JP2012004405A - Cooler and method for manufacturing the same - Google Patents

Cooler and method for manufacturing the same Download PDF

Info

Publication number
JP2012004405A
JP2012004405A JP2010139105A JP2010139105A JP2012004405A JP 2012004405 A JP2012004405 A JP 2012004405A JP 2010139105 A JP2010139105 A JP 2010139105A JP 2010139105 A JP2010139105 A JP 2010139105A JP 2012004405 A JP2012004405 A JP 2012004405A
Authority
JP
Japan
Prior art keywords
cooling
case
cooling fin
wall
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010139105A
Other languages
Japanese (ja)
Inventor
Daisuke Harada
大輔 原田
Kimikazu Obara
公和 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010139105A priority Critical patent/JP2012004405A/en
Publication of JP2012004405A publication Critical patent/JP2012004405A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To provide a cooler that enhances cooling efficiency of a semiconductor module.SOLUTION: A cooler 1 includes a cooling case 3, a cooling fin 5, and a recessed part 6. A flow channel 30 in which a cooling medium 10 flows is included in the cooling case 3 having a mounting surface 31 on which a semiconductor module 2 is mounted on its outer surface. The cooling fin 5 is formed so that it is protruded to the inside of the case from a wall part 4a out of a pair of wall parts 4a, 4b facing each other across the flow channel 30 and being constituted in the cooling case 3. The recessed part 6 is formed on a case inner surface 40 of the wall part 4b. In the cooling case 3, the wall part 4a is constituted as a member separate from other parts. And a tip end portion 50 of the cooling fin 5 is positioned on the recessed part 6.

Description

本発明は、半導体モジュールを冷却するための冷却器と、その製造方法に関する。   The present invention relates to a cooler for cooling a semiconductor module and a manufacturing method thereof.

半導体素子を内蔵した半導体モジュールを冷却するための冷却器として、図16に示すごとく、冷却ケース93を備えたものが従来から知られている(下記特許文献1参照)。この冷却ケース93は、冷媒910が流れる流路930が内部に形成されており、外面に、半導体モジュール92を載置する載置面931を備える。また、冷却ケース93には一対のパイプ911,912が取り付けられている。一方のパイプ911から冷媒910を導入し、他方のパイプ912から導出する。これにより、流路930に冷媒910を流し、半導体モジュール92を冷却している。   As a cooler for cooling a semiconductor module incorporating a semiconductor element, one having a cooling case 93 as shown in FIG. 16 has been conventionally known (see Patent Document 1 below). The cooling case 93 has a flow path 930 through which the coolant 910 flows, and includes a mounting surface 931 on which the semiconductor module 92 is mounted on the outer surface. A pair of pipes 911 and 912 are attached to the cooling case 93. The refrigerant 910 is introduced from one pipe 911 and led out from the other pipe 912. As a result, the coolant 910 is caused to flow through the flow path 930 to cool the semiconductor module 92.

冷却ケース93は、流路930を挟んで相対向する位置に、一対の壁部94a,94bを有する。一対の壁部94a,94bのうち、一方の壁部94aには、ケース内側に突出するようにピン状の冷却フィン95が複数本、形成されている。この冷却フィン95によって、冷媒910との接触面積を増やし、半導体モジュール92の冷却効率を高めている。   The cooling case 93 has a pair of wall portions 94a and 94b at positions facing each other with the flow path 930 in between. Of the pair of wall portions 94a and 94b, a plurality of pin-shaped cooling fins 95 are formed on one wall portion 94a so as to protrude inside the case. The cooling fins 95 increase the contact area with the refrigerant 910 and increase the cooling efficiency of the semiconductor module 92.

特開2007−201181号公報JP 2007-20111 A

しかしながら、冷却器91は、他方の壁部94bが別部材になっており、この他方の壁部94bを組み付けて冷却ケース93を形成している。冷却フィン95の長さには交差があるため、組付時に冷却フィン95の先端部950と他方の壁部94bとが当接することを防止できるよう、これらの間に隙間99を設ける必要がある。   However, in the cooler 91, the other wall portion 94b is a separate member, and the other wall portion 94b is assembled to form the cooling case 93. Since there is an intersection in the length of the cooling fin 95, it is necessary to provide a gap 99 between them in order to prevent the tip portion 950 of the cooling fin 95 and the other wall portion 94b from abutting during assembly. .

このように隙間99を設けると、冷媒910の一部が抵抗の小さい隙間99を流れるため、冷却フィン95の間に流れる冷媒910の量が減少するという問題があった。そのため、半導体モジュール92の冷却効率を充分に高められないという問題があった。   When the gap 99 is provided in this way, a part of the refrigerant 910 flows through the gap 99 having a small resistance, so that the amount of the refrigerant 910 flowing between the cooling fins 95 is reduced. Therefore, there is a problem that the cooling efficiency of the semiconductor module 92 cannot be sufficiently increased.

本発明は、かかる問題点に鑑みてなされたもので、半導体モジュールの冷却効率が高い冷却器と、その製造方法を提供しようとするものである。   The present invention has been made in view of such problems, and an object of the present invention is to provide a cooler with high cooling efficiency of a semiconductor module and a method for manufacturing the same.

本発明は、半導体素子を内蔵した半導体モジュールを冷却するための冷却器であって、
冷媒が流れる流路を内部に有し、上記半導体モジュールを載置する載置面を外面に備えた冷却ケースと、
該冷却ケースを構成し、上記流路を挟んで相対向する一対の壁部のうち、一方の壁部からケース内側に突出するよう形成された冷却フィンと、
上記一対の壁部のうち、他方の壁部のケース内面に形成された凹部とを備え、
上記冷却ケースは、上記一対の壁部のいずれか一方が、他の部分とは別部材として構成されており、
上記冷却フィンの先端部が上記凹部内に位置していることを特徴とする冷却器にある(請求項1)。
The present invention is a cooler for cooling a semiconductor module containing a semiconductor element,
A cooling case having a flow path through which a coolant flows, and a mounting surface on which the semiconductor module is mounted on the outer surface;
A cooling fin formed to protrude from one wall portion to the inside of the case among the pair of wall portions opposed to each other across the flow path;
Of the pair of wall portions, a concave portion formed on the case inner surface of the other wall portion,
In the cooling case, either one of the pair of wall portions is configured as a separate member from the other portions,
The cooling fin has a tip portion located in the recess (claim 1).

本発明の作用効果について説明する。本発明では、上記一方の壁部に冷却フィンを形成し、上記他方の壁部に凹部を形成した。そして、冷却フィンの先端部が凹部内に位置するよう構成した。
このようにすると、他方の壁部のケース内面と、冷却フィンの先端部との間に隙間ができなくなる。そのため、冷却フィンの先端部の先端側における、ケース内面に沿った方向への直線的な冷媒の流れを防ぐことができる。これにより、冷却フィンの間を通る冷媒の量を増やすことができ、半導体モジュールの冷却効率を高めることが可能になる。
The function and effect of the present invention will be described. In the present invention, the cooling fin is formed on the one wall portion, and the concave portion is formed on the other wall portion. And it comprised so that the front-end | tip part of a cooling fin might be located in a recessed part.
If it does in this way, a crevice will not be made between the case inner surface of the other wall part, and the tip part of a cooling fin. Therefore, it is possible to prevent the flow of the linear refrigerant in the direction along the inner surface of the case at the front end side of the front end portion of the cooling fin. Thereby, the quantity of the refrigerant | coolant which passes between cooling fins can be increased, and it becomes possible to improve the cooling efficiency of a semiconductor module.

以上のごとく、本発明によれば、半導体モジュールの冷却効率が高い冷却器を提供することができる。   As described above, according to the present invention, a cooler with high cooling efficiency of a semiconductor module can be provided.

実施例1における、冷却器の分解斜視図。FIG. 3 is an exploded perspective view of the cooler in the first embodiment. 半導体モジュールと共に描いた、図1のA−A断面図。The AA sectional view of Drawing 1 drawn with the semiconductor module. 実施例1における、冷却フィンとしてストレートフィンを用いた、一方の壁部の斜視図。The perspective view of one wall part which used the straight fin as a cooling fin in Example 1. FIG. 実施例1における、冷却フィンとしてオフセットフィンを用いた、一方の壁部の斜視図。The perspective view of one wall part which used the offset fin as a cooling fin in Example 1. FIG. 実施例1における、他方の壁部を別部材とした冷却器の断面図。Sectional drawing of the cooler which used the other wall part in Example 1 as another member. 実施例2における、冷却器の分解断面図。FIG. 6 is an exploded cross-sectional view of a cooler in Embodiment 2. 実施例2における、組み立てた状態の冷却器の断面図。Sectional drawing of the cooler of the assembled state in Example 2. FIG. 実施例3における、冷却器の製造方法説明図。Explanatory drawing of the manufacturing method of the cooler in Example 3. FIG. 実施例4における、冷却器の分解断面図。FIG. 6 is an exploded cross-sectional view of a cooler in Embodiment 4. 図9の要部拡大図。The principal part enlarged view of FIG. 図10に続く図。The figure following FIG. 実施例5における、冷却器の分解断面図。FIG. 6 is an exploded cross-sectional view of a cooler in Embodiment 5. 実施例6における、冷却器の分解断面図。FIG. 10 is an exploded cross-sectional view of a cooler in Example 6. 実施例7における、冷却器の製造方法を表した要部拡大断面図。The principal part expanded sectional view showing the manufacturing method of the cooler in Example 7. FIG. 図14に続く図。The figure following FIG. 従来例における、冷却器の分解断面図。The exploded sectional view of the cooler in the conventional example.

上述した本発明における好ましい実施の形態につき説明する。
本発明において、上記冷却フィンの先端部は、先端側が尖ったテーパ状に形成されていることが好ましい(請求項2)。
このようにすると、冷却フィンの先端部を凹部に挿入しやすくなる。すなわち、冷却ケースを製造する際には、例えば、冷却フィンを設けた一方の壁部を上記他の部分に組み合わせる必要があるが、この際、冷却フィンと凹部とが位置ずれする場合が有り得る。この場合、冷却フィンの先端部を平坦状にしておくと、該先端部が他方の壁部のケース内面に当接し、先端部が凹部にスムーズに入らないことがある。しかしながら、上述のように、冷却フィンの先端部をテーパ状にすれば、冷却フィンと凹部とが多少位置ずれした場合でも、テーパ状になった先端部を凹部の開口縁に当接させることができる。この状態で冷却フィンを凹部側へ押し込めば、テーパ状の先端部を開口縁において摺動させることができ、該先端部をスムーズに凹部に挿入することができる。
また、後述するように、樹脂を使って凹部を予め充填しておき、この樹脂に対して冷却フィンの先端部を突き刺すこともできるが、この場合、先端部をテーパ状にしておくと、先端部を樹脂に容易に突き刺すことが可能になる。
A preferred embodiment of the present invention described above will be described.
In this invention, it is preferable that the front-end | tip part of the said cooling fin is formed in the taper shape with which the front end side was pointed (Claim 2).
If it does in this way, it will become easy to insert the tip part of a cooling fin in a crevice. That is, when manufacturing the cooling case, for example, it is necessary to combine the one wall portion provided with the cooling fin with the other portion. In this case, the cooling fin and the recess may be misaligned. In this case, if the front end portion of the cooling fin is made flat, the front end portion may come into contact with the case inner surface of the other wall portion, and the front end portion may not enter the recess smoothly. However, as described above, if the tip of the cooling fin is tapered, the tapered tip can be brought into contact with the opening edge of the recess even when the cooling fin and the recess are slightly displaced. it can. If the cooling fin is pushed into the recess in this state, the tapered tip can be slid at the opening edge, and the tip can be smoothly inserted into the recess.
In addition, as will be described later, it is possible to pre-fill the concave portion using a resin and pierce the tip of the cooling fin into this resin, but in this case, if the tip is tapered, the tip The part can be easily pierced into the resin.

また、上記凹部は、該凹部の底部から開口部へ向かうほど、上記他方の壁部の上記ケース内面に平行な面における断面形状が次第に大きくなるよう、内面がテーパ状に形成されていることが好ましい(請求項3)。
この場合には、冷却フィンの先端部をテーパ状にした場合と同様に、先端部を凹部に挿入しやすくなる。また、冷却フィンの先端部をテーパ状にし、かつ凹部の内面をテーパ状にすると、先端部を凹部に一層、挿入しやすくなる。
Further, the inner surface of the concave portion may be tapered so that a cross-sectional shape of the other wall portion in a plane parallel to the inner surface of the case gradually increases from the bottom of the concave portion toward the opening. Preferred (claim 3).
In this case, it becomes easy to insert the tip portion into the recess as in the case where the tip portion of the cooling fin is tapered. Further, when the tip of the cooling fin is tapered and the inner surface of the recess is tapered, the tip is more easily inserted into the recess.

また、上記冷却ケースは、上記冷却フィンを形成した上記一方の壁部が上記別部材として構成されており、該一方の壁部と上記半導体モジュールとが一体に形成されていることが好ましい(請求項4)。
この場合には、一方の壁部と半導体モジュールとが一体化されているため、部品点数を減らすことができる。また、冷却ケースの製造工程と、半導体モジュールの取付工程を一度に行うことができ、冷却器の製造工程を簡素化することが可能になる。
In the cooling case, it is preferable that the one wall portion in which the cooling fin is formed is configured as the separate member, and the one wall portion and the semiconductor module are integrally formed. Item 4).
In this case, since one wall part and the semiconductor module are integrated, the number of parts can be reduced. Moreover, the manufacturing process of the cooling case and the mounting process of the semiconductor module can be performed at a time, and the manufacturing process of the cooler can be simplified.

また、上記一方の壁部と上記他方の壁部との間に伸縮可能なフィルムが介在しており、該フィルムは、上記凹部以外の部分において上記他方の壁部のケース内面に密着すると共に、残余の部分が、上記冷却フィンの上記先端部によって上記凹部内に押し込められていることが好ましい(請求項5)。
このようにすると、上記フィルムによって、冷却フィンの先端部よりも先端側を冷媒が通ることを確実に防ぎ、半導体モジュールの冷却効率を一層、高めることが可能になる。
Further, a stretchable film is interposed between the one wall portion and the other wall portion, and the film is in close contact with the case inner surface of the other wall portion in a portion other than the concave portion, It is preferable that the remaining portion is pushed into the recess by the tip portion of the cooling fin.
If it does in this way, it will become possible to prevent further that a refrigerant | coolant passes the front end side rather than the front-end | tip part of a cooling fin by the said film, and to improve the cooling efficiency of a semiconductor module further.

また、上記冷却フィンの先端部と、上記凹部の内面との間に隙間が設けられており、上記冷却フィンよりもヤング率が小さい樹脂が上記隙間に充填されていることが好ましい(請求項6)。
この場合には、上記隙間が樹脂で充填されているため、凹部に入る冷媒の量を一層、少なくすることができる。そのため、冷却フィンの間を通る冷媒の量を増やすことができ、半導体モジュールの冷却効率を更に高めることが可能になる。上記冷却器を製造する際には、例えば、凹部を予め樹脂で充填しておき、冷却ケースを製造する際に、冷却フィンの先端部を樹脂に差し込む。樹脂は冷却フィンよりもヤング率が小さいため、先端部を樹脂に容易に差し込むことができる。
Further, it is preferable that a gap is provided between the tip of the cooling fin and the inner surface of the recess, and the gap is filled with a resin having a Young's modulus smaller than that of the cooling fin. ).
In this case, since the gap is filled with resin, the amount of refrigerant entering the recess can be further reduced. Therefore, the amount of refrigerant passing between the cooling fins can be increased, and the cooling efficiency of the semiconductor module can be further increased. When manufacturing the cooler, for example, the recesses are filled with resin in advance, and when manufacturing the cooling case, the tips of the cooling fins are inserted into the resin. Since the Young's modulus of the resin is smaller than that of the cooling fin, the tip can be easily inserted into the resin.

また、請求項6に記載の冷却器の製造方法においては、上記冷却ケースは、上記一方の壁部が上記別部材として構成されており、上記冷却フィンの先端部に上記樹脂を付着させる付着工程と、上記一方の壁部と上記他の部分とを組み合わせて上記冷却ケースを形成すると共に、上記冷却フィンの先端部を上記凹部に挿入し、上記隙間を上記樹脂で充填する組付工程とを行うことが好ましい(請求項7)。
このようにすると、凹部の内面と先端部との隙間を樹脂で充填した冷却器を、容易に製造することができる。すなわち、凹部を予め樹脂で充填しておき、この樹脂に対して冷却フィンの先端部を差し込むことも可能であるが、この場合、凹部を樹脂で充填するために、他方の壁部のケース内面に樹脂を塗布等する必要がある。そのため、凹部以外の部分にも樹脂が付着するという問題がある。そのため、凹部以外の部分に付着した樹脂を除去する工程が必要になる。しかしながら、冷却フィンの先端部に、ディッピング等で樹脂を付着させておき(付着工程)、この冷却フィンの先端部を凹部に挿入すれば(組付工程)、凹部の周囲に樹脂を付着させることなく、上記隙間を樹脂で充填することが可能になる。そのため、樹脂の除去工程が不要になり、冷却器の製造工程を簡素にすることが可能になる。
Moreover, in the manufacturing method of the cooler according to claim 6, the cooling case is configured such that the one wall portion is configured as the separate member, and the resin is attached to the tip portion of the cooling fin. And combining the one wall portion with the other portion to form the cooling case, inserting the tip end portion of the cooling fin into the recess, and filling the gap with the resin. It is preferable to do this (claim 7).
If it does in this way, the cooler with which the clearance gap between the inner surface of a crevice and a tip part was filled up with resin can be manufactured easily. That is, it is possible to fill the recess with resin in advance and insert the tip of the cooling fin into the resin. In this case, in order to fill the recess with resin, the inner surface of the case on the other wall It is necessary to apply resin to the surface. Therefore, there exists a problem that resin adheres also to parts other than a recessed part. Therefore, the process of removing the resin adhering to parts other than a recessed part is needed. However, if the resin is attached to the tip of the cooling fin by dipping or the like (attachment process), and the tip of the cooling fin is inserted into the recess (assembly process), the resin is attached around the recess. The gap can be filled with resin. This eliminates the need for a resin removal step and simplifies the manufacturing process of the cooler.

(実施例1)
本発明の実施例にかかる冷却器につき、図1〜図5を用いて説明する。
図1、図2に示すごとく、本例の冷却器1は、冷却ケース3と、冷却フィン5と、凹部6とを備える。
冷却ケース3は、冷媒10が流れる流路30を内部に有し、半導体モジュール2を載置する載置面31を外面に備える。
Example 1
A cooler according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the cooler 1 of this example includes a cooling case 3, cooling fins 5, and recesses 6.
The cooling case 3 has a flow path 30 through which the refrigerant 10 flows, and includes a mounting surface 31 on which the semiconductor module 2 is mounted on the outer surface.

冷却ケース3を構成し、流路30を挟んで相対向する一対の壁部4a,4bのうち、一方の壁部4aからケース内側に突出するように、冷却フィン5が形成されている。
また、凹部6は、一対の壁部4a,4bのうち、他方の壁部4bのケース内面40に形成されている。
冷却ケース3は、一方の壁部4aが、他の部分とは別部材として構成されている。
そして、図2に示すごとく、冷却フィン5の先端部50が凹部6内に位置している。
以下、詳説する。
The cooling fins 5 are formed so as to protrude from the one wall portion 4a to the inside of the case among the pair of wall portions 4a and 4b that constitute the cooling case 3 and are opposed to each other with the flow path 30 therebetween.
Moreover, the recessed part 6 is formed in the case inner surface 40 of the other wall part 4b among a pair of wall parts 4a and 4b.
As for the cooling case 3, one wall part 4a is comprised as another member from the other part.
And as shown in FIG. 2, the front-end | tip part 50 of the cooling fin 5 is located in the recessed part 6. As shown in FIG.
The details will be described below.

図1に示すごとく、冷却ケース3は略直方体を呈しており、他方の壁部4bと、側壁41と、上壁42とを備える。他方の壁部4bと、側壁41と、上壁42とは、予め溶接等されて一体化している。また、上壁42には開口部300が形成されている。この開口部300に一方の壁部4aを取り付け、冷却フィン5の先端部50を凹部6に挿入すると共に、開口部300の周囲において、一方の壁部4aを上壁42に溶接する。このようにして、冷却ケース3を製造する。
また、一方の壁部4aの外面は、半導体モジュール2を載置するための載置面31となっている。
As shown in FIG. 1, the cooling case 3 has a substantially rectangular parallelepiped shape, and includes the other wall portion 4 b, a side wall 41, and an upper wall 42. The other wall 4b, the side wall 41, and the upper wall 42 are integrated by welding or the like in advance. An opening 300 is formed in the upper wall 42. One wall 4 a is attached to the opening 300, the tip 50 of the cooling fin 5 is inserted into the recess 6, and one wall 4 a is welded to the upper wall 42 around the opening 300. In this way, the cooling case 3 is manufactured.
Moreover, the outer surface of one wall part 4a becomes the mounting surface 31 for mounting the semiconductor module 2. FIG.

図2に示すごとく、本例では、冷却フィン5の先端部50は、凹部6の底部62に当接していない。先端部50は、凹部6の底部62と、他方の壁部4bのケース内面40との間に位置している。   As shown in FIG. 2, in this example, the tip portion 50 of the cooling fin 5 is not in contact with the bottom portion 62 of the recess 6. The tip 50 is located between the bottom 62 of the recess 6 and the case inner surface 40 of the other wall 4b.

また、側壁41には、一対のパイプ11,12が取り付けられている。図2に示すごとく、一方のパイプ11から冷媒10を導入し、他方のパイプ12から導出する。これにより、流路30に冷媒10を流し、載置面31に載置した半導体モジュール2を冷却している。   A pair of pipes 11 and 12 are attached to the side wall 41. As shown in FIG. 2, the refrigerant 10 is introduced from one pipe 11 and led out from the other pipe 12. Thereby, the refrigerant 10 is caused to flow through the flow path 30, and the semiconductor module 2 placed on the placement surface 31 is cooled.

半導体モジュール2は、放熱板21、ヒートスプレッダ22、半導体素子20、パワー端子23、制御端子24を備え、これらを樹脂製の封止部材25で封止したものである。放熱板21、ヒートスプレッダ22は銅等の金属からなる。半導体モジュール20は、はんだ26aによってヒートスプレッダ22に接続されている。また、一方のパワー端子23aは、ヒートスプレッダ22及びはんだ26aを介して半導体素子20に電気的に接続されている。他方のパワー端子23bは、はんだ26bによって半導体素子20に電気的に接続されている。
半導体素子20は、IGBT素子等のスイッチング素子である。この半導体素子20によって、直流電力と交流電力との間で電力変換を行う電力変換装置を構成している。
The semiconductor module 2 includes a heat radiating plate 21, a heat spreader 22, a semiconductor element 20, a power terminal 23, and a control terminal 24, which are sealed with a resin sealing member 25. The heat sink 21 and the heat spreader 22 are made of metal such as copper. The semiconductor module 20 is connected to the heat spreader 22 by solder 26a. One power terminal 23a is electrically connected to the semiconductor element 20 via the heat spreader 22 and the solder 26a. The other power terminal 23b is electrically connected to the semiconductor element 20 by solder 26b.
The semiconductor element 20 is a switching element such as an IGBT element. The semiconductor element 20 constitutes a power conversion device that performs power conversion between DC power and AC power.

図1、図2に示すごとく、本例の冷却器1では、ピン状の冷却フィン5を用いているが、図3に示すごとく、長方形状の複数の冷却フィン5aを、冷媒10の流れる方向に対して平行に配置したストレートフィンを用いても良い。
また、図4に示すごとく、矩形状の複数の冷却フィン5bを、冷媒10の流れる方向に対して平行に、かつ互い違いに配置したオフセットフィンを用いても良い。
As shown in FIG. 1 and FIG. 2, the cooler 1 of this example uses pin-shaped cooling fins 5, but as shown in FIG. 3, a plurality of rectangular cooling fins 5 a are passed in the direction in which the refrigerant 10 flows. You may use the straight fin arrange | positioned in parallel with respect to.
Further, as shown in FIG. 4, offset fins in which a plurality of rectangular cooling fins 5 b are alternately arranged in parallel to the direction in which the refrigerant 10 flows may be used.

また、図1、図2に示すごとく、本例の冷却ケース3は、冷却フィン5を設けた一方の壁部4aを、他の部分(他方の壁部4b、側壁41、上壁42)とは別部材として構成したが、図5に示すごとく、他方の壁部4bを別部材としてもよい。   As shown in FIGS. 1 and 2, the cooling case 3 of this example includes one wall portion 4 a provided with the cooling fins 5, the other portion (the other wall portion 4 b, the side wall 41, the upper wall 42). However, as shown in FIG. 5, the other wall 4b may be a separate member.

本例の作用効果について説明する。本例では、図1、図2に示すごとく、一方の壁部4aに冷却フィン5を形成し、他方の壁部4bに凹部6を形成した。そして、冷却フィン5の先端部50が凹部6内に位置するよう構成した。
このようにすると、他方の壁部4bのケース内面40と、冷却フィン5の先端部50との間に隙間(図16参照)ができなくなる。そのため、冷却フィン5の先端部50の先端側における、ケース内面40に沿った方向への直線的な冷媒10の流れを防ぐことが可能になる。これにより、冷却フィン5の間を通る冷媒10の量を増やすことができ、半導体モジュール2の冷却効率を高めることが可能になる。
The effect of this example will be described. In this example, as shown in FIGS. 1 and 2, the cooling fins 5 are formed on one wall 4a, and the recess 6 is formed on the other wall 4b. And the front-end | tip part 50 of the cooling fin 5 was comprised so that it might be located in the recessed part 6. FIG.
If it does in this way, a crevice (refer to Drawing 16) will become impossible between case inner surface 40 of the other wall 4b, and tip part 50 of cooling fin 5. Therefore, it is possible to prevent the flow of the linear refrigerant 10 in the direction along the case inner surface 40 at the front end side of the front end portion 50 of the cooling fin 5. Thereby, the quantity of the refrigerant | coolant 10 which passes between the cooling fins 5 can be increased, and it becomes possible to improve the cooling efficiency of the semiconductor module 2. FIG.

以上のごとく、本例によれば、半導体モジュールの冷却効率が高い冷却器を提供することができる。   As described above, according to this example, a cooler with high cooling efficiency of a semiconductor module can be provided.

(実施例2)
本例は、図7に示すごとく、冷却フィン5の先端部50と、凹部6の内面との間の隙間60を、冷却フィン5よりもヤング率が小さい樹脂7で充填した例である。
この冷却器1は、例えば図6に示すごとく、凹部6を予め樹脂7で充填しておき、一方の壁部4aを上壁42に取り付けると共に、冷却フィン5の先端50を樹脂7に差し込むことにより製造する。
その他、実施例1と同様の構成を備える。
(Example 2)
In this example, as shown in FIG. 7, the gap 60 between the tip 50 of the cooling fin 5 and the inner surface of the recess 6 is filled with a resin 7 having a Young's modulus smaller than that of the cooling fin 5.
For example, as shown in FIG. 6, the cooler 1 is configured such that the recess 6 is filled with the resin 7 in advance, one wall portion 4 a is attached to the upper wall 42, and the tips 50 of the cooling fins 5 are inserted into the resin 7. Manufactured by.
In addition, the same configuration as that of the first embodiment is provided.

本例の作用効果について説明する。上述のようにすると、隙間60が樹脂7で充填されているため、凹部6に入る冷媒10の量を少なくすることができる。そのため、冷却フィン5の間を通る冷媒10の量を増やすことができ、半導体モジュール2の冷却効率を高めることが可能になる。
その他、実施例1と同様の作用効果を備える。
(実施例3)
本例は、実施例2に示した冷却器1の製造方法を変更した例である。図8に示すごとく、本例では、冷却ケース3は、一方の壁部4aが上記別部材として構成されている。そして、冷却フィン5の先端部50に樹脂7を付着させる付着工程と、一方の壁部4aと他の部分とを組み合わせて冷却ケース3を形成すると共に、冷却フィン5の先端部50を凹部6に挿入し、隙間60を樹脂7で充填する組付工程とを行う。
その他、実施例2と同様の構成を備える。
The effect of this example will be described. If it carries out as mentioned above, since the clearance gap 60 is filled with the resin 7, the quantity of the refrigerant | coolant 10 which enters the recessed part 6 can be decreased. Therefore, the amount of the refrigerant 10 that passes between the cooling fins 5 can be increased, and the cooling efficiency of the semiconductor module 2 can be increased.
In addition, the same functions and effects as those of the first embodiment are provided.
(Example 3)
This example is an example in which the manufacturing method of the cooler 1 shown in the second embodiment is changed. As shown in FIG. 8, in this example, the cooling case 3 has one wall portion 4a configured as the separate member. Then, the attachment step of attaching the resin 7 to the tip 50 of the cooling fin 5 and the one wall 4a and the other part are combined to form the cooling case 3, and the tip 50 of the cooling fin 5 is formed into the recess 6 And an assembling step of filling the gap 60 with the resin 7.
In addition, the same configuration as that of the second embodiment is provided.

本例の作用効果について説明する。上記方法によると、凹部6の内面と先端部50との隙間60を樹脂7で充填した冷却器1を、容易に製造することができる。すなわち、図6,図7に示すごとく、凹部6を予め樹脂7で充填しておき、この樹脂7に対して冷却フィン5の先端部50を差し込むことも可能であるが、凹部6を樹脂7で充填するためには、他方の壁部4bのケース内面40に樹脂7を塗布等する必要がある。そのため、凹部6以外の部分にも樹脂7が付着するという問題がある。そのため、この樹脂7を除去する工程が必要になる。しかしながら、図8に示すごとく、冷却フィン5の先端部50に、ディッピング等で樹脂7を付着させておき(付着工程)、この冷却フィン5の先端部50を凹部6に挿入すれば(組付工程)、凹部6の周囲に樹脂7を付着させることなく、隙間60を樹脂7で充填することが可能になる。そのため、樹脂7の除去工程が不要になり、冷却器1の製造工程を簡素にすることが可能になる。
その他、実施例2と同様の作用効果を備える。
The effect of this example will be described. According to the above method, the cooler 1 in which the gap 60 between the inner surface of the recess 6 and the tip 50 is filled with the resin 7 can be easily manufactured. That is, as shown in FIGS. 6 and 7, it is possible to fill the recess 6 with the resin 7 in advance and insert the tip 50 of the cooling fin 5 into the resin 7. Therefore, it is necessary to apply the resin 7 to the case inner surface 40 of the other wall 4b. Therefore, there is a problem that the resin 7 adheres to portions other than the recess 6. Therefore, a step for removing the resin 7 is necessary. However, as shown in FIG. 8, if the resin 7 is attached to the tip 50 of the cooling fin 5 by dipping or the like (attachment process), and the tip 50 of the cooling fin 5 is inserted into the recess 6 (assembly) Step), the gap 60 can be filled with the resin 7 without adhering the resin 7 around the recess 6. Therefore, the removal process of the resin 7 becomes unnecessary, and the manufacturing process of the cooler 1 can be simplified.
In addition, the same functions and effects as those of the second embodiment are provided.

(実施例4)
本例は、冷却フィン5の先端部5の形状を変更した例である。図9に示すごとく、本例では、冷却フィン5の先端部50は、先端側が尖ったテーパ状に形成されている。
その他、実施例1と同様の構成を備える。
Example 4
In this example, the shape of the tip portion 5 of the cooling fin 5 is changed. As shown in FIG. 9, in this example, the front end portions 50 of the cooling fins 5 are formed in a tapered shape with a sharp front end side.
In addition, the same configuration as that of the first embodiment is provided.

本例の作用効果について説明する。上述のようにすると、冷却フィン5の先端部50を凹部6に挿入しやすくなる。すなわち、冷却ケース3を製造する際には、例えば、冷却フィン5を設けた一方の壁部4aを他の部分に組み合わせる必要があるが、この際、冷却フィン5と凹部6とが位置ずれする場合が有り得る。この場合、冷却フィン5の先端部50を平坦状にしておくと、先端部50が他方の壁部4bのケース内面40に当接し、先端部50が凹部6にスムーズに入らないことがある。しかしながら、上述のように、冷却フィン5の先端部50をテーパ状にすれば、冷却フィン5と凹部6とが多少位置ずれした場合でも、図10,図11に示すごとく、テーパ状になった先端部50を凹部6の開口縁600に当接させることができる。この状態で冷却フィン5を凹部6側へ押し込めば、テーパ状の先端部50を開口縁600において摺動させることができ、先端部50を凹部6にスムーズに挿入することができる。   The effect of this example will be described. If it carries out as mentioned above, it will become easy to insert the front-end | tip part 50 of the cooling fin 5 in the recessed part 6. FIG. That is, when manufacturing the cooling case 3, for example, it is necessary to combine one wall portion 4 a provided with the cooling fin 5 with another portion. At this time, the cooling fin 5 and the recess 6 are displaced. There may be cases. In this case, if the front end portion 50 of the cooling fin 5 is made flat, the front end portion 50 may come into contact with the case inner surface 40 of the other wall portion 4b, and the front end portion 50 may not enter the recess 6 smoothly. However, as described above, if the tips 50 of the cooling fins 5 are tapered, even when the cooling fins 5 and the recesses 6 are slightly misaligned, they become tapered as shown in FIGS. The tip 50 can be brought into contact with the opening edge 600 of the recess 6. If the cooling fin 5 is pushed into the recess 6 in this state, the tapered tip 50 can be slid at the opening edge 600 and the tip 50 can be smoothly inserted into the recess 6.

また、図10,図11に示すごとく、樹脂7を使って凹部6を予め充填しておき、この樹脂7に対して冷却フィン5の先端部50を突き刺す場合には、先端部50をテーパ状にしておくと、先端部50を樹脂7に容易に突き刺すことができるというメリットもある。
その他、実施例1と同様の作用効果を備える。
As shown in FIGS. 10 and 11, when the recess 6 is filled in advance using the resin 7 and the tip 50 of the cooling fin 5 is inserted into the resin 7, the tip 50 is tapered. In this case, there is an advantage that the tip 50 can be easily pierced into the resin 7.
In addition, the same functions and effects as those of the first embodiment are provided.

(実施例5)
本例は、凹部6の形状を変更した例である。図12に示すごとく、本例では、凹部6は、凹部6の底部62から開口部61へ向かうほど、他方の壁部4bのケース内面40に平行な面における断面形状が次第に大きくなるよう、内面63がテーパ状に形成されている。
このようにすると、開口部61を広げたため、冷却フィン5の先端部50を凹部6に挿入しやすくなる。
その他、実施例1と同様の構成および作用効果を備える。
(Example 5)
In this example, the shape of the recess 6 is changed. As shown in FIG. 12, in this example, the concave portion 6 has an inner surface such that the cross-sectional shape of the other wall portion 4 b parallel to the case inner surface 40 gradually increases from the bottom 62 of the concave portion 6 toward the opening 61. 63 is formed in a taper shape.
If it does in this way, since the opening part 61 was expanded, it will become easy to insert the front-end | tip part 50 of the cooling fin 5 in the recessed part 6. FIG.
In addition, the configuration and operational effects similar to those of the first embodiment are provided.

(実施例6)
本例は、図13に示すごとく、冷却フィン5を形成した一方の壁部4aを別部材として構成し、一方の壁部4aと半導体モジュール2とを一体に形成した例である。
このようにすると、一方の壁部4aと半導体モジュール2とが一体化されているため、部品点数を減らすことができる。また、冷却ケース3の製造工程と、半導体モジュール2の取付工程を一度に行うことができるため、冷却器1の製造工程を簡素化できる。
その他、実施例1と同様の構成および作用効果を備える。
(Example 6)
In this example, as shown in FIG. 13, one wall portion 4 a on which the cooling fin 5 is formed is configured as a separate member, and the one wall portion 4 a and the semiconductor module 2 are integrally formed.
If it does in this way, since one wall part 4a and the semiconductor module 2 are integrated, the number of parts can be reduced. Moreover, since the manufacturing process of the cooling case 3 and the mounting process of the semiconductor module 2 can be performed at a time, the manufacturing process of the cooler 1 can be simplified.
In addition, the configuration and operational effects similar to those of the first embodiment are provided.

(実施例7)
本例は、凹部6の構造を変更した例である。図15に示すごとく、本例では、一方の壁部4aと他方の壁部4bとの間に伸縮可能なフィルム8が介在している。このフィルム8は、凹部6以外の部分81において他方の壁部4bのケース内面40に密着すると共に、残余の部分82が、冷却フィン5の先端部50によって凹部6内に押し込められている。
この冷却器1を製造するには、図14に示すごとく、まず、冷却フィン5を凹部6に挿入する前に、他方の壁部4bのケース内面40をフィルム8で覆っておく。そして、先端部50を平坦状にした冷却フィン5を凹部6に挿入すると共に、先端部50によってフィルム8の一部82を凹部6内に押し込む。
その他、実施例1と同様の構成を備える。
(Example 7)
In this example, the structure of the recess 6 is changed. As shown in FIG. 15, in this example, a stretchable film 8 is interposed between one wall 4a and the other wall 4b. The film 8 is in close contact with the case inner surface 40 of the other wall 4 b at a portion 81 other than the recess 6, and the remaining portion 82 is pushed into the recess 6 by the tip 50 of the cooling fin 5.
In order to manufacture the cooler 1, as shown in FIG. 14, first, the case inner surface 40 of the other wall 4 b is covered with the film 8 before the cooling fin 5 is inserted into the recess 6. Then, the cooling fin 5 having a flat tip portion 50 is inserted into the concave portion 6, and a part 82 of the film 8 is pushed into the concave portion 6 by the tip portion 50.
In addition, the same configuration as that of the first embodiment is provided.

本例の作用効果について説明する。上述のようにすると、フィルム8によって、冷却フィン5の先端部50よりも先端側を冷媒10が通ることを確実に防き、冷却フィン5の間を通る冷媒10の量を増やすことができ、半導体モジュール2の冷却効率を高めることが可能になる。
その他、実施例1と同様の作用効果を備える。
The effect of this example will be described. As described above, the film 8 can reliably prevent the refrigerant 10 from passing through the front end side of the cooling fin 5 from the front end portion 50, and the amount of the refrigerant 10 passing between the cooling fins 5 can be increased. It becomes possible to increase the cooling efficiency of the semiconductor module 2.
In addition, the same functions and effects as those of the first embodiment are provided.

1 冷却器
10 冷媒
2 半導体モジュール
3 冷却ケース
30 流路
31 載置面
4a 一方の壁部
4b 他方の壁部
5 冷却フィン
50 先端部
6 凹部
DESCRIPTION OF SYMBOLS 1 Cooler 10 Refrigerant 2 Semiconductor module 3 Cooling case 30 Flow path 31 Placement surface 4a One wall part 4b The other wall part 5 Cooling fin 50 Tip part 6 Recessed part

Claims (7)

半導体素子を内蔵した半導体モジュールを冷却するための冷却器であって、
冷媒が流れる流路を内部に有し、上記半導体モジュールを載置する載置面を外面に備えた冷却ケースと、
該冷却ケースを構成し、上記流路を挟んで相対向する一対の壁部のうち、一方の壁部からケース内側に突出するよう形成された冷却フィンと、
上記一対の壁部のうち、他方の壁部のケース内面に形成された凹部とを備え、
上記冷却ケースは、上記一対の壁部のいずれか一方が、他の部分とは別部材として構成されており、
上記冷却フィンの先端部が上記凹部内に位置していることを特徴とする冷却器。
A cooler for cooling a semiconductor module containing a semiconductor element,
A cooling case having a flow path through which a coolant flows, and a mounting surface on which the semiconductor module is mounted on the outer surface;
A cooling fin formed to protrude from one wall portion to the inside of the case among the pair of wall portions opposed to each other across the flow path;
Of the pair of wall portions, a concave portion formed on the case inner surface of the other wall portion,
In the cooling case, either one of the pair of wall portions is configured as a separate member from the other portions,
The cooler according to claim 1, wherein a tip end portion of the cooling fin is located in the recess.
請求項1において、上記冷却フィンの先端部は、先端側が尖ったテーパ状に形成されていることを特徴とする冷却器。   2. The cooler according to claim 1, wherein the tip end portion of the cooling fin is formed in a tapered shape with a sharp tip side. 請求項1または請求項2において、上記凹部は、該凹部の底部から開口部へ向かうほど、上記他方の壁部の上記ケース内面に平行な面における断面形状が次第に大きくなるよう、内面がテーパ状に形成されていることを特徴とする冷却器。   The inner surface of the concave portion according to claim 1 or 2, wherein an inner surface of the concave portion is tapered such that a cross-sectional shape of the other wall portion in a plane parallel to the inner surface of the case gradually increases from the bottom of the concave portion toward the opening. It is formed in the cooler characterized by the above-mentioned. 請求項1〜請求項3のいずれか1項において、上記冷却ケースは、上記冷却フィンを形成した上記一方の壁部が上記別部材として構成されており、該一方の壁部と上記半導体モジュールとが一体に形成されていることを特徴とする冷却器。   4. The cooling case according to claim 1, wherein the one wall portion in which the cooling fin is formed is configured as the separate member, and the one wall portion, the semiconductor module, Is formed integrally with the cooler. 請求項1〜請求項4のいずれか1項において、上記一方の壁部と上記他方の壁部との間に伸縮可能なフィルムが介在しており、該フィルムは、上記凹部以外の部分において上記他方の壁部のケース内面に密着すると共に、残余の部分が、上記冷却フィンの上記先端部によって上記凹部内に押し込められていることを特徴とする冷却器。   In any one of Claims 1-4, the film which can expand-contract is interposed between said one wall part and said other wall part, This film is said part in parts other than the said recessed part. A cooler characterized in that the other wall portion is in close contact with the inner surface of the case, and the remaining portion is pushed into the recess by the tip portion of the cooling fin. 請求項1〜請求項4のいずれか1項において、上記冷却フィンの先端部と、上記凹部の内面との間に隙間が設けられており、上記冷却フィンよりもヤング率が小さい樹脂が上記隙間に充填されていることを特徴とする冷却器。   5. The resin according to claim 1, wherein a gap is provided between a tip portion of the cooling fin and an inner surface of the recess, and a resin having a Young's modulus smaller than that of the cooling fin is the gap. A cooler characterized by being filled. 請求項6に記載の冷却器の製造方法であって、上記冷却ケースは、上記一方の壁部が上記別部材として構成されており、上記冷却フィンの先端部に上記樹脂を付着させる付着工程と、上記一方の壁部と上記他の部分とを組み合わせて上記冷却ケースを形成すると共に、上記冷却フィンの先端部を上記凹部に挿入し、上記隙間を上記樹脂で充填する組付工程とを行うことを特徴とする冷却器の製造方法。   The method of manufacturing a cooler according to claim 6, wherein the cooling case is configured such that the one wall portion is configured as the separate member and the resin is attached to a tip portion of the cooling fin. The one wall portion and the other portion are combined to form the cooling case, and the cooling fin is inserted into the concave portion and the gap is filled with the resin. The manufacturing method of the cooler characterized by the above-mentioned.
JP2010139105A 2010-06-18 2010-06-18 Cooler and method for manufacturing the same Pending JP2012004405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010139105A JP2012004405A (en) 2010-06-18 2010-06-18 Cooler and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139105A JP2012004405A (en) 2010-06-18 2010-06-18 Cooler and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012004405A true JP2012004405A (en) 2012-01-05

Family

ID=45536039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139105A Pending JP2012004405A (en) 2010-06-18 2010-06-18 Cooler and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012004405A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015126207A (en) * 2013-12-27 2015-07-06 三菱電機株式会社 Semiconductor device
JPWO2013147240A1 (en) * 2012-03-30 2015-12-14 京セラ株式会社 Channel member, heat exchanger using the same, and semiconductor device
CN105493273A (en) * 2014-03-18 2016-04-13 富士电机株式会社 Power conversion device
EP3136038A1 (en) * 2015-06-30 2017-03-01 HS Marston Aerospace Limited Heat exchanger
JP2021010200A (en) * 2019-06-28 2021-01-28 日立オートモティブシステムズ株式会社 Electric circuit arrangement, power conversion device and manufacturing method of electric circuit arrangement
FR3119949A1 (en) * 2021-02-16 2022-08-19 Valeo Systèmes de Contrôle Moteur Electronic assembly with improved cooling circuit
WO2023090222A1 (en) * 2021-11-16 2023-05-25 日立Astemo株式会社 Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297906A (en) * 1998-03-23 1999-10-29 Motorola Inc Electronic assembly and its manufacture
JP2007059883A (en) * 2005-07-12 2007-03-08 Internatl Rectifier Corp Heatsink with adapted backplate
JP2007165808A (en) * 2005-12-16 2007-06-28 Seiko Epson Corp Heat exchanger, light source apparatus, projector and electronic apparatus
JP2007165481A (en) * 2005-12-12 2007-06-28 Seiko Epson Corp Heat exchanger, light source device, projector, and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297906A (en) * 1998-03-23 1999-10-29 Motorola Inc Electronic assembly and its manufacture
JP2007059883A (en) * 2005-07-12 2007-03-08 Internatl Rectifier Corp Heatsink with adapted backplate
JP2007165481A (en) * 2005-12-12 2007-06-28 Seiko Epson Corp Heat exchanger, light source device, projector, and electronic device
JP2007165808A (en) * 2005-12-16 2007-06-28 Seiko Epson Corp Heat exchanger, light source apparatus, projector and electronic apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013147240A1 (en) * 2012-03-30 2015-12-14 京セラ株式会社 Channel member, heat exchanger using the same, and semiconductor device
JP2015126207A (en) * 2013-12-27 2015-07-06 三菱電機株式会社 Semiconductor device
CN105493273A (en) * 2014-03-18 2016-04-13 富士电机株式会社 Power conversion device
EP3136038A1 (en) * 2015-06-30 2017-03-01 HS Marston Aerospace Limited Heat exchanger
US10544991B2 (en) 2015-06-30 2020-01-28 Hs Marston Aerospace Ltd. Heat exchangers
JP2021010200A (en) * 2019-06-28 2021-01-28 日立オートモティブシステムズ株式会社 Electric circuit arrangement, power conversion device and manufacturing method of electric circuit arrangement
JP7252842B2 (en) 2019-06-28 2023-04-05 日立Astemo株式会社 Electric circuit device, power conversion device, and method for manufacturing electric circuit device
FR3119949A1 (en) * 2021-02-16 2022-08-19 Valeo Systèmes de Contrôle Moteur Electronic assembly with improved cooling circuit
WO2023090222A1 (en) * 2021-11-16 2023-05-25 日立Astemo株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP2012004405A (en) Cooler and method for manufacturing the same
WO2018021009A1 (en) Cooling apparatus
JP2013016794A (en) Cooling device for power module, and related method thereof
CN105684144A (en) Semiconductor device and semiconductor module
JP2007335663A (en) Semiconductor module
US20090085189A1 (en) Power semiconductor module
JP5538653B2 (en) Heat sink and semiconductor device including the heat sink
JP6775374B2 (en) Manufacturing method of heat dissipation unit
JP2008270297A (en) Power unit and heat dissipation container
KR20130049739A (en) Power semiconductor module cooling apparatus
JP2016066639A (en) Heat sink having fins connected in different methods
JP2018107365A (en) Radiator for liquid-cooled cooler and manufacturing method thereof
JP2008172187A (en) Side light-emitting device
JP5194557B2 (en) Liquid-cooled cooler for power element mounting and manufacturing method thereof
JP2017108078A (en) Cooler and power semiconductor module
JP5421951B2 (en) Semiconductor device
JP2019021825A (en) Radiator and liquid-cooling type cooling device employing the same
JP2019114682A (en) Liquid-cooled cooler
US6148905A (en) Two-phase thermosyphon including air feed through slots
JP2011069552A (en) Heat exchanger
JP2017216293A (en) Fluid-cooling type cooling device
JP5212125B2 (en) Power device heat sink
JP4935783B2 (en) Semiconductor device and composite semiconductor device
WO2015198893A1 (en) Cooling device
US10408506B2 (en) Heat exchanger and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028