JP2012007943A - Fourier transform infrared spectroscopic photometer - Google Patents

Fourier transform infrared spectroscopic photometer Download PDF

Info

Publication number
JP2012007943A
JP2012007943A JP2010142791A JP2010142791A JP2012007943A JP 2012007943 A JP2012007943 A JP 2012007943A JP 2010142791 A JP2010142791 A JP 2010142791A JP 2010142791 A JP2010142791 A JP 2010142791A JP 2012007943 A JP2012007943 A JP 2012007943A
Authority
JP
Japan
Prior art keywords
converter
maximum value
output signal
signal
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010142791A
Other languages
Japanese (ja)
Other versions
JP5644207B2 (en
Inventor
Hisato Fukuda
久人 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2010142791A priority Critical patent/JP5644207B2/en
Publication of JP2012007943A publication Critical patent/JP2012007943A/en
Application granted granted Critical
Publication of JP5644207B2 publication Critical patent/JP5644207B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Fourier transform infrared spectroscopic photometer for detecting transmitted light or reflected light from a sample as an analog signal, converting the detected signal into a digital signal using an A/D converter, and obtaining a spectrum by a Fourier transform of the digital signal, which can efficiently utilize an input range of the A/D converter and prevent an overflow that exceeds the input range of the A/D converter.SOLUTION: A Fourier transform infrared spectroscopic photometer of the present invention is provided with a control/processing unit 30 that predicts a maximum value of an output signal of an A/D converter 28 in the subsequent measurement from a difference value between a maximum value of an output signal of the A/D converter 28 in the current measurement and a maximum value of an output signal of the A/D converter 28 in the previous measurement, and determines an amplification rate of an amplifier 26 in the subsequent measurement based on the predicted value.

Description

本発明は、フーリエ変換赤外分光光度計に関する。   The present invention relates to a Fourier transform infrared spectrophotometer.

フーリエ変換赤外分光光度計(以下「FTIR」と略す)では、固定鏡及び移動鏡を含むマイケルソン型干渉計により時間的に振幅が変動する干渉波を生成し、これを試料に照射してその透過光又は反射光をインターフェログラムとして検出する。そして、この検出信号をフーリエ変換することにより、横軸に波数、縦軸に強度(吸光度又は透過率など)をとった吸収スペクトルを得る。このとき、1回の移動鏡の走査によって1本のインターフェログラムが発生し、該インターフェログラムから所定の波長範囲全てに亘る吸収スペクトルを取得することができる。   In a Fourier transform infrared spectrophotometer (hereinafter abbreviated as “FTIR”), a Michelson interferometer including a fixed mirror and a moving mirror generates an interference wave whose amplitude varies with time, and irradiates the sample with this interference wave. The transmitted light or reflected light is detected as an interferogram. Then, the detection signal is Fourier transformed to obtain an absorption spectrum in which the horizontal axis represents the wave number and the vertical axis represents the intensity (such as absorbance or transmittance). At this time, one interferogram is generated by one scan of the moving mirror, and an absorption spectrum over the entire predetermined wavelength range can be acquired from the interferogram.

このようなFTIRでは、試料からの透過光又は反射光としてのインターフェログラムはアナログ信号として検出される。そして、検出されたアナログ信号を増幅器を介してゲイン調整した後にA/D変換器に入力してデジタルデータに変換し、このデジタルデータに対してフーリエ変換を実行することで吸収スペクトルを得ている(特許文献1、2参照)。   In such FTIR, an interferogram as transmitted light or reflected light from a sample is detected as an analog signal. Then, after adjusting the gain of the detected analog signal through an amplifier, it is input to an A / D converter and converted into digital data, and an absorption spectrum is obtained by executing Fourier transform on this digital data. (See Patent Documents 1 and 2).

FTIRでは、試料からの透過光又は反射光の検出精度を高めてノイズの少ないスペクトルを得るため、増幅器からの入力信号がA/D変換器の入力レンジに収まる最大値となるように増幅器の増幅率が決定される。そのため、従来のFTIRでは、測定開始後、最初に得られたIFGの最大値に基づき増幅率を設定し、測定停止命令を受けるまで同一の増幅率で測定が行われる。   In FTIR, in order to increase the detection accuracy of transmitted light or reflected light from a sample and obtain a spectrum with less noise, the amplification of the amplifier is performed so that the input signal from the amplifier becomes the maximum value that can be accommodated in the input range of the A / D converter The rate is determined. Therefore, in the conventional FTIR, after starting measurement, an amplification factor is set based on the maximum value of IFG obtained first, and measurement is performed at the same amplification factor until a measurement stop command is received.

特開2002-22536号公報JP 2002-22536 A 特開2003-14543号公報Japanese Patent Laid-Open No. 2003-14543

ところが、時間の経過と共に吸光度が変化するような試料の吸収スペクトルを連続的に測定するような場合に、最初に設定した増幅率で測定を続けた場合には、必ずしも適切な増幅率で測定していることにはならない場合がある。特に、試料からの透過光又は反射光の光量が増加するような場合は、A/D変換器の入力レンジを超えるオーバーフローが起きて飽和してしまうため、正確な測定ができない。これを防ぐため、A/D変換器が飽和するとエラーを報知するようにしており、この結果、測定が中断される可能性がある。   However, when continuously measuring the absorption spectrum of a sample whose absorbance changes over time, if measurement is continued at the initially set amplification factor, the measurement must always be performed at an appropriate amplification factor. It may not be. In particular, when the amount of transmitted light or reflected light from the sample increases, an overflow exceeding the input range of the A / D converter occurs and saturates, so accurate measurement cannot be performed. In order to prevent this, an error is reported when the A / D converter is saturated, and as a result, the measurement may be interrupted.

本発明が解決しようとする課題は、試料からの透過光又は反射光をアナログ信号として検出し、この検出信号をA/D変換器でデジタル信号に変換した後、該デジタル信号をフーリエ変換してスペクトルを得るものにおいて、A/D変換器の入力レンジを有効に活用でき、且つA/D変換器の入力レンジを超過するオーバーフローを防止することができるフーリエ変換赤外分光光度計を提供することである。   The problem to be solved by the present invention is to detect transmitted light or reflected light from a sample as an analog signal, convert the detected signal into a digital signal by an A / D converter, and then subject the digital signal to Fourier transform. To provide a Fourier transform infrared spectrophotometer capable of effectively utilizing an input range of an A / D converter and preventing an overflow exceeding the input range of the A / D converter in obtaining a spectrum It is.

上記課題を解決するために成された本願の第1発明は、赤外光を発生する光源と、固定鏡及び移動鏡を含み、前記赤外光より干渉光を生成する干渉計と、該干渉光をアナログ信号として検出する検出器と、該検出器の検出したアナログ信号を増幅する増幅回路と、増幅されたアナログ信号をデジタル信号に変換するA/D変換器と、前記デジタル信号をフーリエ変換してスペクトルを得る処理部とを具備するフーリエ変換赤外分光光度計において、
今回の測定時における前記A/D変換器の出力信号の最大値と、前回の測定時における前記A/D変換器の出力信号の最大値から、次回の測定時における前記A/D変換器の出力信号の最大値を予測し、この予測値に対応する前記A/D変換器の入力信号が該A/D変換器の入力レンジに含まれるように、次回の測定時における前記増幅回路の増幅率を決定する制御部を備えることを特徴とする。
ここで、「前回の測定」、「今回の測定」、「次回の測定」とは、測定開始命令を受けてから測定停止命令を受けるまでの間に行われる複数回の測定動作のうちの3回分の測定動作をいい、例えば時間の経過と共に光量が変化する一つの試料の吸収スペクトルを連続的に複数回測定するような場合における3回分の測定動作をいう。1回分の測定動作とは例えば移動鏡の一往復動に対応して行われる一連の測定動作に相当する。また、「前回の測定」及び「次回の測定」は、「今回」よりも以前に行われた測定、及び、今後行われる測定であれば良く、必ずしも、今回の測定の直前に行われた測定、及び、直後に行われる測定に限らない。
The first invention of the present application made to solve the above-described problems includes a light source that generates infrared light, an interferometer that generates interference light from the infrared light, including a fixed mirror and a movable mirror, and the interference A detector that detects light as an analog signal, an amplifier circuit that amplifies the analog signal detected by the detector, an A / D converter that converts the amplified analog signal into a digital signal, and a Fourier transform of the digital signal In a Fourier transform infrared spectrophotometer comprising a processing unit for obtaining a spectrum,
From the maximum value of the output signal of the A / D converter at the time of the current measurement and the maximum value of the output signal of the A / D converter at the time of the previous measurement, the A / D converter at the time of the next measurement The maximum value of the output signal is predicted, and amplification of the amplifier circuit at the next measurement is performed so that the input signal of the A / D converter corresponding to the predicted value is included in the input range of the A / D converter. A control unit for determining the rate is provided.
Here, “previous measurement”, “current measurement”, and “next measurement” are three of a plurality of measurement operations performed after receiving a measurement start command until receiving a measurement stop command. Refers to the measurement operation for one time, for example, the measurement operation for three times in the case where the absorption spectrum of one sample whose light quantity changes with the passage of time is continuously measured a plurality of times. One measurement operation corresponds to, for example, a series of measurement operations performed corresponding to one reciprocation of the movable mirror. In addition, “previous measurement” and “next measurement” may be measurements performed before “this time” and measurements performed in the future, and are not necessarily measured immediately before this measurement. And it is not restricted to the measurement performed immediately after.

第2発明は、前記第1発明において、前記制御部が、今回の測定時における前記A/D変換器の出力信号の最大値と、前回の測定時における前記A/D変換器の出力信号の最大値の変化量に基づき、次回の測定時における前記A/D変換器の出力信号の最大値を予測するようにしたことを特徴とする。   According to a second aspect of the present invention, in the first aspect, the control unit determines the maximum value of the output signal of the A / D converter at the time of the current measurement and the output signal of the A / D converter at the time of the previous measurement. The maximum value of the output signal of the A / D converter at the next measurement is predicted based on the change amount of the maximum value.

第3発明は、前記第1発明又は第2発明において、
前記処理部が、前記移動鏡の一往復動に対応する前記A/D変換器の出力信号からインターフェログラムスペクトルを作成するように構成され、
前記制御部が、前記インターフェログラムスペクトルから前記A/D変換器の出力信号の最大値を求めることを特徴とする。
A third invention is the first invention or the second invention,
The processing unit is configured to create an interferogram spectrum from an output signal of the A / D converter corresponding to one reciprocation of the movable mirror;
The control unit obtains a maximum value of an output signal of the A / D converter from the interferogram spectrum.

本発明によれば、測定開始命令を受けてから測定停止命令を受けるまでの間の各測定動作によって得られたA/D変換器の出力信号の最大値に基づき次回の測定時におけるA/D変換器の出力信号の最大値を予測し、予測した出力信号の最大値がA/D変換器の入力レンジに収まるように増幅回路の増幅率を決定するので、A/D変換器の入力レンジを有効に活用でき、しかも、A/D変換器の入力レンジを超過するオーバーフローを防止することができる。   According to the present invention, the A / D at the next measurement is based on the maximum value of the output signal of the A / D converter obtained by each measurement operation from when the measurement start command is received until the measurement stop command is received. Since the maximum value of the output signal of the converter is predicted and the amplification factor of the amplifier circuit is determined so that the predicted maximum value of the output signal is within the input range of the A / D converter, the input range of the A / D converter Can be effectively utilized, and overflow that exceeds the input range of the A / D converter can be prevented.

本発明の一実施例に係るFTIRの概略構成図。The schematic block diagram of FTIR which concerns on one Example of this invention. 制御/処理部による増幅率の設定処理の手順を示すフローチャート。The flowchart which shows the procedure of the setting process of the amplification factor by a control / processing part. FTIRの動作を説明するための波形図。The wave form diagram for demonstrating the operation | movement of FTIR.

以下、本発明の一実施例に係るFTIRについて図面を参照して説明する。   Hereinafter, FTIR according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施例に係るFTIRの概略構成図である。本実施例に係るFTIRには、インターフェログラムを得るための主干渉計、及び移動鏡の摺動速度を制御したり主干渉計の光検出器で得られる信号をサンプリングするタイミング信号を生成したりするためのコントロール干渉計が設けられている。主干渉計は、赤外光源11、集光鏡12、コリメータ鏡13、ビームスプリッタ14、固定鏡15、移動鏡16等から構成され、スペクトル測定を行うための干渉赤外光を発生させる。すなわち、赤外光源11から出射された赤外光は、集光鏡12、コリメータ鏡13を介してビームスプリッタ14に照射され、ここで固定鏡15及び移動鏡16の二方向に分割される。固定鏡15及び移動鏡16にてそれぞれ反射した光はビームスプリッタ14によって再び合一され、放物面鏡21へ向かう光路に送られる。このとき、移動鏡16は移動鏡駆動部16aにより前後(図1中の矢印Mの方向)に往復駆動されているため、合一された光は時間的に振幅が変動する干渉光(インターフェログラム)となる。放物面鏡21にて集光された光は試料室22内に照射され、試料室22に配置された試料23を通過した光は楕円面鏡24により光検出器25へ集光される。   FIG. 1 is a schematic configuration diagram of the FTIR according to the present embodiment. In the FTIR according to the present embodiment, a main interferometer for obtaining an interferogram, and a timing signal for controlling the sliding speed of the moving mirror and sampling a signal obtained by the photodetector of the main interferometer are generated. A control interferometer is provided. The main interferometer includes an infrared light source 11, a condensing mirror 12, a collimator mirror 13, a beam splitter 14, a fixed mirror 15, a moving mirror 16, and the like, and generates interfering infrared light for performing spectrum measurement. That is, the infrared light emitted from the infrared light source 11 is applied to the beam splitter 14 through the condensing mirror 12 and the collimator mirror 13, and is divided into two directions, a fixed mirror 15 and a moving mirror 16. The lights reflected by the fixed mirror 15 and the movable mirror 16 are combined again by the beam splitter 14 and sent to the optical path toward the parabolic mirror 21. At this time, since the movable mirror 16 is reciprocally driven back and forth (in the direction of arrow M in FIG. 1) by the movable mirror driving unit 16a, the combined light is interfering light (interferon whose amplitude varies with time). G). The light collected by the parabolic mirror 21 is irradiated into the sample chamber 22, and the light that has passed through the sample 23 disposed in the sample chamber 22 is collected by the ellipsoidal mirror 24 onto the photodetector 25.

一方、コントロール干渉計は、レーザ光源17、ミラー18、ビームスプリッタ14、固定鏡15、移動鏡16等から構成され、干渉縞信号を得るためのレーザ干渉光を発生させる。すなわち、レーザ光源17から出射された光はミラー18を介してビームスプリッタ14に照射され、上記赤外光と同様に干渉光となって放物面鏡21の方向へ送られる。このレーザ干渉光は非常に小さな径の光束となって進行するため、光路中に挿入されたミラー19により反射されて光検出器20に導入される。   On the other hand, the control interferometer includes a laser light source 17, a mirror 18, a beam splitter 14, a fixed mirror 15, a movable mirror 16, and the like, and generates laser interference light for obtaining an interference fringe signal. That is, the light emitted from the laser light source 17 is applied to the beam splitter 14 through the mirror 18 and is transmitted to the parabolic mirror 21 as interference light similarly to the infrared light. Since this laser interference light travels as a light beam having a very small diameter, it is reflected by the mirror 19 inserted in the optical path and introduced into the photodetector 20.

上記主干渉計を中心とする光学部品は気密室10内に配置されており、気密室10内は湿度がコントロールされている。これは、主として、潮解性を有するKBrを基板とするビームスプリッタ14を保護するためである。   The optical components centering on the main interferometer are arranged in the hermetic chamber 10, and the humidity in the hermetic chamber 10 is controlled. This is mainly to protect the beam splitter 14 having KBr having deliquescence as a substrate.

光検出器20の受光信号、つまりレーザ光干渉縞信号(通常「フリンジ信号」と呼ばれる)は信号生成部29に入力され、ここで赤外干渉光に対する受光信号をサンプリングするためのパルス信号が生成される。また、このレーザ光干渉縞信号は安定した移動鏡16の摺動制御を行うためにも利用される。なお、上記レーザ光源17としては、一般にHe−Neレーザが使用され、信号生成部29にて上記レーザ光干渉縞信号と同じ周波数を有するパルス信号が生成される。   The light reception signal of the photodetector 20, that is, a laser light interference fringe signal (usually called “fringe signal”) is input to the signal generation unit 29, where a pulse signal for sampling the light reception signal for the infrared interference light is generated. Is done. Further, this laser beam interference fringe signal is also used for performing stable sliding control of the movable mirror 16. As the laser light source 17, a He—Ne laser is generally used, and a pulse signal having the same frequency as the laser light interference fringe signal is generated by the signal generation unit 29.

試料室22に配置された試料23を通過した干渉光はアナログ信号として光検出器25で受信される。光検出器25で得られた受光信号はアンプ26で増幅され、サンプルホールド回路(S/H)27にて上記パルス信号によるタイミングでサンプリングされた後にA/D変換器(A/D)28によりデジタルデータに変換される。該デジタルデータは制御/処理部30に送られ、所定のデータ処理を実行した後にフーリエ変換演算を行って吸収スペクトルを作成する。   The interference light that has passed through the sample 23 arranged in the sample chamber 22 is received by the photodetector 25 as an analog signal. The received light signal obtained by the photodetector 25 is amplified by the amplifier 26, sampled by the sample and hold circuit (S / H) 27 at the timing of the pulse signal, and then by the A / D converter (A / D) 28. Converted to digital data. The digital data is sent to the control / processing unit 30, and after performing predetermined data processing, a Fourier transform operation is performed to create an absorption spectrum.

制御/処理部30は、専用の制御/処理装置とすることもできるが、一般的には、その実体は専用の制御/処理ソフトウエアをインストールしたパーソナルコンピュータであって、各種の入力操作を行うためのキーボードやポインティングデバイス(マウスなど)による入力部41や測定結果等を表示するためのモニタ40が接続されている。   Although the control / processing unit 30 can be a dedicated control / processing device, generally, the entity is a personal computer in which dedicated control / processing software is installed, and performs various input operations. An input unit 41 using a keyboard and a pointing device (such as a mouse) and a monitor 40 for displaying measurement results are connected.

ここで、制御/処理部30にあっては、光検出器25が検出するアナログ信号の変動範囲を予測し、A/D変換器28の入力信号が該A/D変換器28の入力レンジに含まれるようにアンプ26の増幅率を決定する。以下、アンプ26の増幅率を決定する手順について図2を参照しながら説明する。
制御/処理部30は、A/D変換器28から送られたデジタルデータを格納するメモリを備えており、このメモリに格納された移動鏡の一往復動に対応するデジタルデータからインターフェログラムスペクトル(以下「IFGスペクトル」という)を作成すると共に、作成されたIFGスペクトルから、IFGの信号強度の最大値M1を求めるようになっている(S1)。求めた最大値M1は制御/処理部30が備えるメモリに格納される。
Here, in the control / processing unit 30, the fluctuation range of the analog signal detected by the photodetector 25 is predicted, and the input signal of the A / D converter 28 becomes the input range of the A / D converter 28. The amplification factor of the amplifier 26 is determined so as to be included. Hereinafter, the procedure for determining the amplification factor of the amplifier 26 will be described with reference to FIG.
The control / processing unit 30 includes a memory for storing the digital data sent from the A / D converter 28, and the interferogram spectrum is obtained from the digital data corresponding to one reciprocating motion of the moving mirror stored in the memory. (Hereinafter referred to as “IFG spectrum”), and the maximum value M1 of the IFG signal intensity is obtained from the created IFG spectrum (S1). The obtained maximum value M1 is stored in a memory provided in the control / processing unit 30.

図3は、縦軸を信号強度(A/D変換値)、横軸を移動鏡の位置とする、A/D変換後のIFGスペクトルの一般的な形状を示している。図3から分かるように、通常は、移動鏡の位置が「0cm」のときに信号強度は最大値となる。従って、通常は、移動鏡の位置が「0cm」を中心として±2cm程度の縦軸値を比較することで、IFGの信号強度の最大値(縦軸最大値)を求めることができる。   FIG. 3 shows a general shape of the IFG spectrum after A / D conversion, where the vertical axis represents signal intensity (A / D conversion value) and the horizontal axis represents the position of the moving mirror. As can be seen from FIG. 3, normally, the signal intensity reaches its maximum value when the position of the movable mirror is “0 cm”. Therefore, normally, the maximum value of the IFG signal intensity (vertical axis maximum value) can be obtained by comparing the vertical axis values of about ± 2 cm centered on “0 cm” as the position of the movable mirror.

次に、制御/処理部30は、既にメモリに格納されている、以前のIFG最大値M2を読み出し、このIFG最大値M2と今回のIFG最大値M1との差分値D1(つまり、D1=M1−M2)を求める。そして、この差分値D1を今回のIFG最大値M1に加算することで、次の測定時のIFG最大値の予測値P1(つまり、P1=M1+D1)を演算する(S2)。   Next, the control / processing unit 30 reads the previous IFG maximum value M2 already stored in the memory, and the difference value D1 between the IFG maximum value M2 and the current IFG maximum value M1 (that is, D1 = M1). -M2) is determined. Then, by adding the difference value D1 to the current IFG maximum value M1, a predicted value P1 of the IFG maximum value at the time of the next measurement (that is, P1 = M1 + D1) is calculated (S2).

続いて、求めた予測値P1に対応するA/D変換器28の入力信号が該A/D変換器28の入力レンジに含まれるか否かの判定を行う(S3)。判定は、制御/処理部30が備えるメモリに予め格納されている上限閾値及び下限閾値と予測値P1とを比較することで行う。上限閾値及び下限閾値は、A/D変換器の入力値(アナログ値)に対応する出力信号(デジタル値)から成る。具体的には、予測値P1が上限閾値以上の場合は、増幅率を1段下げ(S4)、予測値P1が下限閾値以下であるときは、増幅率を1段上げる(S6)。また、予測値P1が上限閾値と下限閾値の間のときは、増幅率を維持する(S5)。以上により、次回の測定時の増幅率が決定されると、制御/処理部30はアンプ26の増幅率を変更すると共に、今回のIFG最大値M1をM2としてメモリに格納する。   Subsequently, it is determined whether or not the input signal of the A / D converter 28 corresponding to the obtained predicted value P1 is included in the input range of the A / D converter 28 (S3). The determination is performed by comparing the upper and lower threshold values stored in advance in a memory included in the control / processing unit 30 with the predicted value P1. The upper and lower thresholds are composed of output signals (digital values) corresponding to the input values (analog values) of the A / D converter. Specifically, when the predicted value P1 is equal to or higher than the upper limit threshold, the gain is decreased by one level (S4), and when the predicted value P1 is equal to or lower than the lower limit threshold, the gain is increased by one level (S6). Further, when the predicted value P1 is between the upper limit threshold and the lower limit threshold, the amplification factor is maintained (S5). As described above, when the amplification factor at the next measurement is determined, the control / processing unit 30 changes the amplification factor of the amplifier 26 and stores the current IFG maximum value M1 as M2 in the memory.

例えば4ビットのA/D変換器28の場合はフルスケールが「1111」であるため、余裕を持って上限閾値は「1110」に設定されている。一方、下限閾値は、増幅率を1段上げた場合でも上限閾値よりも小さくなるように、例えば上限閾値の半分以下となるように設定されている。アンプ26の増幅率は、1倍、2倍、4倍、8倍・・・のように2のn乗で表される数値であり、増幅率が1段上がるということは、増幅率が2倍になることを意味する。従って、上限閾値が「1110」の場合は、その半分の「110」以下等に設定するとよい。
例として、上限閾値が「1110」、下限閾値が「110」に設定されている場合に、増幅率2倍で測定した結果、予測値P1=101である場合について説明する。この場合、予測値P1は、上限閾値以下となり、下限閾値以下となる。このため、制御/処理部30は増幅率を1段上げ、4倍に設定する。
For example, in the case of the 4-bit A / D converter 28, since the full scale is “1111”, the upper limit threshold is set to “1110” with a margin. On the other hand, the lower threshold is set to be, for example, half or less of the upper threshold so as to be smaller than the upper threshold even when the amplification factor is increased by one stage. The amplification factor of the amplifier 26 is a numerical value expressed by 2 to the power of n, such as 1 ×, 2 ×, 4 ×, 8 ×, and so on. Means to double. Therefore, when the upper limit threshold is “1110”, it may be set to “110” or less, which is half of the upper limit threshold.
As an example, a case where the predicted value P1 = 101 as a result of measurement with an amplification factor of 2 when the upper limit threshold is set to “1110” and the lower limit threshold is set to “110” will be described. In this case, the predicted value P1 is equal to or lower than the upper threshold value and is equal to or lower than the lower threshold value. For this reason, the control / processing unit 30 increases the amplification factor by one level and sets it to four times.

なお、今回が1回目のIFG取得時である場合は、以前のIFG最大値M2が記憶されていない。従って、この場合は、アンプの増幅率を最低増幅率(1倍)に設定して測定を行い、その時の信号強度の最大値から次回の測定時に増幅率を決定する。   If this time is the first IFG acquisition time, the previous IFG maximum value M2 is not stored. Therefore, in this case, measurement is performed with the amplification factor of the amplifier set to the minimum amplification factor (1 time), and the amplification factor is determined at the next measurement from the maximum value of the signal intensity at that time.

このような本実施例によれば、測定開始命令を受けてから測定停止命令を受けるまでの間の各測定動作によって得られたIFGスペクトルからA/D変換器28の出力信号の最大値を求め、この最大値に基づき次回の測定時におけるA/D変換器28の出力信号の最大値を予測すると共にこの予測した出力信号の最大値に対応する入力信号がA/D変換器28の入力レンジに収まるようにアンプ26の増幅率を決定するので、A/D変換器28の入力レンジを有効に活用でき、しかも、A/D変換器28の入力レンジを超過するオーバーフローを防止することができる。   According to the present embodiment, the maximum value of the output signal of the A / D converter 28 is obtained from the IFG spectrum obtained by each measurement operation after receiving the measurement start command and receiving the measurement stop command. Based on this maximum value, the maximum value of the output signal of the A / D converter 28 in the next measurement is predicted, and the input signal corresponding to the predicted maximum value of the output signal is the input range of the A / D converter 28. Therefore, the input range of the A / D converter 28 can be used effectively, and overflow that exceeds the input range of the A / D converter 28 can be prevented. .

なお、アンプ26の増幅率は、IFG取得毎に更新する必要はなく、複数回IFGを取得する毎に増幅率を更新する構成でも良い。また、複数回のIFGのスペクトルを積算処理し、その積算処理後のIFGスペクトルからIFG最大値M1を求めて、次回の測定時の増幅率を決定するようにしても良い。   The amplification factor of the amplifier 26 does not need to be updated every time the IFG is acquired, and may be configured to update the amplification factor every time the IFG is acquired a plurality of times. Alternatively, the IFG spectrum may be subjected to integration processing a plurality of times, the IFG maximum value M1 may be obtained from the IFG spectrum after the integration processing, and the amplification factor at the next measurement may be determined.

10…気密室
11…赤外光源
12…集光鏡
13…コリメータ鏡
14…ビームスプリッタ
15…固定鏡
16…移動鏡
16a…移動鏡駆動部
17…レーザ光源
18…ミラー
19…ミラー
20…光検出器
21…放物面鏡
22…試料室
23…試料
24…楕円面鏡
25…光検出器
26…アンプ(増幅器)
28…A/D変換器
30…制御/処理部
DESCRIPTION OF SYMBOLS 10 ... Airtight chamber 11 ... Infrared light source 12 ... Condensing mirror 13 ... Collimator mirror 14 ... Beam splitter 15 ... Fixed mirror 16 ... Moving mirror 16a ... Moving mirror drive part 17 ... Laser light source 18 ... Mirror 19 ... Mirror 20 ... Light detection 21 ... Parabolic mirror 22 ... Sample chamber 23 ... Sample 24 ... Ellipsoidal mirror 25 ... Photo detector 26 ... Amplifier (amplifier)
28 ... A / D converter 30 ... Control / processing section

Claims (3)

赤外光を発生する光源と、固定鏡及び移動鏡を含み、前記赤外光より干渉光を生成する干渉計と、該干渉光をアナログ信号として検出する検出器と、該検出器の検出したアナログ信号を増幅する増幅回路と、増幅されたアナログ信号をデジタル信号に変換するA/D変換器と、前記デジタル信号をフーリエ変換してスペクトルを得る処理部とを具備するフーリエ変換赤外分光光度計において、
今回の測定時における前記A/D変換器の出力信号の最大値と、前回の測定時における前記A/D変換器の出力信号の最大値から、次回の測定時における前記A/D変換器の出力信号の最大値を予測し、この予測値に対応する前記A/D変換器の入力信号が該A/D変換器の入力レンジに収まるように、次回の測定時における前記増幅回路の増幅率を決定する制御部を備えることを特徴とするフーリエ変換赤外分光光度計。
A light source that generates infrared light, a fixed mirror and a moving mirror, an interferometer that generates interference light from the infrared light, a detector that detects the interference light as an analog signal, and a detector detected by the detector A Fourier transform infrared spectrophotometer comprising an amplifier circuit that amplifies an analog signal, an A / D converter that converts the amplified analog signal into a digital signal, and a processing unit that obtains a spectrum by Fourier transforming the digital signal. In total
From the maximum value of the output signal of the A / D converter at the time of the current measurement and the maximum value of the output signal of the A / D converter at the time of the previous measurement, the A / D converter at the time of the next measurement The maximum value of the output signal is predicted, and the amplification factor of the amplifier circuit at the next measurement is such that the input signal of the A / D converter corresponding to the predicted value falls within the input range of the A / D converter. A Fourier transform infrared spectrophotometer comprising a control unit for determining
前記制御部が、今回の測定時における前記A/D変換器の出力信号の最大値と、前回の測定時における前記A/D変換器の出力信号の最大値の差分値に基づき、次回の測定時における前記A/D変換器の出力信号の最大値を予測することを特徴とする請求項1に記載のフーリエ変換赤外分光光度計。   Based on the difference between the maximum value of the output signal of the A / D converter at the current measurement and the maximum value of the output signal of the A / D converter at the previous measurement, the control unit performs the next measurement. The Fourier transform infrared spectrophotometer according to claim 1, wherein the maximum value of the output signal of the A / D converter at the time is predicted. 前記処理部が、前記移動鏡の一往復動に対応する前記A/D変換器の出力信号からインターフェログラムスペクトルを作成するように構成され、
前記制御部が、前記インターフェログラムスペクトルから前記A/D変換器の出力信号の最大値を求めることを特徴とする請求項1又は2に記載のフーリエ変換赤外分光光度計。
The processing unit is configured to create an interferogram spectrum from an output signal of the A / D converter corresponding to one reciprocation of the movable mirror;
The Fourier transform infrared spectrophotometer according to claim 1, wherein the control unit obtains a maximum value of an output signal of the A / D converter from the interferogram spectrum.
JP2010142791A 2010-06-23 2010-06-23 Fourier transform infrared spectrophotometer Expired - Fee Related JP5644207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142791A JP5644207B2 (en) 2010-06-23 2010-06-23 Fourier transform infrared spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142791A JP5644207B2 (en) 2010-06-23 2010-06-23 Fourier transform infrared spectrophotometer

Publications (2)

Publication Number Publication Date
JP2012007943A true JP2012007943A (en) 2012-01-12
JP5644207B2 JP5644207B2 (en) 2014-12-24

Family

ID=45538671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142791A Expired - Fee Related JP5644207B2 (en) 2010-06-23 2010-06-23 Fourier transform infrared spectrophotometer

Country Status (1)

Country Link
JP (1) JP5644207B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3537120A1 (en) 2018-03-07 2019-09-11 Shimadzu Corporation Interference spectrophotometer and two-beam interferometer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746330U (en) * 1980-08-29 1982-03-15
JPS60133324A (en) * 1983-12-22 1985-07-16 Jeol Ltd Fourier-transformation type infrared spectrophotometer
JP2002005742A (en) * 2000-06-19 2002-01-09 Yokogawa Electric Corp Analog-digital converter and fourier transform type spectrometer using it
JP2006311382A (en) * 2005-04-28 2006-11-09 Casio Comput Co Ltd Device and program for controlling voice output

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746330U (en) * 1980-08-29 1982-03-15
JPS60133324A (en) * 1983-12-22 1985-07-16 Jeol Ltd Fourier-transformation type infrared spectrophotometer
JP2002005742A (en) * 2000-06-19 2002-01-09 Yokogawa Electric Corp Analog-digital converter and fourier transform type spectrometer using it
JP2006311382A (en) * 2005-04-28 2006-11-09 Casio Comput Co Ltd Device and program for controlling voice output

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3537120A1 (en) 2018-03-07 2019-09-11 Shimadzu Corporation Interference spectrophotometer and two-beam interferometer
CN110243474A (en) * 2018-03-07 2019-09-17 株式会社岛津制作所 Interference spectrophotometers and double beam interferometer
US10481003B2 (en) 2018-03-07 2019-11-19 Shimadzu Corporation Interference spectrophotometer and two-beam interferometer

Also Published As

Publication number Publication date
JP5644207B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP6045963B2 (en) Optical distance measuring device
JP4654996B2 (en) Terahertz wave response measuring device
CN111122496B (en) Calibration-free gas concentration measuring device and method
JP2019527830A (en) System and method for measuring a referenced and returned light beam in an optical system
JP2019516114A (en) Laser ranging system by time domain waveform matching and method thereof
JP2007218787A (en) Wavelength calibration method and device
US20160003687A1 (en) Optical fiber temperature distribution measuring device
EP2963400B1 (en) Fourier transform infrared spectrometer
JP5527278B2 (en) Gas analyzer
JP2019002791A (en) Calculation method for output correction computing equation of photodetector, and output correction method for photodetector
US9222810B1 (en) In situ calibration of a light source in a sensor device
JP2018044852A (en) Laser emission device, control method and program
US10481003B2 (en) Interference spectrophotometer and two-beam interferometer
CN107991267B (en) Tunable semiconductor laser absorption spectrum gas detection device and method with agile wavelength
JP6482823B2 (en) Interferometer, spectrophotometer using interferometer, and control program for interferometer
JP2008232813A (en) Interference spectrophotometer
JP5644207B2 (en) Fourier transform infrared spectrophotometer
JP2018044853A (en) Laser emission device, control method and program
JP2012007964A (en) Fourier transform infrared spectrophotometer
JP2010223831A (en) Temperature measuring device
RU2377497C1 (en) Facility for measuring deformations on base of quasi-distributed fibre-optical sencors on bragg grids
US20180164211A1 (en) Gas Detection Device and Gas Detection Method
WO2014199888A1 (en) Fourier transform spectrometer and spectroscopy and fourier transform spectrometer timing generation device
Ensher et al. Long coherence length and linear sweep without an external optical k-clock in a monolithic semiconductor laser for inexpensive optical coherence tomography
JP2013088135A (en) Laser gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R151 Written notification of patent or utility model registration

Ref document number: 5644207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees