JP2012006814A - Method of producing sulfur solidified body - Google Patents

Method of producing sulfur solidified body Download PDF

Info

Publication number
JP2012006814A
JP2012006814A JP2010146774A JP2010146774A JP2012006814A JP 2012006814 A JP2012006814 A JP 2012006814A JP 2010146774 A JP2010146774 A JP 2010146774A JP 2010146774 A JP2010146774 A JP 2010146774A JP 2012006814 A JP2012006814 A JP 2012006814A
Authority
JP
Japan
Prior art keywords
sulfur
aggregate
extruder
mixing
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010146774A
Other languages
Japanese (ja)
Inventor
Yuichi Fukuda
裕一 福田
Teruaki Samejima
輝明 鮫島
Takao Nagai
孝夫 永井
Masahiro Uno
正宏 宇野
Kenji Yano
憲二 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON SUSTAINA KK
Original Assignee
NIHON SUSTAINA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON SUSTAINA KK filed Critical NIHON SUSTAINA KK
Priority to JP2010146774A priority Critical patent/JP2012006814A/en
Publication of JP2012006814A publication Critical patent/JP2012006814A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing sulfur solidified bodies capable of continuously producing sulfur solidified bodies of high strength and of certainly controlling elution of harmful substances.SOLUTION: The method of producing sulfur solidified bodies includes: a mixing step of mixing incinerated ash, fine and coarse aggregates into molten sulfur; and a pressing step of heating and kneading the mixture produced in the mixing step and pressing it in an extruder 50. In the mixing step, the incinerated ash, fine and coarse aggregates are separately mixed to the molten sulfur and then the mixture is supplied to the extruder 50.

Description

本発明は、硫黄固化体の製造方法に関する。   The present invention relates to a method for producing a sulfur solidified body.

溶融硫黄に骨材等を混合しこれを冷却固化して得られる硫黄固化体は硫黄コンクリートとも呼ばれており、セメントコンクリートに比べて強度、耐酸性、耐腐食性、封鎖性等の面で優れることから、港湾土木用、水産用、建築用等の各種構造物に利用されつつある。硫黄固化体の製造方法としては、例えば、特許文献1に開示されたものが知られている。特許文献1に開示された硫黄固化体の製造方法は、溶融硫黄に改質剤を混合して得られた改質硫黄に、石炭灰や珪砂等の微細粉を混合して中間資材を生成し、この中間資材を天然石や鉄鋼スラグ等の骨材と混合して硫黄含有資材を生成する。そして、この硫黄含有資材をホッパーに投入し、シリンダを介して型枠内に押し出した後、型枠内の硫黄含有資材を徐冷することにより、硫黄固化体を取り出すことができる。   Sulfur solidified material obtained by mixing aggregate with molten sulfur and cooling and solidifying this is also called sulfur concrete, and it is superior in terms of strength, acid resistance, corrosion resistance, sealing properties, etc. compared to cement concrete. For this reason, it is being used for various structures such as harbor civil engineering, fisheries, and architecture. As a manufacturing method of a sulfur solidified body, what was disclosed by patent document 1 is known, for example. In the method for producing a sulfur solidified body disclosed in Patent Document 1, an intermediate material is generated by mixing refined sulfur obtained by mixing a modifier with molten sulfur and fine powder such as coal ash or silica sand. The intermediate material is mixed with an aggregate such as natural stone or steel slag to produce a sulfur-containing material. And after putting this sulfur containing material into a hopper and extruding it in a mold via a cylinder, a sulfur solidified body can be taken out by slowly cooling the sulfur containing material in a mold.

特開2009−227551号公報JP 2009-227551 A

上記従来の硫黄固化体の製造方法によれば、溶融硫黄を微細粉と混合して中間資材を生成する際に、微細粉と溶融硫黄との接触面積が大きいだけでなく、微細粉に含まれる焼却灰の吸水性が高いために、多量の硫黄が消費されるおそれがあった。一方、溶融硫黄の含有割合を増大することは、硫黄固化体の強度低下を招くことから限界があった。このため、中間資材に骨材を混合した際に、中間資材に残留する少量の溶融硫黄を骨材の表面全体に行き渡らせることが困難であり、骨材等に含まれる重金属などの溶出を確実に防止できないという問題があった。特に、硫黄固化体を連続的に製造可能にして製造設備の小型化を図るためには、中間資材と骨材との混合を短時間で均一に行うことが要求されるため、上記の問題がより顕著なものとなっていた。   According to the conventional method for producing a sulfur solidified body, when the molten sulfur is mixed with the fine powder to produce the intermediate material, not only the contact area between the fine powder and the molten sulfur is large, but also contained in the fine powder. Due to the high water absorption of the incinerated ash, a large amount of sulfur may be consumed. On the other hand, increasing the content ratio of molten sulfur has a limit because it causes a decrease in the strength of the solidified sulfur. For this reason, when the aggregate is mixed with the intermediate material, it is difficult to spread a small amount of molten sulfur remaining in the intermediate material over the entire surface of the aggregate, and elution of heavy metals contained in the aggregate is ensured. There was a problem that could not be prevented. In particular, in order to be able to continuously produce a solidified sulfur and to reduce the size of the production equipment, it is required to uniformly mix the intermediate material and the aggregate in a short time. It became more prominent.

そこで、本発明は、高強度の硫黄固化体を連続的に製造できると共に、有害物の溶出を確実に抑制することができる硫黄固化体の製造方法の提供を目的とする。   Then, this invention aims at provision of the manufacturing method of the sulfur solidified body which can manufacture a high intensity | strength sulfur solidified body continuously and can suppress the elution of a harmful substance reliably.

本発明の前記目的は、溶融硫黄を焼却灰、細骨材および粗骨材と混合する混合工程と、前記混合工程で生成された混合物を押出機内で加熱混練して加圧し、圧縮混合物を吐出する圧縮工程とを備え、前記混合工程は、焼却灰、細骨材および粗骨材を個別に溶融硫黄と混合した後に前記押出機に供給することを特徴とする硫黄固化体の製造方法により達成される。   The object of the present invention is to mix molten sulfur with incinerated ash, fine aggregate, and coarse aggregate, and to heat and knead the mixture produced in the mixing process in an extruder, pressurize it, and discharge the compressed mixture The mixing step is achieved by a method for producing a solidified sulfur product, wherein the incinerated ash, fine aggregate and coarse aggregate are individually mixed with molten sulfur and then supplied to the extruder. Is done.

あるいは、本発明の前記目的は、溶融硫黄を焼却灰および骨材と混合する混合工程と、前記混合工程で生成された混合物を押出機内で加熱混練して加圧し、圧縮混合物を吐出する圧縮工程とを備え、前記混合工程は、焼却灰および骨材を個別に溶融硫黄と混合した後に前記押出機に供給することを特徴とする硫黄固化体の製造方法により達成される。   Alternatively, the object of the present invention is to provide a mixing step in which molten sulfur is mixed with incinerated ash and aggregate, and a compression step in which the mixture produced in the mixing step is heated and kneaded in an extruder and pressurized, and a compressed mixture is discharged. The mixing step is achieved by a method for producing a solidified sulfur product, wherein the incinerated ash and aggregate are individually mixed with molten sulfur and then supplied to the extruder.

あるいは、本発明の前記目的は、溶融硫黄を細骨材および粗骨材と混合する混合工程と、前記混合工程で生成された混合物を押出機内で加熱混練して加圧し、圧縮混合物を吐出する圧縮工程とを備え、前記混合工程は、細骨材および粗骨材を個別に溶融硫黄と混合した後に前記押出機に供給することを特徴とする硫黄固化体の製造方法により達成される。   Alternatively, the object of the present invention is to mix a molten sulfur with fine aggregate and coarse aggregate, and to heat and knead the mixture produced in the mixing process in an extruder, pressurize it, and discharge the compressed mixture A compression step, and the mixing step is achieved by a method for producing a sulfur solidified body, wherein the fine aggregate and the coarse aggregate are individually mixed with molten sulfur and then supplied to the extruder.

本発明によれば、高強度の硫黄固化体を連続的に製造できると共に、有害物の溶出を確実に抑制することができる硫黄固化体の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to manufacture a highly strong sulfur solidified body continuously, the manufacturing method of the sulfur solidified body which can suppress the elution of a harmful | toxic substance reliably can be provided.

本発明の一実施形態に係る硫黄固化体の製造方法の全体フロー図である。It is a whole flow figure of the manufacturing method of the sulfur solidification object concerning one embodiment of the present invention. 本発明の硫黄固化体の製造に用いる装置の一例を示す要部側面図である。It is a principal part side view which shows an example of the apparatus used for manufacture of the sulfur solidified body of this invention.

以下、本発明の実施の形態について、添付図面を参照して説明する。図1は、本発明の一実施形態に係る硫黄固化体の製造方法の全体フロー図であり、図2は、硫黄固化体の製造に用いる装置の要部側面図である。本実施形態においては、焼却灰、細骨材および粗骨材を溶融硫黄と混合して硫黄固化体を製造する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is an overall flow diagram of a method for producing a sulfur solidified body according to an embodiment of the present invention, and FIG. 2 is a side view of a main part of an apparatus used for producing the sulfur solidified body. In this embodiment, incinerated ash, fine aggregate and coarse aggregate are mixed with molten sulfur to produce a sulfur solidified body.

図1に示すように、一次保管庫10に貯留された焼却灰は、ベルトコンベア11aにより乾燥機12に搬送された後、ベルトコンベア11bにより焼却灰保管庫13に収容される。焼却灰保管庫13内の焼却灰は、最終的に得られる硫黄固化体から重金属等の有害物質の溶出を確実に防止できるように、乾燥機12により十分乾燥しておくことが好ましく、例えば、含水率を3%以下に維持することが好ましい。焼却灰は、例えば、都市ゴミ、製紙類、下水汚泥等の焼却灰であり、一般廃棄物だけでなく、産業廃棄物も含まれる。また、主灰(ボトムアッシュ)だけでなく、飛灰(フライアッシュ)やこれらの混合物も含まれる。これらの焼却灰は、一般には多孔質であり、比表面積が大きいことから、後述する他の骨材とは区別しておくことが好ましい。   As shown in FIG. 1, the incineration ash stored in the primary storage 10 is conveyed to the dryer 12 by the belt conveyor 11a, and then accommodated in the incineration ash storage 13 by the belt conveyor 11b. The incineration ash in the incineration ash storage 13 is preferably sufficiently dried by the dryer 12 so as to reliably prevent the elution of harmful substances such as heavy metals from the finally obtained sulfur solidified body. It is preferable to maintain the water content at 3% or less. The incineration ash is, for example, incineration ash such as municipal waste, papermaking, sewage sludge, and includes not only general waste but also industrial waste. Further, not only main ash (bottom ash) but also fly ash (fly ash) or a mixture thereof is included. Since these incineration ash is generally porous and has a large specific surface area, it is preferable to distinguish them from other aggregates described later.

細骨材および粗骨材は、それぞれ区別されて細骨材ピット20および粗骨材ピット30に貯留され、タイヤショベル21,31により細骨材保管庫22および粗骨材保管庫32に収容される。細骨材保管庫22および粗骨材保管庫32内の細骨材および粗骨材についても、焼却灰の場合と同様の理由から、低含水率(例えば3%以下)の乾燥状態を維持することが好ましい。   The fine aggregate and the coarse aggregate are distinguished from each other and stored in the fine aggregate pit 20 and the coarse aggregate pit 30, and are stored in the fine aggregate storage 22 and the coarse aggregate storage 32 by the tire excavators 21 and 31, respectively. The The fine aggregate and coarse aggregate in the fine aggregate storage 22 and the coarse aggregate storage 32 are also maintained in a dry state with a low water content (for example, 3% or less) for the same reason as in the case of incinerated ash. It is preferable.

細骨材および粗骨材は、川砂、砕砂、砂利、砕石、粘土、貝殻、ステンレススラグ、鉄鋼スラグ、鋳鉄スラグ、亜鉛スラグ、銅スラグ、焼成スラグ、溶融スラグ、研磨屑、がれき類、各種繊維等の骨材を、粒度によって区別したものである。一般には、5mmふるいを質量で85%以上通り10mmふるいは全て通過する骨材を細骨材とし、5mmふるいを質量で85%以上とどまる骨材を粗骨材としているが、必ずしもこの基準値に限定されるものではなく、含まれる骨材の種類や大きさ等に応じて適宜設定可能である。また、細骨材および粗骨材を粒度で区別する以外に、粒径や比重等、材料の比表面積と相関を有する他の基準で細骨材と粗骨材とを区別してもよい。   Fine and coarse aggregates are river sand, crushed sand, gravel, crushed stone, clay, shells, stainless slag, steel slag, cast iron slag, zinc slag, copper slag, fired slag, molten slag, abrasive scraps, debris, various fibers The aggregates such as are classified according to the particle size. In general, a 5 mm sieve is 85% or more in mass and the 10 mm sieve passes through all aggregates, and 5 mm sieve is 85% or more in aggregate. It is not limited, and can be set as appropriate according to the type and size of aggregates included. In addition to distinguishing fine aggregates and coarse aggregates by particle size, fine aggregates and coarse aggregates may be distinguished by other criteria having a correlation with the specific surface area of the material, such as particle size and specific gravity.

焼却灰保管庫13、細骨材保管庫22および粗骨材保管庫32に収容された焼却灰、細骨材および粗骨材は、それぞれベルトコンベア11c,23,33により、定量フィーダ41,42,43に供給される。各定量フィーダ41,42,43には、溶融硫黄タンク40に加熱状態で貯留された溶融硫黄が、定量ポンプ49により定量供給される。溶融硫黄は、例えば石油精製の副産物として得られる単体硫黄を融点(例えば110〜140℃)に加熱して用いることができる。150℃以上になると溶融硫黄の粘性が発生するので好ましくない。   The incinerated ash, fine aggregate, and coarse aggregate stored in the incinerated ash storage 13, the fine aggregate storage 22, and the coarse aggregate storage 32 are respectively fed to the quantitative feeders 41, 42 by the belt conveyors 11c, 23, 33. , 43. The fixed amount of molten sulfur stored in the molten sulfur tank 40 in a heated state is supplied to each of the quantitative feeders 41, 42, and 43 by a quantitative pump 49. Molten sulfur can be used by heating, for example, simple sulfur obtained as a by-product of petroleum refining to a melting point (for example, 110 to 140 ° C.). If the temperature is 150 ° C. or higher, the viscosity of molten sulfur is not preferable.

定量フィーダ41,42,43は、ホッパー内に投入された材料をスクリュー押し出しによって連続的に定量供給できる公知の構成であり、ホッパー内に垂直に延びる回転軸に設けられた回転羽根により、各材料(焼却灰、細骨材または粗骨材)を溶融硫黄と個別に混合することができる。硫黄の溶融状態を維持できるように、ホッパーの側壁、回転軸、回転羽根には加熱ヒータを設けることが好ましい。定量フィーダ41,42,43から供給される混合物は、図2に示すように、いずれも混合ホッパー46に供給され、混合ホッパー46内で不図示の回転羽根により撹拌されて混合される。   The fixed amount feeders 41, 42, and 43 have a known configuration capable of continuously supplying a fixed amount of material introduced into the hopper by screw extrusion, and each material is provided by a rotary blade provided on a rotary shaft extending vertically in the hopper. (Incinerated ash, fine aggregate or coarse aggregate) can be mixed separately with molten sulfur. It is preferable to provide a heater on the side wall of the hopper, the rotating shaft, and the rotating blade so that the molten state of sulfur can be maintained. As shown in FIG. 2, the mixtures supplied from the quantitative feeders 41, 42, and 43 are all supplied to a mixing hopper 46, and are stirred and mixed by a rotating blade (not shown) in the mixing hopper 46.

定量ポンプ49によって各定量フィーダ41,42,43に供給される溶融硫黄の流量を、各定量フィーダ41,42,43からの混合物の供給量とバランスさせることにより、硫黄の配合割合が略一定である混合物を各定量フィーダ41,42,43から混合ホッパー46に連続的に供給することができる。混合ホッパー46内で混合された混合物中の硫黄の配合割合は、全体に対して15〜35質量%であることが好ましく、19〜30質量%とすることがより好ましい。硫黄の配合割合がこの数値範囲を外れると強度低下を生じ易く、特に硫黄の配合割合が少なすぎると、焼却灰や骨材に含まれる重金属等の溶出を効果的に防止できないおそれがある。   By balancing the flow rate of molten sulfur supplied to each quantitative feeder 41, 42, 43 by the quantitative pump 49 with the supply amount of the mixture from each quantitative feeder 41, 42, 43, the mixing ratio of sulfur is substantially constant. A certain mixture can be continuously fed from each metering feeder 41, 42, 43 to the mixing hopper 46. The mixing ratio of sulfur in the mixture mixed in the mixing hopper 46 is preferably 15 to 35% by mass, and more preferably 19 to 30% by mass with respect to the whole. If the mixing ratio of sulfur is out of this numerical range, the strength tends to decrease. In particular, if the mixing ratio of sulfur is too small, elution of heavy metals contained in incineration ash and aggregates may not be effectively prevented.

各定量フィーダ41,42,43内の混合物における硫黄の配合割合も、上記数値範囲を目安に設定することができるが、各定量フィーダ41,42,43に供給された焼却灰、細骨材および粗骨材は、硫黄の吸収性がそれぞれ異なることを考慮して、硫黄の吸収性が高い材料ほど硫黄の配合割合を高くすることが好ましい。すなわち、焼却灰、細骨材および粗骨材の各硫黄混合物に含まれる硫黄の配合割合は、いずれも同じに設定することも可能であるが、焼却灰の硫黄混合物が最も高く、粗骨材の硫黄混合物が最も低くなるように設定することが好ましい。   The mixing ratio of sulfur in the mixture in each quantitative feeder 41, 42, 43 can also be set with the above numerical range as a guide, but the incinerated ash, fine aggregate and the aggregate supplied to each quantitative feeder 41, 42, 43 In consideration of the fact that the coarse aggregate has different sulfur absorbability, it is preferable that the higher the sulfur absorbability, the higher the sulfur content. That is, the mixing ratio of sulfur contained in each sulfur mixture of incineration ash, fine aggregate and coarse aggregate can be set to the same, but the sulfur mixture of incineration ash is the highest, and coarse aggregate It is preferable to set so that the sulfur mixture becomes the lowest.

本実施形態においては、焼却灰、細骨材および粗骨材をそれぞれ溶融硫黄と混合する定量フィーダ41,42,43とは別に、添加剤保管庫44に貯留された添加剤を定量供給する定量フィーダ45を備えている。添加剤としては、難燃性や耐腐食性等を向上させて改質硫黄を生成するための公知のものを使用することができ、オレフィン系化合物等を例示することができる。定量フィーダ45は、図2には示していないが、各定量フィーダ41,42,43からの混合物と共に、混合ホッパー46に添加剤を定量供給する。混合ホッパー46内で混合された混合物は分配管47に導入され、図1に示すように、複数の押出機50〜54に、それぞれ分配供給される。   In the present embodiment, in addition to the quantitative feeders 41, 42, and 43 that mix incinerated ash, fine aggregate, and coarse aggregate with molten sulfur, quantitative determination is performed to supply the additive stored in the additive storage 44. A feeder 45 is provided. As an additive, the well-known thing for improving a flame retardance, corrosion resistance, etc. and producing | generating a modified sulfur can be used, and an olefin type compound etc. can be illustrated. Although not shown in FIG. 2, the quantitative feeder 45 supplies the additive to the mixing hopper 46 together with the mixture from the quantitative feeders 41, 42, and 43. The mixture mixed in the mixing hopper 46 is introduced into a distribution pipe 47, and is distributed and supplied to a plurality of extruders 50 to 54 as shown in FIG.

各押出機50〜54は、いずれも同様の構成を備えるものであり、図2では、そのうちの1つを示している。図2に示すように、押出機50は、分配管47により分配された混合物が、シューター50aおよびホッパー50bを介して導入されるように配置されている。押出機50は、ホッパー50bから基部側に供給された混合物を、スクリューの回転によって混練しながら先端に向けて搬送し、吐出口50cから押し出すことが可能な公知の構成であり、スクリューは1軸、2軸のいずれであってもよい。押出機50内において混合物を十分に加圧して圧縮できるように、押出機50の吐出圧力を、例えば10〜20MPaに設定することが好ましい。押出機50においても、定量フィーダ41,42,43と同様に硫黄の溶融状態を維持するため、ハウジングやスクリューの加熱を行うことが好ましい。   Each of the extruders 50 to 54 has the same configuration, and FIG. 2 shows one of them. As shown in FIG. 2, the extruder 50 is arrange | positioned so that the mixture distributed by the distribution pipe 47 may be introduce | transduced via the shooter 50a and the hopper 50b. The extruder 50 has a known configuration in which the mixture supplied to the base side from the hopper 50b can be conveyed toward the tip while being kneaded by rotation of the screw, and extruded from the discharge port 50c. Either of two axes may be used. It is preferable to set the discharge pressure of the extruder 50 to, for example, 10 to 20 MPa so that the mixture can be sufficiently pressurized and compressed in the extruder 50. Also in the extruder 50, it is preferable to heat the housing and the screw in order to maintain the molten state of sulfur in the same manner as the quantitative feeders 41, 42, and 43.

各押出機50〜54から供給される混合物は、十分に圧縮された圧縮混合物であり、これらが再び合流して、加熱状態を維持したままスクリューコンベア55により型枠保温台60に向けて搬送される。型枠保温台60には、不図示の型枠が設置される。型枠への圧縮混合物の流し込みは、型枠保温台60により型枠に対して加熱と振動が与えられた状態で行われ、最終的に圧縮混合物を冷却・固化することにより、所望の形状を有する硫黄固化体を製造することができる。こうして得られる硫黄固化体は、護岸用矢板、人工リーフ、消波ブロック、漂砂防止ブロック、地盤強化材等の港湾土木用構造物、漁礁、藻場増殖ブロック、海流調整用山脈ブロック等の水産用構造物、あるいは、下水用施設、下水用ヒューム管、レントゲン室防護壁、放射性廃棄物防護壁等の建築用構造物のように種々の用途に使用することができ、各押出機50〜54の設置台数や能力を適宜調整することにより、硫黄固化体製品の大きさや生産量に対応可能である。   The mixture supplied from each of the extruders 50 to 54 is a compressed mixture that is sufficiently compressed, and these are merged again, and are conveyed toward the mold heat insulation table 60 by the screw conveyor 55 while maintaining the heating state. The A mold frame (not shown) is installed on the mold heat insulation table 60. The compressed mixture is poured into the mold in a state where the mold is heated and vibrated by the mold heat-insulating table 60, and finally the compressed mixture is cooled and solidified to obtain a desired shape. The sulfur solidified body which has can be manufactured. The solidified sulfur obtained in this way is used for marine products such as revetment sheet piles, artificial reefs, wave-dissipating blocks, sand drift prevention blocks, harbor civil engineering structures such as ground reinforcements, fishing reefs, seaweed beds breeding blocks, sea current adjustment mountain blocks, etc. It can be used for various applications such as structures or construction structures such as sewage facilities, sewage fume pipes, X-ray room protection walls, radioactive waste protection walls, etc. By appropriately adjusting the number of installed units and capacity, it is possible to cope with the size and production volume of the sulfur solidified product.

硫黄固化体は、硫黄の特質である低温での固溶体化現象を利用して、溶融硫黄と混合する材料の結晶相に溶融硫黄を十分溶け込ませることにより、重金属等の有害物質の溶出を防止すると共に、高い強度を得ることができるため、材料の固相内の空隙である細孔内部に溶融硫黄を確実に浸入させることが要求される。この場合、溶融硫黄と混合する材料の比表面積のばらつきが大きいと、比表面積が大きい微細な材料や多孔質の材料によって溶融硫黄が消費され易くなる一方、比表面積が小さい材料には溶融硫黄が十分に行き渡らなくなるおそれがあるため、均一な固溶体が得られなくなるおそれがある。   Sulfur solidified material prevents the elution of heavy metals and other harmful substances by fully dissolving molten sulfur in the crystalline phase of the material mixed with molten sulfur by utilizing the solid solution phenomenon at low temperature, which is a characteristic of sulfur. At the same time, since high strength can be obtained, it is required that molten sulfur be surely infiltrated into the pores, which are voids in the solid phase of the material. In this case, if the variation of the specific surface area of the material mixed with the molten sulfur is large, the molten sulfur is easily consumed by a fine material or a porous material having a large specific surface area. Since there is a possibility that it may not be sufficiently distributed, a uniform solid solution may not be obtained.

本実施形態の硫黄固化体の製造方法によれば、各定量フィーダ41,42,43において、溶融硫黄を焼却灰、細骨材および粗骨材と個別に混合して混合物を生成するようにしているので、比表面積が同等である材料毎に溶融硫黄と接触させて、短時間で均一な固溶体化を図ることができる。そして、これらの混合物を各押出機50〜54内で加熱混練して加圧し、圧縮混合物を吐出するようにしているので、溶融硫黄を細孔内部に確実に浸透させることができ、高強度で有害物の溶出を確実に抑制することができる硫黄固化体を連続的に製造することが可能である。   According to the method for producing a sulfur solidified body of the present embodiment, in each quantitative feeder 41, 42, 43, molten sulfur is individually mixed with incineration ash, fine aggregate, and coarse aggregate to generate a mixture. Therefore, each material having the same specific surface area can be brought into contact with molten sulfur to form a uniform solid solution in a short time. And since these mixtures are heated and kneaded in each of the extruders 50 to 54 and pressurized, and the compressed mixture is discharged, the molten sulfur can be surely permeated into the pores, with high strength. It is possible to continuously produce a sulfur solidified body that can reliably suppress the elution of harmful substances.

以上、本発明の一実施形態について詳述したが、本発明の具体的な態様は上記実施形態には限定されない。例えば、本実施形態では、焼却灰、細骨材および粗骨材を各定量フィーダ41,42,43において溶融硫黄と個別に混合した後、それぞれを混合ホッパー46内で合流してから各押出機50〜54に供給しているが、各定量フィーダ41,42,43からそれぞれ押出機に直接供給することも可能であり、各混合物を押出機の内部で混合(混練)するようにしてもよい。   As mentioned above, although one Embodiment of this invention was explained in full detail, the specific aspect of this invention is not limited to the said embodiment. For example, in this embodiment, incineration ash, fine aggregate, and coarse aggregate are individually mixed with molten sulfur in each of the quantitative feeders 41, 42, 43, and then merged in the mixing hopper 46 before each extruder. 50 to 54, but it is also possible to directly supply each of the quantitative feeders 41, 42, 43 to the extruder, and each mixture may be mixed (kneaded) inside the extruder. .

また、本実施形態においては、溶融硫黄と混合する材料を、焼却灰、細骨材および粗骨材としているが、焼却灰を使用せずに、細骨材および粗骨材を個別に溶融硫黄と混合するようにしてもよい。あるいは、細骨材および粗骨材を区別せずに、焼却灰と骨材とを個別に溶融硫黄と混合するようにしてもよい。   In this embodiment, the material mixed with the molten sulfur is incinerated ash, fine aggregate, and coarse aggregate. However, the fine aggregate and coarse aggregate are separately melted sulfur without using the incinerated ash. You may make it mix with. Or you may make it mix incinerated ash and aggregate separately with molten sulfur, without distinguishing a fine aggregate and a coarse aggregate.

13 焼却灰保管庫
22 細骨材保管庫
32 粗骨材保管庫
40 溶融硫黄タンク
41,42, 43 定量フィーダ―
49 定量ポンプ
50 押出機
13 Incinerated Ash Storage 22 Fine Aggregate Storage 32 Coarse Aggregate Storage 40 Molten Sulfur Tank 41, 42, 43 Fixed Feeder
49 Metering pump 50 Extruder

Claims (3)

溶融硫黄を焼却灰、細骨材および粗骨材と混合する混合工程と、
前記混合工程で生成された混合物を押出機内で加熱混練して加圧し、圧縮混合物を吐出する圧縮工程とを備え、
前記混合工程は、焼却灰、細骨材および粗骨材を個別に溶融硫黄と混合した後に前記押出機に供給することを特徴とする硫黄固化体の製造方法。
A mixing step of mixing molten sulfur with incineration ash, fine aggregate and coarse aggregate;
A compression step of heating and kneading and pressurizing the mixture produced in the mixing step in an extruder and discharging the compressed mixture;
In the mixing step, the incinerated ash, fine aggregate, and coarse aggregate are individually mixed with molten sulfur and then supplied to the extruder.
溶融硫黄を焼却灰および骨材と混合する混合工程と、
前記混合工程で生成された混合物を押出機内で加熱混練して加圧し、圧縮混合物を吐出する圧縮工程とを備え、
前記混合工程は、焼却灰および骨材を個別に溶融硫黄と混合した後に前記押出機に供給することを特徴とする硫黄固化体の製造方法。
A mixing step of mixing molten sulfur with incineration ash and aggregate;
A compression step of heating and kneading and pressurizing the mixture produced in the mixing step in an extruder and discharging the compressed mixture;
In the mixing step, the incinerated ash and the aggregate are individually mixed with molten sulfur and then supplied to the extruder.
溶融硫黄を細骨材および粗骨材と混合する混合工程と、
前記混合工程で生成された混合物を押出機内で加熱混練して加圧し、圧縮混合物を吐出する圧縮工程とを備え、
前記混合工程は、細骨材および粗骨材を個別に溶融硫黄と混合した後に前記押出機に供給することを特徴とする硫黄固化体の製造方法。
A mixing step of mixing molten sulfur with fine and coarse aggregates;
A compression step of heating and kneading and pressurizing the mixture produced in the mixing step in an extruder and discharging the compressed mixture;
In the mixing step, the fine aggregate and the coarse aggregate are individually mixed with molten sulfur and then supplied to the extruder.
JP2010146774A 2010-06-28 2010-06-28 Method of producing sulfur solidified body Pending JP2012006814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010146774A JP2012006814A (en) 2010-06-28 2010-06-28 Method of producing sulfur solidified body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010146774A JP2012006814A (en) 2010-06-28 2010-06-28 Method of producing sulfur solidified body

Publications (1)

Publication Number Publication Date
JP2012006814A true JP2012006814A (en) 2012-01-12

Family

ID=45537810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010146774A Pending JP2012006814A (en) 2010-06-28 2010-06-28 Method of producing sulfur solidified body

Country Status (1)

Country Link
JP (1) JP2012006814A (en)

Similar Documents

Publication Publication Date Title
JP2013124212A (en) Method for manufacturing coal ash granulated substance, method for manufacturing concrete product using coal ash granulated substance by the same, high density/high strength concrete product manufactured by those manufacturing methods, method for manufacturing recycled aggregate using the high density/high strength concrete product, and recycled aggregate manufactured by the manufacturing method
CN105948803A (en) Preparing method for aerated concrete products
CN104788063A (en) Unfired and pressing-free sludge brick and preparation method thereof
CN100436358C (en) Sulfur intermediate material, sulfur material and process for producing the same
CN102627468A (en) Waste foundry sand aerated concrete building block and production process thereof
WO2006121166A1 (en) System for production of solid modified sulfur products
CN101045617B (en) Magnesium waste slag building brick and producing method
JP2007015880A (en) Heavy weight aggregate and heavy concrete, and manufacturing method thereof
KR101748813B1 (en) manufacturing method and apparatus of aggregate using waste
CN104402520B (en) A kind of production method of premixing light aggregate concrete heat-insulating material
CN204503257U (en) A kind of manufacture of cement Limestone crushing device
JP4965065B2 (en) Method for producing ground material and method for reusing ground material obtained thereby
JP2012006814A (en) Method of producing sulfur solidified body
WO2014007648A1 (en) Improvements in, or relating to, aggregate materials
JP2010279939A (en) Recycling apparatus and treatment method of sludge
JP2006306679A (en) Method for producing cement-based composition, and cement-based composition
CN107879682A (en) A kind of aerated bricks and its processing method using slag as matrix
CN101229548B (en) Multipurpose utilzation method of town building ruins
JP3086200B2 (en) Solidification and stabilization of molten fly ash
Borowski An Overview of Particle Agglomeration Techniques to Waste Utilization
JP3189755U (en) Stirrer
JP2015100918A (en) Manufacturing method of sulfur solidification body
KR101567759B1 (en) A Method for Treating Organic or Inorganic Sludge
JP4579063B2 (en) Method for producing conglomerate-like artificial rock
KR101400728B1 (en) Sulfur solidified molding fabrication system