JP2012004053A - Vehicular sodium-sulfur battery - Google Patents

Vehicular sodium-sulfur battery Download PDF

Info

Publication number
JP2012004053A
JP2012004053A JP2010140029A JP2010140029A JP2012004053A JP 2012004053 A JP2012004053 A JP 2012004053A JP 2010140029 A JP2010140029 A JP 2010140029A JP 2010140029 A JP2010140029 A JP 2010140029A JP 2012004053 A JP2012004053 A JP 2012004053A
Authority
JP
Japan
Prior art keywords
sodium
battery
sulfur
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010140029A
Other languages
Japanese (ja)
Inventor
Shoku Chiba
植 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010140029A priority Critical patent/JP2012004053A/en
Publication of JP2012004053A publication Critical patent/JP2012004053A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable sodium-sulfur battery capable of being mounted on a vehicle and having high current density.SOLUTION: A sodium-sulfur battery can be charged/discharged at heavy current by making a solid electrolyte of the sodium-sulfur battery into a thin film to reduce the electrical resistance of the solid electrolyte, by improving the passage of a positive electrode active material to make supply/discharge of the positive electrode active material more efficient, and by reducing a spacing between the solid electrolyte and a positive electrode to decrease a positive electrode resistance value. Stresses applied on the solid electrolyte and a container are relaxed by operating an inside and outside of the sodium-sulfur battery in a vacuum environment. In collision and breakage of the battery, safety is secured by rapidly cooling the battery with water to stop the function of the battery.

Description

ナトリウム硫黄電池。
Sodium sulfur battery.

負極活物質にナトリウムを正極活物質に硫黄と硫化ナトリウムを用いるナトリウム硫黄電池は、正極と負極の隔壁にナトリウムイオンに透過性があるベータアルミナ固体電解質が用いられ、負極のナトリウムが固体電解質を透過して正極に移動し硫黄と結合して硫化ナトリウムになることで放電し、正極の硫化ナトリウムからナトリウムが分離して固体電解質を透過して負極にナトリウムが移動して充電される。
ナトリウム硫黄電池は両極の活物質が液化する300℃前後で運用される。
ナトリウム硫黄単電池の電圧は2V程度で、郡電池は複数の単電池を直列に接続して必要な電圧を得ている。
A sodium-sulfur battery that uses sodium as the negative electrode active material and sulfur and sodium sulfide as the positive electrode active material uses a beta alumina solid electrolyte that is permeable to sodium ions in the partition walls of the positive and negative electrodes, and the sodium in the negative electrode permeates the solid electrolyte. Then, it moves to the positive electrode and combines with sulfur to form sodium sulfide, thereby discharging. The sodium is separated from the sodium sulfide of the positive electrode, permeates the solid electrolyte, and moves to the negative electrode to be charged.
The sodium-sulfur battery is operated at around 300 ° C. where the active material of both electrodes is liquefied.
The voltage of the sodium-sulfur cell is about 2V, and the county cell obtains the necessary voltage by connecting a plurality of cells in series.

特開2005−197139号公報JP 2005-197139 A 特開2008−192622号公報JP 2008-192622 A

ナトリウム硫黄電池は電気容量は大きいが、自動車等の動力源とするには電流密度が不足している。また短時間で電池を充電するためにも高い電流密度と低い電気抵抗が要請される。
ナトリウム硫黄電池に使用するベータアルミナ固体電解質は衝撃等で破損しやすく、自動車に搭載して使用すると電池の故障の原因になる。
電池を大電流で使用したり電池が破損すると、大量の熱が発生して電池の温度が急激に上昇する。
A sodium-sulfur battery has a large electric capacity, but its current density is insufficient for a power source of an automobile or the like. Also, high current density and low electrical resistance are required to charge the battery in a short time.
The beta alumina solid electrolyte used in sodium-sulfur batteries is easily damaged by impacts and the like, and if used in an automobile, it causes battery failure.
When the battery is used with a large current or the battery is damaged, a large amount of heat is generated, and the temperature of the battery rapidly increases.

ナトリウム硫黄電池のベータアルミナ固体電解質を薄膜化して電解質の電気抵抗を下げ、硫黄の流路と硫化ナトリウムの流路を交互に配置して正極活物質の対流を容易にし、同時に正極集電体と固体電解質間の電気抵抗を下げる。
固体電解質の薄膜化で固体電解質の対衝撃性を獲得し、薄膜化した固体電解質を正極集電体や負極集電体や電池容器に固定し、正極集電体や負極集電体や電池容器の剛性で薄膜化した固体電解質の剛性不足を補う。
複数のナトリウム硫黄単電池を接続した郡電池において、真空環境に単電池を収容し単電池内も真空で運用し、薄膜の断熱材で多重に単電池を包んで郡電池の断熱性を改善し、単電池間の温度分布をヒートパイプで平準化し、ヒートパイプに加熱用のヒータと可変放熱機構を付加して単電池の温度を一定範囲に制御する。
郡電池が強い衝撃を受けたり単電池が破損して発熱した時に、冷却器に水を流し水の気化熱で単電池を急激に冷やして郡電池の機能を止める。
ナトリウム硫黄単電池の正負の電極に互いに咬合する凹凸を設け、複数の単電池を剛性の高い緩衝箱に収容し、複数の緩衝箱を繋いで郡電池とする。
The beta-alumina solid electrolyte of a sodium-sulfur battery is reduced in thickness to lower the electrical resistance of the electrolyte, and the flow path of sulfur and the flow path of sodium sulfide are alternately arranged to facilitate the convection of the positive electrode active material. Reduce electrical resistance between solid electrolytes.
The solid electrolyte is thinned to obtain the impact resistance of the solid electrolyte, and the thinned solid electrolyte is fixed to the positive electrode current collector, the negative electrode current collector, or the battery container, and the positive electrode current collector, negative electrode current collector, or battery container is fixed. The lack of rigidity of the solid electrolyte made into a thin film with the rigidity of.
In a group battery connected with multiple sodium-sulfur cells, the unit cell is housed in a vacuum environment and the inside of the unit cell is also operated in a vacuum, and the unit cell is wrapped in multiple layers with a thin-film insulation to improve the insulation of the group battery. The temperature distribution between the single cells is leveled with a heat pipe, and a heater and a variable heat dissipation mechanism are added to the heat pipe to control the temperature of the single cell within a certain range.
When the county battery is subjected to a strong impact or the unit cell breaks down and generates heat, water is poured into the cooler and the unit cell is rapidly cooled by the heat of vaporization of the water to stop the function of the county battery.
The positive and negative electrodes of the sodium-sulfur unit cell are provided with an unevenness that engages with each other, the plurality of unit cells are accommodated in a highly rigid buffer box, and the plurality of buffer boxes are connected to form a group battery.

ナトリウム硫黄電池の内部電気抵抗が減少し正極活物質の対流が効率化され、高電流密度の電池が得られ、電池の耐衝撃性も改善される。
ナトリウム硫黄電池を内外とも真空環境で運用することで、固体電解質に掛かる圧力が削減され、薄膜の固体電解質でも隔壁としての強度を満足し、電池の封止構造も簡略化される。また電池の内圧が低いので、電池を角型にすることができ、丸型よりも電池の電気容量が増やせる。
郡電池内のナトリウム硫黄単電池の温度が平準化されかつ一定の範囲内に維持でき、断熱性の改善で郡電池の温度維持に要する電力を削減できる。
強い衝撃を受けたり単電池が故障で発熱した時に、郡電池は機能を停止して安全性を確保でき、単電池の連鎖的破損も防げる。
単電池の強度を必要最小限に留める事ができ、電池の組立ても簡単になる。
The internal electrical resistance of the sodium-sulfur battery is reduced, the convection of the positive electrode active material is made efficient, a battery with a high current density is obtained, and the impact resistance of the battery is also improved.
By operating the sodium-sulfur battery inside and outside in a vacuum environment, the pressure applied to the solid electrolyte is reduced, the solid electrolyte of the thin film satisfies the strength as a partition, and the battery sealing structure is simplified. Further, since the internal pressure of the battery is low, the battery can be square, and the electric capacity of the battery can be increased as compared with the round type.
The temperature of the sodium-sulfur unit cell in the county battery can be leveled and maintained within a certain range, and the power required for maintaining the temperature of the county battery can be reduced by improving the heat insulation.
When the battery is subjected to a strong impact or the unit battery breaks down and heats up, the group battery stops functioning to ensure safety and prevent chain damage of the cells.
The strength of the cell can be kept to the minimum necessary, and the battery can be easily assembled.

角型電池の断面図。 (実施例1)Sectional drawing of a square battery. Example 1 角型電池の集電構造。 (実施例1)Current collecting structure of prismatic battery. Example 1 平型電池の断面図。 (実施例2)Sectional drawing of a flat battery. (Example 2) 平型電池の内部構造。 (実施例2)The internal structure of a flat battery. (Example 2) 平型電池の集電構造。 (実施例2)Current collecting structure of flat battery. (Example 2) 郡電池の構造。 (実施例3)County battery structure. (Example 3) 郡電池のヒートパイプ。 (実施例3)County battery heat pipe. (Example 3) 放熱器と冷却器。 (実施例3)Radiator and cooler. (Example 3) 別の対流層。 (実施例4)Another convection layer. Example 4 別の集電板。 (実施例5)Another current collector. (Example 5) 別の流路。 (実施例6)Another flow path. (Example 6) 冷却管。 (実施例7)Cooling pipe. (Example 7)

当発明の電池の構造や構成や有効性を実施例とともに説明する。
The structure, configuration and effectiveness of the battery of the present invention will be described together with examples.

図1は角型のナトリウム硫黄電池の断面図である。
負極板1は角型の底のある容器で、負極板1の開口部は正極板2と集電板3が蓋となり封止材12で電気的に絶縁し内部を密閉する。正極板2には角型の筒状の集電板3が接続され、集電板3の反対側の開口部は隔壁8で塞いでいる、集電板3には外周に刻んだ流路4がある。
負極板1の底には外部に突き出した凸部があり、正極板2の凹部と咬合する、咬合部により電池9を直列に接続できる。咬合部には余裕があり、振動で電池が揺れても接続は維持され、高温で液化する金属や合金を電極の接触部に鍍金することでより信頼性の高い接続ができる。
集電板3の外周には対流層6電解質5緩衝材7の順に積層する。電池9の内部は封止材12と電解質5と隔壁8により正極室10と負極室11に分離される。
電解質5はベータアルミナ薄膜で、単独では応力に弱いので集電板3に対流層6と電解質5を黒鉛系接着剤やアルミナ系接着剤等で接着して固定し、集電板3と対流層6の剛性で応力に耐える。集電板3の角を別の絶縁体で塞ぐと、電解質5と対流層6は平板の薄板にでき、電解質5や対流層6の製造が容易になる。
FIG. 1 is a cross-sectional view of a rectangular sodium-sulfur battery.
The negative electrode plate 1 is a container having a rectangular bottom, and the opening of the negative electrode plate 1 is electrically insulated by a sealing material 12 with a positive electrode plate 2 and a current collector plate 3 as a lid, and the inside is sealed. A square cylindrical current collecting plate 3 is connected to the positive electrode plate 2, and an opening on the opposite side of the current collecting plate 3 is closed by a partition wall 8. There is.
The bottom of the negative electrode plate 1 has a convex portion protruding to the outside, and the battery 9 can be connected in series by the occlusal portion that meshes with the concave portion of the positive electrode plate 2. There is room in the occlusal portion, the connection is maintained even if the battery is shaken by vibration, and a more reliable connection can be made by plating a metal or alloy that liquefies at a high temperature on the contact portion of the electrode.
On the outer periphery of the current collector plate 3, the convection layer 6, the electrolyte 5 and the buffer material 7 are laminated in this order. The inside of the battery 9 is separated into a positive electrode chamber 10 and a negative electrode chamber 11 by a sealing material 12, an electrolyte 5, and a partition wall 8.
The electrolyte 5 is a beta-alumina thin film and is weak against stress by itself. Therefore, the convection layer 6 and the electrolyte 5 are bonded and fixed to the current collector plate 3 with a graphite-based adhesive or an alumina-based adhesive. Withstands stress with a stiffness of 6. When the corners of the current collecting plate 3 are closed with another insulator, the electrolyte 5 and the convection layer 6 can be formed into a thin plate, and the manufacture of the electrolyte 5 and the convection layer 6 is facilitated.

負極室11にはナトリウム23が収容され、電池9の放電でナトリウム23が消費されると空間27が広がる。正極室10には硫黄24が収容され、電池9の放電に伴いナトリウムが電解質5を透過して硫黄24と結合して硫化ナトリウム25に変化する、電池9の放電が進むと空間26は狭まる。空間26と27は真空とし、ナトリウム23や硫黄24や硫化ナトリウム25の蒸気が空間26と27を各々満たす。
電池9の充電時には硫化ナトリウム25からナトリウムが分離し、分離したナトリウムが電解質5を透過して負極室11に移動する、分離して生成した硫黄は電解質5を透過できないので正極室10に留まる。
負極板1や正極板2や集電板3には銅やアルミ等の導電率の高い素材を採用する。正極板2や集電板3はクロム鉄合金や黒鉛で表面を覆って腐食性の高い硫黄24や硫化ナトリウム25から素材を保護する。
Sodium 23 is accommodated in the negative electrode chamber 11, and the space 27 is expanded when the sodium 23 is consumed by the discharge of the battery 9. In the positive electrode chamber 10, sulfur 24 is accommodated, and as the battery 9 discharges, sodium permeates the electrolyte 5 and is combined with the sulfur 24 to change to sodium sulfide 25. As the discharge of the battery 9 proceeds, the space 26 narrows. The spaces 26 and 27 are evacuated, and vapors of sodium 23, sulfur 24, and sodium sulfide 25 fill the spaces 26 and 27, respectively.
When the battery 9 is charged, sodium is separated from the sodium sulfide 25, and the separated sodium passes through the electrolyte 5 and moves to the negative electrode chamber 11. The separated and generated sulfur cannot pass through the electrolyte 5, and therefore remains in the positive electrode chamber 10.
The negative electrode plate 1, the positive electrode plate 2, and the current collector plate 3 are made of a material having high conductivity such as copper or aluminum. The positive electrode plate 2 and the current collector plate 3 are covered with chromium iron alloy or graphite to protect the material from highly corrosive sulfur 24 and sodium sulfide 25.

隔壁8はアルミ等を採用して表面にガラスやアルミナ等を被せて絶縁を確保するかもしくは絶縁性のアルミナ等を採用する。図1の電池9の外形を正6面体に近い形状として容積当りの電気容量を稼ぎ、電解質5の面積を最大限確保するために、隔壁8は負極板1の近くから正極板2に向かって大きく突き出して負極室11を確保している。
集電板3の周囲に刻んだ流路4と正極室10を繋ぐために、多数の流通口21が集電板3に開けられていて、電解質5の周辺で生成消費される硫黄や硫化ナトリウムの通路となる。
The partition wall 8 is made of aluminum or the like and the surface is covered with glass or alumina to ensure insulation, or insulating alumina or the like is used. In order to make the outer shape of the battery 9 in FIG. 1 close to a regular hexahedron, to increase the electric capacity per volume and to ensure the maximum area of the electrolyte 5, the partition wall 8 extends from the vicinity of the negative electrode plate 1 toward the positive electrode plate 2. The negative electrode chamber 11 is secured by protruding greatly.
In order to connect the flow path 4 engraved around the current collecting plate 3 and the positive electrode chamber 10, a large number of flow ports 21 are opened in the current collecting plate 3, and sulfur and sodium sulfide generated and consumed around the electrolyte 5. It becomes the passage.

全体の封止はガラス等を溶解して隔壁8と集電板3と電解質5と封止材12と負極板1の各々の間を塞ぐ。電池9を内外とも真空環境で運用すると、封止部には大きな圧力は掛からないため、ガラス等でも封止が可能になる。
緩衝材7は電解質5と負極板1との隙間に詰めてあり、ナトリウムに親和性の高い材料を選び、緩衝材7は空隙を多くして毛細管現象でナトリウム23を電解質5に運ぶ。緩衝材7や対流層6により電解質5を挟み、電解質5が破損した際に電解質5の離散を防いで事故の拡大を防止する。
For the entire sealing, glass or the like is melted to close the space between the partition wall 8, the current collector plate 3, the electrolyte 5, the sealing material 12, and the negative electrode plate 1. When the battery 9 is operated in a vacuum environment both inside and outside, since a large pressure is not applied to the sealing portion, sealing with glass or the like is possible.
The buffer material 7 is packed in the gap between the electrolyte 5 and the negative electrode plate 1, and a material having a high affinity for sodium is selected. The buffer material 7 increases the gap and carries the sodium 23 to the electrolyte 5 by capillary action. The electrolyte 5 is sandwiched between the buffer material 7 and the convection layer 6, and when the electrolyte 5 is damaged, the electrolyte 5 is prevented from being dispersed to prevent the spread of accidents.

電解質5の一部が破損するとナトリウムと硫黄が直接反応して溶解温度が高く導電性の劣る二硫化ナトリウム等が生成される。電池9を真空環境で運用すると圧力が低いので反応は制限され、反応が収まると生成された二硫化ナトリウム等が破損箇所を塞いで自己修復される。
電池9内部にガスを封入しないので電池9内部の圧力は低く、高い応力が容器に掛からないので重量当りの電気容量の大きな角型の容器を採用できる。
硫化ナトリウム25の比重は硫黄24より重く、硫化ナトリウム25が底に溜まり上に硫黄24が分離して浮かぶ。図1の電池9は水平に寝かせて利用する前提であり、そのため流路4は正極板2と平行に刻まれている。電池9を立てて使用する場合には流路4は正極板2と垂直に刻む必要がある。
When a part of the electrolyte 5 is broken, sodium and sulfur react directly to produce sodium disulfide having a high melting temperature and poor conductivity. When the battery 9 is operated in a vacuum environment, the reaction is limited because the pressure is low, and when the reaction is stopped, the generated sodium disulfide or the like closes the damaged portion and is self-repaired.
Since the gas is not sealed inside the battery 9, the pressure inside the battery 9 is low, and high stress is not applied to the container, so that a rectangular container having a large electric capacity per weight can be adopted.
The specific gravity of sodium sulfide 25 is heavier than that of sulfur 24, so that sodium sulfide 25 accumulates at the bottom and sulfur 24 separates and floats on the bottom. The battery 9 in FIG. 1 is assumed to be laid horizontally and used, and therefore the flow path 4 is engraved in parallel with the positive electrode plate 2. When the battery 9 is used upright, the flow path 4 needs to be cut vertically with the positive electrode plate 2.

緩衝材7の代わりに負極板1に多数の細い溝を刻み、溝の毛細管現象でナトリウム23を電解質5に運ぶ事もできる。
電解質5を緩衝材7を介して負極板1に接着し固定することも、負極板1に多数の細い溝を刻み緩衝材7無しで直接負極板1に接着し固定する事もできる。
A large number of thin grooves can be formed in the negative electrode plate 1 instead of the buffer material 7, and the sodium 23 can be carried to the electrolyte 5 by capillary action of the grooves.
The electrolyte 5 can be bonded and fixed to the negative electrode plate 1 through the buffer material 7, or a large number of fine grooves can be cut into the negative electrode plate 1 and directly bonded to the negative electrode plate 1 without the buffer material 7.

図2は図1の電池9の集電構造の断面図である。
図2の電解質5の上部は正極室10になり硫黄や硫化ナトリウムと接している、電解質5の下部は負極室11になりナトリウムと接している。
集電板3に刻んだ溝の流路4は一つ置きにガラス被覆44を施してあり、ガラス被覆44を施した流路4は硫化ナトリウムに親和性が高く硫化ナトリウム流路48になり、ガラス被覆44を施してない流路4は硫黄に親和性が高く硫黄流路47になる。ガラス被覆44は、ガラス粒子を含む溶液を溝に注入し、溶剤を乾かし、残ったガラス粒子を高温で溶解して作成する。ガラス被覆44の代わりにアルミナ等を被覆しても同様の効果がある。
集電板3は中空の押出材に機械加工で溝を刻む方法で流路4を作成できる。また、溝のある平板の押出材を切断したり平板にロール加工で溝を成型し、角型に曲げて切断箇所を溶接して中空の集電板3とすることもできる。電池9を立てて使用する場合には、集電板3は中空の溝付の押出材を採用できる。
FIG. 2 is a cross-sectional view of the current collecting structure of the battery 9 of FIG.
The upper part of the electrolyte 5 in FIG. 2 becomes the positive electrode chamber 10 and is in contact with sulfur or sodium sulfide, and the lower part of the electrolyte 5 becomes the negative electrode chamber 11 and is in contact with sodium.
The channel 4 of the groove cut into the current collector plate 3 is provided with a glass coating 44 every other, and the channel 4 coated with the glass coating 44 has a high affinity for sodium sulfide and becomes a sodium sulfide channel 48. The flow path 4 not provided with the glass coating 44 has a high affinity for sulfur and becomes a sulfur flow path 47. The glass coating 44 is formed by pouring a solution containing glass particles into the groove, drying the solvent, and dissolving the remaining glass particles at a high temperature. The same effect can be obtained by coating alumina or the like instead of the glass coating 44.
The current collecting plate 3 can create the flow path 4 by a method of cutting a groove in a hollow extruded material by machining. Alternatively, a hollow current collector plate 3 can be obtained by cutting a flat extruded material having a groove or forming a groove on a flat plate by rolling, bending it into a square shape, and welding the cut portion. When the battery 9 is used upright, the current collecting plate 3 can employ a hollow grooved extruded material.

正極室10内の硫黄24と硫化ナトリウム25の境界面を越えて、流路4は硫黄や硫化ナトリウムを保持でき、流路4の幅や深さを電池9の大きさに応じて適切な値とすることで、硫黄と硫化ナトリウム各々を効率的に対流層6に供給もしくは対流層6から排出できる。
対流層6は電解質5に接する絶縁層43と集電板3に接する分離層42から構成されている。絶縁層43はアルミナ粒子41の層で、分離層42はアルミナ粒子41と黒鉛粒子40との混合層である。アルミナ粒子41と黒鉛粒子40を同一比率で混合し、空隙が多く残るように犠牲金属等を混合して焼結すると流動抵抗の低い分離層42が得られる。
絶縁層43は電解質5と分離層42の黒鉛粒子40とを絶縁するために設けてあり、絶縁が維持されれば絶縁層43の厚さは薄ければ薄いほど良い。電解質5の表面を研磨し対流層6も研磨して向き合わせ、焼結すると両者は強く結合して一体にできる、研磨しない場合にアルミ系接着剤等を使用し焼結して接合する。対流層6と集電板3とは低い電気抵抗になるように黒鉛系接着剤等を使用し焼結して接合する。
Beyond the boundary surface between sulfur 24 and sodium sulfide 25 in the positive electrode chamber 10, the flow path 4 can hold sulfur and sodium sulfide, and the width and depth of the flow path 4 are set to appropriate values according to the size of the battery 9. Thus, each of sulfur and sodium sulfide can be efficiently supplied to or discharged from the convection layer 6.
The convection layer 6 includes an insulating layer 43 in contact with the electrolyte 5 and a separation layer 42 in contact with the current collector plate 3. The insulating layer 43 is a layer of alumina particles 41, and the separation layer 42 is a mixed layer of alumina particles 41 and graphite particles 40. When the alumina particles 41 and the graphite particles 40 are mixed at the same ratio, and a sacrificial metal or the like is mixed and sintered so that many voids remain, a separation layer 42 having a low flow resistance is obtained.
The insulating layer 43 is provided to insulate the electrolyte 5 from the graphite particles 40 of the separation layer 42. If the insulation is maintained, the thinner the insulating layer 43, the better. When the surface of the electrolyte 5 is polished and the convection layer 6 is also polished and faced and sintered, the two can be strongly bonded and integrated together. When not polished, an aluminum adhesive or the like is used for sintering and bonding. The convection layer 6 and the current collector 3 are joined by sintering using a graphite-based adhesive or the like so as to have a low electric resistance.

硫黄が絶縁層43に浸透している領域では電解質5の周辺に硫黄が存在し、電池9の放電時には電解質5を透過してきたナトリウムイオンが電解質5周辺の硫黄と反応して硫化ナトリウムになり、生成した硫化ナトリウムは近辺の硫化ナトリウムに親和性の高いアルミナ粒子41を経由して硫化ナトリウム流路48に流出し流通口21を通って正極室10に溜まる。消費した硫黄は正極室10に溜まった硫黄24が流通口21を通り硫黄流路47から黒鉛粒子40経由で補充される。
電池9の充電時には、電解質5の近辺で硫化ナトリウムからナトリウムが分離され、電解質5を透過して負極室11にナトリウムイオンが移動する。ナトリウムを失って生成された硫黄は電解質5の周囲に溜まり、溜まった硫黄が絶縁層43を越すと硫黄に親和性の高い黒鉛粒子40を経由して硫黄流路47に排出され流通口21を通って正極室10に溜まる。
電池9の充電で消費された硫化ナトリウムは、硫化ナトリウム25が正極室10から流通口21を通り硫化ナトリウム流路48からアルミナ粒子41経由で電解質5の近辺に供給される。
電池9の充放電の電流経路は、硫黄の電気抵抗が高いので硫黄を迂回し、電解質5を起点に周囲の硫化ナトリウムに繋がり、硫化ナトリウムから直近のアルミナ粒子41と黒鉛粒子40との接点近辺へと繋がり、導電性の黒鉛粒子40を介して集電板3に繋がる。絶縁層43の電気抵抗は硫化ナトリウムの抵抗値と黒鉛粒子40と電解質5との距離に比例し、絶縁層43を薄くするか無くし、黒鉛粒子40やアルミナ粒子41を細かくすると低い電気抵抗に抑えられる。
In the region where sulfur penetrates into the insulating layer 43, sulfur is present around the electrolyte 5, and when the battery 9 is discharged, sodium ions that have permeated the electrolyte 5 react with sulfur around the electrolyte 5 to become sodium sulfide. The generated sodium sulfide flows out into the sodium sulfide flow path 48 via the alumina particles 41 having a high affinity for the nearby sodium sulfide, and accumulates in the positive electrode chamber 10 through the flow port 21. As for the consumed sulfur, sulfur 24 accumulated in the positive electrode chamber 10 is replenished through the flow passage 21 and from the sulfur flow path 47 via the graphite particles 40.
When the battery 9 is charged, sodium is separated from sodium sulfide in the vicinity of the electrolyte 5, and sodium ions move to the negative electrode chamber 11 through the electrolyte 5. Sulfur generated by losing sodium accumulates around the electrolyte 5, and when the accumulated sulfur passes through the insulating layer 43, it is discharged to the sulfur flow path 47 via the graphite particles 40 having a high affinity for sulfur, and is passed through the circulation port 21. It passes through and accumulates in the positive electrode chamber 10.
Sodium sulfide 25 consumed by charging the battery 9 is supplied to the vicinity of the electrolyte 5 from the positive electrode chamber 10 through the flow port 21 and from the sodium sulfide channel 48 via the alumina particles 41.
The current path for charging / discharging of the battery 9 bypasses sulfur because of its high electric resistance, and leads to the surrounding sodium sulfide starting from the electrolyte 5, and in the vicinity of the contact point between the alumina particles 41 and the graphite particles 40 immediately adjacent to the sodium sulfide. To the current collector plate 3 through the conductive graphite particles 40. The electric resistance of the insulating layer 43 is proportional to the resistance value of sodium sulfide and the distance between the graphite particles 40 and the electrolyte 5, and if the insulating layer 43 is thinned or eliminated and the graphite particles 40 and the alumina particles 41 are made fine, the electric resistance is suppressed to a low level. It is done.

対流層6の絶縁層43や分離層42の表面のアルミナ粒子41や黒鉛粒子40は細かな粒子とし、分離層42の内部のアルミナ粒子41や黒鉛粒子40は大きな粒子にすると、分離層42と電解質5や集電板3との電気抵抗が減少し、なおかつ分離層42の硫黄や硫化ナトリウムの流動抵抗が減少する。
論理的には電解質5の厚さは数nmの厚さでも機能し、現実的には電解質5の厚さは耐久性と強度や製造可能性から決まる。電解質5に必要な剛性を集電板3や対流層6にも担保させることで、従来の電解質5の厚さから大幅に削減でき、厚さに比例する電解質5のナトリウムイオン伝導抵抗が大幅に減少する。
When the alumina particles 41 and graphite particles 40 on the surface of the insulating layer 43 and the separation layer 42 of the convection layer 6 are fine particles, and the alumina particles 41 and graphite particles 40 inside the separation layer 42 are large particles, The electric resistance between the electrolyte 5 and the current collector plate 3 is reduced, and the flow resistance of sulfur and sodium sulfide in the separation layer 42 is reduced.
Theoretically, the thickness of the electrolyte 5 functions even with a thickness of several nanometers. In reality, the thickness of the electrolyte 5 is determined by durability, strength, and manufacturability. By ensuring that the current collector 3 and the convection layer 6 have the rigidity necessary for the electrolyte 5, the thickness of the conventional electrolyte 5 can be greatly reduced, and the sodium ion conduction resistance of the electrolyte 5 proportional to the thickness can be greatly increased. Decrease.

対流層6で硫化ナトリウムはアルミナ粒子41に沿って硫化ナトリウム流路48と電解質5の間で電解質5に垂直方向に流れ、対流層6での硫化ナトリウムの移動距離は短くなる。硫化ナトリウムは硫化ナトリウム流路48では電解質5と平行に流れ、流路4には流れる方向には障害物がないので低い粘性で効率的に硫化ナトリウムが流れる。
対流層6で硫黄は黒鉛粒子40に沿って硫黄流路47と電解質5の間で電解質5に垂直方向に流れ、対流層6での硫黄の移動距離は短くなる。硫黄は硫黄流路47では電解質5と平行に流れ、流路4には流れる方向には障害物がないので低い粘性で効率的に硫黄が流れる。
絶縁層43は純粋に絶縁のみに機能が限定されるので薄くでき、分離層42の黒鉛粒子40が実質的な正極電極となり、電解質5と分離層42との距離は短く電解質5と正極電極間の電気抵抗は少なくなる。
In the convection layer 6, sodium sulfide flows along the alumina particles 41 between the sodium sulfide flow path 48 and the electrolyte 5 in a direction perpendicular to the electrolyte 5, and the moving distance of sodium sulfide in the convection layer 6 is shortened. Sodium sulfide flows in parallel with the electrolyte 5 in the sodium sulfide flow path 48, and there is no obstruction in the flow direction in the flow path 4, so that sodium sulfide efficiently flows with low viscosity.
In the convection layer 6, sulfur flows along the graphite particles 40 between the sulfur flow path 47 and the electrolyte 5 in the direction perpendicular to the electrolyte 5, and the sulfur moving distance in the convection layer 6 is shortened. Sulfur flows in the sulfur flow path 47 in parallel with the electrolyte 5, and since there is no obstacle in the flow direction in the flow path 4, sulfur flows efficiently with low viscosity.
The insulating layer 43 can be made thin because its function is limited to pure insulation, and the graphite particles 40 of the separation layer 42 become a substantial positive electrode, and the distance between the electrolyte 5 and the separation layer 42 is short, and the distance between the electrolyte 5 and the positive electrode is short. The electrical resistance of is reduced.

正極活物質の効率的な流動と正極電極の電気抵抗の低減と電解質5のナトリウムイオン伝導抵抗の低減により、低い電圧降下で大電流が流せるナトリウム硫黄電池が得られる。
負極板1から集電板3までを結合して一体とすることで、自動車等の強い振動が継続する環境でも使用可能な電池9が得られる。
By efficient flow of the positive electrode active material, reduction of electric resistance of the positive electrode, and reduction of sodium ion conduction resistance of the electrolyte 5, a sodium sulfur battery capable of flowing a large current with a low voltage drop can be obtained.
By combining the negative electrode plate 1 and the current collector plate 3 together, a battery 9 that can be used even in an environment where strong vibrations such as an automobile continue is obtained.

図3は平型のナトリウム硫黄電池の断面図である。
図4は図3の平型のナトリウム硫黄電池の正極板2を取り外した状態の内部構造の図である。
浅い角型の容器の正極板2に負極板1が蓋となり、両者を薄い絶縁層を介してガラス等で封止する。負極板1と平行に多数の薄板を等間隔に並べた集電板3があり、集電板3を複数の接続板28により正極板2に接続してしている。
負極板1の凹みは正極板2の底に咬合し、電池9を直列に接続できる。
負極板1から緩衝材7電解質5対流層6集電板3の順に積層していて、電池9の内部は電解質5と隔壁8により正極室10と負極室11に分離される。
負極板1や正極板2や集電板3や接続板28には銅やアルミ等の導電率の高い素材を採用する。正極板2や集電板3や接続板28はクロム鉄合金や黒鉛で表面を覆って腐食性の高い硫黄24や硫化ナトリウム25から素材を保護する。
FIG. 3 is a cross-sectional view of a flat sodium-sulfur battery.
FIG. 4 is a diagram of the internal structure of the flat sodium-sulfur battery of FIG. 3 with the positive electrode plate 2 removed.
The negative electrode plate 1 serves as a lid on the positive electrode plate 2 of the shallow square container, and both are sealed with glass or the like through a thin insulating layer. There is a current collector plate 3 in which a large number of thin plates are arranged at equal intervals in parallel with the negative electrode plate 1, and the current collector plate 3 is connected to the positive electrode plate 2 by a plurality of connection plates 28.
The recess of the negative electrode plate 1 is engaged with the bottom of the positive electrode plate 2, and the batteries 9 can be connected in series.
The negative electrode plate 1, the buffer material 7, the electrolyte 5, the convection layer 6, and the current collector plate 3 are stacked in this order, and the inside of the battery 9 is separated into the positive electrode chamber 10 and the negative electrode chamber 11 by the electrolyte 5 and the partition walls 8.
The negative electrode plate 1, the positive electrode plate 2, the current collector plate 3, and the connection plate 28 are made of a material having high conductivity such as copper or aluminum. The positive electrode plate 2, current collector plate 3, and connection plate 28 are covered with a chromium iron alloy or graphite to protect the material from highly corrosive sulfur 24 and sodium sulfide 25.

隔壁8はアルミ等を採用して表面にガラスやアルミナ等を被せて絶縁を確保するか絶縁性のアルミナ等を採用する。隔壁8は凹型で対流層6と電解質5に開けた穴を貫通している。隔壁8には開口部に内側に向いたアングル部を設け、隔壁8のアングル部をガラス等を接着剤に負極板1に固定する。
緩衝材7は電解質5および隔壁8と負極板1との隙間に詰めてあり、ナトリウムに親和性の高い材料を選び、空隙を多くし毛細管現象で負極室11のナトリウム23を電解質5に運ぶ。
緩衝材7の代わりに負極板1に多数の細い溝を刻み、溝の毛細管現象で負極室11のナトリウム23を電解質5に運ぶ事もできる。
電解質5はベータアルミナ薄膜で単独では応力に弱いので、集電板3に対流層6と電解質5を固定し、集電板3と対流層6の剛性で応力に耐える。集電板3と対流層6とは黒鉛系接着剤等で接着して電気的にも接続している。電解質5を緩衝材7に固定し、緩衝材7を負極板1に固定して応力に耐えることもできる。また負極板1に溝を刻み、緩衝材7を無くし、電解質5を直接負極板1に接着して応力に耐えることもできる。
The partition wall 8 is made of aluminum or the like, and the surface is covered with glass or alumina to ensure insulation, or insulating alumina or the like is used. The partition wall 8 has a concave shape and penetrates a hole formed in the convection layer 6 and the electrolyte 5. The partition wall 8 is provided with an angle portion facing inward at the opening, and the angle portion of the partition wall 8 is fixed to the negative electrode plate 1 with glass or the like as an adhesive.
The buffer material 7 is packed in the gap between the electrolyte 5 and the partition wall 8 and the negative electrode plate 1, and a material having a high affinity for sodium is selected to increase the gap and carry the sodium 23 in the negative electrode chamber 11 to the electrolyte 5 by capillary action.
A large number of thin grooves can be formed in the negative electrode plate 1 instead of the buffer material 7, and the sodium 23 in the negative electrode chamber 11 can be conveyed to the electrolyte 5 by capillary action of the grooves.
Since the electrolyte 5 is a beta-alumina thin film alone and is weak against stress, the convection layer 6 and the electrolyte 5 are fixed to the current collector plate 3 and the stress is resisted by the rigidity of the current collector plate 3 and convection layer 6. The current collector plate 3 and the convection layer 6 are electrically connected by being bonded with a graphite-based adhesive or the like. It is also possible to withstand the stress by fixing the electrolyte 5 to the buffer material 7 and fixing the buffer material 7 to the negative electrode plate 1. It is also possible to withstand stress by cutting grooves in the negative electrode plate 1, eliminating the buffer material 7, and directly bonding the electrolyte 5 to the negative electrode plate 1.

全体の封止はガラス等を溶解して隔壁8と電解質5と負極板1と正極板2の各々の間を塞ぐ。電池9を内外とも真空環境で運用すると、封止部には大きな圧力は掛からないため、ガラス等でも封止が可能になる。
図3では隔壁8は正極板2で覆われているが、正極板2と隔壁8の両者を並置する構造も可能である。
The entire sealing is performed by melting glass or the like to block between the partition wall 8, the electrolyte 5, the negative electrode plate 1, and the positive electrode plate 2. When the battery 9 is operated in a vacuum environment both inside and outside, since a large pressure is not applied to the sealing portion, sealing with glass or the like is possible.
In FIG. 3, the partition wall 8 is covered with the positive electrode plate 2, but a structure in which both the positive electrode plate 2 and the partition wall 8 are juxtaposed is also possible.

図5は図3の平型電池の集電構造の断面図である。
集電板3は薄板で等間隔に並べて間を流路4としている。集電板3には接続板28が接続されている。集電板3の片面には硫化ナトリウムに親和性の高いガラス被覆44を被せ、隣り合った板でガラス被覆44を対向させて硫化ナトリウム流路48としている、ガラス被覆44の無い集電板3の対向面は硫黄に親和性が高く硫黄流路47になる。
対流層6から絶縁層43を無くして分離層42のみとし、電解質5と分離層42とを研磨するか高い平坦度で製造し、電解質5と接する分離層42の黒鉛粒子40を電解エッチング等で表面より凹ませ、電解質5と黒鉛粒子40との絶縁を確保している。絶縁層43を無くす事で電解質5と分離層42との距離が減少して対流層6の電気抵抗が減少する。電解質5が硫化ナトリウムに浸った領域でも、硫黄流路47から黒鉛粒子40に沿って硫黄が電解質5の近辺に供給され、電解質5の放電時の活動領域が増えて電池9の電気抵抗が下がる。
FIG. 5 is a cross-sectional view of the current collecting structure of the flat battery of FIG.
The current collecting plate 3 is a thin plate and is arranged at equal intervals to form a flow path 4. A connection plate 28 is connected to the current collector plate 3. One surface of the current collector plate 3 is covered with a glass coating 44 having a high affinity for sodium sulfide, and the glass coating 44 is opposed to the adjacent plate to form a sodium sulfide flow path 48. The current collector plate 3 without the glass coating 44. The opposite surface has a high affinity for sulfur and forms a sulfur flow path 47.
The insulating layer 43 is eliminated from the convection layer 6 so that only the separation layer 42 is obtained, and the electrolyte 5 and the separation layer 42 are polished or manufactured with high flatness, and the graphite particles 40 of the separation layer 42 in contact with the electrolyte 5 are subjected to electrolytic etching or the like. It is recessed from the surface to ensure insulation between the electrolyte 5 and the graphite particles 40. By eliminating the insulating layer 43, the distance between the electrolyte 5 and the separation layer 42 is reduced, and the electrical resistance of the convection layer 6 is reduced. Even in the region where the electrolyte 5 is immersed in sodium sulfide, sulfur is supplied from the sulfur flow path 47 along the graphite particles 40 to the vicinity of the electrolyte 5, and the active region during discharge of the electrolyte 5 increases and the electric resistance of the battery 9 decreases. .

図6は多数のナトリウム硫黄単電池61を真空容器60に収容した郡電池65の図である。
図6は単電池61を4列構成で収容した郡電池65で、単電池61は緩衝箱64に詰めている。緩衝箱64の周囲を断熱材62で包み真空容器60に収めている。真空容器60内の空間は真空とし断熱効果を高めている。真空容器60内に収容する単電池61の内部も真空状態で動作させる。
真空容器60の外側には放熱板68を装着して外気への熱抵抗を下げている。
断熱材62は、アルミ箔とガラス繊維等を重ねそれを多重に積層して高い断熱効果を発揮している。
FIG. 6 is a diagram of a group battery 65 in which a large number of sodium-sulfur single cells 61 are accommodated in a vacuum vessel 60.
FIG. 6 shows a group battery 65 in which the cells 61 are accommodated in a four-row configuration, and the cells 61 are packed in a buffer box 64. The periphery of the buffer box 64 is wrapped in a heat insulating material 62 and stored in a vacuum container 60. The space in the vacuum vessel 60 is evacuated to enhance the heat insulation effect. The inside of the unit cell 61 accommodated in the vacuum vessel 60 is also operated in a vacuum state.
A heat radiating plate 68 is attached to the outside of the vacuum vessel 60 to reduce the thermal resistance to the outside air.
The heat insulating material 62 has a high heat insulating effect by stacking aluminum foil and glass fiber or the like in multiple layers.

図7は図6の郡電池65の列ヒートパイプ70とその周辺の図である。
列ヒートパイプ70は単電池61とは電気的には絶縁され熱的には接続している。郡ヒートパイプ71は単電池61の列毎の列ヒートパイプ70と接続して全電池の温度を平準化する。郡ヒートパイプ71には温度計75とヒータ73と放熱器74と冷却器80を装着している。単電池61の温度が低下したとき、ヒータ73に電流を流して郡ヒートパイプ71を暖め、その熱を列ヒートパイプ70に配分し、列ヒートパイプ70に接続している単電池61を暖める。
3個の単電池61を収容した緩衝箱64を列毎に複数接続して郡電池65としていて、剛性の高い緩衝箱64に単電池61を収めることで、単電池61の強度を必要最小限に留めることができ、単電池61の正負電極は咬合して単電池61は直列に接続され、郡電池65の組み立てが容易になる。
電圧600Vの郡電池には300個のナトリウム硫黄単電池が必要で、緩衝箱に3行2列2段に単電池を収容すると、5行5列の25個の緩衝箱で郡電池が構成できる。
FIG. 7 is a view of the row heat pipe 70 of the county battery 65 of FIG. 6 and its surroundings.
The row heat pipe 70 is electrically insulated from the unit cells 61 and is thermally connected. The county heat pipe 71 is connected to the row heat pipe 70 for each row of the cells 61 to equalize the temperature of all the batteries. The county heat pipe 71 is equipped with a thermometer 75, a heater 73, a radiator 74 and a cooler 80. When the temperature of the unit cell 61 decreases, the current is passed through the heater 73 to warm the group heat pipe 71, the heat is distributed to the column heat pipe 70, and the unit cell 61 connected to the column heat pipe 70 is warmed.
A plurality of buffer boxes 64 containing three unit cells 61 are connected in each row to form a group battery 65. By storing the unit cells 61 in a highly rigid buffer box 64, the strength of the unit cells 61 is minimized. The positive and negative electrodes of the unit cell 61 are occluded so that the unit cells 61 are connected in series, and the assembly of the group cell 65 is facilitated.
A group battery with a voltage of 600 V requires 300 sodium-sulfur single cells. If a single cell is accommodated in 3 rows, 2 columns, and 2 rows in a buffer box, the county battery can be configured with 25 buffer boxes in 5 rows and 5 columns. .

図8は図7の放熱器74と冷却器80の図である。
放熱器74の放熱ベローズ72は郡ヒートパイプ71に接続されていて、放熱ベローズ72の内部には炭化水素等の蒸発材を封入している。単電池61の温度が高まり郡ヒートパイプ71が温まって放熱ベローズ72内の蒸発材が蒸発すると、放熱ベローズ72の内圧が高くなり放熱ベローズ72が伸びる。
放熱ベローズ72が伸びると、真空容器60に装着された容器ヒートパイプ77と郡ヒートパイプ71に接続された放熱ヒートパイプ76の間に、放熱ベローズ72の先に絶縁材79を介して取付けられたテーパのある接片78がテーパのある郡ヒートパイプ71と容器ヒートパイプ77に挟まり熱を逃す、逃した熱は真空容器60を経由して外気に放熱されて、単電池61の温度が温度上限を超えないよう制御する。
放熱ベローズ72と接片78とは絶縁材79で熱的に絶縁し、接片78の温度変化が放熱ベローズ72に影響しないよう熱を遮断する。
放熱ベローズ72により単電池61の上限温度が制御されるので単電池61が過熱せず、断熱性の高い構造を郡電池65に採用でき、少ない電力で単電池61の温度を維持できる。放熱ベローズ72の代わりにバイメタル等も採用できる。
FIG. 8 is a diagram of the radiator 74 and the cooler 80 of FIG.
The heat dissipating bellows 72 of the heat dissipator 74 is connected to the group heat pipe 71, and an evaporating material such as hydrocarbon is sealed inside the heat dissipating bellows 72. When the temperature of the unit cell 61 rises and the county heat pipe 71 warms and the evaporation material in the heat dissipation bellows 72 evaporates, the internal pressure of the heat dissipation bellows 72 increases and the heat dissipation bellows 72 extends.
When the heat dissipating bellows 72 is extended, the heat dissipating bellows 72 is attached to the tip of the heat dissipating bellows 72 between the container heat pipe 77 attached to the vacuum container 60 and the heat dissipating heat pipe 76 connected to the county heat pipe 71. The tapered contact piece 78 is sandwiched between the tapered group heat pipe 71 and the container heat pipe 77 to release the heat. The released heat is radiated to the outside air through the vacuum container 60, and the temperature of the unit cell 61 reaches the upper temperature limit. Control not to exceed.
The heat radiating bellows 72 and the contact piece 78 are thermally insulated by an insulating material 79, and the heat is blocked so that the temperature change of the contact piece 78 does not affect the heat radiating bellows 72.
Since the upper limit temperature of the unit cell 61 is controlled by the heat radiating bellows 72, the unit cell 61 is not overheated, a structure with high heat insulation can be adopted for the group cell 65, and the temperature of the unit cell 61 can be maintained with less power. Bimetal or the like can be used instead of the heat dissipation bellows 72.

強い衝撃を受けた時や単電池61が故障して発熱した時に非常弁81を開き、水容器85内の水をホース84経由で非常弁81に流し、非常弁81に接続した導入管82により冷却器80に水が流れ、冷却器80で水が蒸発して郡ヒートパイプ71から熱を奪い、冷却器80で発生した蒸気は排出管83で郡電池65の外部に排出して、郡電池65の真空は維持される。非常弁81が開いた時に水が冷却器80に流れるように水容器85の水は加圧しておく。
非常時には冷却器80によりヒートパイプに接続された単電池61が冷やされ、単電池61は電池の機能を停止し安全性が確保される、正常な単電池61を事故時に保護して単電池61の連鎖的な破損を防げる。導入管82や排出管83は熱伝導率の低い素材で作成し曲げて蛇行させて高い断熱性を維持している。
When receiving a strong impact or when the unit cell 61 breaks down and generates heat, the emergency valve 81 is opened, the water in the water container 85 is caused to flow through the hose 84 to the emergency valve 81, and the introduction pipe 82 connected to the emergency valve 81 is used. Water flows into the cooler 80, the water evaporates in the cooler 80, takes heat from the county heat pipe 71, and the steam generated in the cooler 80 is discharged outside the county battery 65 through the discharge pipe 83, A vacuum of 65 is maintained. The water in the water container 85 is pressurized so that water flows to the cooler 80 when the emergency valve 81 is opened.
In an emergency, the unit cell 61 connected to the heat pipe is cooled by the cooler 80, and the unit cell 61 stops the function of the cell and ensures safety. The unit cell 61 is protected by protecting the normal unit cell 61 in the event of an accident. Can prevent chain damage. The introduction pipe 82 and the discharge pipe 83 are made of a material having low thermal conductivity, bent and meandered to maintain high heat insulation.

図9はナトリウム硫黄電池の別の対流層の図である。
図9の対流層6bでは長繊維を用いた織布を使用している。図9の対流層6cでは短繊維を用いた不織布を使用している。実施例1や実施例2の対流層6を対流層6bや対流層6cで置き換えることができる。
実施例1や実施例2や当実施例ではアルミナと黒鉛を対流層6の素材に用いているが、クロム鉄合金等の硫黄に親和性が高く導電性の素材とシリカ等の硫化ナトリウムに親和性の高い素材を用いることもできる。
FIG. 9 is a diagram of another convection layer of a sodium sulfur battery.
In the convection layer 6b of FIG. 9, a woven fabric using long fibers is used. In the convection layer 6c in FIG. 9, a non-woven fabric using short fibers is used. The convection layer 6 of Example 1 or Example 2 can be replaced with the convection layer 6b or the convection layer 6c.
In Example 1, Example 2, and this example, alumina and graphite are used as the material of the convection layer 6, but they have a high affinity for sulfur such as chromium iron alloy and the like, and are compatible with conductive materials and sodium sulfide such as silica. It is also possible to use high-quality materials.

図10はナトリウム硫黄電池の別の集電板の図である。
図10の集電板3bでは薄板を等間隔に並べて流路4とし、薄板を貫通する複数の集電体46を接続して集電している。図10の集電板3cでは一枚の薄板に流通口21になる穴を開け薄板を交互に折り曲げて流路4とし、集電板3cに複数の集電体46を接続して集電している。実施例1の集電板3を封止構造と電極構造は変化するが図10の集電板3bや集電板3cで置き換えることができる。実施例2の集電板3を図10の集電板3cに置き換えることができる。
FIG. 10 is a diagram of another current collector plate of the sodium-sulfur battery.
In the current collector plate 3b of FIG. 10, thin plates are arranged at equal intervals to form a flow path 4, and a plurality of current collectors 46 penetrating the thin plate are connected to collect current. In the current collector plate 3c of FIG. 10, holes are formed in one thin plate to become the flow ports 21, and the thin plates are alternately bent to form the flow path 4, and a plurality of current collectors 46 are connected to the current collector plate 3c to collect current. ing. Although the sealing structure and the electrode structure of the current collecting plate 3 of Example 1 are changed, the current collecting plate 3 can be replaced with the current collecting plate 3b or the current collecting plate 3c of FIG. The current collector plate 3 of Embodiment 2 can be replaced with the current collector plate 3c of FIG.

図11はナトリウム硫黄電池の別の流路の図である。
流路4bは対流層6と比べて大きな黒鉛粒子40とアルミナ粒子41を用いて焼結して流路としている。同一材質の粒子の接触面近辺が流路になる。
流路4cは細めの黒鉛長繊維50とアルミナ長繊維51を縦糸に、太めの黒鉛長繊維50とアルミナ長繊維51を横糸に用い、横糸は2本の繊維を並置した織布で、横糸2本の接触面近辺が流路になる。長繊維ではなく短繊維を用いた不織布を流路4cとすることもできる。
流路4bや流路4cを採用して実施例1や実施例2の流路4を置き換えることができ、集電板3に流路を作らないため集電板3は簡略化されて流通口21を開けるだけで済む。流路4bは対流層6と一緒に焼結して製造できる。
黒鉛とアルミナを流路4bと流路4cに用いているが、クロム鉄合金等の硫黄に親和性が高く導電性の素材とシリカ等の硫化ナトリウムに親和性の高い素材を用いることもできる。
FIG. 11 is a diagram of another flow path of the sodium-sulfur battery.
The flow path 4b is sintered using larger graphite particles 40 and alumina particles 41 than the convection layer 6 to form a flow path. Near the contact surface of particles of the same material is a flow path.
The flow path 4c is a woven fabric in which thin graphite long fibers 50 and alumina long fibers 51 are used as warp yarns, and thick graphite long fibers 50 and alumina long fibers 51 are used as weft yarns. Near the contact surface of the book is a flow path. A non-woven fabric using short fibers instead of long fibers can be used as the flow path 4c.
The flow path 4b and the flow path 4c can be adopted to replace the flow path 4 of the first and second embodiments, and since the flow path is not formed in the current collection plate 3, the current collection plate 3 is simplified and the distribution port Just open 21. The flow path 4 b can be manufactured by sintering together with the convection layer 6.
Graphite and alumina are used for the flow path 4b and the flow path 4c, but it is also possible to use a material having high affinity for sulfur such as chromium iron alloy and a material having high affinity for sodium sulfide such as silica.

図12は冷却管86を設置し多数のナトリウム硫黄単電池61を収容した郡電池65の図である。
郡電池65に収容した単電池61には電気的に絶縁し熱的に接続した冷却管86が設置されている。水容器85からホース84と非常弁81と導入管82を経由して冷却管86に水を流す、冷却管86で水が蒸発して単電池61を冷やす、冷却管86で発生した蒸気を排出管83で郡電池外に排出して、郡電池65の真空は維持される。
水容器85の水は加圧しておき、強い衝撃や単電池61の過熱を検出して非常弁81を開き、単電池61を冷却して電池の機能を緊急に停止させる。
図12では冷却管86は単電池61に並置されているが、単電池61に冷却管86を巻きつけたり、単電池61毎に分けて冷却管86を設けると、より急激な冷却が可能になる。
FIG. 12 is a diagram of a county battery 65 in which a cooling pipe 86 is installed and a large number of sodium sulfur single cells 61 are accommodated.
The unit cell 61 accommodated in the county battery 65 is provided with a cooling pipe 86 that is electrically insulated and thermally connected. Water flows from the water container 85 to the cooling pipe 86 through the hose 84, the emergency valve 81, and the introduction pipe 82, water evaporates in the cooling pipe 86 and cools the unit cell 61, and the steam generated in the cooling pipe 86 is discharged. The tube 83 is discharged out of the county battery, and the vacuum of the county battery 65 is maintained.
The water in the water container 85 is pressurized, a strong impact or overheating of the unit cell 61 is detected, the emergency valve 81 is opened, the unit cell 61 is cooled, and the battery function is stopped urgently.
In FIG. 12, the cooling pipe 86 is juxtaposed to the unit cell 61. However, if the cooling pipe 86 is wound around the unit cell 61 or provided separately for each unit cell 61, more rapid cooling is possible. .

当発明のナトリウム硫黄電池は電流密度が高く衝撃にも耐え、自動車等の動力源として実用になる。
The sodium-sulfur battery of the present invention has a high current density and withstands impact, and is practical as a power source for automobiles and the like.

1 負極板、2 正極板、3 集電板、3b 集電板、3c 集電板
4 流路、4b 流路、4c 流路、5 電解質、6 対流層
6b 対流層、6c 対流層、7 緩衝材、8 隔壁、9 電池
10 正極室、11 負極室、12 封止材、21 流通口
23 ナトリウム、24 硫黄、25 硫化ナトリウム
26 空間、27 空間、28 接続板、40 黒鉛粒子、41 アルミナ粒子
42 分離層、43 絶縁層、44 ガラス被覆、46 集電体、47 硫黄流路
48 硫化ナトリウム流路、50 黒鉛長繊維、51 アルミナ長繊維
52 黒鉛短繊維、53 アルミナ短繊維、60 真空容器
61 単電池、62 断熱材、64 緩衝箱、65 郡電池、68 放熱板
70 列ヒートパイプ、71 郡ヒートパイプ、72 放熱ベローズ
73 ヒータ、74 放熱器、75 温度計、76 放熱ヒートパイプ
77 容器ヒートパイプ、78 接片、79 絶縁材、80 冷却器
81 非常弁、82 導入管、83 排出管、84 ホース、85 水容器
86 冷却管
DESCRIPTION OF SYMBOLS 1 Negative electrode plate, 2 Positive electrode plate, 3 Current collecting plate, 3b Current collecting plate, 3c Current collecting plate 4 Flow path, 4b flow path, 4c flow path, 5 Electrolyte, 6 Convective layer 6b Convective layer, 6c Convective layer, 7 Buffer Material, 8 Partition, 9 Battery 10 Positive electrode chamber, 11 Negative electrode chamber, 12 Sealing material, 21 Flow port 23 Sodium, 24 Sulfur, 25 Sodium sulfide 26 Space, 27 Space, 28 Connection plate, 40 Graphite particles, 41 Alumina particles 42 Separation layer, 43 Insulating layer, 44 Glass coating, 46 Current collector, 47 Sulfur flow path 48 Sodium sulfide flow path, 50 Graphite long fiber, 51 Alumina long fiber 52 Graphite short fiber, 53 Alumina short fiber, 60 Vacuum vessel 61 Single Battery, 62 Heat insulating material, 64 Buffer box, 65 County battery, 68 Heat sink 70 Row heat pipe, 71 County heat pipe, 72 Heat radiation bellows 73 Heater, 74 Heat radiator, 75 Thermometer, 76 Heat radiation Heat pipe 77 Container heat pipe, 78 Contact piece, 79 Insulation material, 80 Cooler 81 Emergency valve, 82 Inlet pipe, 83 Discharge pipe, 84 hose, 85 Water container 86 Cooling pipe

Claims (18)

負極活物質にナトリウムを正極活物質に硫黄と硫化ナトリウムを用いるナトリウム硫黄電池において、正極と負極の隔壁にナトリウムイオンに透過性のある薄膜の固体電解質を用い、該固体電解質を直接又は介在物を介して負極集電体や正極集電体や電池容器に固定する事を特徴とするナトリウム硫黄電池。   In a sodium-sulfur battery using sodium as the negative electrode active material and sulfur and sodium sulfide as the positive electrode active material, a solid electrolyte of a thin film permeable to sodium ions is used for the partition walls of the positive electrode and the negative electrode, and the solid electrolyte is directly or intervened. A sodium-sulfur battery characterized by being fixed to a negative electrode current collector, a positive electrode current collector, or a battery container. 負極活物質にナトリウムを正極活物質に硫黄と硫化ナトリウムを用いるナトリウム硫黄電池において、正極と負極の隔壁にナトリウムイオンに透過性のある薄膜の固体電解質を用い、正極室と負極室ともにガスを封入することなく真空とし、該活物質の蒸気で残りの空間を満たす事を特徴とするナトリウム硫黄電池。   In a sodium-sulfur battery that uses sodium as the negative electrode active material and sulfur and sodium sulfide as the positive electrode active material, a thin-film solid electrolyte that is permeable to sodium ions is used for the partition walls of the positive and negative electrodes, and gas is sealed in both the positive and negative electrode chambers. A sodium-sulfur battery, wherein the remaining space is filled with vapor of the active material without vacuum. 請求項1と請求項2の固体電解質に、ベーターアルミナ薄膜を採用する事を特徴とするナトリウム硫黄電池。   A sodium-sulfur battery characterized in that a beta-alumina thin film is employed for the solid electrolytes of claims 1 and 2. 負極活物質にナトリウムを正極活物質に硫黄と硫化ナトリウムを用いるナトリウム硫黄電池において、正極集電体に複数の溝や空隙を設け、硫化ナトリウムに親和性の高い素材で該正極集電体の溝や空隙の表面を覆って溝や空隙を硫化ナトリウムの流路とし、表面を該素材で覆っていない該正極集電体の溝や空隙を硫黄の流路とし、硫化ナトリウムの流路と硫黄の流路を交互に正極集電体に配置する事を特徴とするナトリウム硫黄電池。   In a sodium-sulfur battery using sodium as the negative electrode active material and sulfur and sodium sulfide as the positive electrode active material, the positive electrode current collector is provided with a plurality of grooves and voids, and the positive electrode current collector groove is made of a material having a high affinity for sodium sulfide. Covering the surface of the air gap and the groove and the void as a sodium sulfide flow path, the groove and void of the cathode current collector not covering the surface with the material as a sulfur flow path, the sodium sulfide flow path and the sulfur flow path A sodium-sulfur battery characterized in that the flow paths are alternately arranged on the positive electrode current collector. 負極活物質にナトリウムを正極活物質に硫黄と硫化ナトリウムを用いるナトリウム硫黄電池において、硫化ナトリウムに親和性の高い素材と硫黄に親和性が高く導電性の素材とで作成した透過性の焼結体や布を、正極集電体付近の硫黄と硫化ナトリウムの流路とする事を特徴とするナトリウム硫黄電池。   In a sodium-sulfur battery that uses sodium as the negative electrode active material and sulfur and sodium sulfide as the positive electrode active material, a permeable sintered body made of a material with a high affinity for sodium sulfide and a conductive material with a high affinity for sulfur A sodium-sulfur battery characterized in that a cloth and a cloth for sulfur and sodium sulfide are used in the vicinity of the positive electrode current collector. 請求項4と請求項5のナトリウム硫黄電池において、固体電解質の正極側に透過性の絶縁層を配置し、硫黄に親和性が高く導電性の素材と硫化ナトリウムに親和性の高い素材を焼結した透過性の分離層を該絶縁層の次に配置し、該分離層と正極集電体や流路を電気的物理的に接続して、固体電解質近辺の正極活物質の対流構造と固体電解質近辺の電気接続を改善する事を特徴とするナトリウム硫黄電池。   6. A sodium-sulfur battery according to claim 4 and claim 5, wherein a permeable insulating layer is disposed on the positive electrode side of the solid electrolyte, and a conductive material having a high affinity for sulfur and a material having a high affinity for sodium sulfide are sintered. The permeable separation layer is disposed next to the insulating layer, and the separation layer and the positive electrode current collector and the flow path are electrically and physically connected, so that the convection structure of the positive electrode active material in the vicinity of the solid electrolyte and the solid electrolyte A sodium-sulfur battery characterized by improved electrical connection in the vicinity. 請求項6の分離層に、硫黄に親和性が高く導電性の繊維と硫化ナトリウムに親和性の高い繊維との混紡で作成した布を使用する事を特徴とするナトリウム硫黄電池。   7. A sodium-sulfur battery characterized in that the separation layer according to claim 6 uses a cloth made by blending a conductive fiber having high affinity for sulfur and a fiber having high affinity for sodium sulfide. 請求項6の絶縁層を省略し、代わりに固体電解質の表面と分離層の表面の凹凸を少なくし、該分離層の表面の導電体を凹ませて、絶縁層なしで固体電解質と分離層との絶縁を確保する事を特徴とするナトリウム硫黄電池。   The insulating layer of claim 6 is omitted, and instead, the unevenness of the surface of the solid electrolyte and the surface of the separation layer is reduced, the conductor on the surface of the separation layer is recessed, and the solid electrolyte and the separation layer are formed without the insulation layer. A sodium-sulfur battery characterized by ensuring insulation. 負極活物質にナトリウムを正極活物質に硫黄と硫化ナトリウムを用いるナトリウム硫黄単電池を複数接続した郡電池において、郡電池の容器を真空容器とし単電池内も真空環境とし、郡電池内の単電池の内部外部共に真空環境で運用する事を特徴とするナトリウム硫黄電池。   In a group battery in which multiple sodium-sulfur single cells using sodium as the negative electrode active material and sulfur and sodium sulfide as the positive electrode active material are connected, the container of the group battery is a vacuum vessel, the unit cell is also in a vacuum environment, and the unit cell in the group battery A sodium-sulfur battery that operates in a vacuum environment both inside and outside. 請求項9の郡電池で、アルミ薄膜にガラスやセラミックの繊維や粒子を重ねて断熱幕とし、該断熱幕を多重に積層して真空容器内を覆い、郡電池内を断熱する事を特徴とするナトリウム硫黄電池。   The county battery according to claim 9, characterized in that glass or ceramic fibers and particles are laminated on an aluminum thin film to form a heat insulating curtain, and the heat insulating curtain is laminated in multiple layers to cover the inside of the vacuum vessel, thereby insulating the county battery. Sodium sulfur battery. 負極活物質にナトリウムを正極活物質に硫黄と硫化ナトリウムを用いるナトリウム硫黄単電池を複数接続した郡電池において、単電池と電気的には絶縁し熱的には接続されたヒートパイプを設置し、郡電池に収容した該単電池を互いに熱的に接続する事を特徴とするナトリウム硫黄電池。   In the Gun battery, which connects multiple sodium-sulfur cells that use sodium as the negative electrode active material and sulfur and sodium sulfide as the positive electrode active material, a heat pipe that is electrically insulated from the single cell and thermally connected is installed, A sodium-sulfur battery characterized in that the unit cells contained in a county battery are thermally connected to each other. 請求項11の郡電池のヒートパイプにヒータを設置し、ヒートパイプの温度が規定温度を下回ると該ヒータに電流を流して、ヒートパイプを加熱する事を特徴とするナトリウム硫黄電池。   A sodium-sulfur battery, wherein a heater is installed in the heat pipe of the county battery according to claim 11, and when the temperature of the heat pipe falls below a specified temperature, an electric current is passed through the heater to heat the heat pipe. 請求項11の郡電池のヒートパイプに熱流量可変の放熱器を設置し、ヒートパイプの温度が規定温度を上回るとヒートパイプから熱を郡電池の外部に逃がして、郡電池内の過剰な熱を放熱する事を特徴とするナトリウム硫黄電池。   The heat pipe of variable heat flow is installed in the heat pipe of the county battery of claim 11, and when the temperature of the heat pipe exceeds a specified temperature, heat is released from the heat pipe to the outside of the county battery, and excessive heat in the county battery is Sodium-sulfur battery characterized by dissipating heat. 請求項13の可変機構に、蒸発材を封入し温度で蒸発材の蒸気圧が変化して伸縮するベローズを可変機構に用いる事を特徴とするナトリウム硫黄電池。   14. A sodium-sulfur battery characterized in that the variable mechanism of claim 13 uses a bellows that encloses the evaporating material and expands and contracts by changing the vapor pressure of the evaporating material with temperature. 負極活物質にナトリウムを正極活物質に硫黄と硫化ナトリウムを用いるナトリウム硫黄単電池を複数接続した郡電池において、単電池と電気的には絶縁し熱的には接続された冷却管を設置し、強い衝撃や単電池の過熱を検出して弁を開いて該冷却管に水を流し、単電池を水の気化熱で冷却し、冷却後の水と蒸気は郡電池外に排出して、緊急時に郡電池の真空を維持しながら郡電池を冷却する事を特徴とするナトリウム硫黄電池。   In the Gun battery connected with multiple sodium-sulfur single cells using sodium as the negative electrode active material and sulfur and sodium sulfide as the positive electrode active material, a cooling pipe that is electrically insulated from the single cell and thermally connected is installed, A strong shock or overheating of the unit cell is detected, the valve is opened and water flows through the cooling pipe, the unit cell is cooled with the heat of vaporization of water, and the cooled water and steam are discharged out of the county cell for emergency. A sodium-sulfur battery characterized by cooling the county battery while sometimes maintaining the vacuum of the county battery. 請求項11のヒートパイプに冷却器を設置し、強い衝撃や単電池の過熱を検出して弁を開いて該冷却器に水を流し、該ヒートパイプを水の気化熱で冷却し、冷却後の水と蒸気は郡電池外に排出して、緊急時に郡電池の真空を維持しながら郡電池を冷却する事を特徴とするナトリウム硫黄電池。   A cooler is installed in the heat pipe according to claim 11, a strong impact or overheating of the unit cell is detected, a valve is opened, water is allowed to flow through the cooler, the heat pipe is cooled with the heat of vaporization of water, and after cooling Water and steam are discharged outside the county battery, and the county battery is cooled while maintaining the county battery vacuum in an emergency. 負極活物質にナトリウムを正極活物質に硫黄と硫化ナトリウムを用いるナトリウム硫黄電池において、電池の正極と負極に互いに咬合する凹凸を設け、電池の正極と負極を直接柔軟に接続できる事を特徴とするナトリウム硫黄電池。   In a sodium-sulfur battery using sodium as the negative electrode active material and sulfur and sodium sulfide as the positive electrode active material, the battery positive electrode and negative electrode are provided with irregularities that engage each other, and the battery positive electrode and negative electrode can be directly and flexibly connected. Sodium sulfur battery. 負極活物質にナトリウムを正極活物質に硫黄と硫化ナトリウムを用いるナトリウム硫黄単電池を複数接続した郡電池において、剛性の高い緩衝箱に複数の単電池を連結して収容し、複数の該緩衝箱を連結して郡電池に収容する事を特徴とするナトリウム硫黄電池。   In a group battery in which a plurality of sodium-sulfur single cells using sodium as a negative electrode active material and sulfur and sodium sulfide as a positive electrode active material are connected, a plurality of single cells are connected to a highly rigid buffer box, and the plurality of buffer boxes A sodium-sulfur battery characterized by being connected to a county battery.
JP2010140029A 2010-06-19 2010-06-19 Vehicular sodium-sulfur battery Pending JP2012004053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140029A JP2012004053A (en) 2010-06-19 2010-06-19 Vehicular sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140029A JP2012004053A (en) 2010-06-19 2010-06-19 Vehicular sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JP2012004053A true JP2012004053A (en) 2012-01-05

Family

ID=45535807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140029A Pending JP2012004053A (en) 2010-06-19 2010-06-19 Vehicular sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2012004053A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171522A1 (en) * 2015-04-22 2016-10-27 주식회사 엘지화학 Secondary battery pack and vehicle comprising same
CN110098445A (en) * 2019-04-11 2019-08-06 浙江零跑科技有限公司 A kind of Embedded heat management device of rectangular cell mould group
WO2021177205A1 (en) * 2020-03-06 2021-09-10 ニチアス株式会社 Heat insulating material for battery and battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171522A1 (en) * 2015-04-22 2016-10-27 주식회사 엘지화학 Secondary battery pack and vehicle comprising same
CN110098445A (en) * 2019-04-11 2019-08-06 浙江零跑科技有限公司 A kind of Embedded heat management device of rectangular cell mould group
WO2021177205A1 (en) * 2020-03-06 2021-09-10 ニチアス株式会社 Heat insulating material for battery and battery
JP2021140968A (en) * 2020-03-06 2021-09-16 ニチアス株式会社 Battery heat insulation material and battery
JP7292231B2 (en) 2020-03-06 2023-06-16 ニチアス株式会社 Thermal insulation for batteries and batteries

Similar Documents

Publication Publication Date Title
JP6730526B2 (en) Battery pack with crash beam structure
US20220158273A1 (en) Thermal management system and device
KR101810438B1 (en) Energy storage system with heat pipe thermal management
KR101106103B1 (en) Battery Module of Improved Safety
JP5298031B2 (en) Electrochemical individual cells and batteries for batteries
US10079413B2 (en) Li-ion pouch cell and a cell module
US20130164594A1 (en) Electrical energy storage cell and apparatus
KR101449103B1 (en) Heat control plate for battery cell module and battery cell module having the same
US11509015B2 (en) Energy storage module and energy storage device
US20170352935A1 (en) Lithium Accumulator With A Two-Layered Thermally Insulating Package And With A Heat Pipe For Thermal Management
KR101748645B1 (en) Battery Module
US20180175467A1 (en) Heat distributor for a battery
CZ2010703A3 (en) Lithium accumulator
US11050099B2 (en) Energy storage module comprising a temperature management system, and energy storage system
WO2012141191A1 (en) Electrical storage device
KR20130107653A (en) Heat control plate for battery cell module and battery cell module having the same
KR20220092526A (en) Housing unit for traction battery with fluid-based cooling consisting of an evaporator with microchannels
JP2018536975A (en) Battery module, battery pack including the same, and automobile
CN107210387A (en) Long cycle life prismatic battery battery core for high power applications
JP2010186715A (en) Heat radiation structure of battery pack, and battery pack
JP2012004053A (en) Vehicular sodium-sulfur battery
CN114175360A (en) Battery cooling system
WO2014068881A1 (en) Power supply device and vehicle provided with power supply device
US11387506B2 (en) Thermal management systems including vapor chambers and phase change materials and vehicles including the same
JPWO2020054227A1 (en) Power supply