JP2001059812A - Weak light measuring apparatus - Google Patents
Weak light measuring apparatusInfo
- Publication number
- JP2001059812A JP2001059812A JP11235499A JP23549999A JP2001059812A JP 2001059812 A JP2001059812 A JP 2001059812A JP 11235499 A JP11235499 A JP 11235499A JP 23549999 A JP23549999 A JP 23549999A JP 2001059812 A JP2001059812 A JP 2001059812A
- Authority
- JP
- Japan
- Prior art keywords
- light
- temperature
- sample
- container
- weak light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Measuring Cells (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、微弱光測定装置に
関し、特に生体試料等における一重項酸素から発する微
弱光を好適に測定する生体試料用の微弱光測定装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a faint light measuring device, and more particularly to a faint light measuring device for a biological sample for suitably measuring faint light emitted from singlet oxygen in a biological sample or the like.
【0002】[0002]
【従来の技術】微弱光の測定技術は、天文学のみならず
生物学等の幅広い分野へ応用されている。生物学の分野
においては、生体中に存在する物質の発生機構を解明す
るために、あるいは、その物質の移動径路を探索するた
めに、その物質から発する微弱光を測定するという方法
が用いられる。生物学の分野におけるさまざまな領域に
ついてこのような技術が応用されつつあるが、とりわ
け、生体に重大な影響を与えると見られる一重項酸素か
ら発する微弱光を測定する技術の確立が期待されてい
る。2. Description of the Related Art The technology for measuring weak light is applied not only to astronomy but also to a wide range of fields such as biology. In the field of biology, a method of measuring weak light emitted from a substance is used to elucidate the generation mechanism of a substance existing in a living body or to search for a moving path of the substance. Such techniques are being applied to various fields in the field of biology, and in particular, the establishment of a technique for measuring the weak light emitted from singlet oxygen, which is expected to have a significant effect on living organisms, is expected. .
【0003】一重項酸素から発する光は非常に微弱であ
るため、これを測定するには高い精度が要求される。例
えば特開平10−206313号及び特開平11−10
1686号には、生体試料における一重項酸素からの微
弱光を検出する微弱光検出装置が開示されている。これ
らの検出装置においては、2つの試料容器の一方に被測
定試料を、他方にダミー試料を収容し、2つの検出器に
よってそれぞれの試料からの発光を検出し、その差分を
とることによって一重項酸素からの微弱光を測定する。[0003] Since the light emitted from singlet oxygen is very weak, high accuracy is required to measure it. For example, JP-A-10-206313 and JP-A-11-10
No. 1686 discloses a weak light detection device for detecting weak light from singlet oxygen in a biological sample. In these detection devices, the sample to be measured is stored in one of the two sample containers, and the dummy sample is stored in the other, and the light emission from each sample is detected by the two detectors, and the difference between the two is taken as a singlet. Measure the faint light from oxygen.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、一重項
酸素から発する微弱光は波長約1.27μmの近赤外光
であり、このような近赤外領域においては、測定容器等
のような背景物からの熱輻射が大きなノイズ源となるた
め、S/N比が低下して微弱光の高精度測定が困難であ
った。また、被測定試料とダミー試料との差分を用いる
従来の装置においては、必ずしも同一の試料又は同一の
検出系ではないため、試料の状態又は検出器の精度の差
違等により測定結果に誤差を含む可能性が高かった。However, the weak light emitted from singlet oxygen is near-infrared light having a wavelength of about 1.27 μm. In such a near-infrared region, a background object such as a measuring container is used. Since the heat radiation from the light source becomes a large noise source, the S / N ratio is lowered, and it is difficult to measure the weak light with high accuracy. Further, in the conventional apparatus using the difference between the sample to be measured and the dummy sample, the measurement result includes an error due to a difference in the state of the sample or the accuracy of the detector because the sample and the detection system are not necessarily the same. It was likely.
【0005】このように、従来の測定装置では背景光の
影響を十分に除去することができず、一重項酸素からの
発光のような非常に微弱な光を高精度に測定することは
ほとんど不可能であった。As described above, the conventional measuring apparatus cannot sufficiently remove the influence of the background light, and it is almost impossible to measure very weak light such as light emission from singlet oxygen with high accuracy. It was possible.
【0006】本発明は、かかる課題を解決して、微弱光
を高精度に測定できる微弱光測定装置を提供することを
目的とし、特に、生体試料等における一重項酸素からの
微弱光を好適に測定できる微弱光測定装置を提供するこ
とを目的とする。An object of the present invention is to solve the above-mentioned problems and to provide a weak light measuring device capable of measuring weak light with high accuracy. In particular, the present invention is suitable for suitably detecting weak light from singlet oxygen in a biological sample or the like. It is an object of the present invention to provide a faint light measuring device capable of measuring.
【0007】[0007]
【課題を解決するための手段】本発明による微弱光測定
装置は、内部に収容された試料が発する光を出射する出
射部を有する試料容器と、出射部から出射された光を少
なくとも集光する集光手段を含む光学系と、光学系によ
って集光された光を受光する受光素子と、断熱性、気密
性及び遮光性を有し、試料容器、光学系及び受光素子を
内部に含む外部容器と、外部容器の内部を第1の温度に
冷却する冷却手段と、試料容器内部における少なくとも
試料周辺部の温度を第2の温度に保持する温度保持手段
を備えることを特徴とする。この装置によれば、装置各
部を所定の温度に冷却することによって試料以外の背景
物からの熱輻射をほぼ完全に抑制し、試料からの微弱光
の測定精度を向上することができる。また、試料容器内
を所定の温度に保持することによって、被測定試料にと
って好適な環境を保つことができる。According to the present invention, there is provided a weak light measuring apparatus comprising: a sample container having an emission portion for emitting light emitted from a sample housed therein; and at least condensing light emitted from the emission portion. An optical system including light collecting means, a light receiving element for receiving light collected by the optical system, and an outer container having heat insulation, airtightness, and light shielding properties, and including a sample container, an optical system, and a light receiving element therein And a cooling means for cooling the inside of the external container to a first temperature, and a temperature holding means for holding at least a temperature of a sample peripheral portion inside the sample container at a second temperature. According to this device, by cooling each part of the device to a predetermined temperature, heat radiation from a background object other than the sample can be almost completely suppressed, and the measurement accuracy of weak light from the sample can be improved. In addition, by maintaining the inside of the sample container at a predetermined temperature, an environment suitable for the sample to be measured can be maintained.
【0008】微弱光の高精度測定が可能な程度に装置各
部からの熱輻射を抑制するためには、第1の温度は10
℃以下であることが好ましい。また、受光素子の受光面
に結露が生じることを防止するため、受光素子を第1の
温度以下の温度に冷却する冷却手段をさらに備えること
が好ましい。第1の温度に冷却するための冷却手段及び
受光素子を冷却する手段は、簡便性等の点から液体窒素
又はその蒸気を用いる手段であることが好ましい。In order to suppress the heat radiation from each part of the apparatus to the extent that high-precision measurement of weak light is possible, the first temperature must be 10
It is preferable that the temperature is not higher than ° C. In addition, in order to prevent dew formation on the light receiving surface of the light receiving element, it is preferable to further include a cooling unit that cools the light receiving element to a temperature equal to or lower than the first temperature. The cooling means for cooling to the first temperature and the means for cooling the light receiving element are preferably means using liquid nitrogen or its vapor from the viewpoint of simplicity and the like.
【0009】試料容器は断熱性及び気密性を有する容器
であることが好ましい。この場合、試料周辺部と試料容
器外部とを断熱し、異なる温度に保持することができ
る。断熱性を確実ならしめるため、試料容器は二重構造
を有する容器であることが好ましい。また、試料容器外
面の温度を低下させて試料容器外面からの熱輻射を防止
するため、試料容器は出射部を除く外面が金属で被覆さ
れることが好ましい。さらに、試料容器は球状構造(い
わゆる、積分球構造)であることが好ましい。この場
合、試料から発する微弱光を効率的に出射することがで
きる。The sample container is preferably a container having heat insulation and airtightness. In this case, the sample peripheral portion and the outside of the sample container are insulated from each other and can be maintained at different temperatures. In order to ensure the heat insulation, the sample container is preferably a container having a double structure. Further, in order to reduce the temperature of the outer surface of the sample container and prevent heat radiation from the outer surface of the sample container, it is preferable that the outer surface of the sample container except for the emission part is coated with a metal. Further, the sample container preferably has a spherical structure (a so-called integrating sphere structure). In this case, weak light emitted from the sample can be efficiently emitted.
【0010】被測定試料が生体から採取した試料である
場合には、生体試料の機能保持のため、第2の温度は1
0℃〜40℃の範囲であることが好ましい。また、試料
周辺部の温度を把握して正確に温度を設定することがで
きるように、試料容器の内部における少なくとも試料の
周辺部の温度を感知する温度センサを備えることが好ま
しい。When the sample to be measured is a sample collected from a living body, the second temperature is set to 1 to maintain the function of the biological sample.
The temperature is preferably in the range of 0 ° C to 40 ° C. In addition, it is preferable to provide a temperature sensor that senses at least the temperature of the periphery of the sample inside the sample container so that the temperature of the periphery of the sample can be grasped and set accurately.
【0011】[0011]
【発明の実施の形態】以下、図面を参照して本発明によ
る微弱光測定装置の実施形態について説明する。なお、
同一又は相当部分には同一符号を付し、重複する説明を
省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a weak light measuring device according to the present invention will be described below with reference to the drawings. In addition,
The same or corresponding parts are denoted by the same reference numerals, and redundant description will be omitted.
【0012】図1は、本発明による微弱光測定装置の第
1の実施形態を断面から見た概念図である。本実施形態
による微弱光測定装置11は、チャンバー21と、試料
容器31と、受光素子51と、光学系61と、恒温ポン
プ部71とから構成される。FIG. 1 is a conceptual diagram of a first embodiment of a weak light measuring device according to the present invention as viewed from a cross section. The weak light measurement device 11 according to the present embodiment includes a chamber 21, a sample container 31, a light receiving element 51, an optical system 61, and a constant temperature pump unit 71.
【0013】チャンバー21は、断熱性、気密性及び遮
光性を有する箱型の外部容器であり、冷却剤(本実施形
態においては、液体窒素又はその蒸気)をチャンバー内
に導入するための導入口23と、冷却剤をチャンバー内
から導出するための導出口25とを備える。導入口23
及び導出口25はそれぞれ冷却系(図示せず)と接続さ
れる。The chamber 21 is a box-shaped external container having heat insulation, airtightness, and light shielding properties, and is an inlet for introducing a coolant (in the present embodiment, liquid nitrogen or its vapor) into the chamber. 23 and an outlet 25 for discharging the coolant from the inside of the chamber. Inlet 23
The outlet 25 is connected to a cooling system (not shown).
【0014】試料容器31は、断熱性及び気密性を有す
る箱型の容器であり、光を透過する出射窓33と、恒温
流体を導入するための導入口35と、恒温流体を導出す
るための導出口37とを備え、チャンバー21内の所定
の位置に設置される。導入口35は、チャンバー21の
壁面を貫通する断熱流路39の一端と接続され、また、
導出口37は、チャンバー21の壁面を貫通する断熱流
路41の一端と接続されている。The sample container 31 is a box-shaped container having heat insulation and airtightness, and has an emission window 33 for transmitting light, an introduction port 35 for introducing a constant temperature fluid, and a discharge port for extracting the constant temperature fluid. An outlet 37 is provided at a predetermined position in the chamber 21. The inlet 35 is connected to one end of a heat-insulating channel 39 that penetrates the wall surface of the chamber 21,
The outlet 37 is connected to one end of a heat-insulating channel 41 that penetrates the wall of the chamber 21.
【0015】受光素子(本実施形態においては、光電子
増倍管(PMT))51は、所定波長(本実施形態にお
いては、約1.27μm)の光に対して感度を有してお
り、チャンバー21内の所定の位置に設置される。この
受光素子51は、導電コード(図示せず)を介して外部
記憶手段(図示せず)に接続される。The light receiving element (in this embodiment, a photomultiplier tube (PMT)) 51 has sensitivity to light of a predetermined wavelength (in this embodiment, about 1.27 μm), and It is installed at a predetermined position in 21. This light receiving element 51 is connected to an external storage means (not shown) via a conductive cord (not shown).
【0016】光学系61は、光を集光するための1以上
の集光レンズ63と、所定波長の光を選択的に透過する
光学フィルタ65とから構成され、出射窓33から出射
される光が受光素子51の受光面に集光されるようにチ
ャンバー21内に設置される。本実施形態においては、
2つの集光レンズ63と、それらの中間に位置する光学
フィルタ65とが、出射窓33の出射面及び受光素子5
3の受光面と平行に配置されている。The optical system 61 is composed of one or more condenser lenses 63 for condensing light and an optical filter 65 for selectively transmitting light of a predetermined wavelength. Is set in the chamber 21 so that the light is focused on the light receiving surface of the light receiving element 51. In the present embodiment,
The two condenser lenses 63 and the optical filter 65 positioned between them are provided with the exit surface of the exit window 33 and the light receiving element 5.
3 are arranged in parallel with the light receiving surface.
【0017】恒温ポンプ部71は、流体を導入するため
の導入口73と、恒温流体を導出するための導出口75
とを備え、チャンバー21の外部に設置される。導出口
75は断熱流路39の他端と接続されている。The constant temperature pump 71 has an inlet 73 for introducing a fluid and an outlet 75 for extracting a constant temperature fluid.
And installed outside the chamber 21. The outlet 75 is connected to the other end of the heat insulating channel 39.
【0018】次に、この微弱光測定装置11の作用につ
いて説明する。まず、導入口23及び導出口25が開栓
され、チャンバー21内を所定の流量の冷却剤が循環す
る。これによって、試料容器31内部を除くチャンバー
21内は所定の温度(本実施形態においては、−10
℃)に維持され、試料以外からの熱輻射を抑制すること
ができる。一方、導出口75、導入口35及び導出口3
7が開栓され、導入口73から導入された流体が恒温ポ
ンプ部71において所定の恒温(本実施形態において
は、37℃)に設定され、断熱流路39及び断熱流路4
1を介して試料容器31内を循環する。これによって、
試料容器31内は所定の恒温に保持され、測定中の生体
試料の機能を保つことができる。Next, the operation of the weak light measuring device 11 will be described. First, the inlet 23 and the outlet 25 are opened, and a predetermined flow rate of the coolant circulates in the chamber 21. Accordingly, the inside of the chamber 21 except for the inside of the sample container 31 has a predetermined temperature (−10 in the present embodiment).
° C), and heat radiation from sources other than the sample can be suppressed. On the other hand, the outlet 75, the inlet 35, and the outlet 3
7 is opened, the fluid introduced from the introduction port 73 is set to a predetermined constant temperature (37 ° C. in the present embodiment) in the constant temperature pump unit 71, and the heat insulating flow path 39 and the heat insulating flow path 4 are set.
1 circulates in the sample container 31. by this,
The inside of the sample container 31 is maintained at a predetermined constant temperature, so that the function of the biological sample during the measurement can be maintained.
【0019】上記のように装置11の各部が所定の温度
に設定された後、試料容器31内に収容された生体試料
S中の一重項酸素から発せられた微弱光が高い精度で測
定される。すなわち、(1)一重項酸素から発せられた
微弱光が出射窓33を通って試料容器31外に出射す
る。(2)第1の集光レンズ63によって平行に集光さ
れる。(3)光学フィルタ65によって所定波長(約
1.27μm)に分光される。(4)第2の集光レンズ
63によって受光素子51の受光面に集光される。
(5)受光素子51の受光面に入射され、電子信号とし
て外部記憶手段(図示せず)に伝達される。After each part of the apparatus 11 is set at a predetermined temperature as described above, the weak light emitted from the singlet oxygen in the biological sample S contained in the sample container 31 is measured with high accuracy. . That is, (1) weak light emitted from singlet oxygen passes through the exit window 33 and exits outside the sample container 31. (2) The light is condensed in parallel by the first condenser lens 63. (3) The light is split by the optical filter 65 into a predetermined wavelength (about 1.27 μm). (4) The light is condensed on the light receiving surface of the light receiving element 51 by the second condenser lens 63.
(5) The light is incident on the light receiving surface of the light receiving element 51 and transmitted to an external storage means (not shown) as an electronic signal.
【0020】本発明による微弱光測定装置において、チ
ャンバー等のような外部容器の内部は10℃以下の温度
に冷却されることが好ましい。この場合、高精度測定が
可能な程度に熱輻射による背景光を抑制することができ
る。冷却手段は液体窒素又はその蒸気を用いる手段であ
ることが簡便性等の点で好ましいが、断熱圧縮又はペル
チェ効果等を利用する冷却手段を用いることもできる。
結露の発生を防止するため、外部容器内を予め窒素ガス
等で置換しておくことも好ましい。In the weak light measuring device according to the present invention, it is preferable that the inside of an external container such as a chamber is cooled to a temperature of 10 ° C. or less. In this case, background light due to thermal radiation can be suppressed to such an extent that highly accurate measurement is possible. The cooling means is preferably a means using liquid nitrogen or its vapor from the viewpoint of simplicity and the like, but a cooling means utilizing adiabatic compression or Peltier effect can also be used.
It is also preferable to replace the inside of the outer container with nitrogen gas or the like in advance to prevent the occurrence of dew condensation.
【0021】試料容器は断熱性及び気密性を有すること
が好ましい。この場合、試料周辺部と試料容器外部とを
断熱し、異なる温度に保持することができる。試料容器
の出射部には、短波長側の光を遮光するカットフィルタ
としての機能を有するものを用いることもできる。受光
素子にはPMTを用いることが好ましいが、所定波長に
感度を有する他の受光素子を用いることもできる。被検
出光を所定の波長のみに分光するため、光学系には光学
フィルタ等の分光手段を含むことが好ましい。これらの
光学系部材の配置は本実施形態のような配置に限定され
ず、例えば、冷却特性等の点から光学フィルタを受光素
子近傍に配置することも好ましい。The sample container preferably has heat insulation and airtightness. In this case, the sample peripheral portion and the outside of the sample container are insulated from each other and can be maintained at different temperatures. As the emission part of the sample container, one having a function as a cut filter that blocks light on the short wavelength side may be used. Although it is preferable to use a PMT as the light receiving element, another light receiving element having sensitivity to a predetermined wavelength may be used. In order to split the light to be detected into only a predetermined wavelength, the optical system preferably includes a spectral unit such as an optical filter. The arrangement of these optical system members is not limited to the arrangement as in the present embodiment. For example, it is preferable to arrange an optical filter near the light receiving element from the viewpoint of cooling characteristics and the like.
【0022】被測定物が生体等から採取した試料である
場合には、試料容器内における少なくとも試料周辺の温
度は10℃〜40℃の範囲であることが試料の機能保持
の点で好ましい。試料容器内の温度保持手段は、恒温ポ
ンプに限定されず、所望の温度範囲に対応した他の手段
を用いることもできる。When the object to be measured is a sample collected from a living body or the like, it is preferable that at least the temperature around the sample in the sample container is in the range of 10 ° C. to 40 ° C. from the viewpoint of maintaining the function of the sample. The temperature holding means in the sample container is not limited to a constant temperature pump, and other means corresponding to a desired temperature range can be used.
【0023】図2は、本発明による微弱光測定装置の第
2の実施形態を断面から見た概念図である。本実施形態
による微弱光測定装置12では、第1の実施形態による
装置11に対して以下の(a)〜(c)ような付加又は
置換を行なっている。FIG. 2 is a conceptual diagram of a second embodiment of the weak light measuring device according to the present invention as viewed from a cross section. In the weak light measurement device 12 according to the present embodiment, the following additions or substitutions (a) to (c) are performed on the device 11 according to the first embodiment.
【0024】(a)試料容器31に代えて、他の試料容
器43を用いる。この試料容器43は出射窓33を有す
る二重構造の箱型容器であり、中間層は真空である。こ
のように試料容器を二重構造とすることによって、内部
の恒温部分と外部の低温部分との断熱性がさらに向上す
る。二重構造の中間層には断熱剤が充填されていてもよ
い。(b)生体試料Sの周辺部の温度を計測して恒温ポ
ンプ部71に信号を送るための温度センサ77が設置さ
れる。このような温度センサを付加することによって、
試料周辺部の温度を把握し、温度を正確に保持すること
ができる。(c)冷却容器53が、受光素子51を内部
に含むようにしてチャンバー21内に設置される。冷却
容器53は、冷却剤を導入するための導入口55と、冷
却剤を導出するための導出口57を備えており、導入口
55は冷却剤流路27を介して導入口23と接続され
る。この場合、導入口23から流入される冷却剤は、ま
ず、冷却剤流路27及び導入口55を介して冷却容器5
3内へと循環する。続いて、導出口57を介して冷却容
器53外へ流出し、チャンバー21内全体へ循環する。
冷却剤がこのような循環経路をたどることによって、受
光素子が冷却容器53外の温度以下の温度に冷却される
ため、受光素子の受光面に結露が生じることを防止する
ことができる。また、受光素子に対しての冷却手段を別
途付加することもできる。(A) Instead of the sample container 31, another sample container 43 is used. This sample container 43 is a box-shaped container having a double structure having the exit window 33, and the intermediate layer is vacuum. By thus forming the sample container in a double structure, the heat insulation between the internal constant temperature part and the external low temperature part is further improved. The double layered intermediate layer may be filled with a heat insulating agent. (B) A temperature sensor 77 for measuring the temperature around the biological sample S and sending a signal to the constant temperature pump unit 71 is provided. By adding such a temperature sensor,
The temperature around the sample can be ascertained and the temperature can be accurately maintained. (C) The cooling container 53 is installed in the chamber 21 so as to include the light receiving element 51 therein. The cooling container 53 includes an inlet 55 for introducing a coolant, and an outlet 57 for extracting the coolant. The inlet 55 is connected to the inlet 23 via the coolant channel 27. You. In this case, the coolant flowing from the inlet 23 firstly flows through the coolant channel 27 and the inlet 55 to the cooling container 5.
Circulate into 3. Subsequently, it flows out of the cooling container 53 through the outlet 57 and circulates throughout the chamber 21.
When the coolant follows such a circulation path, the light-receiving element is cooled to a temperature equal to or lower than the temperature outside the cooling container 53, so that dew condensation on the light-receiving surface of the light-receiving element can be prevented. Further, cooling means for the light receiving element can be separately added.
【0025】図3は、本発明による微弱光測定装置の第
3の実施形態を断面から見た概念図である。本実施形態
による微弱光測定装置13では、第2の実施形態による
装置12に対して以下の(d)ような付加を行なってい
る。FIG. 3 is a conceptual view of a third embodiment of the weak light measuring device according to the present invention as viewed from a cross section. In the weak light measurement device 13 according to the present embodiment, the following addition (d) is performed to the device 12 according to the second embodiment.
【0026】(d)出射窓33を除く試料容器43の外
面、並びに、断熱流路39及び断熱流路41のチャンバ
ー21内にある部分の外面に熱伝導率の高い金属層(本
実施形態においては、アルミニウム箔)45が被覆され
る。この場合、金属層45を被覆した面が効果的に冷却
されるため、これらの面からの熱輻射を抑制することが
できる。(D) A metal layer having a high thermal conductivity is formed on the outer surface of the sample container 43 excluding the exit window 33 and on the outer surfaces of the heat insulating channels 39 and 41 in the chamber 21 (in this embodiment, Is coated with aluminum foil) 45. In this case, the surfaces covered with the metal layers 45 are effectively cooled, so that heat radiation from these surfaces can be suppressed.
【0027】図4は、本発明による微弱光測定装置の第
4の実施形態を断面から見た概念図である。本実施形態
による微弱光測定装置14では、第3の実施形態による
装置13に対して以下の(e)及び(f)ような付加又
は置換を行なっている。FIG. 4 is a conceptual view of a fourth embodiment of the weak light measuring device according to the present invention as viewed from a cross section. In the weak light measurement device 14 according to the present embodiment, the following additions or substitutions (e) and (f) are performed on the device 13 according to the third embodiment.
【0028】(e)箱型の試料容器43に代えて、積分
球型の試料容器47を用いており、この試料容器47
は、断熱流路39及び41と接続される。第3の実施形
態と同様に、光が出射する部分を除く試料容器47の外
面には熱伝導率の高い金属層45が被覆される。この場
合、積分球型の試料容器47の内面における反射によ
り、生体試料Sから発する光が効率的に出射される。
(f)冷却容器53の光が入射する部分に電磁シャッタ
59が設置される。この場合、試料交換等の際に受光素
子51に過剰な光が入射することを防止することができ
る。(E) Instead of the box-shaped sample container 43, an integrating sphere-shaped sample container 47 is used.
Are connected to the heat insulating channels 39 and 41. As in the third embodiment, a metal layer 45 having a high thermal conductivity is coated on the outer surface of the sample container 47 except for a portion from which light is emitted. In this case, light emitted from the biological sample S is efficiently emitted due to reflection on the inner surface of the integrating sphere type sample container 47.
(F) An electromagnetic shutter 59 is provided in a portion of the cooling container 53 where light enters. In this case, it is possible to prevent excessive light from being incident on the light receiving element 51 at the time of sample exchange or the like.
【0029】図5は、本発明による微弱光測定装置の第
5の実施形態を断面から見た概念図である。本実施形態
による微弱光測定装置15では、第4の実施形態による
装置14に対して以下の(g)及び(h)ような付加を
行なっている。FIG. 5 is a conceptual view of a fifth embodiment of the weak light measuring device according to the present invention as viewed from a cross section. In the weak light measurement device 15 according to the present embodiment, the following additions (g) and (h) are made to the device 14 according to the fourth embodiment.
【0030】(g)電子信号を記憶し、演算することが
できる外部演算手段81がチャンバー21の外部に設置
され、導電コード83を介して受光素子51と接続され
る。 (h)チャンバー21外部における断熱流路39に、活
性剤を試料容器47内に導入するための導入口85が設
置される。(G) An external calculation means 81 capable of storing and calculating an electronic signal is provided outside the chamber 21 and connected to the light receiving element 51 via a conductive cord 83. (H) An inlet 85 for introducing an activator into the sample container 47 is provided in the heat-insulating channel 39 outside the chamber 21.
【0031】本実施形態においては、まず、試料容器4
7に導入された被測定物質生成前の試料(すなわち、一
重項酸素が生成される前の生体試料)からの発光を測定
し、導電コード83を介して外部演算手段81に測定結
果を記憶する。続いて、導入口85から酵素等の活性剤
を導入し、生体試料内に一重項酸素を生成させる。その
後、この試料からの発光を測定して外部演算手段81に
測定結果を記憶し、それらの測定結果の差分をとること
によって一重項酸素からの発光を算出する。この場合、
同一の試料及び同一の検出系を用いるため、従来の装置
のような誤差が生じにくい。In this embodiment, first, the sample container 4
The luminescence from the sample before generation of the substance to be measured introduced into 7 (that is, the biological sample before singlet oxygen is generated) is measured, and the measurement result is stored in the external calculation means 81 via the conductive code 83. . Subsequently, an activator such as an enzyme is introduced from the inlet 85 to generate singlet oxygen in the biological sample. After that, the luminescence from this sample is measured, the measurement result is stored in the external calculation means 81, and the luminescence from singlet oxygen is calculated by taking the difference between the measurement results. in this case,
Since the same sample and the same detection system are used, errors unlike the conventional apparatus are less likely to occur.
【0032】本発明による微弱光測定装置は、上記実施
形態に限定されるものではなく、例えば第1の実施形態
に対して(b)及び(f)のみを付加する等のさまざま
な変形が可能であり、測定条件等に対応して好適な形態
をとることができる。The weak light measuring device according to the present invention is not limited to the above embodiment, and various modifications such as adding only (b) and (f) to the first embodiment are possible. Therefore, a suitable form can be taken in accordance with the measurement conditions and the like.
【0033】[0033]
【発明の効果】本発明による微弱光測定装置によれば、
装置等の熱輻射による背景光をほぼ完全に除去するた
め、S/N比が向上して微弱光を高精度で測定すること
ができる。また、生体試料等における一重項酸素からの
微弱光を好適に測定することができる。According to the weak light measuring device of the present invention,
Since the background light due to the heat radiation of the apparatus or the like is almost completely removed, the S / N ratio is improved, and the weak light can be measured with high accuracy. Further, weak light from singlet oxygen in a biological sample or the like can be suitably measured.
【図1】本発明による微弱光測定装置の第1の実施形態
を断面から見た概念図である。FIG. 1 is a conceptual diagram of a first embodiment of a weak light measuring device according to the present invention as viewed from a cross section.
【図2】本発明による微弱光測定装置の第2の実施形態
を断面から見た概念図である。FIG. 2 is a conceptual diagram of a second embodiment of the weak light measuring device according to the present invention as viewed from a cross section.
【図3】本発明による微弱光測定装置の第3の実施形態
を断面から見た概念図である。FIG. 3 is a conceptual diagram of a third embodiment of the weak light measuring device according to the present invention as viewed from a cross section.
【図4】本発明による微弱光測定装置の第4の実施形態
を断面から見た概念図である。FIG. 4 is a conceptual diagram showing a fourth embodiment of a weak light measuring device according to the present invention as viewed from a cross section.
【図5】本発明による微弱光測定装置の第5の実施形態
を断面から見た概念図である。FIG. 5 is a conceptual diagram of a fifth embodiment of a weak light measuring device according to the present invention as viewed from a cross section.
11…第1の微弱光測定装置、12…第2の微弱光測定
装置、13…第3の微弱光測定装置、14…第4の微弱
光測定装置、15…第5の微弱光測定装置、21…チャ
ンバー、23…導入口、25…導出口、27…冷却剤流
路、31…試料容器、33…出射窓、35…導入口、3
7…導出口、39…断熱流路、41…断熱流路、43…
二重構造の試料容器、45…金属層、47…積分球型の
試料容器、51…受光素子、53…冷却容器、55…導
入口、57…導出口、61…光学系、63…集光レン
ズ、65…光学フィルタ、71…恒温ポンプ、73…導
入口、75…導出口、77…温度センサ、81…外部演
算手段、83…導電コード、85…導入口、S…生体試
料11: first weak light measuring device, 12: second weak light measuring device, 13: third weak light measuring device, 14: fourth weak light measuring device, 15: fifth weak light measuring device, 21: chamber, 23: inlet, 25: outlet, 27: coolant channel, 31: sample container, 33: exit window, 35: inlet, 3
7 ... Outlet, 39 ... Insulated channel, 41 ... Insulated channel, 43 ...
Double sample container, 45: metal layer, 47: integrating sphere sample container, 51: light receiving element, 53: cooling container, 55: inlet, 57: outlet, 61: optical system, 63: condensing Lens, 65 optical filter, 71 constant temperature pump, 73 inlet, 75 outlet, 77 temperature sensor, 81 external calculation means, 83 conductive code, 85 inlet, S biological sample
フロントページの続き (72)発明者 晝馬 輝夫 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 菅 博文 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 Fターム(参考) 2G054 AA06 CA08 CA21 CD03 EA02 FA36 FA37 2G057 AA04 AA20 AC10 BA01 EA06 EA08 2G059 AA10 BB12 DD13 DD15 DD17 DD18 EE06 HH06 JJ02 JJ11 KK02 KK09 Continuing from the front page (72) Inventor Teruo Hiruma 1126-1, Nomachi, Ichinomachi, Hamamatsu City, Shizuoka Prefecture Inside (72) Inventor Hirofumi Suga 1126-1, Nomachi, Ichinomachi, Hamamatsu City, Shizuoka Prefecture Hamamatsu Photonics Corporation F term (reference) 2G054 AA06 CA08 CA21 CD03 EA02 FA36 FA37 2G057 AA04 AA20 AC10 BA01 EA06 EA08 2G059 AA10 BB12 DD13 DD15 DD17 DD18 EE06 HH06 JJ02 JJ11 KK02 KK09
Claims (10)
射する出射部を有する試料容器と、 前記出射部から出射された光を少なくとも集光する集光
手段を含む光学系と、 前記光学系によって集光された光を受光する受光素子
と、 断熱性、気密性及び遮光性を有し、前記試料容器、前記
光学系及び前記受光素子を内部に含む外部容器と、 前記外部容器の内部を第1の温度に冷却する冷却手段
と、 前記試料容器の内部における少なくとも前記試料の周辺
部の温度を第2の温度に保持する温度保持手段とを備え
ることを特徴とする微弱光測定装置。1. A sample container having an emission part for emitting light emitted from a sample housed therein, an optical system including a condensing means for condensing at least light emitted from the emission part, and the optical system A light-receiving element that receives the light collected by the light-emitting device, an insulating container having heat insulation, airtightness, and light-shielding properties, an external container including the sample container, the optical system, and the light-receiving element, A weak light measurement device comprising: a cooling unit that cools to a first temperature; and a temperature holding unit that holds at least a temperature of a peripheral portion of the sample inside the sample container at a second temperature.
ある請求項1に記載の微弱光測定装置。2. The weak light measuring device according to claim 1, wherein the first temperature is a temperature of 10 ° C. or less.
度に冷却する冷却手段をさらに備える請求項1又は2に
記載の微弱光測定装置。3. The weak light measuring device according to claim 1, further comprising a cooling unit configured to cool the light receiving element to a temperature equal to or lower than the first temperature.
を用いる手段である請求項1〜3のいずれかに記載の微
弱光測定装置。4. The weak light measuring device according to claim 1, wherein said cooling means is means using liquid nitrogen or vapor thereof.
する容器である請求項1〜4のいずれかに記載の微弱光
測定装置。5. The device according to claim 1, wherein the sample container is a container having heat insulation and airtightness.
である請求項1〜5のいずれかに記載の微弱光測定装
置。6. The device according to claim 1, wherein the sample container is a container having a double structure.
金属が被覆された請求項1〜6のいずれかに記載の微弱
光測定装置。7. The weak light measuring device according to claim 1, wherein a metal is coated on an outer surface of the sample container except for the emission part.
項1〜7のいずれかに記載の微弱光測定装置。8. The weak light measuring device according to claim 1, wherein the sample container is a spherical container.
囲の温度である請求項1〜8のいずれかに記載の微弱光
測定装置。9. The apparatus according to claim 1, wherein the second temperature is in a range of 10 ° C. to 40 ° C.
も前記試料の周辺部の温度を感知する温度センサを備え
る請求項1〜9のいずれかに記載の微弱光測定装置。10. The weak light measuring device according to claim 1, further comprising a temperature sensor for sensing a temperature of at least a peripheral portion of the sample inside the sample container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11235499A JP2001059812A (en) | 1999-08-23 | 1999-08-23 | Weak light measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11235499A JP2001059812A (en) | 1999-08-23 | 1999-08-23 | Weak light measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001059812A true JP2001059812A (en) | 2001-03-06 |
Family
ID=16986942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11235499A Pending JP2001059812A (en) | 1999-08-23 | 1999-08-23 | Weak light measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001059812A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010073785A1 (en) * | 2008-12-24 | 2010-07-01 | 浜松ホトニクス株式会社 | Spectrometer |
JP2012008084A (en) * | 2010-06-28 | 2012-01-12 | Mie Univ | Measuring method for active oxygen and measuring apparatus therefor |
US8587779B2 (en) | 2008-12-24 | 2013-11-19 | Hamamatsu Photonics K.K. | Spectrometer |
KR20170012363A (en) * | 2014-05-23 | 2017-02-02 | 하마마츠 포토닉스 가부시키가이샤 | Optical measurement device and optical measurement method |
CN106872372A (en) * | 2017-03-17 | 2017-06-20 | 广西电网有限责任公司电力科学研究院 | A kind of constant-temperature integrating sphere device for gas analysis |
-
1999
- 1999-08-23 JP JP11235499A patent/JP2001059812A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010073785A1 (en) * | 2008-12-24 | 2010-07-01 | 浜松ホトニクス株式会社 | Spectrometer |
JP2010151515A (en) * | 2008-12-24 | 2010-07-08 | Hamamatsu Photonics Kk | Spectral measuring device |
CN103323405A (en) * | 2008-12-24 | 2013-09-25 | 浜松光子学株式会社 | Spectral measuring device |
US8587779B2 (en) | 2008-12-24 | 2013-11-19 | Hamamatsu Photonics K.K. | Spectrometer |
US8643839B2 (en) | 2008-12-24 | 2014-02-04 | Hamamatsu Photonics K.K. | Spectrometer |
KR101626177B1 (en) * | 2008-12-24 | 2016-05-31 | 하마마츠 포토닉스 가부시키가이샤 | Spectrometer |
JP2012008084A (en) * | 2010-06-28 | 2012-01-12 | Mie Univ | Measuring method for active oxygen and measuring apparatus therefor |
KR20170012363A (en) * | 2014-05-23 | 2017-02-02 | 하마마츠 포토닉스 가부시키가이샤 | Optical measurement device and optical measurement method |
KR102314935B1 (en) | 2014-05-23 | 2021-10-21 | 하마마츠 포토닉스 가부시키가이샤 | Optical measurement device and optical measurement method |
CN106872372A (en) * | 2017-03-17 | 2017-06-20 | 广西电网有限责任公司电力科学研究院 | A kind of constant-temperature integrating sphere device for gas analysis |
CN106872372B (en) * | 2017-03-17 | 2023-11-17 | 广西电网有限责任公司电力科学研究院 | Constant temperature integrating sphere device for gas analysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102004117B (en) | Thermal analysis apparatus | |
US7355697B2 (en) | Flow-through, thermal-expansion-compensated cell for light spectroscopy | |
US6991765B2 (en) | Apparatus and methods for infrared calorimetric measurements | |
US8481944B2 (en) | IR spectrometer with non-contact temperature measurement | |
JP5225829B2 (en) | Spectrometer | |
US9366574B2 (en) | Infrared (IR) photon-sensitive spectromicroscopy in a cryogenic environment | |
CN109946260A (en) | Gas concentration detection apparatus and method | |
JP2001059812A (en) | Weak light measuring apparatus | |
CN101334398A (en) | Low-temperature microscopic differential scanning calorimetry system body apparatus | |
CN111398205B (en) | Infrared absorption spectrum isotope abundance detection method based on temperature gradient field compensation | |
Jarvis et al. | Determination of the surface temperature of water during evaporation studies. A comparison of thermistor with infrared radiometer measurements | |
US5956138A (en) | Multiple-zone emission spectra collection | |
US20190195834A1 (en) | Apparatuses and methods for using the photoacoustic effect | |
US11573174B2 (en) | Optical gas concentration measurement apparatus | |
US3513704A (en) | Photometric thermometer and method of operation | |
Hartmann et al. | In situ temperature monitoring in single-molecule FRET experiments | |
JP2001059771A (en) | Optical device | |
CN114127542B (en) | gas detector | |
JP2012159351A (en) | Magnetic field measurement apparatus and cell | |
Norrish | CLIV.—Photochemical equilibrium in nitrogen peroxide. Part II. The dependence of quantum efficiency on wave-length | |
Cooper | [79] Calorimetric measurements of light-induced processes | |
KR20020066343A (en) | An apparatus and method of manufacturing optical waveguides | |
JP5612716B2 (en) | Spectrometer | |
Millar | The specific heats of polyatomic gases at low temperatures | |
RU2807398C1 (en) | Method for measuring thermophysical properties of materials and unit for its implementation using pyrometers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050308 |
|
A131 | Notification of reasons for refusal |
Effective date: 20060704 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20060901 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20070104 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070123 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130202 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20160202 |