定装置に導入した後、近赤外発光化合物を添加してもよい。冷却温度は、−5〜20℃、好ましくは、−5〜15℃、より好ましくは0〜10℃である。発光試薬として近赤外発光化合物を用いた上でセンサーの冷却温度を上記範囲に設定し測定することで、高いS/N比で、発光強度を測定することができる。   Then, the emission intensity of near-infrared light emission generated by the reaction between active oxygen and the near-infrared light-emitting compound is measured using a cooled sensor. At this time, a near infrared luminescent compound may be added to the specimen and introduced into a measuring apparatus including the sensor, or a near infrared luminescent compound may be added after the specimen is first introduced into the measuring apparatus. . The cooling temperature is −5 to 20 ° C., preferably −5 to 15 ° C., more preferably 0 to 10 ° C. The emission intensity can be measured with a high S / N ratio by using a near-infrared light-emitting compound as a luminescent reagent and setting the cooling temperature of the sensor within the above range and measuring.

ここで、発光強度の測定の具体的態様は、特に限定されないが、例えば、検体から発する光を冷却したセンサーを用いて検出し、検出された光情報を電気信号に変換し、そして電気信号に変換された情報を処理する、というステップを経ることにより行うことができる。   Here, the specific mode of the measurement of the emission intensity is not particularly limited. For example, the light emitted from the specimen is detected using a cooled sensor, the detected light information is converted into an electric signal, and the electric signal is converted into an electric signal. This can be done by going through a step of processing the converted information.

活性酸素測定装置
以下、本発明に係る活性酸素測定装置の実施形態について図面を参照しつつ説明する。図1は、本発明の一つの実施形態における活性酸素測定装置の概略図を示す。
Active oxygen measuring device Hereinafter, an embodiment of active oxygen measuring apparatus according to the present invention will be described with reference to the drawings. FIG. 1 shows a schematic diagram of an active oxygen measuring device according to one embodiment of the present invention.

本発明の活性酸素測定装置は、近赤外発光化合物を導入するセル4(本明細書中において、試料保持部と記載することもある)発光強度を測定するための手段(センサー)3、及び当該発光強度測定手段を−5〜20℃に冷却する冷却手段9を備える。   The active oxygen measuring device of the present invention comprises a cell 4 for introducing a near-infrared luminescent compound (sometimes referred to as a sample holder in this specification), a means (sensor) 3 for measuring luminescence intensity, and A cooling means 9 for cooling the emission intensity measuring means to −5 to 20 ° C. is provided.

本発明においては、前述のように処理した、又は未処理の検体7及び近赤外発光化合物は、試料保持部4に導入される。当該試料保持部4の近傍に、試料の温度を保持するために、ヒーター6を設置してもよい。かかるヒーター6により、試料を生体環境に近い条件に保持することができる。   In the present invention, the specimen 7 and the near-infrared light emitting compound treated or untreated as described above are introduced into the sample holder 4. A heater 6 may be installed in the vicinity of the sample holder 4 in order to hold the temperature of the sample. Such a heater 6 makes it possible to keep the sample in a condition close to the biological environment.

また、本発明の活性酸素測定装置は、測定試料から生じた近赤外光を集約させるためのレンズ等の光学部8を備えていてもよい。   In addition, the active oxygen measuring device of the present invention may include an optical unit 8 such as a lens for aggregating near infrared light generated from the measurement sample.

発光強度を測定するための手段(センサー)3は、近赤外領域の発光強度を測定できることが必要である。   The means (sensor) 3 for measuring the emission intensity needs to be able to measure the emission intensity in the near infrared region.

活性酸素測定用システム
本発明は、また、前述の近赤外発光化合物及び前述の活性酸素測定装置を含む、活性酸素を測定するためのシステムを提供する。
System for Measuring Active Oxygen The present invention also provides a system for measuring active oxygen, comprising the above-mentioned near-infrared light emitting compound and the above-mentioned active oxygen measuring device.

本発明においては、活性酸素測定方法の項において説明した、近赤外発光化合物、発光剤及び活性酸素測定剤以外の成分をさらに備えていてもよい。   In this invention, you may further provide components other than the near-infrared luminescent compound, the luminescent agent, and the active oxygen measuring agent which were demonstrated in the term of the active oxygen measuring method.

かかるシステムを用いることによって、特別な施設、環境等を必要とせず、専門家でなくとも、特別な技術を要することなく、活性酸素を精度よく測定することができる。   By using such a system, it is possible to accurately measure active oxygen without requiring special facilities, environments, etc., and even without being a specialist, without requiring special techniques.

以下、本発明をさらに詳細に説明するため、製造例及び実施例を記載する。これらの例は、本発明を具体化するものであって、本発明の範囲を限定するものではない。   Hereinafter, production examples and examples are described in order to describe the present invention in more detail. These examples embody the present invention and are not intended to limit the scope of the present invention.

製造例1:4-(2-((E)-2-((E)-3-((E)-2-(1-(2-carboxyethyl)-3,3-dimethyl-5-sulfoindolin-2-ylidene)ethylidene)-2-chlorocyclohex-1-enyl)vinyl)-3,3-dimethyl-5-sulfo-3H-indolium-1-yl)butane-1-sulfonateの合成(工程1)
4-(2,3,3-trimethyl-5-sulfo-3H-indolium-1-yl)butane-1-sulfonate(1.0g、一般式(IX)において、対応するMが水素であり、mが4の化合物に相当)、1-(2-carboxyethyl)-2,3,3-trimethyl-3H-indolium-5-sulfonate (0.82g、一般式(X)において、対応するMが水素であり、kが2の化合物に相当)、N-[(3-(アニリノメチレン)-2-クロロ-1-シクロヘキセン-1-イル)メチレン]アニリン塩酸(0.96g)、酢酸ナトリウム(0.88g)、メタノール(24mL)の混合物を50℃で1時間撹拌した。メタノールを減圧除去し、残渣に水(50mL)及びクロロホルム(50mL)を加え分配した。
Production Example 1: 4- (2-((E) -2-((E) -3-((E) -2- (1- (2-carboxyethyl) -3,3-dimethyl-5-sulfoindolin-2) -ylidene) ethylidene) -2-chlorocyclohex-1-enyl) vinyl) -3,3-dimethyl-5-sulfo-3H-indolium-1-yl) butane-1-sulfonate synthesis (step 1)
4- (2,3,3-trimethyl-5-sulfo-3H-indolium-1-yl) butane-1-sulfonate (1.0 g, in general formula (IX), the corresponding M is hydrogen, and m is 4), 1- (2-carboxyethyl) -2,3,3-trimethyl-3H-indolium-5-sulfonate (0.82 g, in the general formula (X), the corresponding M is hydrogen, k corresponds to a compound of 2), N-[(3- (anilinomethylene) -2-chloro-1-cyclohexen-1-yl) methylene] aniline hydrochloric acid (0.96 g), sodium acetate (0.88 g) , Methanol (24 mL) was stirred at 50 ° C. for 1 hour. Methanol was removed under reduced pressure, and water (50 mL) and chloroform (50 mL) were added to the residue and partitioned.

さらに水層をクロロホルム(50mL×5回)で洗浄し、水層を減圧濃縮した。残渣を0.1%TFA水溶液に溶解し、ODSカラムクロマトグラフィーに供し、水とアセトニトリルの混合液で溶出した。目的物の溶出液を減圧濃縮し、目的物0.67g(一般式(XII)において、対応するMが水素であり、kが2であり、lが3であり、mが4である化合物に相当)を青緑固体として得た。以下に目的物の機器分析データを示す。
1H NMR (500 MHz, DMSO-d6, 25 ℃, TMS:0.0 ppm) 1.65 (6H, s),1.67 (6H, s), 1.75 (2H, quin, J = 7.3 Hz), 1.83 (4H, m), 2.60 (2H, t, J= 7.3 Hz), 2.70 (6H, m), 4.26 (2H, t, J = 7.3 Hz), 4.38 (2H, t, J= 7.3 Hz), 6.34 (1H, d, J = 14 Hz), 6.45 (1H, d, J = 14 Hz), 7.30(1H, d, J = 8.5 Hz), 7.47 (1H, d, J = 8.5 Hz), 7.62 (1H, d,d, J= 1.2, 8.5 Hz), 7.67 (1H, d,d, J = 1.2, 8.5 Hz), 7.74 (1H, d, J =1.2 Hz), 7.81 (1H, d, J = 1.2 Hz), 8.18 (1H, d, J = 14 Hz), 8.29(1H, d, J = 14 Hz)
ESI-MS m/z calcd for C37H43N2O11S3Cl
822.17, found 823.23 [M+1]
製造例2: 4-(2-((E)-2-((E)-3-((E)-2-(1-(2-carboxyethyl)-3,3-dimethyl-5-sulfoindolin-2-ylidene)ethylidene)-2-methoxycyclohex-1-enyl)vinyl)-3,3-dimethyl-5-sulfo-3H-indolium-1-yl)butane-1-sulfonateの合成(工程2)
製造例1で得られた4-(2-((E)-2-((E)-3-((E)-2-(1-(2-carboxyethyl)-3,3-dimethyl-5-sulfoindolin-2-ylidene)ethylidene)-2-chlorocyclohex-1-enyl)vinyl)-3,3-dimethyl-5-sulfo-3H-indolium-1-yl)butane-1-sulfonate(0.2g)、メタノール(12mL)、カリウムブトキシド(0.56g)の混合物を50℃で12時間撹拌し、次に氷冷下において水(20mL)、1N HCl水溶液(5mL)を加え中和した。反応液を減圧濃縮し、残渣を0.1%TFA水溶液に溶解し、ODSカラムクロマトグラフィーに供した。水とアセトニトリルの混合液で溶出し、溶出液を減圧濃縮し、目的物0.20g(一般式(XIII)において、対応するMが水素であり、kが2であり、lが3であり、mが4であり、R16’がメチルである化合物に相当)を青緑色固体として得た。以下に目的物の機器分析データを示す。
1H NMR (500 MHz, DMSO-d6, 23 ℃, TMS:0.0 ppm) 1.65 (6H, s),
1.67 (6H, s), 1.70-1.85 (6H, m), 2.55-2.65 (6H, m), 2.70 (2H, t, J = 7.3
Hz), 3.95 (3H, s), 4.21 (2H, br.), 4.35 (2H, br.), 6.20 (1H, d, J = 14.1
Hz), 6.28 (1H, d, J = 14.7 Hz), 7.27 (1H, d, J = 8.0 Hz), 7.42
(1H, d, J = 8.0 Hz), 7.62 (1H, d, J = 8.0 Hz), 7. 65 (1H, d, J
= 8.0 Hz), 7.72 (1H, s), 7.79 (1H, s), 7.95 (1H, d, J = 14.1 Hz), 8.06
(1H, d, J = 14.7 Hz)
ESI-MS m/z calcd for C38H46N2O12S3
818.22, found 819.19 [M+1]
製造例3: 4-(2-((E)-2-((E)-3-((E)-2-(1-(3-(2,5-dioxopyrrolidin-1-yloxy)-3-oxopropyl)-3,3-dimethyl-5-sulfoindolin-2-ylidene)ethylidene)-2-methoxycyclohex-1-enyl)vinyl)-3,3-dimethyl-5-sulfo-3H-indolium-1-yl)butane-1-sulfonateの合成(工程3)
製造例2で得られた4-(2-((E)-2-((E)-3-((E)-2-(1-(2-carboxyethyl)-3,3-dimethyl-5-sulfoindolin-2-ylidene)ethylidene)-2-methoxycyclohex-1-enyl)vinyl)-3,3-dimethyl-5-sulfo-3H-indolium-1-yl)butane-1-sulfonate(0.15g)、N,N-ジスクシイミジルカーボネート(0.7g)、ピリジン(3mL)、N,N-ジメチルホルムアミド(3mL)の混合物を、50℃で40分間攪拌した。反応液を減圧濃縮し、残渣を塩化メチレンとメタノールの混合液に溶解し、シリカゲルカラムクロマトグラフィーに供した。塩化メチレンとメタノールの混合液で溶出し、目的物を含む溶出液を減圧濃縮し、目的物0.143g(一般式(XIV)において、対応するMが水素であり、kが2であり、lが3であり、mが4であり、R16’がメチルである化合物に相当)を青色固体として得た。以下に目的物の機器分析データを示す。
1H NMR (500 MHz, DMSO-d6, 23 ℃, TMS:0.0 ppm) 1.63 (6H, s),1.66 (6H, s), 1.70-1.85 (6H, m), 2.55 (2H, t, J = 7.3 Hz), 2.60 (4H,Br.), 2.78 (4H, s), 3.25 (2H, t, J = 7.3 Hz), 3.94 (3H, s), 4.23 (2H,br.), 4.43 (2H, br.), 6.08 (1H, d, J = 13.3 Hz), 6.35 (1H, d, J =14.6 Hz), 7.23 (1H, d, J = 8.5 Hz), 7.45 (1H, d, J = 8.5 Hz),7.56 (1H, d, d, J = 1.2, 8.5 Hz), 7.66 (1H, d, J = 8.5 Hz), 7.67(1H, s), 7.80 (1H, s), 7.88 (1H, d, J = 13.3 Hz), 8.10 (1H, d, J= 14.6 Hz)
ESI-MS m/z calcd for C42H49N3O14S3
915.24, found 916.11 [M+1]
製造例4:4-(2-((E)-2-((E)-2-methoxy-3-((E)-2-(1-(3-(2-(3-(6-(4-methoxyphenyl)-3-oxo-3,7-dihydroimidazo[1,2-a]pyrazin-2-yl)propanamido)ethylamino)-3-oxopropyl)-3,3-dimethyl-5-sulfoindolin-2-ylidene)ethylidene)cyclohex-1-enyl)vinyl)-3,3-dimethyl-5-sulfo-3H-indolium-1-yl)butane-1-sulfonateの合成(工程4)
製造例3で得られた4-(2-((E)-2-((E)-3-((E)-2-(1-(3-(2,5-dioxopyrrolidin-1-yloxy)-3-oxopropyl)-3,3-dimethyl-5-sulfoindolin-2-ylidene)ethylidene)-2-methoxycyclohex-1-enyl)vinyl)-3,3-dimethyl-5-sulfo-3H-indolium-1-yl)butane-1-sulfonate(0.05g)と一般式(XV)で表わされるN-(2-aminoethyl)-3-(6-(4-methoxyphenyl)-3-oxo-3,7-dihydroimidazo[1,2-a]pyrazin-2-yl)propanamide(0.0087g)をピリジン(0.6mL)及び0.1M燐酸緩衝液(pH7.4、0.25mL)の混合液中、水素置換し室温で4時間攪拌した。反応液を減圧濃縮し、残渣を0.1%TFA水溶液で溶解し、本溶液をODSカラムクロマトグラフィーに供した。水とアセトニトリルの混合液で溶出し、目的物の溶出液を減圧濃縮し、目的物0.009g(一般式(IV)において、対応するMが水素であり、kが2であり、lが3であり、mが4であり、R16’がメチルである化合物に相当)を黄緑色固体として得た。以下に目的物の機器分析データを示す。
1H NMR (500 MHz, D2O, 22 ℃, Aceton:2.07 ppm) 1.21(6H, s), 1.38 (6H, s), 1.52 (2H, br.), 1.62 (2H, br.), 2.37 (2H, t, J =7.3 Hz), 2.45 (2H, br.), 2.72 (4H, m), 3.00 (4H, m), 3.42 (3H, s), 3.46 (3H,s), 3.62 (2H, br.), 4.00 (2H, br.), 5.25 (1H, br.), 5.55 (1H, br.), 6.48 (2H,d, J = 7.9 Hz), 6.78 (1H, br.), 6.93 (1H, br.), 7.10 (2H, d, J =7.9 Hz), 7.35 (1H, s), 7.40 (1H, d, J = 7.4 Hz), 7.48 (1H, br.), 7.55(3H, m), 7.63 (1H, s), 7.83 (1H, s)
ESI-MS m/z calcd for C56H65N7O14S3
1155.38, found 1156.33 [M+1]
製造例5: 4-(2-((E)-2-((E)-2-methoxy-3-((E)-2-(1-(3-(2-(3-(6-(4-methoxyphenyl)-3-oxo-3,7-dihydroimidazo[1,2-a]pyrazin-2-yl)propanamido)ethylamino)-3-oxopropyl)-3,3-dimethyl-5-sulfoindolin-2-ylidene)ethylidene)cyclohex-1-enyl)vinyl)-3,3-dimethyl-5-sulfo-3H-indolium-1-yl)butane-1-sulfonateの合成(工程5)
製造例2で得られた4-(2-((E)-2-((E)-3-((E)-2-(1-(2-carboxyethyl)-3,3-dimethyl-5-sulfoindolin-2-ylidene)ethylidene)-2-methoxycyclohex-1-enyl)vinyl)-3,3-dimethyl-5-sulfo-3H-indolium-1-yl)butane-1-sulfonate(0.03g)、一般式(XV)で表わされるN-(2-aminoethyl)-3-(6-(4-methoxyphenyl)-3-oxo-3,7-dihydroimidazo[1,2-a]pyrazin-2-yl)propanamide(0.017g)、WSC HCl(0.22g)、ピリジン(0.6mL)及び0.1M燐酸緩衝液(pH7.4、0.05mL)の混合物を、水素置換し室温で2時間攪拌した。反応液にアセトンを加え、生成した固体と上澄み液とを分離した後、固体を0.1%TFA水溶液で溶解し、本溶液をODSカラムクロマトグラフィーに供した。水とアセトニトリルの混合液で溶出し、目的物の溶出液を減圧濃縮し、目的物0.007g(一般式(IV)において、対応するMが水素であり、kが2であり、lが3であり、mが4であり、R16’がメチルである化合物に相当)を黄緑色固体として得た。
Further, the aqueous layer was washed with chloroform (50 mL × 5 times), and the aqueous layer was concentrated under reduced pressure. The residue was dissolved in 0.1% TFA aqueous solution, subjected to ODS column chromatography, and eluted with a mixture of water and acetonitrile. The eluate of the target product was concentrated under reduced pressure, and 0.67 g of the target product (in the general formula (XII), the corresponding M was hydrogen, k was 2, 1 was 3, and m was 4) Equivalent) was obtained as a blue-green solid. The instrument analysis data of the target product is shown below.
1 H NMR (500 MHz, DMSO-d6, 25 ℃, TMS: 0.0 ppm) 1.65 (6H, s), 1.67 (6H, s), 1.75 (2H, quin, J = 7.3 Hz), 1.83 (4H, m ), 2.60 (2H, t, J = 7.3 Hz), 2.70 (6H, m), 4.26 (2H, t, J = 7.3 Hz), 4.38 (2H, t, J = 7.3 Hz), 6.34 (1H, d , J = 14 Hz), 6.45 (1H, d, J = 14 Hz), 7.30 (1H, d, J = 8.5 Hz), 7.47 (1H, d, J = 8.5 Hz), 7.62 (1H, d, d , J = 1.2, 8.5 Hz), 7.67 (1H, d, d, J = 1.2, 8.5 Hz), 7.74 (1H, d, J = 1.2 Hz), 7.81 (1H, d, J = 1.2 Hz), 8.18 (1H, d, J = 14 Hz), 8.29 (1H, d, J = 14 Hz)
ESI-MS m / z calcd for C 37 H 43 N 2 O 11 S 3 Cl
822.17, found 823.23 [M + 1]
Production Example 2: 4- (2-((E) -2-((E) -3-((E) -2- (1- (2-carboxyethyl) -3,3-dimethyl-5-sulfoindolin-2) -ylidene) ethylidene) -2-methoxycyclohex-1-enyl) vinyl) -3,3-dimethyl-5-sulfo-3H-indolium-1-yl) butane-1-sulfonate synthesis (step 2)
4- (2-((E) -2-((E) -3-((E) -2- (1- (2-carboxyethyl) -3,3-dimethyl-5-) obtained in Production Example 1 sulfoindolin-2-ylidene) ethylidene) -2-chlorocyclohex-1-enyl) vinyl) -3,3-dimethyl-5-sulfo-3H-indolium-1-yl) butane-1-sulfonate (0.2 g), methanol (12 mL) and potassium butoxide (0.56 g) were stirred at 50 ° C. for 12 hours, and then neutralized by adding water (20 mL) and 1N aqueous HCl (5 mL) under ice cooling. The reaction solution was concentrated under reduced pressure, and the residue was dissolved in 0.1% aqueous TFA solution and subjected to ODS column chromatography. Elution is performed with a mixture of water and acetonitrile, and the eluate is concentrated under reduced pressure. The target product is 0.20 g (in the general formula (XIII), the corresponding M is hydrogen, k is 2, l is 3, corresponding to a compound in which m is 4 and R 16 ′ is methyl) as a blue-green solid. The instrument analysis data of the target product is shown below.
1 H NMR (500 MHz, DMSO-d6, 23 ° C, TMS: 0.0 ppm) 1.65 (6H, s),
1.67 (6H, s), 1.70-1.85 (6H, m), 2.55-2.65 (6H, m), 2.70 (2H, t, J = 7.3
Hz), 3.95 (3H, s), 4.21 (2H, br.), 4.35 (2H, br.), 6.20 (1H, d, J = 14.1
Hz), 6.28 (1H, d, J = 14.7 Hz), 7.27 (1H, d, J = 8.0 Hz), 7.42
(1H, d, J = 8.0 Hz), 7.62 (1H, d, J = 8.0 Hz), 7.65 (1H, d, J
= 8.0 Hz), 7.72 (1H, s), 7.79 (1H, s), 7.95 (1H, d, J = 14.1 Hz), 8.06
(1H, d, J = 14.7 Hz)
ESI-MS m / z calcd for C 38 H 46 N 2 O 12 S 3
818.22, found 819.19 [M + 1]
Production Example 3: 4- (2-((E) -2-((E) -3-((E) -2- (1- (3- (2,5-dioxopyrrolidin-1-yloxy) -3- oxopropyl) -3,3-dimethyl-5-sulfoindolin-2-ylidene) ethylidene) -2-methoxycyclohex-1-enyl) vinyl) -3,3-dimethyl-5-sulfo-3H-indolium-1-yl) butane Synthesis of -1-sulfonate (process 3)
4- (2-((E) -2-((E) -3-((E) -2- (1- (2-carboxyethyl) -3,3-dimethyl-5-) obtained in Production Example 2 sulfoindolin-2-ylidene) ethylidene) -2-methoxycyclohex-1-enyl) vinyl) -3,3-dimethyl-5-sulfo-3H-indolium-1-yl) butane-1-sulfonate (0.15 g), N , N-disuccimidyl carbonate (0.7 g), pyridine (3 mL), and N, N-dimethylformamide (3 mL) were stirred at 50 ° C. for 40 minutes. The reaction solution was concentrated under reduced pressure, and the residue was dissolved in a mixed solution of methylene chloride and methanol and subjected to silica gel column chromatography. Elution is performed with a mixture of methylene chloride and methanol, and the eluate containing the target product is concentrated under reduced pressure. The target product is 0.143 g (in formula (XIV), the corresponding M is hydrogen, k is 2, Was 3, and m was 4, corresponding to a compound in which R 16 ′ was methyl). The instrument analysis data of the target product is shown below.
1 H NMR (500 MHz, DMSO-d6, 23 ° C, TMS: 0.0 ppm) 1.63 (6H, s), 1.66 (6H, s), 1.70-1.85 (6H, m), 2.55 (2H, t, J = 7.3 Hz), 2.60 (4H, Br.), 2.78 (4H, s), 3.25 (2H, t, J = 7.3 Hz), 3.94 (3H, s), 4.23 (2H, br.), 4.43 (2H, br.), 6.08 (1H, d, J = 13.3 Hz), 6.35 (1H, d, J = 14.6 Hz), 7.23 (1H, d, J = 8.5 Hz), 7.45 (1H, d, J = 8.5 Hz) ), 7.56 (1H, d, d, J = 1.2, 8.5 Hz), 7.66 (1H, d, J = 8.5 Hz), 7.67 (1H, s), 7.80 (1H, s), 7.88 (1H, d, J = 13.3 Hz), 8.10 (1H, d, J = 14.6 Hz)
ESI-MS m / z calcd for C 42 H 49 N 3 O 14 S 3
915.24, found 916.11 [M + 1]
Production Example 4: 4- (2-((E) -2-((E) -2-methoxy-3-((E) -2- (1- (3- (2- (3- (6- ( 4-methoxyphenyl) -3-oxo-3,7-dihydroimidazo [1,2-a] pyrazin-2-yl) propanamido) ethylamino) -3-oxopropyl) -3,3-dimethyl-5-sulfoindolin-2-ylidene Synthesis of) ethylidene) cyclohex-1-enyl) vinyl) -3,3-dimethyl-5-sulfo-3H-indolium-1-yl) butane-1-sulfonate (step 4)
4- (2-((E) -2-((E) -3-((E) -2- (1- (3- (2,5-dioxopyrrolidin-1-yloxy)) obtained in Production Example 3 -3-oxopropyl) -3,3-dimethyl-5-sulfoindolin-2-ylidene) ethylidene) -2-methoxycyclohex-1-enyl) vinyl) -3,3-dimethyl-5-sulfo-3H-indolium-1- yl) butane-1-sulfonate (0.05 g) and N- (2-aminoethyl) -3- (6- (4-methoxyphenyl) -3-oxo-3,7-dihydroimidazo [ 1,2-a] pyrazin-2-yl) propanamide (0.0087 g) was purged with hydrogen in a mixture of pyridine (0.6 mL) and 0.1 M phosphate buffer (pH 7.4, 0.25 mL) at room temperature. For 4 hours. The reaction solution was concentrated under reduced pressure, the residue was dissolved with 0.1% TFA aqueous solution, and this solution was subjected to ODS column chromatography. Elution was performed with a mixture of water and acetonitrile, and the eluate of the target product was concentrated under reduced pressure, and 0.009 g of the target product (in formula (IV), the corresponding M was hydrogen, k was 2, and l was 3 Corresponding to a compound in which m is 4 and R 16 ′ is methyl) as a yellow-green solid. The instrument analysis data of the target product is shown below.
1 H NMR (500 MHz, D2O, 22 ° C, Aceton: 2.07 ppm) 1.21 (6H, s), 1.38 (6H, s), 1.52 (2H, br.), 1.62 (2H, br.), 2.37 (2H , t, J = 7.3 Hz), 2.45 (2H, br.), 2.72 (4H, m), 3.00 (4H, m), 3.42 (3H, s), 3.46 (3H, s), 3.62 (2H, br .), 4.00 (2H, br.), 5.25 (1H, br.), 5.55 (1H, br.), 6.48 (2H, d, J = 7.9 Hz), 6.78 (1H, br.), 6.93 (1H , br.), 7.10 (2H, d, J = 7.9 Hz), 7.35 (1H, s), 7.40 (1H, d, J = 7.4 Hz), 7.48 (1H, br.), 7.55 (3H, m) , 7.63 (1H, s), 7.83 (1H, s)
ESI-MS m / z calcd for C 56 H 65 N 7 O 14 S 3
1155.38, found 1156.33 [M + 1]
Production Example 5: 4- (2-((E) -2-((E) -2-methoxy-3-((E) -2- (1- (3- (2- (3- (6- ( 4-methoxyphenyl) -3-oxo-3,7-dihydroimidazo [1,2-a] pyrazin-2-yl) propanamido) ethylamino) -3-oxopropyl) -3,3-dimethyl-5-sulfoindolin-2-ylidene Synthesis of) ethylidene) cyclohex-1-enyl) vinyl) -3,3-dimethyl-5-sulfo-3H-indolium-1-yl) butane-1-sulfonate (Step 5)
4- (2-((E) -2-((E) -3-((E) -2- (1- (2-carboxyethyl) -3,3-dimethyl-5-) obtained in Production Example 2 sulfoindolin-2-ylidene) ethylidene) -2-methoxycyclohex-1-enyl) vinyl) -3,3-dimethyl-5-sulfo-3H-indolium-1-yl) butane-1-sulfonate (0.03g), general N- (2-aminoethyl) -3- (6- (4-methoxyphenyl) -3-oxo-3,7-dihydroimidazo [1,2-a] pyrazin-2-yl) propanamide represented by the formula (XV) 0.017 g), WSC HCl (0.22 g), pyridine (0.6 mL) and 0.1 M phosphate buffer (pH 7.4, 0.05 mL) were purged with hydrogen and stirred at room temperature for 2 hours. Acetone was added to the reaction solution to separate the produced solid from the supernatant, and the solid was dissolved in 0.1% TFA aqueous solution. The solution was subjected to ODS column chromatography. Elution was performed with a mixture of water and acetonitrile, and the eluate of the target product was concentrated under reduced pressure, and 0.007 g of the target product (in formula (IV), the corresponding M was hydrogen, k was 2, and l was 3 Corresponding to a compound in which m is 4 and R 16 ′ is methyl) as a yellow-green solid.

実施例1 ヒト全血から発生する活性酸素の測定
測定試料として、ヒトの血液を用いた。測定試料は、ヘパリン処理採血管で採血し、採血後37℃で保温したものを用いた。
Example 1 Measurement of active oxygen generated from human whole blood Human blood was used as a measurement sample. As the measurement sample, blood collected with a heparin-treated blood collection tube and kept at 37 ° C. after blood collection was used.

発光試薬としては、4-(2-((E)-2-((E)-2-methoxy-3-((E)-2-(1-(3-(2-(3-(6-(4-methoxyphenyl)-3-oxo-3,7-dihydroimidazo[1,2-a]pyrazin-2-yl)propanamido)ethylamino)-3-oxopropyl)-3,3-dimethyl-5-sulfoindolin-2-ylidene)ethylidene)cyclohex-1-enyl)vinyl)-3,3-dimethyl-5-sulfo-3H-indolium-1-yl)butane-1-sulfonate(一般式(IV)において、対応するMが水素であり、kが2であり、lが3であり、mが4であり、R16’がメチルである化合物に相当。以下、本実施例において、単にNIR−CLAと記載することもある)の0.1 mM 水溶液を用いた。刺激剤として、Zymosan溶液(25mg/mL PBS(-))を用いた。 As the luminescent reagent, 4- (2-((E) -2-((E) -2-methoxy-3-((E) -2- (1- (3- (2- (3- (6- (4-methoxyphenyl) -3-oxo-3,7-dihydroimidazo [1,2-a] pyrazin-2-yl) propanamido) ethylamino) -3-oxopropyl) -3,3-dimethyl-5-sulfoindolin-2- ylidene) ethylidene) cyclohex-1-enyl) vinyl) -3,3-dimethyl-5-sulfo-3H-indolium-1-yl) butane-1-sulfonate (in formula (IV), the corresponding M is hydrogen) Equivalent to a compound in which k is 2, l is 3, m is 4, and R 16 ′ is methyl. Hereinafter, in this example, it may be simply referred to as NIR-CLA) A 0.1 mM aqueous solution was used. A Zymosan solution (25 mg / mL PBS (−)) was used as a stimulant.

計測には、近赤外測定装置を使用した。計測容器に血液1.0 mLと発光試薬10μLを添加し、測定を開始した。測定は、[30秒測定+30秒休み]のサイクルで行った。センサー部分の温度は、5℃に設定した。サンプルの温度を、37℃に保持した状態で、発光強度を測定した。測定5.5分後にZymosan溶液 50μLを添加し、再度近赤外発光測定装置で同様の測定を行った。   A near infrared measurement device was used for the measurement. 1.0 mL of blood and 10 μL of luminescent reagent were added to the measurement container, and measurement was started. The measurement was performed in a cycle of [30 seconds measurement + 30 seconds rest]. The temperature of the sensor part was set to 5 ° C. The emission intensity was measured with the sample temperature maintained at 37 ° C. After 5.5 minutes of measurement, 50 μL of Zymosan solution was added, and the same measurement was performed again with a near-infrared emission measuring device.

測定結果を図2に示す。図2に示されるように、ヒト全血中の細胞から発生した活性酸素を、好中球の分画等の処理をすることなく測定することができた。   The measurement results are shown in FIG. As shown in FIG. 2, active oxygen generated from cells in human whole blood could be measured without any treatment such as neutrophil fractionation.

実施例2 センサー温度条件による測定精度の比較
測定装置として、近赤外発光測定装置を用い、センサー部の温度を25℃又は5℃に保持して、発光強度を測定した。
Example 2 A near-infrared light emission measurement device was used as a comparative measurement device for measurement accuracy according to sensor temperature conditions , and the light emission intensity was measured while maintaining the temperature of the sensor portion at 25 ° C. or 5 ° C.

発光試薬として、前述のNIR−CLA1mgをミリQ水866uLにて溶解し1mM溶液としたものを使用した。当該溶液は100uLずつエッヘ゜ンチューフ゛に分注し試験時まで-80℃に保存した。   As the luminescent reagent, 1 mg of the aforementioned NIR-CLA dissolved in 866 uL of milli-Q water was used. The solution was dispensed in 100 μL aliquots and stored at −80 ° C. until testing.

試験の際、上記発光試薬の溶液をさらにミリQ水にて希釈した。具体的には、まず0.3μM溶液(30μL/100μL)とし、この溶液から更に0.03μM溶液を作製した。この溶液から2倍希釈系列を作製し、0.03及び0.015μM溶液とした。   During the test, the luminescent reagent solution was further diluted with milliQ water. Specifically, a 0.3 μM solution (30 μL / 100 μL) was first prepared, and a 0.03 μM solution was further prepared from this solution. A 2-fold dilution series was prepared from this solution to make 0.03 and 0.015 μM solutions.

活性酸素の発生系として、XOD-Xanthine系を用いた。具体的には、下記の内容のATTO AB2970 CLETA-Sの酵素・基質を使用した:
0.125unit/mL XOD 1.2M (NH4)2SO4-0.25M HEPES 0.05mM EDTA pH7.5
0.1mM Xanthine 0.25M HEPES 0.05mM EDTA pH7.5
4.計測
以下の容量で試料を混合、装置にセットし、発光強度を10秒間測定し、測定値を積算した。
The XOD-Xanthine system was used as the active oxygen generation system. Specifically, the following ATTO AB2970 CLETA-S enzyme / substrate was used:
0.125unit / mL XOD 1.2M (NH 4 ) 2 SO 4 -0.25M HEPES 0.05mM EDTA pH7.5
0.1mM Xanthine 0.25M HEPES 0.05mM EDTA pH7.5
4. Measurement The sample was mixed in the following volume, set in the apparatus, the luminescence intensity was measured for 10 seconds, and the measured values were integrated.

発光試薬溶液:10μL (final conc.0.001及び0.005μM)
XOD(キサンチンオキシダーゼ):80μL (final conc. 0.01unit/tube)
Xanthine 200μL
測定は各試験区につき、3回行い、平均値を算出した。
Luminescent reagent solution: 10 μL (final conc. 0.001 and 0.005 μM)
XOD (xanthine oxidase): 80μL (final conc. 0.01unit / tube)
Xanthine 200μL
The measurement was performed three times for each test section, and the average value was calculated.

測定結果として、各試験区の発光強度を表1に、S/N比を表2に示す。   As measurement results, the emission intensity of each test section is shown in Table 1, and the S / N ratio is shown in Table 2.

Figure 2012008084
Figure 2012008084

Figure 2012008084
Figure 2012008084

表2に示されるように、センサー温度を25℃とした場合、S/N比は、いずれも2.3以下と低い値に止まっていた。これに対し、センサー温度を5℃とした場合、S/N比は、9.0以上と非常に高く、活性酸素濃度を高精度で測定できることが分かる。   As shown in Table 2, when the sensor temperature was 25 ° C., the S / N ratio remained at a low value of 2.3 or less. On the other hand, when the sensor temperature is 5 ° C., the S / N ratio is very high as 9.0 or more, and it can be seen that the active oxygen concentration can be measured with high accuracy.

実施例3 ウシ血液サンプルから発生する活性酸素の測定
測定試料として、27日齢の雄ウシの血液(ホルスタイン)を用いた。測定試料は、ヘパリン処理採血管で採血し、採血後37℃で保温したものを用いた。
Example 3 Measurement of active oxygen generated from a bovine blood sample Blood (Holstein) of a 27-day-old bull was used as a measurement sample. As the measurement sample, blood collected with a heparin-treated blood collection tube and kept at 37 ° C. after blood collection was used.

発光試薬としては、前述のNIR-CLAの0.0125 mM水溶液を用いた。刺激剤として、Zymosan溶液(25mg/mL PBS(-))を用いた。   As the luminescence reagent, the aforementioned NIR-CLA aqueous solution of 0.0125 mM was used. A Zymosan solution (25 mg / mL PBS (−)) was used as a stimulant.

計測には、近赤外測定装置を使用した。計測容器に血液50μL、PBS(-)200μL及び発光試薬 10μLを添加し、測定を開始した。測定は、[10秒測定+50秒休み]のサイクルで行った。センサー部分の温度は、5℃に設定した。サンプルの温度を37℃に保持した状態で、発光強度を測定した。測定10分後にZymosan溶液 10μLを添加し、再度近赤外発光測定装置で引続き、同様の測定を行った。   A near infrared measurement device was used for the measurement. Measurement was started by adding 50 μL of blood, 200 μL of PBS (−), and 10 μL of luminescent reagent to the measurement container. The measurement was performed in a cycle of [10 seconds measurement + 50 seconds rest]. The temperature of the sensor part was set to 5 ° C. The emission intensity was measured with the temperature of the sample held at 37 ° C. Ten minutes after the measurement, 10 μL of the Zymosan solution was added, and the same measurement was performed again with the near-infrared emission measuring device.

測定結果を図3に示す。図3に示されるように、ウシ血中の細胞から発生した活性酸素を、好中球等の分画をすることなく測定することができた。   The measurement results are shown in FIG. As shown in FIG. 3, the active oxygen generated from cells in bovine blood could be measured without fractionation of neutrophils and the like.

1.筺体
2.暗箱
3.センサー
4.試料保持部
5.測定試料容器
6.ヒーター(試料温度保持用)
7.測定試料
8.光学部
9.冷却ユニット(センサー温度保持用)
1. Housing 2. 2. Dark box Sensor 4. Sample holder 5. 5. Measurement sample container Heater (for holding sample temperature)
7). Measurement sample 8. Optical unit 9. Cooling unit (for holding sensor temperature)

Claims (6)

近赤外発光化合物を検体に添加する工程、及び
当該近赤外発光化合物を添加した検体の発光強度を、−5〜20℃に冷却したセンサーを用いて測定する工程
を含む、活性酸素の測定方法。
Measurement of active oxygen, including a step of adding a near-infrared luminescent compound to a specimen, and a step of measuring the luminescence intensity of the specimen to which the near-infrared luminescent compound is added using a sensor cooled to −5 to 20 ° C. Method.
前記近赤外発光化合物が、下記一般式(I)で表わされるインドシアニン結合型イミダゾ[1,2-a]ピラジン-3-オン化合物又はその塩である、請求項1に記載の活性酸素測定方法:
A−B−C (I)
[式中、Aは、下記一般式(II)で表わされるイミダゾ[1,2-a]ピラジン-3-オン基を示す:
Figure 2012008084
(式中、R、R、R、及びRは、同一又は異なって、水素原子、アルキル基、アリール基、ハロゲン原子、アルコキシル基、カルボキシル基、ホルミル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニル基、アリールカルボニル基又は複素環を示す。
但し、R、R、R、及びRのうち1つがスペーサー基Bに共有結合する。)
基Bは、スペーサー基を示す。
基Cは、下記式(III)で表わされるインドシアニン基を示す:
Figure 2012008084
(式中、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、R21、R22、R23、R24、及びR25は、同一又は異なって、水素原子、アルキル基、アリール基、ハロゲン原子、アルコキシル基、カルボキシル基、ホルミル基、スルホニル基、スルホン酸基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニル基、アリールカルボニル基、アリールオキシ基、アルキルペルオキシ基又は複素環を示す。
15及びR17は、これらが互いに結合して、不飽和4〜10員環を形成してもよい。
但し、R、R、R、R、R、R10、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、R21、R22、R23、R24、及びR25のうち1つがスペーサー基Bに共有結合する。)]
The active oxygen measurement according to claim 1, wherein the near-infrared light-emitting compound is an indocyanine-linked imidazo [1,2-a] pyrazin-3-one compound represented by the following general formula (I) or a salt thereof: Method:
A-B-C (I)
[Wherein A represents an imidazo [1,2-a] pyrazin-3-one group represented by the following general formula (II):
Figure 2012008084
(Wherein R 1 , R 2 , R 3 , and R 4 are the same or different and are a hydrogen atom, alkyl group, aryl group, halogen atom, alkoxyl group, carboxyl group, formyl group, alkyloxycarbonyl group, aryl. An oxycarbonyl group, an alkylcarbonyl group, an arylcarbonyl group or a heterocyclic ring is shown.
However, one of R 1 , R 2 , R 3 , and R 4 is covalently bonded to the spacer group B. )
Group B represents a spacer group.
The group C represents an indocyanine group represented by the following formula (III):
Figure 2012008084
(In the formula, R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 , R 24 , and R 25 are the same or different and are a hydrogen atom, alkyl group, aryl group, halogen atom, alkoxyl group, carboxyl group, formyl group, sulfonyl group, sulfonic acid A group, an alkyloxycarbonyl group, an aryloxycarbonyl group, an alkylcarbonyl group, an arylcarbonyl group, an aryloxy group, an alkylperoxy group or a heterocyclic ring;
R 15 and R 17 may be bonded to each other to form an unsaturated 4- to 10-membered ring.
However, R 5, R 6, R 7, R 8, R 9, R 10, R 11, R 12, R 13, R 14, R 15, R 16, R 17, R 18, R 19, R 20, One of R 21 , R 22 , R 23 , R 24 , and R 25 is covalently bonded to the spacer group B. ]]
前記近赤外発光化合物が、下記式(IV)又は(V)で表わされるインドシアニン結合型イミダゾ[1,2-a]ピラジン-3-オン化合物である、請求項1に記載の活性酸素測定方法。
Figure 2012008084
[式中、R16’は、アルキル基、アルコキシル基又はアリール基を示す。
Mは、水素、アルカリ金属又はアルカリ土類金属を示す。
k、l及びmは、同一又は異なって、1〜7の整数を示す。]
Figure 2012008084
[式中、Mは、同一又は異なって、水素、アルカリ金属又はアルカリ土類金属を示す。
k及びmは前記に同じ。
n及びpは、同一又は異なって、1〜7の整数を示す。]。
The active oxygen measurement according to claim 1, wherein the near-infrared light-emitting compound is an indocyanine-linked imidazo [1,2-a] pyrazin-3-one compound represented by the following formula (IV) or (V): Method.
Figure 2012008084
[Wherein, R 16 ′ represents an alkyl group, an alkoxyl group or an aryl group.
M represents hydrogen, an alkali metal or an alkaline earth metal.
k, l, and m are the same or different and represent an integer of 1 to 7. ]
Figure 2012008084
[In formula, M is the same or different and shows hydrogen, an alkali metal, or an alkaline-earth metal.
k and m are the same as above.
n and p are the same or different and represent an integer of 1 to 7. ].
前記近赤外発光化合物が、下記式(VI)又は(VII)で示されるインドシアニン結合型イミダゾ[1,2-a]ピラジン-3-オン化合物である、請求項1に記載の活性酸素測定方法。
Figure 2012008084
[式中、Mは、同一又は異なって、水素、アルカリ金属又はアルカリ土類金属を示す。]。
Figure 2012008084
The active oxygen measurement according to claim 1, wherein the near-infrared light emitting compound is an indocyanine-linked imidazo [1,2-a] pyrazin-3-one compound represented by the following formula (VI) or (VII): Method.
Figure 2012008084
[In formula, M is the same or different and shows hydrogen, an alkali metal, or an alkaline-earth metal. ].
Figure 2012008084
近赤外発光化合物を導入するセル、
発光強度を測定するための手段、及び
当該発光強度測定手段を−5〜20℃に冷却する冷却手段、
を備えた、活性酸素の測定装置。
A cell for introducing a near-infrared light emitting compound,
Means for measuring the emission intensity, and cooling means for cooling the emission intensity measurement means to -5 to 20 ° C,
A device for measuring active oxygen, comprising:
近赤外発光化合物及び請求項5に記載の活性酸素の測定装置を含む、活性酸素を測定するためのキット。   A kit for measuring active oxygen, comprising a near-infrared light emitting compound and the active oxygen measuring device according to claim 5.
JP2010146275A 2010-06-28 2010-06-28 Measuring method for active oxygen and measuring apparatus therefor Pending JP2012008084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010146275A JP2012008084A (en) 2010-06-28 2010-06-28 Measuring method for active oxygen and measuring apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010146275A JP2012008084A (en) 2010-06-28 2010-06-28 Measuring method for active oxygen and measuring apparatus therefor

Publications (1)

Publication Number Publication Date
JP2012008084A true JP2012008084A (en) 2012-01-12

Family

ID=45538785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010146275A Pending JP2012008084A (en) 2010-06-28 2010-06-28 Measuring method for active oxygen and measuring apparatus therefor

Country Status (1)

Country Link
JP (1) JP2012008084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005227A (en) * 2012-06-22 2014-01-16 Mie Univ Evaluation agent, evaluation method and evaluation device for vasopermeability increase
CN111662564A (en) * 2019-03-08 2020-09-15 中国科学院宁波材料技术与工程研究所 Heptamethine sulfonic group indocyanine dye, preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158258A (en) * 1996-10-03 1998-06-16 Canon Inc Detection and determination of target nucleic acid and pyrylium compound used in chemoluminescent analysis
JPH11266895A (en) * 1998-03-19 1999-10-05 Seitai Hikarijoho Kenkyusho:Kk Detection of onoo anion and onoo anion-measuring apparatus
JP2000205951A (en) * 1999-01-18 2000-07-28 Seitai Hikari Joho Kenkyusho:Kk Photometric apparatus
JP2001059812A (en) * 1999-08-23 2001-03-06 Hamamatsu Photonics Kk Weak light measuring apparatus
WO2009107769A1 (en) * 2008-02-29 2009-09-03 国立大学法人東京大学 Reagent for measurement of reactive oxygen
JP2009215174A (en) * 2008-03-07 2009-09-24 Mie Univ Near-infrared light-emitting compound and emission method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158258A (en) * 1996-10-03 1998-06-16 Canon Inc Detection and determination of target nucleic acid and pyrylium compound used in chemoluminescent analysis
JPH11266895A (en) * 1998-03-19 1999-10-05 Seitai Hikarijoho Kenkyusho:Kk Detection of onoo anion and onoo anion-measuring apparatus
JP2000205951A (en) * 1999-01-18 2000-07-28 Seitai Hikari Joho Kenkyusho:Kk Photometric apparatus
JP2001059812A (en) * 1999-08-23 2001-03-06 Hamamatsu Photonics Kk Weak light measuring apparatus
WO2009107769A1 (en) * 2008-02-29 2009-09-03 国立大学法人東京大学 Reagent for measurement of reactive oxygen
JP2009215174A (en) * 2008-03-07 2009-09-24 Mie Univ Near-infrared light-emitting compound and emission method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005227A (en) * 2012-06-22 2014-01-16 Mie Univ Evaluation agent, evaluation method and evaluation device for vasopermeability increase
CN111662564A (en) * 2019-03-08 2020-09-15 中国科学院宁波材料技术与工程研究所 Heptamethine sulfonic group indocyanine dye, preparation method and application thereof

Similar Documents

Publication Publication Date Title
US8143069B2 (en) Fluorescent probe and method of measuring hypochlorite ion
US8178669B2 (en) Fluorescent probe for peroxynitrite
Krzyminski et al. Chemiluminogenic features of 10-methyl-9-(phenoxycarbonyl) acridinium trifluoromethanesulfonates alkyl substituted at the benzene ring in aqueous media
Sui et al. A BODIPY‐Based Water‐Soluble Fluorescent Probe for Mitochondria Targeting
Waghorn et al. Shining light on the stability of metal thiosemicarbazonate complexes in living cells by FLIM
Zhao et al. A novel pH probe based on a rhodamine–rhodamine platform
Rathore et al. Dual-color imaging of cytosolic and mitochondrial zinc ions in live tissues with two-photon fluorescent probes
Qin et al. A reversible turn-on colorimetric and fluorescent sensor for Al3+ in fully aqueous media and its living cell imaging
US8968997B2 (en) Benzoxazole-based fluorescent metal ion indicators
US20160116455A1 (en) Fluorescent probe sensing tyrosine kinase and use thereof
WO2008059910A1 (en) pH-SENSITIVE FLUORESCENT PROBE
Liu et al. Development of a novel europium complex-based luminescent probe for time-gated luminescence imaging of hypochlorous acid in living samples
Huang et al. Elevated hypochlorous acid levels in asthmatic mice were disclosed by a near-infrared fluorescence probe
Resta et al. Detection of subcellular nitric oxide in mitochondria using a pyrylium probe: assays in cell cultures and peripheral blood
CN110092773A (en) A kind of oxa anthracenes derivative and its preparation method and application
KR102513508B1 (en) FLUOROGENIC pH-SENSITIVE DYES, FILM AND KIT COMPRISING THE SAME
JP2012008084A (en) Measuring method for active oxygen and measuring apparatus therefor
CN108641710A (en) A kind of fluorescence probe and its preparation method and application of detection protein sulphur sulfhydrylation
Ye et al. Design and synthesis of a new terbium complex-based luminescent probe for time-resolved luminescence sensing of zinc ions
JP2018145126A (en) Fluorescent probe for detection of carboxypeptidase activity
CN113788821B (en) Near-infrared hydrazine compound, preparation method, formaldehyde detection kit and application
CN109369565A (en) A kind of benzothiazole derivant and its preparation method and application
CN115141145A (en) Fluorescence probe for detecting lysosome hypobromous acid, preparation method and application
JP2011051961A (en) Near-infrared light-emitting compound, synthesis method and light-emitting method thereof
Chen et al. A large Stokes shift NIR fluorescent probe for visual monitoring of mitochondrial peroxynitrite during inflammation and ferroptosis and in an Alzheimer's disease model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520