JP2012007858A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2012007858A
JP2012007858A JP2010146225A JP2010146225A JP2012007858A JP 2012007858 A JP2012007858 A JP 2012007858A JP 2010146225 A JP2010146225 A JP 2010146225A JP 2010146225 A JP2010146225 A JP 2010146225A JP 2012007858 A JP2012007858 A JP 2012007858A
Authority
JP
Japan
Prior art keywords
water
flow path
hot water
way valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010146225A
Other languages
Japanese (ja)
Inventor
Toshinori Sugiki
稔則 杉木
Kensuke Matsuo
謙介 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010146225A priority Critical patent/JP2012007858A/en
Publication of JP2012007858A publication Critical patent/JP2012007858A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump water heater that can suppress an increase of cost and efficiently perform defrosting operation without complicating a refrigeration cycle circuit or degrading the reliability of a system.SOLUTION: The heat pump water heater 50 includes: a refrigeration cycle circuit 100 wherein a compressor 3, a water refrigerant heat exchanger 4, an expansion valve 5, and an evaporator 6 are connected in a refrigerant flow passage in this order; a hot-water supply circuit 200 wherein a hot-water storage tank 9, a water feed pump 8, a three-way valve 40, a return flow passage 10b, an upper flow passage 10c, and a lower flow passage 10e are provided; and a controller (11 and 13). The three-way valve 40 can be changed to a condition for making the return flow passage 10b communicate with the upper flow passage 10c or the lower flow passage 10e, as well as a condition for intercepting the return flow passage 10b, and the controller (11 and 13) changes the three-way valve 40 to the condition for intercepting the return flow passage 10b and actuates the water feed pump 8 at very low speed during defrosting operation of the evaporator 6.

Description

本発明は、ヒートポンプ式給湯機に関する。   The present invention relates to a heat pump type water heater.

冷凍サイクル回路の蒸発器において大気の熱を冷媒に吸収し、更に圧縮機で圧縮して高温とした冷媒を水冷媒熱交換器に導き、この水冷媒熱交換器において給湯水回路の水を加熱するヒートポンプ式給湯機が広く用いられている。冷凍サイクル回路の蒸発器に霜が付着すると、蒸発器での熱交換が阻害され、ヒートポンプの効率が低下する。このため、蒸発器に霜が付着している場合には、この霜を除去するための除霜運転が行われる。   At the evaporator of the refrigeration cycle circuit, the atmospheric heat is absorbed by the refrigerant, and further the refrigerant compressed by the compressor is heated to a water refrigerant heat exchanger. The water refrigerant heat exchanger heats the water in the hot water supply water circuit. Heat pump type water heaters are widely used. When frost adheres to the evaporator of the refrigeration cycle circuit, heat exchange in the evaporator is hindered, and the efficiency of the heat pump decreases. For this reason, when the frost has adhered to the evaporator, the defrosting operation for removing this frost is performed.

下記特許文献1には、除霜運転を行う方法として、冷凍サイクル回路の膨張弁を大開度にするとともに、給湯水回路の送水ポンプを停止する方法(以下、「第1従来技術」と呼ぶ)が開示されており、また、水冷媒熱交換器をバイパスするホットガスバイパス路とこのホットガスバイパス路を開閉する電磁弁とを設け、除霜運転時にこの電磁弁を開くことにより、圧縮機から吐出された冷媒(ホットガス)をホットガスバイパス路を通して蒸発器の入口に供給する方法(以下、「第2従来技術」と呼ぶ)も開示されている。   In Patent Document 1 below, as a method of performing the defrosting operation, the expansion valve of the refrigeration cycle circuit is set to a large opening and the water pump of the hot water supply circuit is stopped (hereinafter referred to as “first prior art”). In addition, a hot gas bypass passage that bypasses the water-refrigerant heat exchanger and an electromagnetic valve that opens and closes the hot gas bypass passage are provided. A method of supplying the discharged refrigerant (hot gas) to the inlet of the evaporator through the hot gas bypass (hereinafter referred to as “second prior art”) is also disclosed.

特開2001−108256号公報JP 2001-108256 A

しかしながら、上記第1従来技術には、次のような問題がある。給湯水回路の送水ポンプが停止していても、水の温度差による比重差の影響や、設置環境の影響(例えば、ヒートポンプユニットの設置場所と、貯湯タンクユニットの設置場所とに高低差がある場合など)によって、水冷媒熱交換器内の水が移動する場合がある。水冷媒熱交換器内の水が移動すると、冷媒(ホットガス)の熱が水冷媒熱交換器内の水に奪われるため、除霜に必要な熱エネルギーが蒸発器に供給されなくなり、除霜運転時間が延びたり、除霜運転終了時間内に除霜が完了しなかったりするおそれがある。   However, the first prior art has the following problems. Even if the water supply pump of the hot water supply circuit is stopped, the difference in specific gravity due to the temperature difference of the water and the influence of the installation environment (for example, there is a difference in height between the installation location of the heat pump unit and the installation location of the hot water storage tank unit) In some cases, the water in the water-refrigerant heat exchanger may move. When the water in the water-refrigerant heat exchanger moves, the heat of the refrigerant (hot gas) is taken away by the water in the water-refrigerant heat exchanger, so that the heat energy necessary for defrosting is not supplied to the evaporator, There is a possibility that the operation time may be extended or the defrosting may not be completed within the defrosting operation end time.

また、上記第2従来技術の場合には、冷凍サイクル回路にホットガスバイパス路および電磁弁を追加する必要があるので、構造が複雑化し、高価な構成となってしまう。また、冷凍サイクル回路が複雑化することで、信頼性が低下してしまうという問題もある。更に、除霜運転の際に、ホットガスバイパス路の電磁弁が開いて、冷媒の流れが変わることから、冷媒の音や電磁弁の音が発生するという問題がある。   Further, in the case of the second prior art, since it is necessary to add a hot gas bypass path and an electromagnetic valve to the refrigeration cycle circuit, the structure becomes complicated and the structure becomes expensive. In addition, the refrigeration cycle circuit is complicated, so that there is a problem that reliability is lowered. Furthermore, during the defrosting operation, the solenoid valve of the hot gas bypass passage is opened and the flow of the refrigerant changes, so that there is a problem that the sound of the refrigerant and the sound of the electromagnetic valve are generated.

本発明は、上述のような課題を解決するためになされたもので、冷凍サイクル回路を複雑化することなく、システムの信頼性を低下させることなく、且つコスト増加を抑えつつ、除霜運転を効率良く実行することのできるヒートポンプ式給湯機を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. The defrosting operation is performed without complicating the refrigeration cycle circuit, reducing the reliability of the system, and suppressing an increase in cost. It aims at providing the heat pump type hot water heater which can be performed efficiently.

本発明に係るヒートポンプ式給湯機は、冷媒を圧縮する圧縮機と、圧縮機で圧縮された冷媒によって水を加熱するための水冷媒熱交換器と、膨張弁と、蒸発器とがこの順に冷媒流路で接続された冷凍サイクル回路と、貯湯タンクと、貯湯タンクの下部から取り出された水を水冷媒熱交換器に送る流路の途中に設けられた送水ポンプと、三方弁と、水冷媒熱交換器の水の出口と三方弁とを接続する戻り流路と、三方弁と貯湯タンクの上部とを接続する上部流路と、三方弁と貯湯タンクの下部とを接続する下部流路とを有する給湯水回路と、冷凍サイクル回路および給湯水回路を制御する制御手段とを備え、三方弁は、戻り流路を上部流路に連通させる状態と、戻り流路を下部流路に連通させる状態と、戻り流路を遮断する状態とに切り替え可能であり、制御手段は、蒸発器の除霜を行うための除霜運転時に、戻り流路を遮断する状態に三方弁を切り替えるとともに送水ポンプを微速で駆動するものである。   The heat pump type hot water heater according to the present invention includes a compressor that compresses a refrigerant, a water refrigerant heat exchanger for heating water by the refrigerant compressed by the compressor, an expansion valve, and an evaporator in this order. A refrigeration cycle circuit connected by a flow path, a hot water storage tank, a water supply pump provided in the middle of the flow path for sending water taken from the lower part of the hot water storage tank to the water refrigerant heat exchanger, a three-way valve, and a water refrigerant A return flow path connecting the water outlet of the heat exchanger and the three-way valve, an upper flow path connecting the three-way valve and the upper part of the hot water tank, and a lower flow path connecting the three-way valve and the lower part of the hot water tank. And a control means for controlling the refrigeration cycle circuit and the hot water supply circuit, and the three-way valve communicates the return flow path with the upper flow path and the return flow path with the lower flow path. Can be switched between a state and a state where the return flow path is blocked There, the control means is for driving the defrosting operation to perform defrosting of the evaporator, the water pump switches the three-way valve in a state of blocking the return channel at a very slow speed.

本発明によれば、冷凍サイクル回路の冷媒の循環経路を変えずに除霜運転を行うことができるので、冷凍サイクル回路の複雑化が回避でき、コスト低減が図れるとともに、システムの信頼性の低下を防止することができる。また、除霜運転の際に、圧縮機から吐出された冷媒(ホットガス)が水冷媒熱交換器で放熱することを極力防止することができ、冷媒を高温に確実に維持したまま蒸発器へ送ることができるので、除霜を効率良く迅速に行うことが可能となる。   According to the present invention, since the defrosting operation can be performed without changing the refrigerant circulation path of the refrigeration cycle circuit, the refrigeration cycle circuit can be prevented from being complicated, the cost can be reduced, and the reliability of the system can be reduced. Can be prevented. In addition, during the defrosting operation, it is possible to prevent the refrigerant (hot gas) discharged from the compressor from radiating heat with the water refrigerant heat exchanger as much as possible, and to the evaporator while maintaining the refrigerant reliably at a high temperature. Since it can be sent, defrosting can be performed quickly and efficiently.

本発明の実施の形態1に係るヒートポンプ式給湯機の全体構成を示す図である。It is a figure which shows the whole structure of the heat pump type hot water heater which concerns on Embodiment 1 of this invention. 図1に示すヒートポンプ式給湯機が備える三方弁の断面図(戻り流路を上部流路に連通させる状態)である。It is sectional drawing of the three-way valve with which the heat pump type water heater shown in FIG. 1 is provided (a state in which the return flow path communicates with the upper flow path). 図1に示すヒートポンプ式給湯機が備える三方弁の断面図(戻り流路を下部流路に連通させる状態)である。FIG. 2 is a cross-sectional view of a three-way valve provided in the heat pump hot water supply device shown in FIG. 1 (a state in which a return flow path is communicated with a lower flow path). 図1に示すヒートポンプ式給湯機が備える三方弁の断面図(戻り流路を遮断する状態)である。It is sectional drawing (state which interrupts | blocks a return flow path) of the three-way valve with which the heat pump type water heater shown in FIG. 図1に示すヒートポンプ式給湯機が備える三方弁の断面図(戻り流路を遮断する状態)である。It is sectional drawing (state which interrupts | blocks a return flow path) of the three-way valve with which the heat pump type water heater shown in FIG. 図1に示すヒートポンプ式給湯機が備える三方弁の断面図(戻り流路を遮断する状態)である。It is sectional drawing (state which interrupts | blocks a return flow path) of the three-way valve with which the heat pump type water heater shown in FIG. 図1に示すヒートポンプ式給湯機が備える三方弁の断面図(戻り流路を遮断する状態)である。It is sectional drawing (state which interrupts | blocks a return flow path) of the three-way valve with which the heat pump type water heater shown in FIG.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

実施の形態1.
図1は、本発明の実施の形態1に係るヒートポンプ式給湯機50の全体構成を示す図である。図1に示すように、本実施形態のヒートポンプ式給湯機50は、ヒートポンプユニット1と貯湯タンクユニット2とを備えている。ヒートポンプユニット1内には、圧縮機3、水冷媒熱交換器4、膨張弁5および蒸発器6を順次環状に接続し、冷媒が循環する冷凍サイクル回路100と、蒸発器6に外気を送風するファン7とが搭載されている。
Embodiment 1 FIG.
FIG. 1 is a diagram showing an overall configuration of a heat pump type hot water heater 50 according to Embodiment 1 of the present invention. As shown in FIG. 1, the heat pump type hot water heater 50 of this embodiment includes a heat pump unit 1 and a hot water storage tank unit 2. In the heat pump unit 1, a compressor 3, a water / refrigerant heat exchanger 4, an expansion valve 5 and an evaporator 6 are sequentially connected in an annular manner, and the outside air is sent to the refrigeration cycle circuit 100 in which the refrigerant circulates and the evaporator 6. A fan 7 is mounted.

貯湯タンクユニット2内には、負荷側媒体である水を水冷媒熱交換器4に送る送水ポンプ8と、水冷媒熱交換器4で加熱されることによって生成した高温水を貯留する貯湯タンク9と、三方弁40とが搭載されている。貯湯タンク9の下部と、送水ポンプ8の吸入口とは、往き流路10dで接続されている。送水ポンプ8の吐出口と、水冷媒熱交換器4の水の入口とは、往き流路10aで接続されている。水冷媒熱交換器4の水の出口と、三方弁40とは、戻り流路10bで接続されている。三方弁40には、上部流路10cの一端と、下部流路10eの一端とが更に接続されている。上部流路10cの他端は、貯湯タンク9の上部に接続されている。下部流路10eの他端は、貯湯タンク9の下部に接続されている。本実施形態では、上述した要素により、給湯水回路200が構成されている。なお、送水ポンプ8は、必ずしも貯湯タンクユニット2に設置する必要はなく、ヒートポンプユニット1側に設置されていてもよい。   In the hot water storage tank unit 2, a water supply pump 8 that sends water, which is a load-side medium, to the water refrigerant heat exchanger 4, and a hot water storage tank 9 that stores high temperature water generated by being heated by the water refrigerant heat exchanger 4. And a three-way valve 40 is mounted. The lower part of the hot water storage tank 9 and the suction port of the water supply pump 8 are connected by a forward flow path 10d. The discharge port of the water pump 8 and the water inlet of the water-refrigerant heat exchanger 4 are connected by the forward flow path 10a. The water outlet of the water-refrigerant heat exchanger 4 and the three-way valve 40 are connected by a return channel 10b. One end of the upper channel 10c and one end of the lower channel 10e are further connected to the three-way valve 40. The other end of the upper flow path 10 c is connected to the upper part of the hot water storage tank 9. The other end of the lower flow path 10 e is connected to the lower part of the hot water storage tank 9. In the present embodiment, the hot water supply circuit 200 is configured by the above-described elements. The water pump 8 is not necessarily installed in the hot water storage tank unit 2 and may be installed on the heat pump unit 1 side.

貯湯タンク9の下部には、貯湯タンク9内へ水を供給する給水管30が更に接続されている。給水管30の途中には、給水圧力を所定の圧力以下に減圧する減圧弁31が設置されている。貯湯タンク9の上部には、混合給湯管32が更に接続されている。この混合給湯管32と、給水管30から分岐して延びた混合給水管33と、給湯先(例えば浴槽、シャワー、台所の蛇口など)に湯を供給する給湯管35とは、給湯混合弁34に接続されている。給湯混合弁34は、混合給湯管32からの高温水と、混合給水管33からの低温水とを混合することによって温度を調節した湯を給湯管35へ供給する。   A water supply pipe 30 for supplying water into the hot water storage tank 9 is further connected to the lower part of the hot water storage tank 9. In the middle of the water supply pipe 30, a pressure reducing valve 31 for reducing the water supply pressure to a predetermined pressure or less is installed. A mixed hot water supply pipe 32 is further connected to the upper part of the hot water storage tank 9. The mixed hot water supply pipe 32, the mixed water supply pipe 33 branched from the water supply pipe 30, and the hot water supply pipe 35 for supplying hot water to a hot water supply destination (for example, a bathtub, a shower, a kitchen faucet, etc.) It is connected to the. The hot water supply mixing valve 34 supplies hot water whose temperature is adjusted by mixing high temperature water from the mixed hot water supply pipe 32 and low temperature water from the mixed hot water supply pipe 33 to the hot water supply pipe 35.

本実施形態のヒートポンプ式給湯機50は、制御手段として、制御装置11およびシステム制御装置13を備えている。ヒートポンプユニット1に設けられた制御装置11は、温度センサ(図示せず)などによる計測情報や、使用者からリモコン装置(図示せず)を介して指示される運転指令情報の内容などに基づいて、圧縮機3の運転方法(吐出する冷媒の圧力、温度など)、膨張弁5の開度、ファン7の運転方法、送水ポンプ8の運転方法などを制御する機能を有している。また、貯湯タンクユニット2に設けられたシステム制御装置13は、ヒートポンプユニット1および貯湯タンクユニット2の全体をシステムとして制御する機能を有している。   The heat pump type hot water heater 50 of the present embodiment includes a control device 11 and a system control device 13 as control means. The control device 11 provided in the heat pump unit 1 is based on measurement information by a temperature sensor (not shown) or the like, contents of operation command information instructed by a user via a remote control device (not shown), and the like. The compressor 3 has a function of controlling the operation method (pressure, temperature, etc. of discharged refrigerant), the opening degree of the expansion valve 5, the operation method of the fan 7, and the operation method of the water pump 8. The system control device 13 provided in the hot water storage tank unit 2 has a function of controlling the entire heat pump unit 1 and the hot water storage tank unit 2 as a system.

なお、図1は、ヒートポンプ式給湯機50の基本構成のみを示したものであり、他の目的の構成を任意に付加することが可能である。また、ヒートポンプ式給湯機50の冷媒としては、高温出湯ができる冷媒、例えば、二酸化炭素、R410A、プロパンなどの冷媒が適しているが、特にこれらに限定されるものではない。   FIG. 1 shows only the basic configuration of the heat pump type hot water heater 50, and it is possible to arbitrarily add a configuration for other purposes. In addition, as the refrigerant of the heat pump type hot water heater 50, a refrigerant capable of producing high temperature hot water, for example, a refrigerant such as carbon dioxide, R410A, and propane is suitable, but is not particularly limited thereto.

図2乃至図7は、図1に示すヒートポンプ式給湯機50が備える三方弁40の断面図である。これらの図に示すように、三方弁40の内部には、水が流通可能な略「L」字状の孔が形成された弁体15が回転可能に設置されている。三方弁40は、この弁体15が回転することにより、図2乃至図7の状態に切り替え可能になっている。図2は、戻り流路10bを上部流路10cに連通させる状態を示している。後述する沸き上げ運転時には、三方弁40は図2に示す状態とされる。この状態では、下部流路10e内の水は、戻り流路10bおよび上部流路10c内の水と混じることなく存在する。   2 to 7 are cross-sectional views of the three-way valve 40 provided in the heat pump type water heater 50 shown in FIG. As shown in these drawings, a valve body 15 having a substantially “L” -shaped hole through which water can flow is rotatably installed inside the three-way valve 40. The three-way valve 40 can be switched to the state shown in FIGS. 2 to 7 as the valve body 15 rotates. FIG. 2 shows a state in which the return channel 10b communicates with the upper channel 10c. At the time of the heating operation described later, the three-way valve 40 is in the state shown in FIG. In this state, the water in the lower flow path 10e exists without being mixed with the water in the return flow path 10b and the upper flow path 10c.

図3は、戻り流路10bを下部流路10eに連通させる状態を示している。この状態では、上部流路10c内の水は、戻り流路10bおよび下部流路10e内の水と混じることなく存在する。ヒートポンプ式給湯機50では、水冷媒熱交換器4から出る水の温度が安定しない状態のときに、三方弁40を図3に示す状態に切り替えることにより、水冷媒熱交換器4から出た水を貯湯タンク9の下部に戻すことができる。これにより、高温でない水が貯湯タンク9の上部に流入することを防止することができる。   FIG. 3 shows a state in which the return channel 10b communicates with the lower channel 10e. In this state, the water in the upper flow path 10c exists without being mixed with the water in the return flow path 10b and the lower flow path 10e. In the heat pump type water heater 50, when the temperature of the water coming out of the water refrigerant heat exchanger 4 is not stable, the water discharged from the water refrigerant heat exchanger 4 is switched by switching the three-way valve 40 to the state shown in FIG. Can be returned to the lower part of the hot water storage tank 9. Thereby, it is possible to prevent non-high temperature water from flowing into the upper part of the hot water storage tank 9.

図4は、戻り流路10bが遮断される状態を示している。本実施形態の三方弁40では、この状態のとき、上部流路10cおよび下部流路10eも同時に遮断される。このため、この状態では、戻り流路10b、上部流路10c、下部流路10e内の水は、互いに混じることなく存在することが可能になる。また、弁体15を図4に示す位置で停止した場合だけでなく、図5乃至図7の何れかの位置で停止した場合にも、図4の状態と同様に、戻り流路10b、上部流路10cおよび下部流路10eがそれぞれ遮断される。以下の説明では、図4乃至図7に示す三方弁40の状態を「遮断状態」と称する。   FIG. 4 shows a state where the return flow path 10b is blocked. In the three-way valve 40 of the present embodiment, in this state, the upper flow path 10c and the lower flow path 10e are simultaneously blocked. For this reason, in this state, the water in the return flow path 10b, the upper flow path 10c, and the lower flow path 10e can exist without being mixed with each other. Further, not only when the valve body 15 is stopped at the position shown in FIG. 4, but also when the valve body 15 is stopped at any of the positions shown in FIGS. The flow path 10c and the lower flow path 10e are blocked. In the following description, the state of the three-way valve 40 shown in FIGS. 4 to 7 is referred to as a “cut-off state”.

(沸き上げ運転)
次に、このヒートポンプ式給湯機50での運転動作について説明する。まず、沸き上げ運転について説明する。沸き上げ運転とは、冷凍サイクル回路100と給湯水回路200とを動作させ、貯湯タンク9の下部から送水ポンプ8で低温水を流出させて水冷媒熱交換器4に送水し、水冷媒熱交換器4で冷媒と熱交換することにより沸き上げて高温水とし、この高温水を貯湯タンク9の上部に戻す運転動作である。
(Boiling operation)
Next, the operation | movement operation | movement with this heat pump type hot-water supply machine 50 is demonstrated. First, the boiling operation will be described. In the boiling operation, the refrigeration cycle circuit 100 and the hot water supply circuit 200 are operated, the low-temperature water is discharged from the lower part of the hot water storage tank 9 by the water supply pump 8, and is supplied to the water refrigerant heat exchanger 4 for water refrigerant heat exchange. In this operation, heat is exchanged with the refrigerant in the vessel 4 to produce high-temperature water, and this high-temperature water is returned to the upper part of the hot water storage tank 9.

ヒートポンプユニット1の冷凍サイクル回路100において、圧縮機3から吐出された高温高圧のガス冷媒は、水冷媒熱交換器4で給湯水回路200側へ放熱(水を加熱)しながら温度低下する。このとき、高圧側冷媒圧力が臨界圧以上であれば、冷媒は超臨界状態のまま気液相転移しないで温度低下して放熱する。また、高圧側冷媒圧力が臨界圧以下であれば、冷媒は液化しながら放熱する。つまり、冷媒から放熱された熱を負荷側媒体(ここでは、給湯水回路200を流れる水)に与えることで給湯加熱(沸き上げ)を行う。給湯加熱をして水冷媒熱交換器4から流出した高圧低温の冷媒は、膨張弁5を通過する。   In the refrigeration cycle circuit 100 of the heat pump unit 1, the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 decreases in temperature while radiating heat (heats water) to the hot water supply circuit 200 side by the water-refrigerant heat exchanger 4. At this time, if the high-pressure side refrigerant pressure is equal to or higher than the critical pressure, the refrigerant radiates heat by lowering the temperature without undergoing a gas-liquid phase transition in a supercritical state. If the high-pressure side refrigerant pressure is equal to or lower than the critical pressure, the refrigerant radiates heat while liquefying. That is, hot water supply heating (boiling) is performed by applying heat radiated from the refrigerant to the load-side medium (here, water flowing through the hot water supply water circuit 200). The high-pressure and low-temperature refrigerant flowing out of the water-refrigerant heat exchanger 4 through hot water heating passes through the expansion valve 5.

膨張弁5を通過した冷媒は、ここで低圧気液二相の状態に減圧される。膨張弁5を通過した冷媒は、蒸発器6に流入し、そこで外気空気から吸熱し、蒸発ガス化される。蒸発器6を出た低圧冷媒は、圧縮機3に吸入されて循環し、冷凍サイクルを形成する。   The refrigerant that has passed through the expansion valve 5 is decompressed to a low-pressure gas-liquid two-phase state. The refrigerant that has passed through the expansion valve 5 flows into the evaporator 6, where it absorbs heat from the outside air and is evaporated into gas. The low-pressure refrigerant exiting the evaporator 6 is sucked into the compressor 3 and circulated to form a refrigeration cycle.

また、給湯水回路200側では、貯湯タンク9内の水が、送水ポンプ8により貯湯タンク9の下部から導かれ、往き流路10d、10aを通過して水冷媒熱交換器4内に搬送される。そして、ここで冷媒と熱交換して加熱(沸き上げ)され、戻り流路10b、三方弁40、上部流路10cを通過して貯湯タンク9の上部から貯湯タンク9内に流入する。このような沸き上げ運転を行うことにより、貯湯タンク9の内部には、貯湯タンク9の上部から下部へ向かって順次高温水が貯められていく。   On the hot water supply circuit 200 side, the water in the hot water storage tank 9 is guided from the lower part of the hot water storage tank 9 by the water supply pump 8, passes through the forward flow paths 10 d and 10 a, and is conveyed into the water refrigerant heat exchanger 4. The Then, it is heated (boiling) by exchanging heat with the refrigerant, and flows into the hot water storage tank 9 from the upper part of the hot water storage tank 9 through the return flow path 10b, the three-way valve 40, and the upper flow path 10c. By performing such a boiling operation, high-temperature water is stored in the hot water storage tank 9 sequentially from the upper part to the lower part of the hot water storage tank 9.

(除霜運転)
次に、このヒートポンプ式給湯機50での除霜運転について説明する。除霜運転とは、蒸発器6に付着した霜を、圧縮機3から吐出された高温の冷媒(ホットガス)の熱で溶かすための運転動作である。沸き上げ運転を行う場合、蒸発器6に霜が付着していると、蒸発器6での熱交換が阻害され、加熱能力が低下する。このため、蒸発器6に霜が付着している場合には、沸き上げ運転を一時中断して除霜運転を行い、蒸発器6の霜を除去する。
(Defrosting operation)
Next, the defrosting operation in the heat pump type hot water heater 50 will be described. The defrosting operation is an operation for melting the frost attached to the evaporator 6 with the heat of the high-temperature refrigerant (hot gas) discharged from the compressor 3. When performing the boiling operation, if frost adheres to the evaporator 6, heat exchange in the evaporator 6 is hindered, and the heating capacity is reduced. For this reason, when frost has adhered to the evaporator 6, the boiling operation is temporarily interrupted to perform the defrosting operation, and the frost in the evaporator 6 is removed.

ヒートポンプ式給湯機50における除霜運転時の冷媒の循環経路は、沸き上げ運転時と同じである。すなわち、圧縮機3から吐出された冷媒は、水冷媒熱交換器4および膨張弁5を経由して、蒸発器6に到達する。この除霜運転を効率良く行うためには、圧縮機3から吐出された冷媒(ホットガス)が持つ熱エネルギーを、なるべく給湯水回路200内の水に与えずに、冷媒を高温に維持したまま蒸発器6へ送ることが重要となる。給湯水回路200内の水が循環し、水冷媒熱交換器4内を水が流れていると、水冷媒熱交換器4の内部で熱交換が起き、冷媒(ホットガス)の熱エネルギーが水に奪われてしまう。そこで、従来は、除霜運転時に送水ポンプ8を停止させ、給湯水回路200内の水の循環を停止することとしている。   The refrigerant circulation path during the defrosting operation in the heat pump hot water heater 50 is the same as that during the boiling operation. That is, the refrigerant discharged from the compressor 3 reaches the evaporator 6 via the water refrigerant heat exchanger 4 and the expansion valve 5. In order to efficiently perform this defrosting operation, the heat energy of the refrigerant (hot gas) discharged from the compressor 3 is kept as high as possible without giving the heat energy in the hot water supply circuit 200 as much as possible. It is important to send to the evaporator 6. When water in the hot water supply circuit 200 circulates and water flows in the water-refrigerant heat exchanger 4, heat exchange occurs in the water-refrigerant heat exchanger 4, and the heat energy of the refrigerant (hot gas) is reduced to water. Will be taken away by. Therefore, conventionally, the water pump 8 is stopped during the defrosting operation, and the circulation of water in the hot water supply circuit 200 is stopped.

しかしながら、送水ポンプ8が停止状態であっても、水の温度差による比重差の影響や、設置環境の影響(例えば、ヒートポンプユニット1の設置場所と、貯湯タンクユニット2の設置場所とに高低差がある場合など)によって、給湯水回路200内の水が移動する場合がある。給湯水回路200内の水が移動すると、水冷媒熱交換器4の内部で、冷媒(ホットガス)から水への熱の授受が発生し、冷媒(ホットガス)の熱エネルギーが水に奪われてしまう。その結果、蒸発器6に供給される熱エネルギーが減少し、除霜運転時間が延びたり、除霜運転終了時間内に除霜が完了しない問題が発生する。   However, even when the water pump 8 is in a stopped state, the difference in specific gravity due to the temperature difference of water or the influence of the installation environment (for example, the difference in height between the installation location of the heat pump unit 1 and the installation location of the hot water storage tank unit 2) In some cases, the water in the hot water supply circuit 200 may move. When the water in the hot water supply circuit 200 moves, heat is transferred from the refrigerant (hot gas) to the water inside the water-refrigerant heat exchanger 4, and the heat energy of the refrigerant (hot gas) is taken away by the water. End up. As a result, the heat energy supplied to the evaporator 6 decreases, and the problem that the defrosting operation time is extended or the defrosting is not completed within the defrosting operation end time occurs.

そこで、本実施形態では、除霜運転時に、三方弁40を遮断状態(図4乃至図7に示す状態の何れか)に切り替えると共に、送水ポンプ8を微速(例えば最低回転数)で駆動することとした。三方弁40を遮断状態とすることにより、戻り流路10bが遮断されるので、水冷媒熱交換器4内の水が戻り流路10bへ流出することが確実に阻止される。また、送水ポンプ8を微速駆動することにより、水冷媒熱交換器4内の水が往き流路10a側(送水ポンプ8側)に逆流することが確実に阻止される。したがって、水冷媒熱交換器4内の水は、戻り流路10b側にも往き流路10a側にも流れることがなく、完全に停止する。このため、水冷媒熱交換器4の内部で冷媒(ホットガス)から水への熱の移動が生ずることが確実に防止され、冷媒を高温に確実に維持したまま蒸発器6へ送ることが可能となる。よって、効率良く迅速に除霜することができる。   Therefore, in the present embodiment, during the defrosting operation, the three-way valve 40 is switched to the shut-off state (any of the states shown in FIGS. 4 to 7), and the water pump 8 is driven at a very low speed (for example, the minimum rotation speed). It was. By setting the three-way valve 40 to the shut-off state, the return flow path 10b is cut off, so that the water in the water-refrigerant heat exchanger 4 is reliably prevented from flowing out to the return flow path 10b. Further, by driving the water pump 8 at a slow speed, it is reliably prevented that the water in the water-refrigerant heat exchanger 4 flows backward to the forward flow path 10a side (the water pump 8 side). Therefore, the water in the water-refrigerant heat exchanger 4 does not flow into the return flow path 10b side or the forward flow path 10a side, and stops completely. For this reason, heat transfer from the refrigerant (hot gas) to water is reliably prevented inside the water refrigerant heat exchanger 4, and the refrigerant can be sent to the evaporator 6 while being reliably maintained at a high temperature. It becomes. Therefore, it can defrost efficiently and rapidly.

また、本実施形態では、除霜運転時に三方弁40を遮断状態とすることにより、戻り流路10bだけでなく、上部流路10cおよび下部流路10eも同時に遮断される。このため、給湯水回路200内の水の移動をより確実に阻止することができ、水冷媒熱交換器4の内部で熱交換が生ずることをより確実に防止することができる。   Moreover, in this embodiment, not only the return flow path 10b but the upper flow path 10c and the lower flow path 10e are simultaneously cut off by setting the three-way valve 40 to the cut-off state during the defrosting operation. For this reason, the movement of the water in the hot water supply circuit 200 can be more reliably prevented, and the occurrence of heat exchange within the water refrigerant heat exchanger 4 can be more reliably prevented.

更に、本実施形態のヒートポンプ式給湯機50では、除霜運転のために新たな構成(バイパス通路、電磁弁など)を冷凍サイクル回路100に追加する必要がないので、コスト低減が図れる。また、冷凍サイクル回路100が複雑化することがないので、高い信頼性が得られる。また、沸き上げ運転から除霜運転に切り替わった際に、冷媒の循環経路が変わることがないので、冷媒の音や電磁弁の作動音などの発生を抑制することができる。   Furthermore, in the heat pump type water heater 50 of the present embodiment, it is not necessary to add a new configuration (bypass passage, electromagnetic valve, etc.) to the refrigeration cycle circuit 100 for the defrosting operation, so that the cost can be reduced. Further, since the refrigeration cycle circuit 100 is not complicated, high reliability can be obtained. In addition, since the refrigerant circulation path does not change when the heating operation is switched to the defrosting operation, it is possible to suppress the generation of the sound of the refrigerant, the operation sound of the electromagnetic valve, and the like.

なお、ヒートポンプ式給湯機50では、除霜運転が終了して沸き上げ運転を再開する場合、水冷媒熱交換器4の内部に残っている熱エネルギー(顕熱)を沸き上げに有効に利用するために、次のような順序で制御することが望ましい。
(1)三方弁40を、戻り流路10bを上部流路10cに連通させる状態に切り替える。
(2)送水ポンプ8の回転数を上昇させる。このとき、水冷媒熱交換器4から出る高温水の温度を温度センサ(図示せず)で検出し、水冷媒熱交換器4から出る高温水の温度が所定の沸き上げ温度となるように、送水ポンプ8の回転数を制御する。
(3)ファン7を動作させ、圧縮機3の回転数を調整する。
In the heat pump type hot water heater 50, when the defrosting operation is completed and the boiling operation is restarted, the heat energy (sensible heat) remaining in the water refrigerant heat exchanger 4 is effectively used for boiling. Therefore, it is desirable to control in the following order.
(1) The three-way valve 40 is switched to a state where the return flow path 10b communicates with the upper flow path 10c.
(2) The rotational speed of the water pump 8 is increased. At this time, the temperature sensor (not shown) detects the temperature of the high-temperature water coming out of the water-refrigerant heat exchanger 4, and the temperature of the high-temperature water coming out of the water-refrigerant heat exchanger 4 becomes a predetermined boiling temperature. The rotation speed of the water pump 8 is controlled.
(3) The fan 7 is operated to adjust the rotational speed of the compressor 3.

上記の順序で制御を行って沸き上げ運転を再開することにより、水冷媒熱交換器4に残っている除霜運転での熱を確実に回収し、貯湯タンク9に蓄熱することができる。これにより、エネルギー効率が向上するとともに、加熱に必要な圧縮機3や膨張弁5の調整にかかる時間を短縮することが可能となり、送水ポンプ8の回転数を早く増速させることも可能となる。このため、沸き上げ運転を早期に再開することが可能となる。   By performing the control in the above order and restarting the boiling operation, the heat in the defrosting operation remaining in the water-refrigerant heat exchanger 4 can be reliably recovered and stored in the hot water storage tank 9. As a result, the energy efficiency is improved, the time required for adjusting the compressor 3 and the expansion valve 5 necessary for heating can be shortened, and the rotational speed of the water supply pump 8 can be increased quickly. . For this reason, it becomes possible to restart boiling operation at an early stage.

1 ヒートポンプユニット
2 貯湯タンクユニット
3 圧縮機
4 水冷媒熱交換器
5 膨張弁
6 蒸発器
7 ファン
8 送水ポンプ
9 貯湯タンク
10a 往き流路
10b 戻り流路
10c 上部流路
10e 下部流路
11 制御装置
13 システム制御装置
15 弁体
40 三方弁
50 ヒートポンプ式給湯機
100 冷凍サイクル回路
200 給湯水回路
DESCRIPTION OF SYMBOLS 1 Heat pump unit 2 Hot water storage tank unit 3 Compressor 4 Water refrigerant | coolant heat exchanger 5 Expansion valve 6 Evaporator 7 Fan 8 Water supply pump 9 Hot water storage tank 10a Outward flow path 10b Return flow path 10c Upper flow path 10e Lower flow path 11 Control apparatus 13 System control device 15 Valve body 40 Three-way valve 50 Heat pump water heater 100 Refrigeration cycle circuit 200 Hot water supply circuit

Claims (3)

冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された冷媒によって水を加熱するための水冷媒熱交換器と、膨張弁と、蒸発器とがこの順に冷媒流路で接続された冷凍サイクル回路と、
貯湯タンクと、前記貯湯タンクの下部から取り出された水を前記水冷媒熱交換器に送る流路の途中に設けられた送水ポンプと、三方弁と、前記水冷媒熱交換器の水の出口と前記三方弁とを接続する戻り流路と、前記三方弁と前記貯湯タンクの上部とを接続する上部流路と、前記三方弁と前記貯湯タンクの下部とを接続する下部流路とを有する給湯水回路と、
前記冷凍サイクル回路および前記給湯水回路を制御する制御手段とを備え、
前記三方弁は、前記戻り流路を前記上部流路に連通させる状態と、前記戻り流路を前記下部流路に連通させる状態と、前記戻り流路を遮断する状態とに切り替え可能であり、
前記制御手段は、前記蒸発器の除霜を行うための除霜運転時に、前記戻り流路を遮断する状態に前記三方弁を切り替えるとともに前記送水ポンプを微速で駆動することを特徴とするヒートポンプ式給湯機。
A refrigeration cycle circuit in which a compressor for compressing refrigerant, a water refrigerant heat exchanger for heating water by the refrigerant compressed by the compressor, an expansion valve, and an evaporator are connected in this order through a refrigerant flow path When,
A hot water storage tank, a water supply pump provided in the middle of a flow path for sending water taken from a lower part of the hot water storage tank to the water refrigerant heat exchanger, a three-way valve, and an outlet of water of the water refrigerant heat exchanger A hot water supply having a return flow path connecting the three-way valve, an upper flow path connecting the three-way valve and the upper part of the hot water storage tank, and a lower flow path connecting the three-way valve and the lower part of the hot water storage tank Water circuit,
Control means for controlling the refrigeration cycle circuit and the hot water supply circuit,
The three-way valve can be switched between a state in which the return channel communicates with the upper channel, a state in which the return channel communicates with the lower channel, and a state in which the return channel is blocked.
In the defrosting operation for defrosting the evaporator, the control means switches the three-way valve to shut off the return flow path and drives the water pump at a slow speed. Water heater.
前記三方弁は、前記戻り流路、前記上部流路、および前記下部流路をそれぞれ遮断する状態に切り替え可能であり、
前記制御手段は、前記除霜運転時に、前記戻り流路、前記上部流路、および前記下部流路をそれぞれ遮断する状態に前記三方弁を切り替えることを特徴とする請求項1記載のヒートポンプ式給湯機。
The three-way valve can be switched to a state of blocking the return channel, the upper channel, and the lower channel,
2. The heat pump hot water supply according to claim 1, wherein the control means switches the three-way valve to a state in which the return flow path, the upper flow path, and the lower flow path are each blocked during the defrosting operation. Machine.
前記制御手段は、前記除霜運転を終了して沸き上げ運転を再開する場合に、前記戻り流路を前記上部流路に連通させる状態に前記三方弁を切り替えた後、前記送水ポンプの回転数を上昇させ、その後、前記圧縮機の回転数を調整することを特徴とする請求項1または2に記載のヒートポンプ式給湯機。   When the control means ends the defrosting operation and restarts the boiling operation, the control means switches the three-way valve to a state in which the return flow path communicates with the upper flow path, and then the number of rotations of the water pump The heat pump type hot water heater according to claim 1 or 2, wherein the number of revolutions of the compressor is adjusted after that.
JP2010146225A 2010-06-28 2010-06-28 Heat pump water heater Pending JP2012007858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010146225A JP2012007858A (en) 2010-06-28 2010-06-28 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010146225A JP2012007858A (en) 2010-06-28 2010-06-28 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2012007858A true JP2012007858A (en) 2012-01-12

Family

ID=45538608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010146225A Pending JP2012007858A (en) 2010-06-28 2010-06-28 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2012007858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148266A (en) * 2012-01-19 2013-08-01 Mitsubishi Electric Corp Heat pump system and control method of heat pump system
JP2018004188A (en) * 2016-07-05 2018-01-11 株式会社コロナ Hot water heating system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233596A (en) * 2004-01-23 2005-09-02 Denso Corp Heat pump hot-water supply device
JP2008241173A (en) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd Heat pump water heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233596A (en) * 2004-01-23 2005-09-02 Denso Corp Heat pump hot-water supply device
JP2008241173A (en) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd Heat pump water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148266A (en) * 2012-01-19 2013-08-01 Mitsubishi Electric Corp Heat pump system and control method of heat pump system
JP2018004188A (en) * 2016-07-05 2018-01-11 株式会社コロナ Hot water heating system

Similar Documents

Publication Publication Date Title
JP5929450B2 (en) Refrigeration cycle equipment
KR100859245B1 (en) Heat pump hot water supply floor heating apparatus
US7856835B2 (en) Hot water supply apparatus
JP6398324B2 (en) Heat pump water heater
JP2008241173A (en) Heat pump water heater
WO2014155993A1 (en) Hot-water supply device
JP2004218944A (en) Heat pump air conditioning and water heater
JP5159719B2 (en) Heat pump water heater
JP2011214736A (en) Heat pump type hot water supply device and method of controlling the same
JP5515568B2 (en) Heat pump cycle equipment
JP2012172869A (en) Heat pump device
JP2010084975A (en) Heating device
JP5573370B2 (en) Refrigeration cycle apparatus and control method thereof
JP2012007851A (en) Heat pump cycle device
JP6438765B2 (en) Thermal equipment
JP2011257098A (en) Heat pump cycle device
JP5194492B2 (en) Heat pump water heater
JP2012007858A (en) Heat pump water heater
JP5596587B2 (en) Hot water heater
JP2006003077A (en) Heat pump type hot water supply apparatus
JP2009109069A (en) Heat pump water heater
JP6359398B2 (en) Combined heat source heat pump device
JP2009085476A (en) Heat pump water heater
JP2017187249A (en) Composite heat source heat pump device
JP5741256B2 (en) Hot water storage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603