JP2012004048A - Electrolyte membrane and method for manufacturing the same, electrode catalyst layer and method for manufacturing the same, membrane electrode assembly, and solid polymer electrolyte fuel cell - Google Patents

Electrolyte membrane and method for manufacturing the same, electrode catalyst layer and method for manufacturing the same, membrane electrode assembly, and solid polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2012004048A
JP2012004048A JP2010139852A JP2010139852A JP2012004048A JP 2012004048 A JP2012004048 A JP 2012004048A JP 2010139852 A JP2010139852 A JP 2010139852A JP 2010139852 A JP2010139852 A JP 2010139852A JP 2012004048 A JP2012004048 A JP 2012004048A
Authority
JP
Japan
Prior art keywords
group
fluorine
electrolyte
catalyst layer
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010139852A
Other languages
Japanese (ja)
Other versions
JP5607435B2 (en
Inventor
Takahiko Murai
隆彦 村井
Naoto Miyake
直人 三宅
Tadashi Ino
忠 伊野
Masahiro Kondo
昌宏 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Asahi Kasei Corp
Original Assignee
Daikin Industries Ltd
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Asahi Kasei E Materials Corp filed Critical Daikin Industries Ltd
Priority to JP2010139852A priority Critical patent/JP5607435B2/en
Publication of JP2012004048A publication Critical patent/JP2012004048A/en
Application granted granted Critical
Publication of JP5607435B2 publication Critical patent/JP5607435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyte membrane excellent in battery characteristics and mechanical strength.SOLUTION: The present invention relates to an electrolyte membrane comprising a fluorine-containing copolymer. The fluorine-containing copolymer comprises a polymerization unit (A) derived from vinylidene fluoride and a polymerization unit (B) having a -SOX group in a side chain. The -SOX group is at least one kind of a functional group selected from the group consisting of -SOH, -SONRRRRand -SOM(where, R, R, Rand Rare the same or different and each represents a hydrogen atom or an alkyl group having 1-4 carbon atoms, and Mis the same or different and represents an L-valent metal representing a metal belonging to the group 1, group 2, group 4, group 8, group 11, group 12 or group 13 of the periodic table (excluding Li)).

Description

本発明は、電解質膜並びにその製造方法、電極触媒層並びにその製造方法、膜電極接合体、及び、固体高分子電解質型燃料電池に関する。 The present invention relates to an electrolyte membrane and a production method thereof, an electrode catalyst layer and a production method thereof, a membrane electrode assembly, and a solid polymer electrolyte fuel cell.

燃料電池は、電池内で、水素、メタノール等を電気化学的に酸化することにより、燃料の化学エネルギーを、直接、電気エネルギーに変換して取り出すものであり、クリーンな電気エネルギー供給源として注目されている。特に、固体高分子電解質型燃料電池は、他と比較して低温で作動することから、自動車代替動力源、家庭用コージェネレーションシステム、携帯用発電機等として期待されている。 A fuel cell is one that converts the chemical energy of fuel directly into electrical energy by electrochemically oxidizing hydrogen, methanol, etc. in the battery, and is attracting attention as a clean electrical energy supply source. ing. In particular, solid polymer electrolyte fuel cells are expected to be used as alternative power sources for automobiles, home cogeneration systems, portable generators, and the like because they operate at a lower temperature than others.

このような固体高分子電解質型燃料電池は、電極触媒層とガス拡散層とが積層されたガス拡散電極が電解質膜の両面に接合された膜電極接合体を少なくとも備えている。ここでいう電解質膜は、高分子鎖中にスルホン酸基、カルボン酸基等の強酸性基を有し、プロトンを選択的に透過する性質を有する材料である。このような固体高分子電解質型燃料電池に用いられる電解質膜の材料としては、テトラフルオロエチレンとスルホン酸基を有する単量体との共重合体が知られているが、フッ化ビニリデンとスルホン酸基を有する単量体との共重合体は知られていない。 Such a solid polymer electrolyte fuel cell includes at least a membrane electrode assembly in which a gas diffusion electrode in which an electrode catalyst layer and a gas diffusion layer are laminated is bonded to both surfaces of an electrolyte membrane. The electrolyte membrane here is a material having a strongly acidic group such as a sulfonic acid group or a carboxylic acid group in the polymer chain and a property of selectively transmitting protons. As a material for an electrolyte membrane used in such a solid polymer electrolyte fuel cell, a copolymer of tetrafluoroethylene and a monomer having a sulfonic acid group is known, but vinylidene fluoride and sulfonic acid are used. A copolymer with a monomer having a group is not known.

ところで、リチウム電池のポリマー電解質として、特許文献1には、フッ化ビニリデンに基づく重合単位と−CFCOOLi又は−CFSOLiを含有する側鎖を有する重合単位とからなる共重合体をマトリックスとし、有機溶媒を含有するポリマー電解質が開示されている。特許文献2には、フルオロアルコキシスルホン酸及びこの金属塩のペンダント基を有するポリエチレン主鎖からなるイオノマーに関する発明が開示されている。 By the way, as a polymer electrolyte of a lithium battery, Patent Document 1 discloses a copolymer composed of a polymerization unit based on vinylidene fluoride and a polymerization unit having a side chain containing —CF 2 COOLi or —CF 2 SO 3 Li. A polymer electrolyte containing a matrix and an organic solvent is disclosed. Patent Document 2 discloses an invention relating to an ionomer comprising a polyethylene main chain having a pendant group of fluoroalkoxysulfonic acid and a metal salt thereof.

特開平10−284128号公報Japanese Patent Laid-Open No. 10-284128 特表2002−503734号公報JP-T-2002-503734

従来電解質膜用の材料として知られていたテトラフルオロエチレンとスルホン酸基を有する単量体との共重合体は機械的強度の点等において改善の余地があった。 A copolymer of tetrafluoroethylene and a monomer having a sulfonic acid group, which has been known as a material for an electrolyte membrane, has room for improvement in terms of mechanical strength.

本発明は、電池特性並びに機械的強度に優れる、電解質膜及び電極触媒層を提供するものである。 The present invention provides an electrolyte membrane and an electrode catalyst layer that are excellent in battery characteristics and mechanical strength.

本発明は、含フッ素共重合体からなる固体高分子電解質型燃料電池用の電解質膜であって、含フッ素共重合体は、フッ化ビニリデンに基づく重合単位(A)と、−SOX基を側鎖に有する重合単位(B)と、からなり、−SOX基は、−SOH、−SONR、及び−SO 1/L(但し、R、R、R及びRは、同一又は異なり、水素原子若しくは炭素数1〜4のアルキル基を表し、Mは、同一若しくは異なって、L価の金属を表し、前記L価の金属は、周期表の1族、2族、4族、8族、11族、12族又は13族に属する金属(但し、Liを除く。)を表す。)からなる群より選択される少なくとも1種の官能基であることを特徴とする電解質膜である。 The present invention relates to an electrolyte membrane for a solid polymer electrolyte fuel cell comprising a fluorine-containing copolymer, wherein the fluorine-containing copolymer comprises a polymer unit (A) based on vinylidene fluoride and a —SO 3 X group. And —SO 3 X group has —SO 3 H, —SO 3 NR 1 R 2 R 3 R 4 , and —SO 3 M 1 1 / L (provided that , R 1 , R 2 , R 3 and R 4 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; M 1 is the same or different and represents an L-valent metal; The valent metal is selected from the group consisting of metals belonging to Group 1, Group 2, Group 4, Group 8, Group 11, Group 12, Group 13 or Group 13 of the periodic table (excluding Li). It is an electrolyte membrane characterized by being at least one functional group.

本発明は、含フッ素共重合体及び燃料電池触媒からなる固体高分子電解質型燃料電池用の電極触媒層であって、含フッ素共重合体は、フッ化ビニリデンに基づく重合単位(A)と、−SOX基を側鎖に有する重合単位(B)と、からなり、−SOX基は、−SOH、−SONR、及び−SO 1/L(但し、R、R、R及びRは、同一又は異なり、水素原子若しくは炭素数1〜4のアルキル基を表し、Mは、同一若しくは異なって、L価の金属を表し、前記L価の金属は、周期表の1族、2族、4族、8族、11族、12族又は13族に属する金属(但し、Liを除く。)を表す。)からなる群より選択される少なくとも1種の官能基であることを特徴とする電極触媒層でもある。 The present invention is an electrode catalyst layer for a solid polymer electrolyte fuel cell comprising a fluorine-containing copolymer and a fuel cell catalyst, the fluorine-containing copolymer comprising a polymerized unit (A) based on vinylidene fluoride, And a polymer unit (B) having a —SO 3 X group in the side chain, and the —SO 3 X group includes —SO 3 H, —SO 3 NR 1 R 2 R 3 R 4 , and —SO 3 M 1. 1 / L (where R 1 , R 2 , R 3 and R 4 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; M 1 is the same or different and represents an L-valent metal; The L-valent metal is a metal belonging to Group 1, Group 2, Group 4, Group 8, Group 11, Group 12 or Group 13 of the periodic table (excluding Li). It is also an electrocatalyst layer characterized by being at least one functional group selected from the group.

本発明は、上記電解質膜、又は、上記電極触媒層を備えることを特徴とする膜電極接合体でもある。 The present invention is also a membrane electrode assembly comprising the electrolyte membrane or the electrode catalyst layer.

本発明は、上記膜電極接合体を備えることを特徴とする固体高分子電解質型燃料電池でもある。 The present invention also provides a solid polymer electrolyte fuel cell comprising the membrane electrode assembly.

本発明は、上記電解質膜を製造する方法であって、フッ化ビニリデンと−SOX基を有する共単量体とを水性媒体中でラジカル重合して含フッ素共重合体を含む電解質エマルションを得る重合工程と、得られた電解質エマルションに有機溶媒を添加して含フッ素重合体が溶解した電解質溶液を得る工程と、電解質溶液を基材に塗布する工程と、基材に塗布した電解質溶液を乾燥させて電解質膜を得る工程と、を含み、−SOX基は、−SOH、−SONR、及び−SO 1/L(但し、R、R、R及びRは、同一又は異なり、水素原子若しくは炭素数1〜4のアルキル基を表し、Mは、同一若しくは異なって、L価の金属を表し、前記L価の金属は、周期表の1族、2族、4族、8族、11族、12族又は13族に属する金属(但し、Liを除く。)を表す。)からなる群より選択される少なくとも1種の官能基であることを特徴とする電解質膜の製造方法でもある。 The present invention is a method for producing the above electrolyte membrane, wherein an electrolyte emulsion containing a fluorine-containing copolymer is obtained by radical polymerization of vinylidene fluoride and a comonomer having a —SO 3 X group in an aqueous medium. A polymerization step, an organic solvent added to the obtained electrolyte emulsion to obtain an electrolyte solution in which the fluoropolymer is dissolved, a step of applying the electrolyte solution to the substrate, and an electrolyte solution applied to the substrate. A step of obtaining an electrolyte membrane by drying, wherein the —SO 3 X group is —SO 3 H, —SO 3 NR 1 R 2 R 3 R 4 , and —SO 3 M 1 1 / L (where R 1 , R 2 , R 3 and R 4 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; M 1 is the same or different and represents an L-valent metal; The metals are group 1, group 2, group 4, 8 of the periodic table. A method for producing an electrolyte membrane, comprising at least one functional group selected from the group consisting of metals belonging to Group 11, Group 12, Group 12 or Group 13 (excluding Li). But there is.

本発明は、上記電極触媒層を製造する方法であって、フッ化ビニリデンと−SOX基を有する共単量体とを水性媒体中でラジカル重合して含フッ素共重合体を含む電解質エマルションを得る重合工程と、得られた電解質エマルションに有機溶媒を添加して含フッ素共重合体が溶解した電解質溶液を得る工程と、
電解質溶液に、燃料電池触媒を分散させて触媒組成物を調製する工程と、
触媒組成物を基材に塗布する工程と、
基材に塗布した触媒組成物を乾燥させて電極触媒層を得る工程と、を含み、−SOX基は、−SOH、−SONR、及び−SO 1/L(但し、R、R、R及びRは、同一又は異なり、水素原子若しくは炭素数1〜4のアルキル基を表し、Mは、同一若しくは異なって、L価の金属を表し、前記L価の金属は、周期表の1族、2族、4族、8族、11族、12族又は13族に属する金属(但し、Liを除く。)を表す。)からなる群より選択される少なくとも1種の官能基であることを特徴とする電極触媒層の製造方法でもある。
The present invention is a method for producing the above electrode catalyst layer, which is an electrolyte emulsion containing a fluorine-containing copolymer obtained by radical polymerization of vinylidene fluoride and a comonomer having a —SO 3 X group in an aqueous medium. A step of obtaining an electrolyte solution in which an organic solvent is added to the obtained electrolyte emulsion to dissolve the fluorine-containing copolymer;
A step of dispersing a fuel cell catalyst in an electrolyte solution to prepare a catalyst composition;
Applying the catalyst composition to the substrate;
A step of drying the catalyst composition applied to the substrate to obtain an electrode catalyst layer, wherein the —SO 3 X group is —SO 3 H, —SO 3 NR 1 R 2 R 3 R 4 , and —SO 3 3 M 1 1 / L (wherein R 1 , R 2 , R 3 and R 4 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; M 1 is the same or different; The L-valent metal represents a metal belonging to Group 1, Group 2, Group 4, Group 8, Group 11, Group 12, or Group 13 of the periodic table (excluding Li). It is also a method for producing an electrode catalyst layer, which is at least one functional group selected from the group consisting of:

本発明の電解質膜及び電極触媒層は、上記構成からなることによって、プロトン伝導性等の電池特性並びに機械的強度に優れる。本発明の電解質膜及び電極触媒層の製造方法は、電池特性並びに機械的強度に優れる電解質膜及び電極触媒層を製造することができる。 The electrolyte membrane and the electrode catalyst layer of the present invention are excellent in battery characteristics such as proton conductivity and mechanical strength due to the above structure. The method for producing an electrolyte membrane and an electrode catalyst layer of the present invention can produce an electrolyte membrane and an electrode catalyst layer that are excellent in battery characteristics and mechanical strength.

本発明の電解質膜は、含フッ素共重合体からなる。 The electrolyte membrane of the present invention is made of a fluorine-containing copolymer.

本発明の電極触媒層は、含フッ素共重合体及び燃料電池触媒からなる。 The electrode catalyst layer of the present invention comprises a fluorine-containing copolymer and a fuel cell catalyst.

本発明の電解質膜及び電極触媒層において、上記含フッ素共重合体は、フッ化ビニリデンに基づく重合単位(A)と、−SOX基を側鎖に有する重合単位(B)と、からなるものである。 In the electrolyte membrane and electrode catalyst layer of the present invention, the fluorine-containing copolymer comprises a polymerized unit (A) based on vinylidene fluoride and a polymerized unit (B) having a —SO 3 X group in the side chain. Is.

フッ化ビニリデンに基づく重合単位(A)は、下記式(1):
−CF−CH− (1)
で表される重合単位である。本発明の含フッ素共重合体は、フッ化ビニリデンに基づく重合単位(A)からなるものであるため、含フッ素共重合体から得られる電解質膜や電極触媒層を電気化学的に安定でイオン伝導性に優れるものとすることができる。また、含フッ素共重合体から得られる電解質膜や電極触媒層の機械的強度を優れたものとすることができる。更に、ガスバリア性が改善され、燃料電池として使用した場合に出力特性が改善される。そして、汎用有機溶剤に可溶であり、成形性に優れるため、製造コストの削減を図ることもできる。
The polymerization unit (A) based on vinylidene fluoride has the following formula (1):
—CF 2 —CH 2 — (1)
It is a polymerization unit represented by. Since the fluorinated copolymer of the present invention comprises polymerized units (A) based on vinylidene fluoride, the electrolyte membrane and electrode catalyst layer obtained from the fluorinated copolymer are electrochemically stable and ion-conductive. It can be excellent in properties. Moreover, the mechanical strength of the electrolyte membrane and electrode catalyst layer obtained from the fluorine-containing copolymer can be made excellent. Furthermore, gas barrier properties are improved, and output characteristics are improved when used as a fuel cell. And since it is soluble in a general-purpose organic solvent and is excellent in moldability, the manufacturing cost can be reduced.

上記含フッ素重合体において、−SOX基は、−SOH、−SONR及び−SO 1/L(但し、R、R、R及びRは、同一又は異なり、水素原子若しくは炭素数1〜4のアルキル基を表し、Mは、同一若しくは異なって、L価の金属を表し、前記L価の金属は、周期表の1族、2族、4族、8族、11族、12族又は13族に属する金属(但し、Liを除く。)を表す。)からなる群より選択される少なくとも1種の官能基である。−SONRとしては、−SONHが好ましい。上記L価の金属としては、Na、又は、Kが好ましい。−SOX基としては、−SOHであることがより好ましい。 In the fluorine-containing polymer, -SO 3 X groups, -SO 3 H, -SO 3 NR 1 R 2 R 3 R 4 and -SO 3 M 1 1 / L (where, R 1, R 2, R 3 And R 4 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, M 1 is the same or different and represents an L-valent metal, and the L-valent metal is represented by 1 in the periodic table. It is at least one functional group selected from the group consisting of metals belonging to Group 2, Group 4, Group 8, Group 8, Group 11, Group 12 or Group 13 (excluding Li). As —SO 3 NR 1 R 2 R 3 R 4 , —SO 3 NH 4 is preferable. As the L-valent metal, Na or K is preferable. The —SO 3 X group is more preferably —SO 3 H.

−SOX基を側鎖に有する重合単位(B)は、ラジカル重合可能なビニル基と、−SOX基とを有し、かつフッ化ビニリデンと共重合可能な共単量体(以下、「共単量体(b)」ともいう。)に基づく重合単位である。 The polymerization unit (B) having a —SO 3 X group in the side chain has a vinyl group capable of radical polymerization and a —SO 3 X group, and is a comonomer (hereinafter referred to as copolymerizable with vinylidene fluoride). , Also referred to as “comonomer (b)”).

共単量体(b)としては、含フッ素エチレン性モノマーとの共重合性が良い点、工業的に容易に合成できる点から、下記一般式(II):
CF=CF−O−(CFCFY−O)−(CFY−SO (II)
(式中、Xは、H、Na、K又はNHを表し、Yは、F、Cl又はCFを表し、YはF又はClを表し、n及びmは0〜2の整数を表す。)で表されるビニルエーテルが好ましい。Xは、Hであることがより好ましい。nは0であることが好ましい。mは1又は2であることが好ましい。
The comonomer (b) has the following general formula (II) because it has good copolymerizability with a fluorine-containing ethylenic monomer and can be easily synthesized industrially:
CF 2 = CF-O- (CF 2 CFY 1 -O) n - (CFY 2) m -SO 3 X 1 (II)
(Wherein, X 1 represents H, Na, K or NH 4 , Y 1 represents F, Cl or CF 3 , Y 2 represents F or Cl, and n and m are integers of 0 to 2) The vinyl ether represented by this is preferred. X 1 is more preferably H. n is preferably 0. m is preferably 1 or 2.

重合単位(B)は、上記式(II)で表されるビニルエーテルに基づく重合単位であることが好ましい。すなわち、重合単位(B)は、下記一般式(2):
−CF−C(−O−(CFCFY−O)−(CFY−SO)F− (2)
(式中、Xは、H、Na、K又はNHを表し、Yは、F、Cl又はCFを表し、YはF又はClを表し、n及びmは0〜2の整数を表す。)で表される重合単位であることが好ましい。Xは、Hであることがより好ましい。nは0であることが好ましい。mは1又は2であることが好ましい。
The polymer unit (B) is preferably a polymer unit based on the vinyl ether represented by the above formula (II). That is, the polymerization unit (B) has the following general formula (2):
-CF 2 -C (-O- (CF 2 CFY 1 -O) n - (CFY 2) m -SO 3 X 1) F- (2)
(Wherein, X 1 represents H, Na, K or NH 4 , Y 1 represents F, Cl or CF 3 , Y 2 represents F or Cl, and n and m are integers of 0 to 2) It is preferable that it is a polymerization unit represented by. More preferably, X is H. n is preferably 0. m is preferably 1 or 2.

上記含フッ素共重合体は、重合単位(B)が、全重合単位に対して3〜50モル%であることが好ましい。より好ましくは、10〜40モル%である。 In the fluorinated copolymer, the polymerization unit (B) is preferably 3 to 50 mol% with respect to the total polymerization units. More preferably, it is 10-40 mol%.

上記含フッ素共重合体は、フッ化ビニリデンに基づく重合単位が全重合単位に対して、25モル%以上であることが好ましく、40モル%以上であることがより好ましく、50モル%以上であることが更に好ましい。60モル%以上であることも好ましい形態の一つである。また、フッ化ビニリデンに基づく重合単位は全重合単位に対して97モル%以下が好ましく、90モル%以下がより好ましい。フッ化ビニリデンに基づく重合単位が多すぎると、結晶性が高くなり、柔軟性が低下して成形加工性が低下したり、電解質膜や電極触媒層の電気伝導度が低くなったりするおそれがある。また、フッ化ビニリデンに基づく重合単位が少なすぎると、柔軟性が高くなりすぎ、強度が低下するおそれがある。 In the fluorinated copolymer, the polymerized units based on vinylidene fluoride are preferably 25 mol% or more, more preferably 40 mol% or more, and more preferably 50 mol% or more based on all polymerized units. More preferably. It is also one of the preferable forms that it is 60 mol% or more. Moreover, 97 mol% or less is preferable with respect to all the polymerization units, and, as for the polymerized unit based on vinylidene fluoride, 90 mol% or less is more preferable. If there are too many polymerized units based on vinylidene fluoride, the crystallinity becomes high, the flexibility is lowered and the molding processability may be lowered, and the electrical conductivity of the electrolyte membrane and the electrode catalyst layer may be lowered. . Moreover, when there are too few polymer units based on a vinylidene fluoride, a softness | flexibility will become high too much and there exists a possibility that intensity | strength may fall.

電解質膜を構成する含フッ素共重合体である場合には特に、フッ化ビニリデンに基づく重合単位が40モル%以上であることが好ましく、50モル%以上であることがより好ましく、60モル%以上であることが更に好ましい。また、97モル%以下が好ましく、90モル%以下がより好ましい。 Particularly in the case of the fluorine-containing copolymer constituting the electrolyte membrane, the polymerization unit based on vinylidene fluoride is preferably 40 mol% or more, more preferably 50 mol% or more, and 60 mol% or more. More preferably. Moreover, 97 mol% or less is preferable and 90 mol% or less is more preferable.

電極触媒層を構成する含フッ素共重合体である場合には特に、フッ化ビニリデンに基づく重合単位が25モル%以上であることが好ましく、50モル%以上であることがより好ましく、60モル%以上であることが更に好ましい。また、97モル%以下が好ましく、90モル%以下がより好ましい。 Particularly in the case of the fluorine-containing copolymer constituting the electrode catalyst layer, the polymerization unit based on vinylidene fluoride is preferably 25 mol% or more, more preferably 50 mol% or more, and 60 mol%. It is still more preferable that it is above. Moreover, 97 mol% or less is preferable and 90 mol% or less is more preferable.

本発明の含フッ素共重合体は、更に、含フッ素エチレン性モノマー(但し、フッ化ビニリデンを除く。)に基づく重合単位からなるものであることも好ましい形態の一つである。 It is also a preferred embodiment that the fluorine-containing copolymer of the present invention further comprises polymerized units based on a fluorine-containing ethylenic monomer (excluding vinylidene fluoride).

本発明者らの知見によれば、フッ化ビニリデンに基づく重合単位を含む共重合体は、塩基性の強い活性物質と接触すると脱HF反応が起こり、電極ペーストがゲル化することがある。本発明の含フッ素共重合体は、更に、含フッ素エチレン性モノマー(但し、フッ化ビニリデンを除く。)に基づく重合単位からなるものであることにより、フッ化ビニリデンの連鎖が短いものとなり、製造時の脱HF反応が緩和されることが本発明者らによって見出された。なお、含フッ素エチレン性モノマー(但し、フッ化ビニリデンを除く。)の比率が多すぎると、イオン伝導性が悪化するおそれがあるため、含フッ素エチレン性モノマー(但し、フッ化ビニリデンを除く。)の比率を適宜調整することが好ましい。 According to the knowledge of the present inventors, a copolymer containing a polymer unit based on vinylidene fluoride may undergo a deHF reaction when it comes in contact with a strongly basic active substance, and the electrode paste may gel. The fluorine-containing copolymer of the present invention further comprises a polymerized unit based on a fluorine-containing ethylenic monomer (excluding vinylidene fluoride), so that the chain of vinylidene fluoride is shortened and produced. It has been found by the present inventors that the time deHF reaction is mitigated. Note that if the ratio of the fluorine-containing ethylenic monomer (excluding vinylidene fluoride) is too large, the ionic conductivity may deteriorate, so the fluorine-containing ethylenic monomer (excluding vinylidene fluoride). It is preferable to appropriately adjust the ratio.

上記含フッ素エチレン性モノマー(但し、フッ化ビニリデンを除く。)としては、例えばテトラフルオロエチレン、トリフルオロエチレン、フッ化ビニル、ヘキサフルオロプロピレン、パーフルオロ(メチルビニルエーテル)、及び、パーフルオロ(プロピルビニルエーテル)からなる群より選択される少なくとも1種の単量体が好ましい。 Examples of the fluorine-containing ethylenic monomer (excluding vinylidene fluoride) include, for example, tetrafluoroethylene, trifluoroethylene, vinyl fluoride, hexafluoropropylene, perfluoro (methyl vinyl ether), and perfluoro (propyl vinyl ether). At least one monomer selected from the group consisting of

上記含フッ素エチレン性モノマー(但し、フッ化ビニリデンを除く。)としては、中でも、共重合が容易であり、また電池系内で安定である点から、テトラフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種の単量体が好ましい。すなわち、本発明の含フッ素共重合体は、重合単位(A)と、重合単位(B)と、更にテトラフルオロエチレンに基づく重合単位及びヘキサフルオロプロピレンに基づく重合単位からなる群より選択される少なくとも1種の重合単位(C)と、からなるものであることが好ましい。本発明の含フッ素共重合体としてより好ましくは、重合単位(A)と、重合単位(B)と、更にテトラフルオロエチレンに基づく重合単位と、からなるものである。 From the group consisting of tetrafluoroethylene and hexafluoropropylene, the fluorine-containing ethylenic monomer (excluding vinylidene fluoride) is particularly easy to copolymerize and stable in the battery system. At least one monomer selected is preferred. That is, the fluorine-containing copolymer of the present invention is at least selected from the group consisting of polymerized units (A), polymerized units (B), polymerized units based on tetrafluoroethylene, and polymerized units based on hexafluoropropylene. It is preferable that it consists of 1 type of polymerization unit (C). The fluorine-containing copolymer of the present invention is more preferably composed of a polymer unit (A), a polymer unit (B), and a polymer unit based on tetrafluoroethylene.

上記含フッ素共重合体が含フッ素エチレン性モノマー(但し、フッ化ビニリデンを除く。)に基づく重合単位からなるものである場合、フッ化ビニリデンに基づく重合単位(A)及び含フッ素エチレン性モノマー(但し、フッ化ビニリデンを除く。)に基づく重合単位の合計と、重合単位(B)と、のモル比は50/50〜97/3であることが好ましい。より好ましくは、60/40〜90/10である。 When the fluorinated copolymer is composed of polymerized units based on a fluorinated ethylenic monomer (excluding vinylidene fluoride), a polymerized unit (A) based on vinylidene fluoride and a fluorinated ethylenic monomer ( However, the molar ratio of the total of the polymerized units based on the polymerized units (B) based on (excluding vinylidene fluoride) is preferably 50/50 to 97/3. More preferably, it is 60 / 40-90 / 10.

上記含フッ素共重合体が重合単位(C)からなるものである場合、重合単位(A)及び重合単位(C)の合計と、重合単位(B)と、のモル比は50/50〜97/3であることが好ましい。 When the fluorinated copolymer is composed of polymer units (C), the molar ratio of the polymer units (A) and polymer units (C) to the polymer units (B) is 50/50 to 97. / 3 is preferred.

重合単位(A)と重合単位(C)とのモル比A/(A+C)は0.50〜0.95であることが好ましい。より好ましくは、0.60〜0.90である。 The molar ratio A / (A + C) of the polymerization unit (A) to the polymerization unit (C) is preferably 0.50 to 0.95. More preferably, it is 0.60-0.90.

電解質膜を構成する含フッ素共重合体である場合には特に、含フッ素共重合体は、重合単位(A)と重合単位(C)とのモル比A/(A+C)は0.80〜0.95であることが好ましい。より好ましくは0.82〜0.90である。電解質膜の場合、強度を高める観点から、重合単位(A)の比率が高いことが好ましい。 Particularly in the case of the fluorine-containing copolymer constituting the electrolyte membrane, the fluorine-containing copolymer has a molar ratio A / (A + C) of the polymerization unit (A) to the polymerization unit (C) of 0.80 to 0. .95 is preferred. More preferably, it is 0.82-0.90. In the case of the electrolyte membrane, it is preferable that the ratio of the polymerization units (A) is high from the viewpoint of increasing the strength.

電極触媒層を構成する含フッ素共重合体である場合には特に、含フッ素共重合体は、重合単位(A)と重合単位(C)とのモル比A/(A+C)が0.50〜0.90であることが好ましい。より好ましくは0.55〜0.85であり、更に好ましくは0.60〜0.80である。電極触媒層の場合には、ガス透過性の観点から、重合単位(B)の比率が比較的高いことが好ましい。 Particularly in the case of the fluorine-containing copolymer constituting the electrode catalyst layer, the fluorine-containing copolymer has a molar ratio A / (A + C) of the polymerization unit (A) to the polymerization unit (C) of 0.50 to 0.50. It is preferably 0.90. More preferably, it is 0.55-0.85, More preferably, it is 0.60-0.80. In the case of the electrode catalyst layer, it is preferable that the ratio of the polymerization units (B) is relatively high from the viewpoint of gas permeability.

本発明の含フッ素共重合体は、フッ化ビニリデン及び上記共単量体(b)と共重合体を形成できる他の単量体に基づく重合単位を全重合単位に対して20モル%を超えない範囲で適宜含有させた共重合体であってもよい。本発明の含フッ素共重合体が含フッ素エチレン性モノマー(但し、フッ化ビニリデンを除く。)に基づく重合単位からなるものである場合、上記他の単量体は、含フッ素エチレン性モノマー(但し、フッ化ビニリデンを除く。)とも共重合体を形成できることが必要である。 The fluorine-containing copolymer of the present invention contains more than 20 mol% of polymerized units based on vinylidene fluoride and the above-mentioned comonomer (b) and other monomers capable of forming a copolymer with respect to the total polymerized units. It may be a copolymer appropriately contained within a range. When the fluorinated copolymer of the present invention is composed of polymerized units based on a fluorinated ethylenic monomer (excluding vinylidene fluoride), the other monomer is a fluorinated ethylenic monomer (provided that , Except vinylidene fluoride) must be able to form a copolymer.

他の単量体は、フッ化ビニリデン、含フッ素エチレン性モノマー(但し、フッ化ビニリデンを除く。)、及び共単量体(b)以外の単量体であり、例えばエチレン、プロピレン、イソブチレン、エチルビニルエーテル、酢酸ビニル、安息香酸ビニル、エチルアリルエーテル、シクロヘキシルアリルエーテル、ノルボルナジエン、クロトン酸及びそのエステル、アクリル酸及びそのアルキルエステル、メタクリル酸及びそのアルキルエステルからなる群より選択される少なくとも1種の単量体であることが好ましい。 Other monomers are monomers other than vinylidene fluoride, fluorine-containing ethylenic monomer (excluding vinylidene fluoride) and comonomer (b), such as ethylene, propylene, isobutylene, At least one selected from the group consisting of ethyl vinyl ether, vinyl acetate, vinyl benzoate, ethyl allyl ether, cyclohexyl allyl ether, norbornadiene, crotonic acid and its ester, acrylic acid and its alkyl ester, methacrylic acid and its alkyl ester A monomer is preferred.

上記含フッ素共重合体は、数平均分子量が1〜200万であることが好ましい。数平均分子量が200万を超えると、溶解粘度が著しく高くなるため加工性がわるくなったり、電解質膜の電気伝導度が低下したりするので好ましくない。一方、1万未満であると、電解質膜の機械的強度が著しく低下するので好ましくない。数平均分子量として、より好ましくは3〜100万である。 The fluorine-containing copolymer preferably has a number average molecular weight of 1 to 2 million. When the number average molecular weight exceeds 2 million, the melt viscosity is remarkably increased, so that the workability is deteriorated and the electric conductivity of the electrolyte membrane is lowered. On the other hand, if it is less than 10,000, the mechanical strength of the electrolyte membrane is remarkably lowered, which is not preferable. The number average molecular weight is more preferably 3 to 1,000,000.

上記数平均分子量は、GPC(ゲルパーミェーションクロマトグラフ)法により測定する値であり、例えば、以下に示す方法により、標準ポリスチレンを基準として数平均分子量を算出することができる。
TOSOH社製 HLC−8020を用い、カラムはポリスチレンゲル製MIXカラム(東ソーGMHシリーズ、30cmサイズ)を3本、40℃、NMP(5mmol/L LiBr含有)溶剤、流速0.7mL/分で行うことができる。サンプル濃度は、0.1重量%で打ち込み量は500μLで行うことができる。数平均分子量がポリスチレン換算値で10万〜80万程度のもの、好ましくは13万〜70万程度のもの、更に好ましくは、16万〜60万程度のものがより好ましい。
The number average molecular weight is a value measured by a GPC (gel permeation chromatograph) method. For example, the number average molecular weight can be calculated based on standard polystyrene by the following method.
TOSOH HLC-8020 is used, and the column is three polystyrene gel MIX columns (Tosoh GMH series, 30 cm size), 40 ° C., NMP (containing 5 mmol / L LiBr) solvent, flow rate 0.7 mL / min. Can do. The sample concentration can be 0.1 wt% and the implantation amount can be 500 μL. The number average molecular weight in terms of polystyrene is about 100,000 to 800,000, preferably about 130,000 to 700,000, and more preferably about 160,000 to 600,000.

上記含フッ素共重合体は、当量重量(EW)、つまりイオン交換基1当量当たりの乾燥重量が250以上2000以下である。EWが2000を超えると、製膜性に劣る場合がある。EWの上限は、好ましくは850である。より好ましくは700であり、更に好ましくは650であり、特に好ましくは600である。EWの下限は、好ましくは300であり、より好ましくは350であり、更により好ましくは390である。EWが小さい方が、伝導度が高くなり好ましい反面、熱水への溶解性が大きくなる場合があるため、上記のような適切な範囲であることによって、固体高分子電解質型燃料電池の電解質膜として好適に用いることができる。 The fluorine-containing copolymer has an equivalent weight (EW), that is, a dry weight per equivalent of ion exchange groups of 250 or more and 2000 or less. When EW exceeds 2000, the film forming property may be inferior. The upper limit of EW is preferably 850. More preferably, it is 700, More preferably, it is 650, Especially preferably, it is 600. The lower limit of EW is preferably 300, more preferably 350, and even more preferably 390. The smaller the EW, the higher the conductivity and the better. On the other hand, there is a case where the solubility in hot water is increased. Therefore, the electrolyte membrane of the solid polymer electrolyte fuel cell can be obtained within the appropriate range as described above. Can be suitably used.

本発明の電解質膜及び電極触媒層は、上記含フッ素共重合体からなるものであることによって、電池特性並びに機械的強度に優れ、安定性に優れる。そのため、固体分子型燃料電池に好適に用いることができる。 Since the electrolyte membrane and the electrode catalyst layer of the present invention are made of the above-mentioned fluorine-containing copolymer, they are excellent in battery characteristics, mechanical strength, and stability. Therefore, it can be suitably used for a solid molecular fuel cell.

本発明の電解質膜は、固体高分子電解質型燃料電池用の電解質膜である。実質的に上記含フッ素共重合体のみからなるものであってもよいし、例えば、多孔性支持体を含むものであってもよい。電解質膜が多孔性支持体を含む場合、例えば、多孔性支持体の表面に含フッ素共重合体からなる層を有するものであることが好ましく、このような電解質膜は、上記含フッ素共重合体が液状媒体に分散した分散体又は上記含フッ素共重合体が液状媒体に溶解した溶液を多孔性支持体に含浸させたのち、液状媒体を除去することにより得ることができる。上記多孔性支持体は、多孔構造を有するものであれば特に限定されず、有機又は無機の材料の何れでもよく、例えばグラスウール、セラミック、アルミナ、ポリテトラフルオロエチレン[PTFE]製多孔フィルム、カーボン、不織布、各種ポリマーからなるもの等が挙げられる。上記多孔性支持体としては、例えば、特開平8−162132号公報記載のようにPTFE膜を延伸処理した多孔質膜や、特開昭53−149881号公報及び特公昭63−61337号公報に示されるフィブリル化繊維等が挙げられる。また、本発明の電解質膜は、燃料電池触媒を含まないものであることが好ましい。 The electrolyte membrane of the present invention is an electrolyte membrane for a solid polymer electrolyte fuel cell. It may consist essentially of only the above-mentioned fluorine-containing copolymer, or may contain, for example, a porous support. When the electrolyte membrane includes a porous support, for example, the electrolyte membrane preferably has a layer made of a fluorine-containing copolymer on the surface of the porous support, and such an electrolyte membrane is the above-mentioned fluorine-containing copolymer. Can be obtained by impregnating the porous support with a dispersion in which is dispersed in a liquid medium or a solution in which the above-mentioned fluorine-containing copolymer is dissolved in a liquid medium, and then removing the liquid medium. The porous support is not particularly limited as long as it has a porous structure, and may be any organic or inorganic material such as glass wool, ceramic, alumina, polytetrafluoroethylene [PTFE] porous film, carbon, Nonwoven fabrics, those made of various polymers and the like can be mentioned. Examples of the porous support include a porous membrane obtained by stretching a PTFE membrane as described in JP-A-8-162132, and JP-A-53-149881 and JP-B-63-61337. Fibrillated fibers and the like. In addition, the electrolyte membrane of the present invention preferably does not contain a fuel cell catalyst.

本発明の電解質膜は、厚みが1μm以上500μm以下である事が好ましく、より好ましくは2μm以上100μm以下、更に好ましくは5μm以上50μm以下である。膜厚が薄いと発電時の直流抵抗を小さくできる一方、ガス透過量が高くなるおそれがあるため、上記のような適切な範囲であることが望ましい。電解質膜が、含フッ素共重合体からなる層が多孔性支持体の表面に形成されたものである場合、含フッ素共重合体からなる層の厚みは、5μm以上50μm以下であることが好ましい。5μm未満であると、含フッ素共重合体からなる層の機械的強度が不充分であり、50μmを超えると、例えば後述する固体高分子電解質型燃料電池に用いた場合、燃料電池としての性能が低下することがあるので好ましくない。 The electrolyte membrane of the present invention preferably has a thickness of 1 μm to 500 μm, more preferably 2 μm to 100 μm, and still more preferably 5 μm to 50 μm. If the film thickness is thin, the direct current resistance during power generation can be reduced, while the gas permeation amount may be increased. Therefore, the appropriate range as described above is desirable. When the electrolyte membrane is a layer made of a fluorine-containing copolymer formed on the surface of the porous support, the thickness of the layer made of the fluorine-containing copolymer is preferably 5 μm or more and 50 μm or less. When the thickness is less than 5 μm, the mechanical strength of the layer made of the fluorinated copolymer is insufficient. When the thickness exceeds 50 μm, for example, when used in a solid polymer electrolyte fuel cell described later, the performance as a fuel cell is high. Since it may decrease, it is not preferable.

本発明の電極触媒層は、含フッ素共重合体及び燃料電池触媒からなるものである。電極触媒層は、固体高分子電解質型燃料電池用のものである。電極触媒層は、電極面積に対する含フッ素共重合体の担持量が、好ましくは0.001〜10mg/cm、より好ましくは0.01〜5mg/cm、更に好ましくは0.1〜1mg/cmである。 The electrode catalyst layer of the present invention comprises a fluorine-containing copolymer and a fuel cell catalyst. The electrode catalyst layer is for a solid polymer electrolyte fuel cell. Electrode catalyst layer, the supported amount of the fluorine-containing copolymer to the electrode area is preferably 0.001 to 10 mg / cm 2, more preferably 0.01 to 5 mg / cm 2, more preferably 0.1 to 1 mg / cm 2 .

上記燃料電池触媒としては上記電極触媒層において活性を有し得るものであれば特に限定されず、本発明の電極触媒層が用いられる燃料電池の使用目的に応じて適宜選択される。上記燃料電池触媒は、触媒金属であることが好ましい。 The fuel cell catalyst is not particularly limited as long as it has activity in the electrode catalyst layer, and is appropriately selected according to the intended use of the fuel cell in which the electrode catalyst layer of the present invention is used. The fuel cell catalyst is preferably a catalytic metal.

上記触媒金属としては、水素の酸化反応及び酸素の還元反応を促進する金属であればよく、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、バナジウム、およびこれらの合金からなる群より選択される少なくとも一種の金属であることが好ましい。中でも、白金が好ましい。触媒金属の粒子径は限定されないが、10〜1000オングストロームが好ましく、より好ましくは10〜500オングストローム、最も好ましくは15〜100オングストロームである。 The catalyst metal may be any metal that promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen. Platinum, gold, silver, palladium, iridium, rhodium, ruthenium, iron, cobalt, nickel, chromium, tungsten, manganese, Vanadium and at least one metal selected from the group consisting of these alloys are preferred. Of these, platinum is preferable. The particle diameter of the catalyst metal is not limited, but is preferably 10 to 1000 angstrom, more preferably 10 to 500 angstrom, and most preferably 15 to 100 angstrom.

本発明の電極触媒層は、含フッ素共重合体、触媒金属及び導電剤からなるものであることが好ましい。例えば、本発明の電極触媒層は、含フッ素共重合体と、触媒金属の微粒子(触媒金属粒子)及びこれを担持した導電剤からなる複合粒子(例えば、Pt担持カーボン等)と、からなるものであることも好ましい形態の一つである。この場合、上記含フッ素共重合体は、バインダーとしても機能する。本発明の電極触媒層は、必要に応じて撥水剤を含んでもよい。 The electrode catalyst layer of the present invention is preferably composed of a fluorine-containing copolymer, a catalyst metal and a conductive agent. For example, the electrode catalyst layer of the present invention comprises a fluorine-containing copolymer, catalyst metal fine particles (catalyst metal particles), and composite particles (for example, Pt-supported carbon) made of a conductive agent supporting the catalyst metal particles. It is also a preferred form. In this case, the fluorine-containing copolymer also functions as a binder. The electrode catalyst layer of the present invention may contain a water repellent as necessary.

導電剤としては、導電性を有する粒子(導電性粒子)であれば限定されないが、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック等のカーボンブラック、活性炭、黒鉛及び各種金属(触媒金属を除く。)からなる群より選択される少なくとも1種の導電性粒子であることが好ましい。これら導電剤の粒子径としては、好ましくは10オングストローム〜10μm、より好ましくは50オングストローム〜1μm、最も好ましくは100〜5000オングストロームである。 The conductive agent is not limited as long as it is conductive particles (conductive particles). For example, carbon black such as furnace black, channel black, and acetylene black, activated carbon, graphite, and various metals (excluding catalytic metals). It is preferably at least one type of conductive particles selected from the group consisting of: The particle diameter of these conductive agents is preferably 10 Å to 10 μm, more preferably 50 Å to 1 μm, and most preferably 100 to 5000 Å.

複合粒子としては、導電性粒子に対して触媒金属粒子が、好ましくは1〜99質量%、より好ましくは10〜90質量%、最も好ましくは30〜70質量%であることが好ましい。具体的には、田中貴金属工業(株)製TEC10E40E等のPt触媒担持カーボンが好適な例として挙げられる。 The composite particles are preferably 1 to 99% by mass, more preferably 10 to 90% by mass, and most preferably 30 to 70% by mass of the catalyst metal particles with respect to the conductive particles. Specifically, Pt catalyst supporting carbon such as TEC10E40E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. can be mentioned as a suitable example.

複合粒子の含有率は、電極触媒層の全質量に対し、20〜95質量%であることが好ましく、より好ましくは40〜90質量%、更に好ましくは50〜85質量%、特に好ましくは60〜80質量%である。電極触媒層が固体高分子電解質型燃料電池の電極触媒層として用いられる場合、電極面積に対する触媒金属の担持量としては、電極触媒層を形成した状態で、好ましくは0.001〜10mg/cm、より好ましくは0.01〜5mg/cm、更に好ましくは0.1〜1mg/cmである。電極触媒層の厚みとしては、好ましくは0.01〜200μm、より好ましくは0.1〜100μm、最も好ましくは1〜50μmである。 The content of the composite particles is preferably 20 to 95% by mass, more preferably 40 to 90% by mass, still more preferably 50 to 85% by mass, and particularly preferably 60 to 90% by mass with respect to the total mass of the electrode catalyst layer. 80% by mass. When the electrode catalyst layer is used as an electrode catalyst layer of a solid polymer electrolyte fuel cell, the amount of catalyst metal supported with respect to the electrode area is preferably 0.001 to 10 mg / cm 2 in the state where the electrode catalyst layer is formed. More preferably, it is 0.01-5 mg / cm < 2 >, More preferably, it is 0.1-1 mg / cm < 2 >. The thickness of the electrode catalyst layer is preferably 0.01 to 200 μm, more preferably 0.1 to 100 μm, and most preferably 1 to 50 μm.

本発明の電極触媒層は、撥水性の向上のため、更にポリテトラフルオロエチレン(以下、PTFE)を含有してもよい。この場合、PTFEの形状としては特に限定されないが、定形性のものであればよく、粒子状、繊維状であることが好ましく、これらが単独で使用されても混合して使用されていてもよい。電極触媒層がPTFEを含有する場合、PTFEの含有率としては、電極触媒層の全質量に対し、好ましくは0.001〜20質量%、より好ましくは0.01〜10質量%、最も好ましくは0.1〜5質量%である。 The electrode catalyst layer of the present invention may further contain polytetrafluoroethylene (hereinafter referred to as PTFE) in order to improve water repellency. In this case, the shape of PTFE is not particularly limited, but may be any shape as long as it is regular, preferably in the form of particles or fibers, and these may be used alone or in combination. . When the electrode catalyst layer contains PTFE, the content of PTFE is preferably 0.001 to 20% by mass, more preferably 0.01 to 10% by mass, most preferably relative to the total mass of the electrode catalyst layer. It is 0.1-5 mass%.

本発明の電極触媒層は、親水性向上のため、更に金属酸化物を含有してもよい。この場合、金属酸化物としては特に限定はないが、Al、B、MgO、SiO、SnO、TiO、V、WO、Y、ZrO、Zr及びZrSiOからなる群から選ばれる少なくとも1種の金属酸化物であることが好ましい。中でもAl、SiO、TiO及びZrOからなる群から選ばれる少なくとも1種の金属酸化物であることが好ましく、SiOが特に好ましい。本発明の電極触媒層が金属酸化物を含有する場合、金属酸化物の含有率としては、電極触媒層の全質量に対し、好ましくは0.001〜20質量%、より好ましくは0.01〜10質量%、最も好ましくは0.1〜5質量%である。金属酸化物の形態としては、粒子状や繊維状といったものを用いても構わないが、特に非定形であることが望ましい。ここで言う非定形とは、光学顕微鏡や電子顕微鏡で観察しても、粒子状や繊維状の金属酸化物が観察されないことを言う。特に、走査型電子顕微鏡(SEM)を用いて電極触媒層を数10万倍までに拡大して観察しても、粒子状や繊維状の金属酸化物は観察されない。また、透過型電子顕微鏡(TEM)を用いて電極触媒層を数10万倍〜数100万倍に拡大して観察しても、明確に粒子状や繊維状の金属酸化物は観察することができない。このように現状の顕微鏡技術の範囲内では、金属酸化物の粒子状や繊維状を確認することができないことを指す。 The electrode catalyst layer of the present invention may further contain a metal oxide for improving hydrophilicity. In this case, the metal oxide is not particularly limited, but Al 2 O 3 , B 2 O 3 , MgO, SiO 2 , SnO 2 , TiO 2 , V 2 O 5 , WO 3 , Y 2 O 3 , ZrO 2 It is preferably at least one metal oxide selected from the group consisting of Zr 2 O 3 and ZrSiO 4 . Among these, at least one metal oxide selected from the group consisting of Al 2 O 3 , SiO 2 , TiO 2 and ZrO 2 is preferable, and SiO 2 is particularly preferable. When the electrode catalyst layer of the present invention contains a metal oxide, the metal oxide content is preferably 0.001 to 20 mass%, more preferably 0.01 to the total mass of the electrode catalyst layer. 10% by mass, most preferably 0.1 to 5% by mass. The metal oxide may be in the form of particles or fibers, but it is particularly desirable that the metal oxide be amorphous. The term “amorphous” as used herein means that no particulate or fibrous metal oxide is observed even when observed with an optical microscope or an electron microscope. In particular, even when the electrode catalyst layer is magnified up to several hundred thousand times using a scanning electron microscope (SEM), no particulate or fibrous metal oxide is observed. In addition, even when the electrode catalyst layer is observed by magnifying it to several hundred thousand to several million times using a transmission electron microscope (TEM), it is possible to clearly observe a particulate or fibrous metal oxide. Can not. Thus, within the scope of the current microscopic technique, it means that the particle shape or fiber shape of the metal oxide cannot be confirmed.

電極触媒層の空隙率としては特に限定されないが、好ましくは10〜90体積%、より好ましくは20〜80体積%、最も好ましくは30〜60体積%である。 Although it does not specifically limit as a porosity of an electrode catalyst layer, Preferably it is 10-90 volume%, More preferably, it is 20-80 volume%, Most preferably, it is 30-60 volume%.

本発明は、上記電解質膜、及び、上記電極触媒層の少なくとも1つを備えることを特徴とする膜電極接合体(membrane/electrode assembly)(以下、「MEA」ともいう。)でもある。本発明の膜電極接合体は、上記電解質膜及び電極触媒層の少なくとも1つを備えるため、電池特性並びに機械的強度に優れ、安定性に優れる。 The present invention is also a membrane / electrode assembly (hereinafter also referred to as “MEA”) including at least one of the electrolyte membrane and the electrode catalyst layer. Since the membrane / electrode assembly of the present invention comprises at least one of the electrolyte membrane and the electrode catalyst layer, it has excellent battery characteristics and mechanical strength, and is excellent in stability.

電解質膜の両面にアノードとカソードの2種類の電極触媒層が接合したユニットは、膜電極接合体(以下「MEA」ともいう。)と呼ばれる。電極触媒層のさらに外側に一対のガス拡散層を対向するように接合したものについても、MEAと呼ばれる場合がある。電極触媒層はプロトン伝導性を有することが必要となる。 A unit in which two types of electrode catalyst layers of an anode and a cathode are bonded to both surfaces of an electrolyte membrane is called a membrane electrode assembly (hereinafter also referred to as “MEA”). A material in which a pair of gas diffusion layers are bonded to the outer side of the electrode catalyst layer so as to face each other is sometimes referred to as MEA. The electrode catalyst layer needs to have proton conductivity.

アノードとしての電極触媒層は、燃料(例えば水素)を酸化して容易にプロトンを生ぜしめる触媒を包含し、カソードとしての電極触媒層は、プロトン及び電子と酸化剤(例えば酸素や空気)を反応させて水を生成させる触媒を包含する。アノードとカソードのいずれについても、触媒としては上述した触媒金属を好適に用いることができる。 The electrode catalyst layer as an anode includes a catalyst that easily oxidizes fuel (for example, hydrogen) to easily generate protons, and the electrode catalyst layer as a cathode reacts protons and electrons with an oxidizing agent (for example, oxygen or air). And a catalyst that produces water. For both the anode and the cathode, the catalyst metal described above can be suitably used as the catalyst.

ガス拡散層としては、市販のカーボンクロスもしくはカーボンペーパーを用いることができる。前者の代表例としては、米国DE NORA NORTH AMERICA社製カーボンクロスE−tek、B−1が挙げられ、後者の代表例としては、CARBEL(登録商標、日本国ジャパンゴアテックス(株))、日本国東レ社製TGP−H、米国SPECTRACORP社製カーボンペーパー2050等が挙げられる。 As the gas diffusion layer, commercially available carbon cloth or carbon paper can be used. Representative examples of the former include carbon cloth E-tek and B-1 manufactured by DE NORA NORTH AMERICA, USA. Representative examples of the latter include CARBEL (registered trademark, Japan Gore-Tex, Japan), Japan. Examples include TGP-H manufactured by Kunito Toray Industries, Inc., and carbon paper 2050 manufactured by SPECTRACORP USA.

また、電極触媒層とガス拡散層が一体化した構造体は「ガス拡散電極」と呼ばれる。ガス拡散電極を電解質膜に接合しても、MEAが得られる。市販のガス拡散電極の代表例としては、米国DE NORA NORTH AMERICA社製ガス拡散電極ELAT(登録商標)(ガス拡散層としてカーボンクロスを使用)が挙げられる。 A structure in which the electrode catalyst layer and the gas diffusion layer are integrated is called a “gas diffusion electrode”. MEA can also be obtained by bonding the gas diffusion electrode to the electrolyte membrane. A typical example of a commercially available gas diffusion electrode is a gas diffusion electrode ELAT (registered trademark) manufactured by DE NORA NORTH AMERICA (using carbon cloth as a gas diffusion layer).

MEAは、例えば、電極触媒層の間に電解質膜を挟みこみ、熱プレスにより接合することにより作製することができる。より具体的には、上記含フッ素重合体をアルコールと水の混合溶液に分散又は溶解したものに、触媒として市販の白金担持カーボン(例えば、日本国田中貴金属(株)社製TEC10E40E)を分散させてペースト状にする。これを2枚のPTFEシートのそれぞれの片面に一定量塗布して乾燥させて電極触媒層を形成する。次に、各PTFEシートの塗布面を向かい合わせにして、その間に電解質膜を挟み込み、100〜200℃で熱プレスにより転写接合してから、PTFEシートを取り除くことにより、MEAを得ることができる。当業者にはMEAの作製方法は周知である。MEAの作製方法は、例えば、JOURNAL OF APPLIED ELECTROCHEMISTRY,22(1992)p.1−7に詳しく記載されている。 The MEA can be produced, for example, by sandwiching an electrolyte membrane between electrode catalyst layers and joining them by hot pressing. More specifically, a commercially available platinum-supporting carbon (for example, TEC10E40E manufactured by Kunitaka Tanaka Kikinzoku Co., Ltd.) is dispersed as a catalyst in a dispersion or solution of the fluoropolymer in a mixed solution of alcohol and water. And paste it. A certain amount of this is applied to one side of each of the two PTFE sheets and dried to form an electrode catalyst layer. Next, the application surfaces of the PTFE sheets face each other, an electrolyte membrane is sandwiched between them, and after transfer joining by hot pressing at 100 to 200 ° C., the MEA can be obtained by removing the PTFE sheet. A person skilled in the art knows how to make MEAs. The method for producing MEA is described in, for example, JOURNAL OF APPLIED ELECTROCHEMISTRY, 22 (1992) p. 1-7.

上記MEA(一対のガス拡散電極が対向した構造のMEAを含む。)は、更にバイポーラプレートやバッキングプレート等の一般的な固体高分子電解質型燃料電池に用いられる構成成分と組み合わされて、固体高分子電解質型燃料電池が構成される。
本発明は、上記膜電極接合体を有する固体高分子電解質型燃料電池でもある。本発明の固体高分子電解質型燃料電池は、上記膜電極接合体を有するものであれば特に限定されず、通常、固体高分子電解質型燃料電池を構成するガス等の構成成分を含むものであってよい。本発明の固体高分子電解質型燃料電池は、上記電解質膜及び電極触媒層の少なくともいずれかを有する膜電極接合体を備えるものであるため、電池特性並びに機械的強度に優れ、安定性に優れる。
The MEA (including an MEA having a structure in which a pair of gas diffusion electrodes are opposed to each other) is further combined with components used in a general solid polymer electrolyte fuel cell such as a bipolar plate or a backing plate, A molecular electrolyte fuel cell is constructed.
The present invention is also a solid polymer electrolyte fuel cell having the membrane electrode assembly. The solid polymer electrolyte fuel cell of the present invention is not particularly limited as long as it has the above membrane electrode assembly, and usually contains constituent components such as gas constituting the solid polymer electrolyte fuel cell. It's okay. Since the solid polymer electrolyte fuel cell of the present invention comprises a membrane electrode assembly having at least one of the electrolyte membrane and the electrode catalyst layer, it has excellent cell characteristics and mechanical strength, and is excellent in stability.

バイポーラプレートとは、その表面に燃料や酸化剤等のガスを流すための溝を形成させたグラファイトと樹脂との複合材料、または金属製のプレート等を意味する。バイポーラプレートは、電子を外部負荷回路へ伝達する機能の他、燃料や酸化剤を電極触媒近傍に供給する流路としての機能を持っている。こうしたバイポーラプレートの間にMEAを挿入して複数積み重ねることにより、燃料電池が製造される。 The bipolar plate means a composite material of graphite and resin having a groove for flowing a gas such as fuel or oxidant on its surface, or a metal plate. In addition to the function of transmitting electrons to an external load circuit, the bipolar plate has a function of a flow path for supplying fuel and oxidant to the vicinity of the electrode catalyst. A fuel cell is manufactured by inserting and stacking a plurality of MEAs between such bipolar plates.

本発明は、上記電解質膜を製造する方法であって、フッ化ビニリデンと−SOX基を有する共単量体とを水性媒体中でラジカル重合して含フッ素共重合体を含む電解質エマルションを得る重合工程と、得られた電解質エマルションを基材に塗布する工程と、基材に塗布した電解質エマルションを乾燥させて電解質膜を得る工程と、を含み、−SOX基は、−SOH、−SONR、及び−SO 1/L(但し、R、R、R及びRは、同一又は異なり、水素原子若しくは炭素数1〜4のアルキル基を表し、Mは、同一若しくは異なって、L価の金属を表し、前記L価の金属は、周期表の1族、2族、4族、8族、11族、12族又は13族に属する金属(但し、Liを除く。)を表す。)からなる群より選択される少なくとも1種の官能基であることを特徴とする電解質膜の製造方法でもある。 The present invention is a method for producing the above electrolyte membrane, wherein an electrolyte emulsion containing a fluorine-containing copolymer is obtained by radical polymerization of vinylidene fluoride and a comonomer having a —SO 3 X group in an aqueous medium. A polymerization step, a step of applying the obtained electrolyte emulsion to a substrate, and a step of drying the electrolyte emulsion applied to the substrate to obtain an electrolyte membrane, wherein the —SO 3 X group is —SO 3 H, —SO 3 NR 1 R 2 R 3 R 4 , and —SO 3 M 1 1 / L (provided that R 1 , R 2 , R 3 and R 4 are the same or different and have a hydrogen atom or a carbon number of 1 to 4 represents an alkyl group, M 1 is the same or different and represents an L-valent metal, and the L-valent metal is represented by Group 1, Group 2, Group 4, Group 8, Group 12, Group 12 of the Periodic Table. Alternatively, it represents a metal belonging to Group 13 (excluding Li). It is also a method for producing an electrolyte membrane, which is at least one functional group selected from the group consisting of:

上記電解質膜の製造方法は、フッ化ビニリデンに基づく重合単位と−SOX基を側鎖に有する重合単位とからなる含フッ素共重合体を得るにあたり、−SOX基を有する共単量体を使用するところに特徴がある。この特徴によって、pHが8を超える強アルカリ性の溶液と接触させる工程を必要としないので、上記重合工程により得られる含フッ素共重合体を、固体高分子電解質型燃料電池に用いた場合にも高い安定性を示す。
例えば、特開平10−284128号公報では、−CFCOOCHや−CFSOFを有する単量体を用いて、共重合体を得た後、LiOHのような強アルカリ性の化合物を用いて−CFSOLiに変換する方法がとられているが、このようにして得られたポリマー電解質は、フッ化ビニリデンの脱HF反応が進行して、主鎖に不安定な二重結合を生成するので、安定性に乏しい課題がある。上記特表2002−503734号公報では、−CFSOFを炭酸リチウムを用いて−CFSOLiに変換する方法がとられている。炭酸リチウムは水溶液のpHが11程度と、塩基性の強い化合物であり、上記フッ化ビニリデンの脱HF反応を防ぐためには不十分であった。
The above method of manufacturing the electrolyte membrane, in obtaining the fluorine-containing copolymer comprising a polymerized units having polymerized units and -SO 3 X groups based on vinylidene fluoride in the side chain, the co-monomer having a -SO 3 X group There is a feature in using the body. This feature eliminates the need for a step of bringing into contact with a strongly alkaline solution having a pH of more than 8, so that the fluorine-containing copolymer obtained by the polymerization step is also high when used in a solid polymer electrolyte fuel cell. Shows stability.
For example, in JP-A-10-284128, after a copolymer is obtained using a monomer having —CF 2 COOCH 3 or —CF 2 SO 2 F, a strongly alkaline compound such as LiOH is used. how to convert -CF 2 sO 3 Li is taken Te, but the thus obtained polymer electrolyte, HF elimination reaction of vinylidene fluoride progresses, unstable double bonds in the main chain As a result, there is a problem of poor stability. In the above Japanese translation of PCT publication No. 2002-503734, a method of converting —CF 2 SO 2 F into —CF 2 SO 3 Li using lithium carbonate is employed. Lithium carbonate is a strong basic compound with an aqueous solution having a pH of about 11, and was insufficient to prevent the deHF reaction of vinylidene fluoride.

本発明の電解質膜の製造方法は、フッ化ビニリデンと−SOX基を有する共単量体とを水性媒体中でラジカル重合して含フッ素共重合体を含む電解質エマルションを得る重合工程を含む。 The method for producing an electrolyte membrane of the present invention includes a polymerization step of obtaining an electrolyte emulsion containing a fluorine-containing copolymer by radical polymerization of vinylidene fluoride and a comonomer having a —SO 3 X group in an aqueous medium. .

重合工程は、更に、テトラフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種の単量体を水性媒体中でラジカル重合するものであることも好ましい形態の一つである。 It is also one of preferable embodiments that the polymerization step further includes radical polymerization of at least one monomer selected from the group consisting of tetrafluoroethylene and hexafluoropropylene in an aqueous medium.

上記ラジカル重合は、−SOX基を有する共単量体(例えば、上述の共単量体(b))を水性媒体に溶解させ、フッ化ビニリデンと該共単量体とをラジカル重合することが好ましい。 In the radical polymerization, a comonomer having a —SO 3 X group (for example, the above-mentioned comonomer (b)) is dissolved in an aqueous medium, and vinylidene fluoride and the comonomer are radically polymerized. It is preferable.

上記水性媒体は、液状であり、水を含むものであれば特に限定されない。水性媒体であることによって、環境負荷やコストに優れる。また、分散安定性も向上する。水性媒体中の水の含有量は、10質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。また、最も好ましくは、水性媒体が実質的に水からなることである。 The aqueous medium is not particularly limited as long as it is liquid and contains water. By being an aqueous medium, it is excellent in environmental load and cost. Also, the dispersion stability is improved. The content of water in the aqueous medium is preferably 10% by mass or more, more preferably 30% by mass or more, further preferably 50% by mass or more, and 90% by mass or more. Particularly preferred. Most preferably, the aqueous medium consists essentially of water.

上記水性媒体は、水と共に、アルコール、エーテル、ケトン等のフッ素非含有有機溶媒、沸点が40℃以下であるフッ素含有有機溶媒等を含んでもよい。 The aqueous medium may contain, together with water, a fluorine-free organic solvent such as alcohol, ether or ketone, a fluorine-containing organic solvent having a boiling point of 40 ° C. or lower, and the like.

上記ラジカル重合は、界面活性剤の存在下に行ってもよいが、本発明は−SOX基を有する共単量体を重合させるものであることから、界面活性剤は必ずしも必要でない。むしろ界面活性剤を使用しないでラジカル重合する方が、不純物の少ないポリマーが得られる点で好ましい。 The above radical polymerization may be carried out in the presence of a surfactant. However, since the present invention polymerizes a comonomer having a —SO 3 X group, the surfactant is not necessarily required. Rather, radical polymerization without using a surfactant is preferred in that a polymer with few impurities can be obtained.

上記ラジカル重合は、重合開始剤を添加して行うことが好ましい。重合開始剤としては、重合温度でラジカルを発生しうるものであれば特に限定されず、公知の油溶性及び/又は水溶性の重合開始剤を使用することができる。また、レドックス開始剤を使用してもよい。上記重合開始剤の濃度は、目的とする含フッ素共重合体の分子量、反応速度によって適宜決定される。 The radical polymerization is preferably performed by adding a polymerization initiator. The polymerization initiator is not particularly limited as long as it can generate radicals at the polymerization temperature, and known oil-soluble and / or water-soluble polymerization initiators can be used. A redox initiator may also be used. The concentration of the polymerization initiator is appropriately determined depending on the molecular weight and reaction rate of the target fluorine-containing copolymer.

上記重合開始剤としては、過硫酸アンモニウム、過硫酸カリウム等の過硫酸塩、ジコハク酸パーオキシド、ジグルタル酸パーオキシド、tert−ブチルヒドロパーオキシド等の有機過酸化物が挙げられる。上記レドックス開始剤としては、過硫酸塩又は有機過酸化物と、亜硫酸ナトリウム等の亜硫酸塩、亜硫酸水素ナトリウム等の重亜硫酸塩、臭素酸塩、ジイミン、シュウ酸等の還元剤とを組み合わせたものが挙げられる。 Examples of the polymerization initiator include persulfates such as ammonium persulfate and potassium persulfate, and organic peroxides such as disuccinic acid peroxide, diglutaric acid peroxide, and tert-butyl hydroperoxide. As the above redox initiator, a combination of a persulfate or an organic peroxide and a reducing agent such as sodium sulfite, a bisulfite such as sodium hydrogen sulfite, a bromate, diimine, or oxalic acid. Is mentioned.

ラジカル重合は、0.05〜5.0MPaの圧力下で行うことができる。好ましい圧力の範囲は1.5〜3.0MPaである。また、ラジカル重合は、10〜100℃の温度で行うことができる。好ましい温度の範囲は50〜90℃である。ラジカル重合では、また、目的に応じて、公知の安定剤、連鎖移動剤等を添加してもよい。 The radical polymerization can be performed under a pressure of 0.05 to 5.0 MPa. A preferable pressure range is 1.5 to 3.0 MPa. Moreover, radical polymerization can be performed at the temperature of 10-100 degreeC. A preferred temperature range is 50-90 ° C. In radical polymerization, a known stabilizer, chain transfer agent, or the like may be added depending on the purpose.

フッ化ビニリデンに基づく重合単位(A)と−SOH基を側鎖に有する重合単位とからなる含フッ素共重合体からなる電解質膜を製造する場合、上記重合工程は、ラジカル重合により得られる含フッ素重合体が有する−SOX基(但し、−SOH基を除く。)を、−SOH基に変換する工程を含んでもよい。例えば、上記重合工程は、フッ化ビニリデンと−SOX基(但し、−SOH基を除く。)を有する共単量体とを水性媒体中でラジカル重合して−SOX基(但し、−SOH基を除く。)を側鎖に有する含フッ素共重合体を含む前駆体エマルションを得る工程と、−SOX基(但し、−SOH基を除く。)を−SOH基に変換して−SOHを側鎖に有する含フッ素共重合体を含む電解質エマルションを得る工程と、を含むものであることも好ましい形態の一つである。−SOX基(但し、−SOH基を除く。)を−SOH基に変換する方法としては、特に限定されないが、例えば、−SOX基(但し、−SOH基を除く。)を側鎖に有する含フッ素共重合体を、酸型に変換したイオン交換樹脂(例えば、ローム&ハース社製のアンバーライトIR120B等)に接触させる方法が挙げられる。より具体的には、イオン交換樹脂を硫酸を用いて酸型に変換した後、純水で洗浄し、酸型に変換したイオン交換樹脂を充填した容器に上記含フッ素重合体を含む前駆体エマルションを通過させる方法が挙げられる。 When producing an electrolyte membrane comprising a fluorine-containing copolymer comprising polymer units (A) based on vinylidene fluoride and polymer units having —SO 3 H groups in the side chain, the polymerization step is obtained by radical polymerization. A step of converting the —SO 3 X group (excluding the —SO 3 H group) of the fluoropolymer into an —SO 3 H group may be included. For example, the polymerization step includes radical polymerization of a vinylidene fluoride and a comonomer having —SO 3 X group (excluding —SO 3 H group) in an aqueous medium to form —SO 3 X group ( However, the step of obtaining a precursor emulsion containing a fluorine-containing copolymer having -SO 3 H group in the side chain and -SO 3 X group (however, -SO 3 H group is excluded)- And a step of obtaining an electrolyte emulsion containing a fluorine-containing copolymer having —SO 3 H in the side chain by conversion to an SO 3 H group. The method for converting —SO 3 X group (excluding —SO 3 H group) to —SO 3 H group is not particularly limited, but for example, —SO 3 X group (provided —SO 3 H group) And a fluorine-containing copolymer having a side chain in contact with an ion exchange resin converted into an acid form (for example, Amberlite IR120B manufactured by Rohm & Haas). More specifically, after the ion exchange resin is converted into an acid type using sulfuric acid, the precursor emulsion is washed with pure water and filled with the ion exchange resin converted into the acid type and contains the above fluoropolymer. The method of letting pass is mentioned.

本発明の電解質膜の製造方法は、重合工程の前に、−SOX基を側鎖に有する共単量体を得る工程を含んでいてもよい。−SOX基を側鎖に有する共単量体を得る工程は、イオン解離性のスルホン酸誘導体を有する共単量体をpH8以下の溶液又はpH8を超える溶液に接触させて−SOX基を側鎖に有する共単量体を得る工程であってよい。
ここで、イオン解離性のスルホン酸誘導体は、−SOX基に変換可能な官能基である。イオン解離性のスルホン酸誘導体は、−SOH、−SONR、−SONR及び−SO 1/L(但し、R、R、R及びRは、同一又は異なり、水素原子若しくは炭素数1〜4のアルキル基を表し、Rは水素原子若しくはM 1/Lを表し、Rは水素原子若しくは炭素数1〜4のアルキル基若しくはスルホニル含有基を表し、M及びMは、同一若しくは異なって、L価の金属を表し、前記L価の金属は、周期表の1族、2族、4族、8族、11族、12族又は13族に属する金属を表す。)からなる群より選択される少なくとも1種の官能基であることが好ましい。
The method for producing an electrolyte membrane of the present invention may include a step of obtaining a comonomer having a —SO 3 X group in the side chain before the polymerization step. In the step of obtaining a comonomer having a —SO 3 X group in the side chain, a comonomer having an ion dissociable sulfonic acid derivative is brought into contact with a solution having a pH of 8 or less or a solution having a pH exceeding 8 —SO 3 X It may be a step of obtaining a comonomer having a group in the side chain.
Here, the ion dissociable sulfonic acid derivative is a functional group that can be converted into a —SO 3 X group. Sulfonic acid derivatives of ion dissociation property, -SO 3 H, -SO 3 NR 1 R 2 R 3 R 4, -SO 2 NR 5 R 6 and -SO 3 M 1 1 / L (where, R 1, R 2 , R 3 and R 4 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R 5 represents a hydrogen atom or M 2 1 / L , and R 6 represents a hydrogen atom or 1 to C carbon atoms. 4 represents an alkyl group or a sulfonyl-containing group, M 1 and M 2 are the same or different and represent an L-valent metal, and the L-valent metal is represented by Group 1, Group 2, Group 4, 8 of the Periodic Table. It is preferably at least one functional group selected from the group consisting of metals belonging to Group 11, Group 12, Group 12 or Group 13).

上記−SOX基を有する共単量体は、上述した共単量体(b)であり、上述した一般式(II)で表されるビニルエーテルであることが好ましい。一般式(II)で表されるビニルエーテルにおいて−SOX基は上記と同じである。 The comonomer having the —SO 3 X group is the comonomer (b) described above, and is preferably a vinyl ether represented by the general formula (II) described above. In the vinyl ether represented by the general formula (II), the —SO 3 X group is the same as described above.

本発明の電解質膜の製造方法は、上記重合工程により得られた電解質エマルションを基材に塗布する工程と、基材に塗布した電解質エマルションを乾燥させて電解質膜を得る工程と、を含むものである。本発明の電解質膜の製造方法は、必要に応じて、基材に塗布した電解質エマルションを乾燥させて得られた電解質膜を基材から剥離する工程を有するものであってよい。本発明の電解質膜が多孔性支持体を含むものである場合、上記基材として多孔性支持体を用いることが好ましい。この場合、基材に塗布した電解質エマルションを乾燥させて得られた電解質膜を基材から剥離する工程を要しない。
なお、上記電解質エマルションは、上記含フッ素共重合体が水性媒体に分散されてなるものである。
The method for producing an electrolyte membrane of the present invention includes a step of applying the electrolyte emulsion obtained by the polymerization step to a substrate, and a step of obtaining an electrolyte membrane by drying the electrolyte emulsion applied to the substrate. The manufacturing method of the electrolyte membrane of this invention may have a process of peeling the electrolyte membrane obtained by drying the electrolyte emulsion apply | coated to the base material from a base material as needed. When the electrolyte membrane of the present invention includes a porous support, it is preferable to use a porous support as the substrate. In this case, the process of peeling the electrolyte membrane obtained by drying the electrolyte emulsion applied to the substrate from the substrate is not required.
The electrolyte emulsion is obtained by dispersing the fluorine-containing copolymer in an aqueous medium.

上記電解質膜の製造方法は、いわゆるキャスト製膜と呼ばれる方法により行うものであってよい。例えばシャーレ等の容器に高分子電解質含有溶液を展開し、必要に応じてオーブン等の中で加熱することにより水性媒体を少なくとも部分的に留去した後、容器から剥がす等して膜状体を得ることができる。また、ガラス板又はフィルム等に上記含フッ素共重合体を含有する分散体を厚みが均一になるように、ブレード、エアナイフ又はリバースロールといった機構を有するブレードコーター、グラビアコーター又はコンマコーター等の装置によって膜厚を制御しながらキャスト成膜して枚葉の塗工膜とすることもできる。また、連続的にキャストして連続成膜し、長尺のフィルム状の膜にすることもできる。 The manufacturing method of the electrolyte membrane may be performed by a so-called cast film forming method. For example, after the polymer electrolyte-containing solution is developed in a container such as a petri dish and heated in an oven as necessary, the aqueous medium is at least partially distilled off, and then peeled off from the container, etc. Obtainable. Further, by using a device such as a blade coater, a gravure coater or a comma coater having a mechanism such as a blade, an air knife or a reverse roll so that the dispersion containing the above-mentioned fluorine-containing copolymer is uniform on a glass plate or film. A cast film can be formed by controlling the film thickness to form a single wafer. Further, it can be continuously cast to form a continuous film to form a long film-like film.

上記フィルムとしては、特に限定されないが、ポリエチレンテレフタレート(PET)、ポリエチレンブタレート(PBT)、ポリエチレンナフタレート(PEN)及び液晶ポリエステル類を含むポリエステル、トリアセチルセルロース(TAC)、ポリアリレート、ポリエーテル、ポリカーボネート(PC)、ポリスルホン、ポリエーテルスルホン、セロファン、芳香族ポリアミド、ポリビニルアルコール、ポリエチレン(PE)、ポリプロピレン(PP)、ポリビニルクロライド(PVC)、ポリスチレン(PS)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)、ポリメチルメタクリレート(PMMA)、ポリアミド、ポリアセタール(POM)、ポリフェニレンテレフタレート(PPE)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)、ポリアミドイミド(PAI)、ポリエーテルアミド(PEI)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、ポリメチルペンテン(PMP)、ポリテトラフルオロエチレン、(PTFE)、フッ素化エチレン−プロピレン(FEP)、テトラフルオロエチレン−エチレン(ETFE)コポリマー、ポリフッ化ビニリデン(PVDF)、リベンザゾール(PBZ)、ポリベンズオキサゾール(PBO)、ポリベンゾチアゾール(PBT)、ポリベンズイミダゾール(PBI)及びポリパラフェニレンテレフタルイミド(PPTA)等から選択して用いることができる。 The film is not particularly limited, but includes polyethylene terephthalate (PET), polyethylene butaleate (PBT), polyethylene naphthalate (PEN) and polyesters including liquid crystal polyesters, triacetyl cellulose (TAC), polyarylate, polyether, Polycarbonate (PC), polysulfone, polyethersulfone, cellophane, aromatic polyamide, polyvinyl alcohol, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), acrylonitrile-butadiene-styrene copolymer ( ABS), polymethyl methacrylate (PMMA), polyamide, polyacetal (POM), polyphenylene terephthalate (PPE), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), polyamideimide (PAI), polyetheramide (PEI), polyetheretherketone (PEEK), polyimide (PI), polymethylpentene (PMP), polytetrafluoroethylene, (PTFE) ), Fluorinated ethylene-propylene (FEP), tetrafluoroethylene-ethylene (ETFE) copolymer, polyvinylidene fluoride (PVDF), rebenzazole (PBZ), polybenzoxazole (PBO), polybenzothiazole (PBT), polybenzimidazole (PBI) and polyparaphenylene terephthalimide (PPTA) can be selected and used.

本発明の電解質膜が多孔性支持体を含むものである場合、重合工程により得られた電解質エマルションを基材に塗布する工程は、上記電解質エマルションを多孔性支持体に含浸するものであることが好ましい。 When the electrolyte membrane of the present invention includes a porous support, it is preferable that the step of applying the electrolyte emulsion obtained by the polymerization step on the base material impregnates the porous support with the electrolyte emulsion.

本発明の電解質膜の製造方法はまた、上記電解質膜を製造する方法であって、フッ化ビニリデンと−SOX基を有する共単量体とを水性媒体中でラジカル重合して含フッ素共重合体を含む電解質エマルションを得る重合工程と、上記重合工程により得られた電解質エマルションに有機溶媒を添加して含フッ素重合体が溶解した電解質溶液を得る工程と、電解質溶液を基材に塗布する工程と、基材に塗布した電解質溶液を乾燥させて電解質膜を得る工程と、を含み、−SOX基は、−SOH、−SONR、及び−SO 1/L(但し、R、R、R及びRは、同一又は異なり、水素原子若しくは炭素数1〜4のアルキル基を表し、Mは、同一若しくは異なって、L価の金属を表し、前記L価の金属は、周期表の1族、2族、4族、8族、11族、12族又は13族に属する金属(但し、Liを除く。)を表す。)からなる群より選択される少なくとも1種の官能基であることを特徴とする電解質膜の製造方法でもある。この特徴によって、上述したように、pHが8を超える強アルカリ性の溶液と接触させる工程を必要としないので、上記重合工程により得られる含フッ素共重合体を、固体高分子電解質型燃料電池に用いた場合にも高い安定性を示す。電解質膜の製造方法は、必要に応じて、基材に塗布した電解質エマルションを乾燥させて得られた電解質膜を基材から剥離する工程を有するものであってよい。 The method for producing an electrolyte membrane of the present invention is also a method for producing the above electrolyte membrane, wherein the fluorine-containing copolymer is obtained by radical polymerization of vinylidene fluoride and a comonomer having a —SO 3 X group in an aqueous medium. A polymerization process for obtaining an electrolyte emulsion containing a polymer, a process for obtaining an electrolyte solution in which a fluoropolymer is dissolved by adding an organic solvent to the electrolyte emulsion obtained by the polymerization process, and applying the electrolyte solution to a substrate And a step of drying the electrolyte solution applied to the substrate to obtain an electrolyte membrane, wherein the —SO 3 X group is —SO 3 H, —SO 3 NR 1 R 2 R 3 R 4 , and — SO 3 M 1 1 / L (wherein R 1 , R 2 , R 3 and R 4 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and M 1 is the same or different, Represents an L-valent metal, The L-valent metal is selected from the group consisting of metals belonging to Group 1, Group 2, Group 4, Group 8, Group 11, Group 12, Group 13 or Group 13 of the periodic table (excluding Li). It is also a method for producing an electrolyte membrane, characterized in that it is at least one kind of functional group. As described above, this feature does not require a step of contacting with a strongly alkaline solution having a pH of more than 8, so that the fluorine-containing copolymer obtained by the polymerization step is used for a solid polymer electrolyte fuel cell. High stability is also exhibited. The method for producing an electrolyte membrane may include a step of peeling the electrolyte membrane obtained by drying the electrolyte emulsion applied to the substrate from the substrate, if necessary.

上記重合工程は、上述した方法と同じ方法で行うことができる。例えば、フッ化ビニリデンに基づく重合単位(A)と−SOH基を側鎖に有する重合単位とからなる含フッ素共重合体からなる電解質膜を製造する場合、ラジカル重合により得られる含フッ素重合体が有する−SOX基(但し、−SOH基を除く。)を、−SOH基に変換する工程を含んでもよい。具体的には、上記重合工程は、フッ化ビニリデンと−SOX基(但し、−SOH基を除く。)を有する共単量体とを水性媒体中でラジカル重合して−SOX基(但し、−SOH基を除く。)を側鎖に有する含フッ素共重合体を含む前駆体エマルションを得る工程と、−SOX基(但し、−SOH基を除く。)を−SOH基に変換して−SOHを側鎖に有する含フッ素共重合体を含む電解質エマルションを得る工程と、を含むものであることも好ましい形態の一つである。−SOX基(但し、−SOH基を除く。)を−SOH基に変換する方法は、上記と同じ方法が挙げられる。 The said polymerization process can be performed by the same method as the method mentioned above. For example, when producing an electrolyte membrane comprising a fluorine-containing copolymer comprising a polymer unit (A) based on vinylidene fluoride and a polymer unit having a —SO 3 H group in the side chain, the fluorine-containing heavy polymer obtained by radical polymerization is used. A step of converting the —SO 3 X group (excluding the —SO 3 H group) of the coalescence into a —SO 3 H group may be included. Specifically, the polymerization step includes radical polymerization of vinylidene fluoride and a comonomer having a —SO 3 X group (excluding —SO 3 H group) in an aqueous medium to produce —SO 3. A step of obtaining a precursor emulsion containing a fluorine-containing copolymer having X group (excluding —SO 3 H group) in the side chain; and —SO 3 X group (excluding —SO 3 H group). And a step of obtaining an electrolyte emulsion containing a fluorine-containing copolymer having —SO 3 H in the side chain by converting it to —SO 3 H groups. The method for converting the —SO 3 X group (excluding the —SO 3 H group) into the —SO 3 H group includes the same method as described above.

上記有機溶媒としては、メタノール、エタノール、n−プロパノール、イソプロピルアルコール、ブタノール、グリセリンなどのプロトン性有機溶媒や、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドンなどの非プロトン性溶媒等が挙げられる。これらは1種を単独で、又は2種以上を併用することができる。 Examples of the organic solvent include protic organic solvents such as methanol, ethanol, n-propanol, isopropyl alcohol, butanol, and glycerin, and aprotic substances such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone. An organic solvent. These can be used alone or in combination of two or more.

溶解方法は、特に限定されない。例えば、まず、総固形分濃度が1〜50質量%となるような条件下、電解質エマルションに対して、例えば、水とプロトン性有機溶媒との混合溶媒を加える。次に、この組成物を必要に応じてガラス製内筒を有するオートクレーブ中に入れ、窒素などの不活性気体で内部の空気を置換した後、内温が50〜250℃の条件下、1〜12hr加熱、攪拌する。これにより、電解質溶液が得られる。電解質溶液を得る工程は、得られた電解質エマルションに有機溶媒を添加した後、加熱して、含フッ素重合体が溶解した電解質溶液を得る工程であることが好ましい。なお、総固形分濃度は高いほど収率上好ましいが、濃度を高めると未溶解物が生じるおそれがあるため、1〜50質量%が好ましく、より好ましくは3〜40質量%、さらに好ましくは5〜30質量%である。
以下のように電極触媒層を作製した。
The dissolution method is not particularly limited. For example, first, for example, a mixed solvent of water and a protic organic solvent is added to the electrolyte emulsion under such a condition that the total solid concentration is 1 to 50% by mass. Next, the composition is placed in an autoclave having a glass inner cylinder as necessary, and the internal air is replaced with an inert gas such as nitrogen. Heat and stir for 12 hr. Thereby, an electrolyte solution is obtained. The step of obtaining the electrolyte solution is preferably a step of obtaining an electrolyte solution in which the fluoropolymer is dissolved by adding an organic solvent to the obtained electrolyte emulsion and then heating. The higher the total solid content concentration, the better from the viewpoint of yield. However, when the concentration is increased, undissolved material may be formed. Therefore, the amount is preferably 1 to 50% by mass, more preferably 3 to 40% by mass, and still more preferably 5 -30 mass%.
An electrode catalyst layer was prepared as follows.

プロトン性有機溶媒を用いる場合、得られる電解質溶液における水とプロトン性有機溶媒の組成比は、溶解方法、溶解条件、高分子電解質の種類、総固形分濃度、溶解温度、攪拌速度等に応じて適宜選択できるが、水100質量部に対してプロトン性有機溶媒10〜1000質量部が好ましく、特に好ましくは水100質量部に対して有機溶媒10〜500質量部である。 When a protic organic solvent is used, the composition ratio of water and the protic organic solvent in the obtained electrolyte solution depends on the dissolution method, dissolution conditions, type of polymer electrolyte, total solid content concentration, dissolution temperature, stirring speed, etc. Although it can select suitably, 10-1000 mass parts of protic organic solvents are preferable with respect to 100 mass parts of water, Especially preferably, it is 10-500 mass parts of organic solvents with respect to 100 mass parts of water.

なお、上記の電解質溶液には、乳濁液(液体中に液体粒子がコロイド粒子あるいはそれより粗大な粒子として分散して乳状をなすもの)、懸濁液(液体中に固体粒子がコロイド粒子あるいは顕微鏡で見える程度の粒子として分散したもの)、コロイド状液体(巨大分子が分散した状態)、ミセル状液体(多数の小分子が分子間力で会合して出来た親液コロイド分散系)等の1種又は2種以上が含まれていてもよい。 The electrolyte solution includes an emulsion (a liquid particle in which liquid particles are dispersed as colloidal particles or coarser particles to form a milky state), a suspension (solid particles in a liquid are colloidal particles or Such as those dispersed as particles that can be seen with a microscope), colloidal liquid (macromolecules dispersed), micellar liquid (a lyophilic colloidal dispersion system made up of many small molecules associated by intermolecular forces), etc. 1 type (s) or 2 or more types may be contained.

上記電解質溶液は、濃縮することが可能である。濃縮の方法としては特に限定されない。例えば、加熱し、溶媒を蒸発させる方法や、減圧濃縮する方法等がある。その結果得られる塗工溶液の固形分率は、高すぎると粘度が上昇して取り扱い難くなるおそれがあり、また低すぎると生産性が低下する場合があるため、最終的な塗工溶液の固形分率は0.5〜50質量%が好ましい。 The electrolyte solution can be concentrated. The concentration method is not particularly limited. For example, there are a method of heating and evaporating the solvent, a method of concentrating under reduced pressure, and the like. If the resulting coating solution has a solid content ratio that is too high, the viscosity may increase and it may be difficult to handle, and if it is too low, the productivity may decrease. The fraction is preferably 0.5 to 50% by mass.

上記電解質溶液は、粗大粒子成分を除去する観点から、濾過されることがより好ましい。濾過方法は、特に限定されず、従来行われている一般的な方法が適用できる。例えば、通常使用されている定格濾過精度を有する濾材を加工したフィルターを用いて、加圧濾過する方法が代表的に挙げられる。フィルターについては、90%捕集粒子径が粒子の平均粒子径の10〜100倍の濾材を使用することが好ましい。この濾材は濾紙でもよいし、金属焼結フィルターのような濾材でもよい。特に濾紙の場合は、90%捕集粒子径が粒子の平均粒子径の10〜50倍であることが好ましい。金属焼結フィルターの場合は、90%捕集粒子径が粒子の平均粒子径の50〜100倍であることが好ましい。当該90%捕集粒子径を平均粒径の10倍以上に設定することは、送液するときに必要な圧力が高くなりすぎることを抑制したり、フィルターが短期間で閉塞したりすることを抑制し得る。一方、平均粒子径の100倍以下に設定することは、フィルムで異物の原因となるような粒子の凝集物や樹脂の未溶解物を良好に除去する観点から好ましい。 The electrolyte solution is more preferably filtered from the viewpoint of removing coarse particle components. The filtration method is not particularly limited, and a general method conventionally performed can be applied. For example, a method of pressure filtration using a filter obtained by processing a filter medium having a normally used rated filtration accuracy is typically mentioned. As for the filter, it is preferable to use a filter medium whose 90% collection particle size is 10 to 100 times the average particle size of the particles. The filter medium may be filter paper or a filter medium such as a sintered metal filter. Particularly in the case of filter paper, the 90% collection particle size is preferably 10 to 50 times the average particle size of the particles. In the case of a sintered metal filter, the 90% collection particle size is preferably 50 to 100 times the average particle size of the particles. Setting the 90% collection particle size to be 10 times or more of the average particle size prevents the pressure necessary for liquid feeding from becoming too high, or the filter is blocked in a short period of time. Can be suppressed. On the other hand, setting it to 100 times or less of the average particle diameter is preferable from the viewpoint of satisfactorily removing particle agglomerates and resin undissolved materials that cause foreign matters in the film.

このようにして得られた電解質溶液を基材に塗布し、基材に塗布した電解質溶液を乾燥させて電解質膜を得ることができる。電解質溶液を基材に塗布する方法としては、上述した電解質エマルションを基材に塗布する方法と同様に、キャスト製膜等で行うことができる。 The electrolyte solution obtained in this manner can be applied to a substrate, and the electrolyte solution applied to the substrate can be dried to obtain an electrolyte membrane. As a method of applying the electrolyte solution to the substrate, it can be performed by cast film formation or the like, similarly to the method of applying the electrolyte emulsion to the substrate.

本発明は、上記電極触媒層を製造する方法であって、フッ化ビニリデンと−SOX基を有する共単量体とを水性媒体中でラジカル重合して含フッ素共重合体を含む電解質エマルションを得る重合工程と、得られた電解質エマルションに燃料電池触媒を分散させて触媒組成物を調製する工程と、触媒組成物を基材に塗布する工程と、基材に塗布した触媒組成物を乾燥させて電極触媒層を得る工程と、を含み、−SOX基は、−SOH、−SONR、及び−SO 1/L(但し、R、R、R及びRは、同一又は異なり、水素原子若しくは炭素数1〜4のアルキル基を表し、Mは、同一若しくは異なって、L価の金属を表し、前記L価の金属は、周期表の1族、2族、4族、8族、11族、12族又は13族に属する金属(但し、Liを除く。)を表す。)からなる群より選択される少なくとも1種の官能基であることを特徴とする電極触媒層の製造方法でもある。重合工程は、更に、テトラフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種の単量体を水性媒体中でラジカル重合するものであることが好ましい形態の一つである。 The present invention is a method for producing the above electrode catalyst layer, which is an electrolyte emulsion containing a fluorine-containing copolymer obtained by radical polymerization of vinylidene fluoride and a comonomer having a —SO 3 X group in an aqueous medium. A step of preparing a catalyst composition by dispersing a fuel cell catalyst in the obtained electrolyte emulsion, a step of applying the catalyst composition to a substrate, and a drying of the catalyst composition applied to the substrate And a step of obtaining an electrode catalyst layer, wherein the —SO 3 X group is —SO 3 H, —SO 3 NR 1 R 2 R 3 R 4 , and —SO 3 M 1 1 / L (where R 1 , R 2 , R 3 and R 4 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; M 1 is the same or different and represents an L-valent metal; Metals are Group 1, 2, 4, 8, 11 , A metal belonging to Group 12 or 13 (however, Li is excluded). The method is also a method for producing an electrode catalyst layer, which is at least one functional group selected from the group consisting of. In the polymerization step, it is further preferable that the polymerization step includes radical polymerization of at least one monomer selected from the group consisting of tetrafluoroethylene and hexafluoropropylene in an aqueous medium.

上記重合工程は、上述した方法と同じ方法で行うことができる。例えば、フッ化ビニリデンに基づく重合単位(A)と−SOH基を側鎖に有する重合単位とからなる含フッ素共重合体からなる電解質膜を製造する場合、ラジカル重合により得られる含フッ素重合体が有する−SOX基(但し、−SOH基を除く。)を、−SOH基に変換する工程を含んでもよい。具体的には、上記重合工程は、フッ化ビニリデンと−SOX基(但し、−SOH基を除く。)を有する共単量体とを水性媒体中でラジカル重合して−SOX基(但し、−SOH基を除く。)を側鎖に有する含フッ素共重合体を含む前駆体エマルションを得る工程と、−SOX基(但し、−SOH基を除く。)を−SOH基に変換して−SOHを側鎖に有する含フッ素共重合体を含む電解質エマルションを得る工程と、を含むものであることも好ましい形態の一つである。−SOX基(但し、−SOH基を除く。)を−SOH基に変換する方法は、上記と同じ方法が挙げられる。 The said polymerization process can be performed by the same method as the method mentioned above. For example, when producing an electrolyte membrane comprising a fluorine-containing copolymer comprising a polymer unit (A) based on vinylidene fluoride and a polymer unit having a —SO 3 H group in the side chain, the fluorine-containing heavy polymer obtained by radical polymerization is used. A step of converting the —SO 3 X group (excluding the —SO 3 H group) of the coalescence into a —SO 3 H group may be included. Specifically, the polymerization step includes radical polymerization of vinylidene fluoride and a comonomer having a —SO 3 X group (excluding —SO 3 H group) in an aqueous medium to produce —SO 3. A step of obtaining a precursor emulsion containing a fluorine-containing copolymer having X group (excluding —SO 3 H group) in the side chain; and —SO 3 X group (excluding —SO 3 H group). And a step of obtaining an electrolyte emulsion containing a fluorine-containing copolymer having —SO 3 H in the side chain by converting it to —SO 3 H groups. The method for converting the —SO 3 X group (excluding the —SO 3 H group) into the —SO 3 H group includes the same method as described above.

本発明の電極触媒層の製造方法は、得られた電解質エマルションに燃料電池触媒を分散させて触媒組成物を調製する工程と、触媒組成物を基材に塗布する工程と、基材に塗布した触媒組成物を乾燥させて電極触媒層を得る工程と、を含む。 The method for producing an electrode catalyst layer of the present invention includes a step of dispersing a fuel cell catalyst in the obtained electrolyte emulsion to prepare a catalyst composition, a step of applying the catalyst composition to a substrate, and a step of applying the catalyst composition to the substrate. Drying the catalyst composition to obtain an electrode catalyst layer.

得られた電解質エマルションに燃料電池触媒を分散させて触媒組成物を調製する工程は、得られた電解質エマルションに、触媒金属の微粒子(触媒金属粒子)及びこれを担持した導電剤からなる複合粒子を分散させた触媒組成物を調製するものであることが好ましい。 The step of preparing a catalyst composition by dispersing a fuel cell catalyst in the obtained electrolyte emulsion comprises the steps of preparing fine particles of catalyst metal (catalyst metal particles) and composite particles comprising a conductive agent carrying the catalyst particles in the obtained electrolyte emulsion. It is preferable to prepare a dispersed catalyst composition.

本発明の電極触媒層の製造方法は、例えば、上記電解質エマルションを準備し、この電解質エマルション中に、上記燃料電池触媒を分散させて触媒組成物を調製し、これを電解質膜上又はPTFEシート等の他の基材上に塗布した後、乾燥、固化して製造することができる。なお、本発明において触媒組成物の塗布は、スクリーン印刷法、スプレー法等の一般的に知られている各種方法を用いることが可能である。触媒組成物は、含フッ素重合体、触媒金属及び水性媒体を含む。本発明の電極触媒層の製造方法は、さらに、電極触媒層を作製後に塩酸等の無機酸に浸漬を行う工程を含んでもよい。酸処理の温度としては、好ましくは5〜90℃、より好ましくは10〜70℃、最も好ましくは20〜50℃である。 The method for producing an electrode catalyst layer of the present invention includes, for example, preparing the electrolyte emulsion, dispersing the fuel cell catalyst in the electrolyte emulsion to prepare a catalyst composition, and preparing this on an electrolyte membrane or a PTFE sheet or the like After coating on another substrate, it can be produced by drying and solidifying. In the present invention, the catalyst composition can be applied by various generally known methods such as a screen printing method and a spray method. The catalyst composition includes a fluoropolymer, a catalytic metal, and an aqueous medium. The method for producing an electrode catalyst layer of the present invention may further include a step of immersing in an inorganic acid such as hydrochloric acid after the electrode catalyst layer is produced. The acid treatment temperature is preferably 5 to 90 ° C, more preferably 10 to 70 ° C, and most preferably 20 to 50 ° C.

本発明は、上記電極触媒層を製造する方法であって、フッ化ビニリデンと−SOX基を有する共単量体とを水性媒体中でラジカル重合して含フッ素共重合体を含む電解質エマルションを得る重合工程と、得られた電解質エマルションに有機溶媒を添加して含フッ素共重合体が溶解した電解質溶液を得る工程と、電解質溶液に、燃料電池触媒を分散させて触媒組成物を調製する工程と、触媒組成物を基材に塗布する工程と、基材に塗布した触媒組成物を乾燥させて電極触媒層を得る工程と、を含み、−SOX基は、−SOH、−SONR、及び−SO 1/L(但し、R、R、R及びRは、同一又は異なり、水素原子若しくは炭素数1〜4のアルキル基を表し、Mは、同一若しくは異なって、L価の金属を表し、前記L価の金属は、周期表の1族、2族、4族、8族、11族、12族又は13族に属する金属(但し、Liを除く。)を表す。)からなる群より選択される少なくとも1種の官能基である電極触媒層の製造方法でもある。この場合、電解質溶液に含まれる含フッ素重合体は溶解している。 The present invention is a method for producing the above electrode catalyst layer, which is an electrolyte emulsion containing a fluorine-containing copolymer obtained by radical polymerization of vinylidene fluoride and a comonomer having a —SO 3 X group in an aqueous medium. A step of obtaining an electrolyte solution in which a fluorine-containing copolymer is dissolved by adding an organic solvent to the obtained electrolyte emulsion, and preparing a catalyst composition by dispersing a fuel cell catalyst in the electrolyte solution And a step of applying a catalyst composition to a substrate, and a step of drying the catalyst composition applied to the substrate to obtain an electrode catalyst layer, wherein the —SO 3 X group is —SO 3 H, —SO 3 NR 1 R 2 R 3 R 4 , and —SO 3 M 1 1 / L (provided that R 1 , R 2 , R 3 and R 4 are the same or different and have a hydrogen atom or a carbon number of 1 to 4) Represents an alkyl group, and M 1 is the same or different. The L-valent metal is a metal belonging to Group 1, Group 2, Group 4, Group 8, Group 11, Group 12 or Group 13 of the periodic table (excluding Li). It is also a method for producing an electrode catalyst layer that is at least one functional group selected from the group consisting of: In this case, the fluoropolymer contained in the electrolyte solution is dissolved.

上記重合工程は、上述した方法と同じ方法で行うことができる。例えば、フッ化ビニリデンに基づく重合単位(A)と−SOH基を側鎖に有する重合単位とからなる含フッ素共重合体からなる電解質膜を製造する場合、ラジカル重合により得られる含フッ素重合体が有する−SOX基(但し、−SOH基を除く。)を、−SOH基に変換する工程を含んでもよい。具体的には、上記重合工程は、フッ化ビニリデンと−SOX基(但し、−SOH基を除く。)を有する共単量体とを水性媒体中でラジカル重合して−SOX基(但し、−SOH基を除く。)を側鎖に有する含フッ素共重合体を含む前駆体エマルションを得る工程と、−SOX基(但し、−SOH基を除く。)を−SOH基に変換して−SOHを側鎖に有する含フッ素共重合体を含む電解質エマルションを得る工程と、を含むものであることも好ましい形態の一つである。−SOX基(但し、−SOH基を除く。)を−SOH基に変換する方法は、上記と同じ方法が挙げられる。 The said polymerization process can be performed by the same method as the method mentioned above. For example, when producing an electrolyte membrane comprising a fluorine-containing copolymer comprising a polymer unit (A) based on vinylidene fluoride and a polymer unit having a —SO 3 H group in the side chain, the fluorine-containing heavy polymer obtained by radical polymerization is used. A step of converting the —SO 3 X group (excluding the —SO 3 H group) of the coalescence into a —SO 3 H group may be included. Specifically, the polymerization step includes radical polymerization of vinylidene fluoride and a comonomer having a —SO 3 X group (excluding —SO 3 H group) in an aqueous medium to produce —SO 3. A step of obtaining a precursor emulsion containing a fluorine-containing copolymer having X group (excluding —SO 3 H group) in the side chain; and —SO 3 X group (excluding —SO 3 H group). And a step of obtaining an electrolyte emulsion containing a fluorine-containing copolymer having —SO 3 H in the side chain by converting it to —SO 3 H groups. The method for converting the —SO 3 X group (excluding the —SO 3 H group) into the —SO 3 H group includes the same method as described above.

電解質溶液を得るために電解質エマルションに添加される有機溶媒としては、アルコール類(エタノール、2−プロパノール、エチレングリコール、グリセリン等)、フロン等の単独溶媒又は複合溶媒が挙げられる。このような溶媒の添加量としては、触媒組成物の全質量に対し、好ましくは0.1〜90質量%、より好ましくは1〜50質量%、最も好ましくは5〜20質量%であることが望ましい。 Examples of the organic solvent added to the electrolyte emulsion in order to obtain an electrolyte solution include alcohols (ethanol, 2-propanol, ethylene glycol, glycerin, etc.), single solvents such as chlorofluorocarbon, and composite solvents. The amount of the solvent added is preferably 0.1 to 90% by mass, more preferably 1 to 50% by mass, and most preferably 5 to 20% by mass with respect to the total mass of the catalyst composition. desirable.

電解質溶液に燃料電池触媒を分散させて触媒組成物を調製する工程は、電解質エマルションに燃料電池触媒を分散させて触媒組成物を調製する工程と同様の方法で行うことができる。触媒組成物を基材に塗布する工程、及び基材に塗布した触媒組成物を乾燥させて電極触媒層を得る工程についても上記と同じ方法で行うことができる。 The step of preparing the catalyst composition by dispersing the fuel cell catalyst in the electrolyte solution can be performed in the same manner as the step of preparing the catalyst composition by dispersing the fuel cell catalyst in the electrolyte emulsion. The step of applying the catalyst composition to the substrate and the step of obtaining the electrode catalyst layer by drying the catalyst composition applied to the substrate can also be performed in the same manner as described above.

以下に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

電解質膜、電極触媒層、及び燃料電池の評価は、以下の方法で行った。
(EW測定)
イオン交換基の対イオンがプロトンの状態となっている高分子電解質膜、およそ2〜20cmを、25℃、飽和NaCl水溶液30mlに浸漬し、攪拌しながら30分間放置した。次いで、飽和NaCl水溶液中のプロトンを、フェノールフタレインを指示薬として0.01N水酸化ナトリウム水溶液を用いて中和滴定した。中和後に得られた、イオン交換基の対イオンがナトリウムイオンの状態となっている高分子電解質膜を、純水ですすぎ、更に真空乾燥して秤量した。中和に要した水酸化ナトリウムの物質量をM(mmol)、イオン交換基の対イオンがナトリウムイオンの高分子電解質膜の重量をW(mg)とし、下記式(3)より当量重量EW(g/eq)を求めた。
EW=(W/M)−22 (3)
Evaluation of the electrolyte membrane, the electrode catalyst layer, and the fuel cell was performed by the following method.
(EW measurement)
A polymer electrolyte membrane, approximately 2 to 20 cm 2, in which the counter ion of the ion exchange group is in a proton state, was immersed in 30 ml of a saturated NaCl aqueous solution at 25 ° C. and left for 30 minutes with stirring. Next, the protons in the saturated NaCl aqueous solution were subjected to neutralization titration with 0.01N sodium hydroxide aqueous solution using phenolphthalein as an indicator. The polymer electrolyte membrane obtained after neutralization, in which the counter ion of the ion exchange group is in the state of sodium ions, was rinsed with pure water, further vacuum dried and weighed. The amount of sodium hydroxide required for neutralization is M (mmol), and the weight of the polymer electrolyte membrane whose sodium ion is the counter ion of the ion exchange group is W (mg). g / eq).
EW = (W / M) −22 (3)

(プロトン伝導度測定)
電解質膜サンプルを湿潤状態にて切り出し、厚みTを測定する。そして、幅1cm、長さ5cmの膜長さ方向の伝導度を測定する2端子式の伝導度測定セルに装着した。このセルを80℃のイオン交換水中に入れ、交流インピーダンス法により、周波数10kHzにおける実数成分の抵抗値Rを測定し、以下の式からプロトン伝導度σを導出した。
σ=L/(R×T×W)
σ:プロトン伝導度(S/cm)
T:厚み(cm)
R:抵抗値(Ω)
L(=5):膜長(cm)
W(=1):膜幅(cm)
(Proton conductivity measurement)
The electrolyte membrane sample is cut out in a wet state, and the thickness T is measured. And it attached to the conductivity measuring cell of 2 terminal type which measures the conductivity of the film length direction of width 1cm and length 5cm. This cell was placed in ion exchange water at 80 ° C., and the resistance value R of the real component at a frequency of 10 kHz was measured by an alternating current impedance method, and proton conductivity σ was derived from the following equation.
σ = L / (R × T × W)
σ: proton conductivity (S / cm)
T: Thickness (cm)
R: Resistance value (Ω)
L (= 5): film length (cm)
W (= 1): film width (cm)

(引張クリープ特性)
3本掛クリープ試験機((株)オリエンテック製CP3−P−20)を用いて、引張クリープ特性を調べた。まず、膜サンプルを湿潤状態にて切り出し、厚みTを測定する。そして、幅1cm、長さ5cmの膜をチャック間隔2cmでチャックに装着した。試験は恒温恒湿槽中で行い、80℃,95%RHに保持した。試験荷重は20kg/cmで行い、試験開始から40時間後に膜を恒温恒湿槽中から取り出して、長さの初期値(2cm)に対する試験後の長さの割合(%)を算出し、クリープ量とした。
(Tensile creep property)
Tensile creep characteristics were examined using a three-creep creep tester (CP3-P-20 manufactured by Orientec Co., Ltd.). First, a membrane sample is cut out in a wet state, and the thickness T is measured. Then, a film having a width of 1 cm and a length of 5 cm was mounted on the chuck with a chuck interval of 2 cm. The test was performed in a constant temperature and humidity chamber and maintained at 80 ° C. and 95% RH. The test load is 20 kg / cm 2 , and after 40 hours from the start of the test, the film is taken out from the thermo-hygrostat, and the ratio (%) of the length after the test to the initial length (2 cm) is calculated. The amount of creep was taken.

(燃料電池評価)
下記に作製する高分子電解質膜と電極触媒層から作製される膜電極接合体(MEA)の初期における電池特性(以下、初期特性と称する)を調べるため、次のような燃料電池評価を実施した。
(Fuel cell evaluation)
The following fuel cell evaluation was carried out in order to examine the initial battery characteristics (hereinafter referred to as initial characteristics) of a membrane electrode assembly (MEA) prepared from the polymer electrolyte membrane and electrode catalyst layer prepared below. .

まず、アノード側ガス拡散層とカソード側ガス拡散層を向い合わせて、その間に下記に作製するMEAを挟み込み、評価用セルに組み込んだ。ガス拡散層としては、カーボンクロス(米国DE NORA NORTH AMERICA社製ELAT(登録商標)B−1)をセットして評価用セルに組み込んだ。この評価用セルを評価装置(日本国(株)チノー社製)にセットして80℃に昇温した後、アノード側に水素ガスを300cc/min、カソード側に空気ガスを800cc/minで流し、アノード・カソード共に0.15MPa(絶対圧力)で加圧した。ガス加湿には水バブリング方式を用い、水素ガスは85℃、空気ガスは75℃で加湿してセルへ供給した状態にて、電流電圧曲線を測定して初期特性を調べた。 First, the anode-side gas diffusion layer and the cathode-side gas diffusion layer were faced to each other, and an MEA produced below was sandwiched between them and incorporated in an evaluation cell. As the gas diffusion layer, carbon cloth (ELAT (registered trademark) B-1 manufactured by DE NORA NORTH AMERICA, USA) was set and incorporated in the evaluation cell. This evaluation cell is set in an evaluation apparatus (manufactured by Chino Co., Ltd., Japan) and heated to 80 ° C., then hydrogen gas is supplied to the anode side at 300 cc / min and air gas is supplied to the cathode side at 800 cc / min. The anode and cathode were pressurized at 0.15 MPa (absolute pressure). A water bubbling system was used for gas humidification, and the initial characteristics were examined by measuring a current-voltage curve in a state where the gas was humidified at 85 ° C. and the air gas was humidified at 75 ° C. and supplied to the cell.

[合成例1]
内容積3Lの撹拌機付きステンレス製オートクレーブを用い、イオン交換水を1500g、CF=CFOCFCFSONaを300g仕込んだ。次いで、オートクレーブを窒素置換した後、フッ化ビニリデンを導入してゲージ圧0.2MPaまで昇圧して50℃まで昇温した。その後、さらにフッ化ビニリデンを導入してゲージ圧0.50MPaまで昇圧した後、過硫酸アンモニウム3gを水20gに溶解した溶液を仕込んで重合を開始した。重合が進行するにつれて、圧力が低下するので、ゲージ圧0.50MPaを維持するようにフッ化ビニリデンを追加供給した。6時間後、フッ化ビニリデンを200g仕込んだ時点で、オートクレーブの圧力を開放して重合を終了して、エマルションを得た。
[Synthesis Example 1]
Using a stainless steel autoclave with a stirrer with an internal volume of 3 L, 1500 g of ion exchange water and 300 g of CF 2 = CFOCF 2 CF 2 SO 3 Na were charged. Next, after the autoclave was purged with nitrogen, vinylidene fluoride was introduced, the gauge pressure was increased to 0.2 MPa, and the temperature was increased to 50 ° C. Then, after further introducing vinylidene fluoride to increase the gauge pressure to 0.50 MPa, a solution in which 3 g of ammonium persulfate was dissolved in 20 g of water was charged to initiate polymerization. Since the pressure decreased as the polymerization progressed, additional vinylidene fluoride was supplied so as to maintain a gauge pressure of 0.50 MPa. Six hours later, when 200 g of vinylidene fluoride was charged, the pressure in the autoclave was released to complete the polymerization, and an emulsion was obtained.

上記エマルション1.5kgを水1.5kgで希釈した後、ミリポア社製限外ろ過装置(Pellicon−2 Cassette Biomax−10)を用いて、未反応の水溶性モノマーと水溶性の不純物とを除去しながらエマルションの全量が2.0〜3.0kgになるように純水を追加して精製した。ハンディ型のイオン伝導率計(コンパクト導電率計 B−173型)を用いて調べた濾液のイオン伝導度が0S・cm−1になった時点で、精製を終了し、純水を加えて全量を3.0kgに調整した。 After diluting 1.5 kg of the emulsion with 1.5 kg of water, unreacted water-soluble monomers and water-soluble impurities are removed using an ultrafiltration device (Pellicon-2 Cassette Biomax-10) manufactured by Millipore. However, it was purified by adding pure water so that the total amount of the emulsion was 2.0 to 3.0 kg. When the ionic conductivity of the filtrate, which was examined using a handheld ion conductivity meter (compact conductivity meter B-173 type), reached 0 S · cm −1 , purification was completed, and pure water was added to complete the amount. Was adjusted to 3.0 kg.

別途ローム&ハース社製、アンバーライトIR120B 3kgを硫酸を用いて酸型に変換した後、純水で十分に洗浄し、硝子製ビュレットに充填した。上記エマルションを、上記ビュレットを6時間かけて通過させて、側鎖に−SOH基を有するポリマーのエマルションを得た。 Separately, 3 kg of Amberlite IR120B manufactured by Rohm & Haas was converted into an acid form using sulfuric acid, washed thoroughly with pure water, and filled into a glass burette. The emulsion was passed through the burette for 6 hours to obtain an emulsion of a polymer having —SO 3 H groups in the side chain.

上記エマルションの一部を120℃で乾燥し、得られたポリマーをNメチル−2−ピロリジノンに溶解して、NMR(ブルカー社製 フーリエ変換核磁気共鳴装置(FT−NMR)AC300P)で分析して、ポリマー組成を調べたところ、ポリマーに含まれるフッ化ビニリデンに基づく重合単位とCF=CFOCFCFSOHに基づく重合単位とのモル比がそれぞれ85/15であることを確認した。また、エマルションの乾燥前後の重量変化から、エマルションの固形分は10.1%であった。 A part of the emulsion was dried at 120 ° C., and the obtained polymer was dissolved in N-methyl-2-pyrrolidinone and analyzed by NMR (Fourker Transform Nuclear Magnetic Resonance Apparatus (FT-NMR) AC300P manufactured by Bruker). When the polymer composition was examined, it was confirmed that the molar ratio of the polymerized units based on vinylidene fluoride and the polymerized units based on CF 2 = CFOCF 2 CF 2 SO 3 H contained in the polymer was 85/15, respectively. Moreover, from the weight change before and behind drying of an emulsion, solid content of the emulsion was 10.1%.

また、上記ポリマーのNメチル−2−ピロリジノン(NMP)溶液をGPCで測定したところ、数平均分子量は33万であった。 Moreover, when the N methyl-2-pyrrolidinone (NMP) solution of the said polymer was measured by GPC, the number average molecular weight was 330,000.

[合成例2]
内容積3Lの撹拌機付きステンレス製オートクレーブを用い、イオン交換水を1500g、CF=CFOCFCFSONaを300g仕込んだ。次いで、オートクレーブを窒素置換した後、フッ化ビニリデンを導入してゲージ圧0.2MPaまで昇圧して50℃まで昇温した。その後、さらにフッ化ビニリデンとテトラフルオロエチレンが9/1の組成であるガスを導入してゲージ圧0.45MPaまで昇圧した後、過硫酸アンモニウム3gを水20gに溶解した溶液を仕込んで重合を開始した。重合が進行するにつれて、圧力が低下するので、ゲージ圧0.45MPaを維持するようにフッ化ビニリデン/テトラフルオロエチレン=7/3の組成のガスを追加供給した。6時間後、フッ化ビニリデン/テトラフルオロエチレン=7/3の組成のガスを200g仕込んだ時点で、オートクレーブの圧力を開放して重合を終了して、エマルションを得た。
[Synthesis Example 2]
Using a stainless steel autoclave with a stirrer with an internal volume of 3 L, 1500 g of ion exchange water and 300 g of CF 2 = CFOCF 2 CF 2 SO 3 Na were charged. Next, after the autoclave was purged with nitrogen, vinylidene fluoride was introduced, the gauge pressure was increased to 0.2 MPa, and the temperature was increased to 50 ° C. Thereafter, a gas having a composition of 9/1 of vinylidene fluoride and tetrafluoroethylene was further introduced to increase the gauge pressure to 0.45 MPa, and then a solution in which 3 g of ammonium persulfate was dissolved in 20 g of water was charged to initiate polymerization. . Since the pressure decreased as the polymerization progressed, a gas having a composition of vinylidene fluoride / tetrafluoroethylene = 7/3 was additionally supplied so as to maintain a gauge pressure of 0.45 MPa. Six hours later, when 200 g of a gas having a composition of vinylidene fluoride / tetrafluoroethylene = 7/3 was charged, the pressure in the autoclave was released to complete the polymerization, and an emulsion was obtained.

上記エマルション1.5kgを水1.5kgで希釈した後、ミリポア社製限外ろ過装置(Pellicon−2 Cassette Biomax−10)を用いて、未反応の水溶性モノマーと水溶性の不純物とを除去しながらエマルションの全量が2.0〜3.0kgになるように純水を追加して精製した。ハンディ型のイオン伝導率計(コンパクト導電率計 B−173型)を用いて調べた濾液のイオン伝導度が0S・cm−1になった時点で、精製を終了し、純水を加えて全量を3.0kgに調整した。 After diluting 1.5 kg of the emulsion with 1.5 kg of water, unreacted water-soluble monomers and water-soluble impurities are removed using an ultrafiltration device (Pellicon-2 Cassette Biomax-10) manufactured by Millipore. However, it was purified by adding pure water so that the total amount of the emulsion was 2.0 to 3.0 kg. When the ionic conductivity of the filtrate, which was examined using a handheld ion conductivity meter (compact conductivity meter B-173 type), reached 0 S · cm −1 , purification was completed, and pure water was added to complete the amount. Was adjusted to 3.0 kg.

別途ローム&ハース社製、アンバーライトIR120B 3kgを硫酸を用いて酸型に変換した後、純水で十分に洗浄し、硝子製ビュレットに充填した。
上記エマルションを、上記ビュレットを6時間かけて通過させて、側鎖に−SOH基を有するポリマーのエマルションを得た。
Separately, 3 kg of Amberlite IR120B manufactured by Rohm & Haas was converted into an acid form using sulfuric acid, washed thoroughly with pure water, and filled into a glass burette.
The emulsion was passed through the burette for 6 hours to obtain an emulsion of a polymer having —SO 3 H groups in the side chain.

上記エマルションを120℃で乾燥し、得られたポリマーをNメチル−2−ピロリジノンに溶解して、NMR(ブルカー社製 フーリエ変換核磁気共鳴装置(FT−NMR)AC300P)で分析して、ポリマー組成を調べたところ、ポリマーに含まれるフッ化ビニリデンに基づく重合単位とテトラフルオロエチレンに基づく重合単位、CF=CFOCFCFSOHに基づく重合単位とのモル比がそれぞれ55/27/18であることを確認した。 The emulsion was dried at 120 ° C., and the polymer obtained was dissolved in N-methyl-2-pyrrolidinone and analyzed by NMR (Fourker Transform Nuclear Magnetic Resonance Device (FT-NMR) AC300P manufactured by Bruker). As a result, the molar ratio of the polymerized unit based on vinylidene fluoride, the polymerized unit based on tetrafluoroethylene, and the polymerized unit based on CF 2 = CFOCF 2 CF 2 SO 3 H contained in the polymer was 55/27/18, respectively. It was confirmed that.

また、上記ポリマーのNMP溶液をGPCで測定したところ、数平均分子量は30万であった。 Moreover, when the NMP solution of the said polymer was measured by GPC, the number average molecular weight was 300,000.

[合成例3]
内容積3Lの撹拌機付きステンレス製オートクレーブを用い、イオン交換水を1500g、CF=CFOCFCFSONaを300g仕込んだ。次いで、オートクレーブを窒素置換した後、フッ化ビニリデンを導入してゲージ圧0.2MPaまで昇圧して42℃まで昇温した。その後、さらにフッ化ビニリデンとテトラフルオロエチレンが9/1の組成であるガスを導入してゲージ圧0.35MPaまで昇圧した後、過硫酸アンモニウム3gを水20gに溶解した溶液を仕込んで重合を開始した。重合が進行するにつれて、圧力が低下するので、ゲージ圧0.35MPaを維持するようにフッ化ビニリデン/テトラフルオロエチレン=9/1の組成のガスを追加供給した。9時間後、フッ化ビニリデン/テトラフルオロエチレン=9/1の組成のガスを200g仕込んだ時点で、オートクレーブの圧力を開放して重合を終了して、エマルションを得た。
[Synthesis Example 3]
Using a stainless steel autoclave with a stirrer with an internal volume of 3 L, 1500 g of ion exchange water and 300 g of CF 2 = CFOCF 2 CF 2 SO 3 Na were charged. Next, after the autoclave was purged with nitrogen, vinylidene fluoride was introduced, the gauge pressure was increased to 0.2 MPa, and the temperature was increased to 42 ° C. Thereafter, a gas having a composition of 9/1 of vinylidene fluoride and tetrafluoroethylene was further introduced to raise the gauge pressure to 0.35 MPa, and then a solution in which 3 g of ammonium persulfate was dissolved in 20 g of water was charged to initiate polymerization. . Since the pressure decreased as the polymerization progressed, a gas having a composition of vinylidene fluoride / tetrafluoroethylene = 9/1 was additionally supplied so as to maintain a gauge pressure of 0.35 MPa. Nine hours later, when 200 g of a gas having a composition of vinylidene fluoride / tetrafluoroethylene = 9/1 was charged, the pressure of the autoclave was released to complete the polymerization to obtain an emulsion.

上記エマルション1.5kgを水1.5kgで希釈した後、ミリポア社製限外ろ過装置(Pellicon−2 Cassette Biomax−10)を用いて、未反応の水溶性モノマーと水溶性の不純物とを除去しながらエマルションの全量が2.0〜3.0kgになるように純水を追加して精製した。ハンディ型のイオン伝導率計(コンパクト導電率計 B−173型)を用いて調べた濾液のイオン伝導度が0S・cm−1になった時点で、精製を終了し、純水を加えて全量を3.0kgに調整した。 After diluting 1.5 kg of the emulsion with 1.5 kg of water, unreacted water-soluble monomers and water-soluble impurities are removed using an ultrafiltration device (Pellicon-2 Cassette Biomax-10) manufactured by Millipore. However, it was purified by adding pure water so that the total amount of the emulsion was 2.0 to 3.0 kg. When the ionic conductivity of the filtrate, which was examined using a handheld ion conductivity meter (compact conductivity meter B-173 type), reached 0 S · cm −1 , purification was completed, and pure water was added to complete the amount. Was adjusted to 3.0 kg.

別途ローム&ハース社製、アンバーライトIR120B 200gを硫酸を用いて酸型に変換した後、純水で十分に洗浄し、硝子製ビュレットに充填した。
上記エマルション200gを、上記ビュレットを1時間かけて通過させて、側鎖に−SOH基を有するポリマーのエマルションを得た。
Separately, 200 g of Amberlite IR120B manufactured by Rohm & Haas Co. was converted into an acid form using sulfuric acid, washed thoroughly with pure water, and filled into a glass burette.
200 g of the emulsion was passed through the burette for 1 hour to obtain an emulsion of a polymer having —SO 3 H groups in the side chain.

上記エマルションを120℃で乾燥し、得られたポリマーをNメチル−2−ピロリジノンに溶解して、NMR(ブルカー社製 フーリエ変換核磁気共鳴装置(FT−NMR)AC300P)で分析して、ポリマー組成を調べたところ、ポリマーに含まれるフッ化ビニリデンに基づく重合単位とテトラフルオロエチレンに基づく重合単位、CF=CFOCFCFSOHに基づく重合単位とのモル比がそれぞれ64/7/29であることを確認した。 The emulsion was dried at 120 ° C., and the polymer obtained was dissolved in N-methyl-2-pyrrolidinone and analyzed by NMR (Fourker Transform Nuclear Magnetic Resonance Device (FT-NMR) AC300P manufactured by Bruker). As a result, the molar ratio of the polymerized units based on vinylidene fluoride, the polymerized units based on tetrafluoroethylene, and the polymerized units based on CF 2 = CFOCF 2 CF 2 SO 3 H contained in the polymer was 64/7/29, respectively. It was confirmed that.

また、上記ポリマーのNMP溶液をGPCで測定したところ、数平均分子量は23万であった。 Moreover, when the NMP solution of the said polymer was measured by GPC, the number average molecular weight was 230,000.

[合成例4]
内容積3Lの撹拌機付きステンレス製オートクレーブを用い、イオン交換水を1500g、CF=CFOCFCFSONaを300g仕込んだ。次いで、オートクレーブを窒素置換した後、フッ化ビニリデンを導入してゲージ圧0.2MPaまで昇圧して50℃まで昇温した。その後、さらにフッ化ビニリデンとテトラフルオロエチレンが9/1の組成であるガスを導入してゲージ圧0.60MPaまで昇圧した後、過硫酸アンモニウム3gを水20gに溶解した溶液を仕込んで重合を開始した。重合が進行するにつれて、圧力が低下するので、ゲージ圧0.60MPaを維持するようにフッ化ビニリデン/テトラフルオロエチレン=9/1の組成のガスを追加供給した。6時間後、フッ化ビニリデン/テトラフルオロエチレン=9/1の組成のガスを200g仕込んだ時点で、オートクレーブの圧力を開放して重合を終了して、エマルションを得た。
[Synthesis Example 4]
Using a stainless steel autoclave with a stirrer with an internal volume of 3 L, 1500 g of ion exchange water and 300 g of CF 2 = CFOCF 2 CF 2 SO 3 Na were charged. Next, after the autoclave was purged with nitrogen, vinylidene fluoride was introduced, the gauge pressure was increased to 0.2 MPa, and the temperature was increased to 50 ° C. Thereafter, a gas having a composition of 9/1 of vinylidene fluoride and tetrafluoroethylene was further introduced to increase the gauge pressure to 0.60 MPa, and then a solution in which 3 g of ammonium persulfate was dissolved in 20 g of water was charged to initiate polymerization. . Since the pressure decreased as the polymerization progressed, a gas having a composition of vinylidene fluoride / tetrafluoroethylene = 9/1 was additionally supplied so as to maintain a gauge pressure of 0.60 MPa. Six hours later, when 200 g of a gas having a composition of vinylidene fluoride / tetrafluoroethylene = 9/1 was charged, the pressure of the autoclave was released to complete the polymerization, and an emulsion was obtained.

上記エマルション1.5kgを水1.5kgで希釈した後、ミリポア社製限外ろ過装置(Pellicon−2 Cassette Biomax−10)を用いて、未反応の水溶性モノマーと水溶性の不純物とを除去しながらエマルションの全量が2.0〜3.0kgになるように純水を追加して精製した。ハンディ型のイオン伝導率計(コンパクト導電率計 B−173型)を用いて調べた濾液のイオン伝導度が0S・cm−1になった時点で、精製を終了し、純水を加えて全量を3.0kgに調整した。 After diluting 1.5 kg of the emulsion with 1.5 kg of water, unreacted water-soluble monomers and water-soluble impurities are removed using an ultrafiltration device (Pellicon-2 Cassette Biomax-10) manufactured by Millipore. However, it was purified by adding pure water so that the total amount of the emulsion was 2.0 to 3.0 kg. When the ionic conductivity of the filtrate, which was examined using a handheld ion conductivity meter (compact conductivity meter B-173 type), reached 0 S · cm −1 , purification was completed, and pure water was added to complete the amount. Was adjusted to 3.0 kg.

別途ローム&ハース社製、アンバーライトIR120B 200gを硫酸を用いて酸型に変換した後、純水で十分に洗浄し、硝子製ビュレットに充填した。
上記エマルション200gを、上記ビュレットを1時間かけて通過させて、側鎖に−SOH基を有するポリマーのエマルションを得た。
Separately, 200 g of Amberlite IR120B manufactured by Rohm & Haas Co. was converted into an acid form using sulfuric acid, washed thoroughly with pure water, and filled into a glass burette.
200 g of the emulsion was passed through the burette for 1 hour to obtain an emulsion of a polymer having —SO 3 H groups in the side chain.

上記エマルションを120℃で乾燥し、得られたポリマーをNメチル−2−ピロリジノンに溶解して、NMR(ブルカー社製 フーリエ変換核磁気共鳴装置(FT−NMR)AC300P)で分析して、ポリマー組成を調べたところ、ポリマーに含まれるフッ化ビニリデンに基づく重合単位とテトラフルオロエチレンに基づく重合単位、CF=CFOCFCFSOHに基づく重合単位とのモル比がそれぞれ78/9/13であることを確認した。 The emulsion was dried at 120 ° C., and the polymer obtained was dissolved in N-methyl-2-pyrrolidinone and analyzed by NMR (Fourker Transform Nuclear Magnetic Resonance Device (FT-NMR) AC300P manufactured by Bruker). As a result, the molar ratio of the polymerized units based on vinylidene fluoride, the polymerized units based on tetrafluoroethylene, and the polymerized units based on CF 2 = CFOCF 2 CF 2 SO 3 H contained in the polymer was 78/9/13, respectively. It was confirmed that.

また、上記ポリマーのNMP溶液をGPCで測定したところ、数平均分子量は60万であった。 Moreover, when the NMP solution of the said polymer was measured by GPC, the number average molecular weight was 600,000.

(実施例1)
電解質膜の製造
合成例1で得られたエマルションを直径15.4cmのシャーレに流し込み、ホットプレート上にて60℃で1時間及び80℃で1時間の乾燥を行い、溶媒を除去した。次に、シャーレをオーブンに入れ160℃で1時間熱処理を行った。その後、オーブンから取り出し、冷却したシャーレにイオン交換水を注いで膜を剥離させ、膜厚約50μmの高分子電解質膜を得た。
Example 1
Production of Electrolyte Membrane The emulsion obtained in Synthesis Example 1 was poured into a petri dish having a diameter of 15.4 cm and dried on a hot plate at 60 ° C. for 1 hour and at 80 ° C. for 1 hour to remove the solvent. Next, the petri dish was placed in an oven and heat treated at 160 ° C. for 1 hour. Thereafter, the membrane was taken out from the oven and poured into a cooled petri dish to peel off the membrane, thereby obtaining a polymer electrolyte membrane having a thickness of about 50 μm.

得られた高分子電解質膜に対して、プロトン伝導度測定、EW、及び引張クリープ特性の測定を行った。結果を下記表1に示す。 The obtained polymer electrolyte membrane was measured for proton conductivity, EW, and tensile creep characteristics. The results are shown in Table 1 below.

(実施例2)
電解質膜の製造
合成例2で得られたエマルションを直径15.4cmのシャーレに流し込み、ホットプレート上にて60℃で1時間及び80℃で1時間の乾燥を行い、溶媒を除去した。次に、シャーレをオーブンに入れ160℃で1時間熱処理を行った。その後、オーブンから取り出し、冷却したシャーレにイオン交換水を注いで膜を剥離させ、膜厚約50μmの高分子電解質膜を得た。
(Example 2)
Production of Electrolyte Membrane The emulsion obtained in Synthesis Example 2 was poured into a petri dish having a diameter of 15.4 cm and dried on a hot plate at 60 ° C. for 1 hour and at 80 ° C. for 1 hour to remove the solvent. Next, the petri dish was placed in an oven and heat treated at 160 ° C. for 1 hour. Thereafter, the membrane was taken out from the oven and poured into a cooled petri dish to peel off the membrane, thereby obtaining a polymer electrolyte membrane having a thickness of about 50 μm.

得られた高分子電解質膜に対して、プロトン伝導度測定、EW、及び引張クリープ特性の測定を行った。結果を下記表1に示す。 The obtained polymer electrolyte membrane was measured for proton conductivity, EW, and tensile creep characteristics. The results are shown in Table 1 below.

(実施例3)
電解質膜の製造
合成例1で得られたエマルションにエタノールを添加して、固形分5質量%に希釈(水:エタノール=50.0:50.0(質量比))して5Lオートクレーブ中に入れて密閉し、攪拌翼で攪拌しながら160℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、5質量%の均一な電解質ポリマー溶液を得た。
(Example 3)
Production of electrolyte membrane Ethanol was added to the emulsion obtained in Synthesis Example 1 and diluted to a solid content of 5% by mass (water: ethanol = 50.0: 50.0 (mass ratio)) and placed in a 5 L autoclave. The mixture was sealed, heated to 160 ° C. while stirring with a stirring blade, and held for 5 hours. Thereafter, the autoclave was naturally cooled to obtain a 5% by mass uniform electrolyte polymer solution.

次に、このポリマー溶液にエチレングリコール(EG)を添加し、エバポレータで80℃にて減圧濃縮を行って、20質量%のキャスト溶液を作製した。 Next, ethylene glycol (EG) was added to this polymer solution, and it concentrated under reduced pressure at 80 degreeC with the evaporator, and produced 20 mass% cast solution.

上記キャスト液を直径15.4cmのシャーレに流し込み、ホットプレート上にて60℃で1時間及び80℃で1時間の乾燥を行い、溶媒を除去した。次に、シャーレをオーブンに入れ160℃で1時間熱処理を行った。その後、オーブンから取り出し、冷却したシャーレにイオン交換水を注いで膜を剥離させ、膜厚約50μmの高分子電解質膜を得た。 The cast solution was poured into a petri dish having a diameter of 15.4 cm and dried on a hot plate at 60 ° C. for 1 hour and at 80 ° C. for 1 hour to remove the solvent. Next, the petri dish was placed in an oven and heat treated at 160 ° C. for 1 hour. Thereafter, the membrane was taken out from the oven and poured into a cooled petri dish to peel off the membrane, thereby obtaining a polymer electrolyte membrane having a thickness of about 50 μm.

得られた高分子電解質膜に対して、プロトン伝導度測定、EW、及び引張クリープ特性の測定を行った。結果を下記表1に示す。 The obtained polymer electrolyte membrane was measured for proton conductivity, EW, and tensile creep characteristics. The results are shown in Table 1 below.

(実施例4)
電解質膜の製造
合成例2で得られたエマルションにエタノールを添加して、固形分5質量%に希釈(水:エタノール=50.0:50.0(質量比))して5Lオートクレーブ中に入れて密閉し、攪拌翼で攪拌しながら160℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、5質量%の均一な電解質ポリマー溶液を得た。
Example 4
Production of electrolyte membrane Ethanol was added to the emulsion obtained in Synthesis Example 2 and diluted to a solid content of 5% by mass (water: ethanol = 50.0: 50.0 (mass ratio)) and placed in a 5 L autoclave. The mixture was sealed, heated to 160 ° C. while stirring with a stirring blade, and held for 5 hours. Thereafter, the autoclave was naturally cooled to obtain a 5% by mass uniform electrolyte polymer solution.

次に、このポリマー溶液にエチレングリコール(EG)を添加し、エバポレータで80℃にて減圧濃縮を行って、20質量%のキャスト溶液を作製した。 Next, ethylene glycol (EG) was added to this polymer solution, and it concentrated under reduced pressure at 80 degreeC with the evaporator, and produced 20 mass% cast solution.

上記キャスト液を直径15.4cmのシャーレに流し込み、ホットプレート上にて60℃で1時間及び80℃で1時間の乾燥を行い、溶媒を除去した。次に、シャーレをオーブンに入れ160℃で1時間熱処理を行った。その後、オーブンから取り出し、冷却したシャーレにイオン交換水を注いで膜を剥離させ、膜厚約50μmの高分子電解質膜を得た。 The cast solution was poured into a petri dish having a diameter of 15.4 cm and dried on a hot plate at 60 ° C. for 1 hour and at 80 ° C. for 1 hour to remove the solvent. Next, the petri dish was placed in an oven and heat treated at 160 ° C. for 1 hour. Thereafter, the membrane was taken out from the oven and poured into a cooled petri dish to peel off the membrane, thereby obtaining a polymer electrolyte membrane having a thickness of about 50 μm.

得られた高分子電解質膜に対して、プロトン伝導度測定、EW、及び引張クリープ特性の測定を行った。結果を下記表1に示す。 The obtained polymer electrolyte membrane was measured for proton conductivity, EW, and tensile creep characteristics. The results are shown in Table 1 below.

(実施例5)
電解質膜の製造
合成例3で得られたエマルションにエタノールを添加して、固形分5質量%に希釈(水:エタノール=50.0:50.0(質量比))して5Lオートクレーブ中に入れて密閉し、攪拌翼で攪拌しながら160℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、5質量%の均一な電解質ポリマー溶液を得た。
(Example 5)
Production of electrolyte membrane Ethanol was added to the emulsion obtained in Synthesis Example 3, diluted to 5% by mass of solid content (water: ethanol = 50.0: 50.0 (mass ratio)), and placed in a 5 L autoclave. The mixture was sealed, heated to 160 ° C. while stirring with a stirring blade, and held for 5 hours. Thereafter, the autoclave was naturally cooled to obtain a 5% by mass uniform electrolyte polymer solution.

次に、このポリマー溶液にエチレングリコール(EG)を添加し、エバポレータで80℃にて減圧濃縮を行って、20質量%のキャスト溶液を作製した。 Next, ethylene glycol (EG) was added to this polymer solution, and it concentrated under reduced pressure at 80 degreeC with the evaporator, and produced 20 mass% cast solution.

上記キャスト液を直径15.4cmのシャーレに流し込み、ホットプレート上にて60℃で1時間及び80℃で1時間の乾燥を行い、溶媒を除去した。次に、シャーレをオーブンに入れ160℃で1時間熱処理を行った。その後、オーブンから取り出し、冷却したシャーレにイオン交換水を注いで膜を剥離させ、膜厚約50μmの高分子電解質膜を得た。 The cast solution was poured into a petri dish having a diameter of 15.4 cm and dried on a hot plate at 60 ° C. for 1 hour and at 80 ° C. for 1 hour to remove the solvent. Next, the petri dish was placed in an oven and heat treated at 160 ° C. for 1 hour. Thereafter, the membrane was taken out from the oven and poured into a cooled petri dish to peel off the membrane, thereby obtaining a polymer electrolyte membrane having a thickness of about 50 μm.

得られた高分子電解質膜に対して、プロトン伝導度測定、EW、及び引張クリープ特性の測定を行った。結果を下記表1に示す。 The obtained polymer electrolyte membrane was measured for proton conductivity, EW, and tensile creep characteristics. The results are shown in Table 1 below.

(比較例1)
電解質膜の製造
電解質ポリマー溶液としてNafion(R)DE2020(デュポン(株)製)を用いた以外は実施例1と同様にして膜厚約50μmの高分子電解質膜を得た。
(Comparative Example 1)
Production of Electrolyte Membrane A polymer electrolyte membrane having a thickness of about 50 μm was obtained in the same manner as in Example 1 except that Nafion® DE2020 (manufactured by DuPont) was used as the electrolyte polymer solution.

得られた高分子電解質膜に対して、プロトン伝導度測定、EW、及び引張クリープ特性の測定を行った。結果を下記表1に示す。 The obtained polymer electrolyte membrane was measured for proton conductivity, EW, and tensile creep characteristics. The results are shown in Table 1 below.

Figure 2012004048
Figure 2012004048

(実施例6)
電極触媒層の作成
以下のように電極触媒層を作製した。
(Example 6)
Preparation of electrode catalyst layer An electrode catalyst layer was prepared as follows.

合成例3で得られたポリマーのエマルションにエタノールを添加して溶媒組成がエタノール/水=50/50(質量比)である5質量%フルオロポリマーのエマルションとした。次いで、Pt担持カーボン(日本国田中貴金属(株)社製TEC10E40E、Pt36.4wt%)1.00gに対し、上記エマルションを7.28g添加し、さらに3.24gのエタノールを添加した後、ホモジナイザーでよく混合して電極インクを得た。 Ethanol was added to the polymer emulsion obtained in Synthesis Example 3 to obtain a 5% by mass fluoropolymer emulsion having a solvent composition of ethanol / water = 50/50 (mass ratio). Next, 7.28 g of the above emulsion was added to 1.00 g of Pt-supported carbon (TEC10E40E, Pt 36.4 wt%, manufactured by Nihon Kunidanaka Kikinzoku Co., Ltd.), and 3.24 g of ethanol was further added. The ink was obtained by mixing well.

この電極インクをスクリーン印刷法にてPTFEシート上に塗布した。塗布量は、Pt担持量及びポリマー担持量共に0.15mg/cmになる塗布量と、Pt担持量及びポリマー担持量共に0.30mg/cmになる塗布量の2種類とした。塗布後、室温下で1時間、空気中120℃にて1時間、乾燥を行うことにより厚み10μm程度の電極触媒層を得た。 This electrode ink was applied on a PTFE sheet by a screen printing method. There were two types of coating amounts: a coating amount in which both the Pt loading amount and the polymer loading amount were 0.15 mg / cm 2, and a coating amount in which both the Pt loading amount and the polymer loading amount were 0.30 mg / cm 2 . After coating, the electrode catalyst layer having a thickness of about 10 μm was obtained by drying at room temperature for 1 hour and in air at 120 ° C. for 1 hour.

これらの電極触媒層のうち、Pt担持量及びポリマー担持量が共に0.15mg/cmのものをアノード触媒層とし、Pt担持量及びポリマー担持量が共に0.30mg/cmのものをカソード触媒層とした。 Of these electrode catalyst layers, those having both Pt loading and polymer loading of 0.15 mg / cm 2 are anode catalyst layers, and those having both Pt loading and polymer loading of 0.30 mg / cm 2 are cathodes. A catalyst layer was obtained.

MEAの作成
このようにして得たアノード触媒層とカソード触媒層を向い合わせて、その間に高分子電解質膜を挟み込み、160℃、面圧0.1MPaでホットプレスすることにより、アノード触媒層とカソード触媒層を高分子電解質膜(商品名:NRE−212、デュポン(株)製)に転写、接合してMEAを作製した。
Preparation of MEA The anode catalyst layer and the cathode catalyst layer thus obtained are faced to each other, a polymer electrolyte membrane is sandwiched between them, and hot pressing is performed at 160 ° C. and a surface pressure of 0.1 MPa. The catalyst layer was transferred and joined to a polymer electrolyte membrane (trade name: NRE-212, manufactured by DuPont) to produce an MEA.

このMEAを用いて燃料電池評価を行った結果、電圧0.6Vにおける電流密度は1.06A/cmであり、初期特性は良好であった。 As a result of fuel cell evaluation using this MEA, the current density at a voltage of 0.6 V was 1.06 A / cm 2 , and the initial characteristics were good.

剥離試験評価
接着テープ(3M Scotch(商標)898)を、上述のMEAの片面に接着した。MEAの端部と、接着テープの端部をオートグラフ(TENSILON)にセットし、JIS K6854に従って、180度剥離試験を実施し、電極触媒層の剥離強度を測定した。結果を表2に示す。
Peel Test Evaluation Adhesive tape (3M Scotch ™ 898) was adhered to one side of the MEA described above. The end of the MEA and the end of the adhesive tape were set in an autograph (TENSILON), and a 180 degree peel test was performed according to JIS K6854 to measure the peel strength of the electrode catalyst layer. The results are shown in Table 2.

(実施例7)
電極触媒層の作成
合成例4で得られたポリマーのエマルションを用いること以外は、実施例6と同様にして電極インクを得た。この電極インクを実施例6と同じ方法で電極触媒層、及びMEAを作製し、燃料電池評価、及び剥離試験評価を行った。このMEAを用いて燃料電池評価を行った結果、電圧0.6Vにおける電流密度は1.00A/cmであった。剥離試験評価結果については、表2に示す。
(Example 7)
Preparation of Electrode Catalyst Layer An electrode ink was obtained in the same manner as in Example 6 except that the polymer emulsion obtained in Synthesis Example 4 was used. An electrode catalyst layer and an MEA were produced from this electrode ink in the same manner as in Example 6, and a fuel cell evaluation and a peeling test evaluation were performed. As a result of fuel cell evaluation using this MEA, the current density at a voltage of 0.6 V was 1.00 A / cm 2 . The peel test evaluation results are shown in Table 2.

(実施例8)
電極触媒層の作成
合成例3で得られたエマルションにエタノールを添加して、固形分5質量%に希釈(水:エタノール=50.0:50.0(質量比))して5Lオートクレーブ中に入れて密閉し、攪拌翼で攪拌しながら160℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、5質量%の均一な電解質ポリマー溶液を得た。
(Example 8)
Preparation of Electrode Catalyst Layer Ethanol was added to the emulsion obtained in Synthesis Example 3 and diluted to a solid content of 5% by mass (water: ethanol = 50.0: 50.0 (mass ratio)) in a 5 L autoclave. The mixture was sealed and heated to 160 ° C. while stirring with a stirring blade, and held for 5 hours. Thereafter, the autoclave was naturally cooled to obtain a 5% by mass uniform electrolyte polymer solution.

次に、このポリマー溶液をエバポレータで80℃にて減圧濃縮を行って、11質量%の濃縮ポリマー溶液を作製した Next, this polymer solution was concentrated under reduced pressure at 80 ° C. with an evaporator to prepare an 11 mass% concentrated polymer solution.

次にPt担持カーボン(日本国田中貴金属(株)社製TEC10E40E、Pt36.4wt%)1.00gに対し、上記濃縮ポリマー溶液(電極用アイオノマー)を3.31g添加し、さらに3.24gのエタノールを添加した後、ホモジナイザーでよく混合して電極インクを得た。 Next, 3.31 g of the concentrated polymer solution (ionomer for electrode) was added to 1.00 g of Pt-supported carbon (TEC10E40E, Pt 36.4 wt%, manufactured by Nippon Kuninaka Naka Kikinzoku Co., Ltd.), and further 3.24 g of ethanol. Then, the mixture was mixed well with a homogenizer to obtain an electrode ink.

上記電極インクを用いたこと以外は、実施例6と同様にして電極触媒層、及びMEAを作製し、燃料電池評価、及び剥離試験評価を行った。このMEAを用いて燃料電池評価を行った結果、電圧0.6Vにおける電流密度は1.06A/cmであった。剥離試験評価結果については、表2に示す。 An electrode catalyst layer and an MEA were produced in the same manner as in Example 6 except that the electrode ink was used, and a fuel cell evaluation and a peel test evaluation were performed. As a result of fuel cell evaluation using this MEA, the current density at a voltage of 0.6 V was 1.06 A / cm 2 . The peel test evaluation results are shown in Table 2.

(実施例9)
電極触媒層の作成
合成例4で得られたエマルションにエタノールを添加して、固形分5質量%に希釈(水:エタノール=50.0:50.0(質量比))して5Lオートクレーブ中に入れて密閉し、攪拌翼で攪拌しながら160℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、5質量%の均一な電解質ポリマー溶液を得た。
Example 9
Preparation of electrode catalyst layer Ethanol was added to the emulsion obtained in Synthesis Example 4 and diluted to a solid content of 5% by mass (water: ethanol = 50.0: 50.0 (mass ratio)) in a 5 L autoclave. The mixture was sealed and heated to 160 ° C. while stirring with a stirring blade, and held for 5 hours. Thereafter, the autoclave was naturally cooled to obtain a 5% by mass uniform electrolyte polymer solution.

上記電解質ポリマーを用いること以外は、実施例8と同様にして電極インクを作製した。この電極インクを実施例6と同じ方法で電極触媒層、及びMEAを作製し、燃料電池評価、及び剥離試験評価を行った。このMEAを用いて燃料電池評価を行った結果、電圧0.6Vにおける電流密度は1.00A/cmであった。剥離試験評価結果については、表2に示す。 An electrode ink was produced in the same manner as in Example 8 except that the above electrolyte polymer was used. An electrode catalyst layer and an MEA were produced from this electrode ink in the same manner as in Example 6, and a fuel cell evaluation and a peeling test evaluation were performed. As a result of fuel cell evaluation using this MEA, the current density at a voltage of 0.6 V was 1.00 A / cm 2 . The peel test evaluation results are shown in Table 2.

(実施例10)
電極触媒層の作成
合成例2で得られたエマルションにエタノールを添加して、固形分5質量%に希釈(水:エタノール=50.0:50.0(質量比))して5Lオートクレーブ中に入れて密閉し、攪拌翼で攪拌しながら160℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、5質量%の均一な電解質ポリマー溶液を得た。
(Example 10)
Preparation of electrode catalyst layer Ethanol was added to the emulsion obtained in Synthesis Example 2 and diluted to a solid content of 5% by mass (water: ethanol = 50.0: 50.0 (mass ratio)) in a 5 L autoclave. The mixture was sealed and heated to 160 ° C. while stirring with a stirring blade, and held for 5 hours. Thereafter, the autoclave was naturally cooled to obtain a 5% by mass uniform electrolyte polymer solution.

上記電解質ポリマーを用いること以外は、実施例8と同様にして電極インクを作製した。この電極インクを実施例6と同じ方法で電極触媒層、及びMEAを作製し、燃料電池評価、及び剥離試験評価を行った。このMEAを用いて燃料電池評価を行った結果、電圧0.6Vにおける電流密度は1.03A/cmであった。剥離試験評価結果については、表2に示す。 An electrode ink was produced in the same manner as in Example 8 except that the above electrolyte polymer was used. An electrode catalyst layer and an MEA were produced from this electrode ink in the same manner as in Example 6, and a fuel cell evaluation and a peeling test evaluation were performed. As a result of fuel cell evaluation using this MEA, the current density at a voltage of 0.6 V was 1.03 A / cm 2 . The peel test evaluation results are shown in Table 2.

(実施例11)
電極触媒層の作成
合成例2で得られたエマルションにエタノールを添加して、固形分5質量%に希釈(水:エタノール=50.0:50.0(質量比))して5Lオートクレーブ中に入れて密閉し、攪拌翼で攪拌しながら160℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、5質量%の均一な電解質ポリマー溶液を得た。
(Example 11)
Preparation of electrode catalyst layer Ethanol was added to the emulsion obtained in Synthesis Example 2 and diluted to a solid content of 5% by mass (water: ethanol = 50.0: 50.0 (mass ratio)) in a 5 L autoclave. The mixture was sealed and heated to 160 ° C. while stirring with a stirring blade, and held for 5 hours. Thereafter, the autoclave was naturally cooled to obtain a 5% by mass uniform electrolyte polymer solution.

上記電解質ポリマーを用いること以外は、実施例8と同様にして電極インクを作製し、該電極インクを用いたこと以外は、実施例6と同様にして電極触媒層を作製した。 An electrode ink was prepared in the same manner as in Example 8 except that the electrolyte polymer was used, and an electrode catalyst layer was prepared in the same manner as in Example 6 except that the electrode ink was used.

MEAの作成
上記電極触媒層と高分子電解質膜として実施例5で得られた高分子電解質膜を用いること以外は実施例6と同じ方法で電極触媒層、及びMEAを作製し、燃料電池評価、及び剥離試験評価を行った。このMEAを用いて燃料電池評価を行った結果、電圧0.6Vにおける電流密度は1.10A/cmであった。剥離試験評価結果については、表2に示す。
Preparation of MEA An electrode catalyst layer and an MEA were prepared in the same manner as in Example 6 except that the polymer electrolyte membrane obtained in Example 5 was used as the electrode catalyst layer and the polymer electrolyte membrane, and fuel cell evaluation was performed. And peel test evaluation. As a result of fuel cell evaluation using this MEA, the current density at a voltage of 0.6 V was 1.10 A / cm 2 . The peel test evaluation results are shown in Table 2.

(比較例2)
電極用アイオノマーとして、Nafion(R)DE2020(デュポン(株)製)を用いたこと以外は、実施例6と同様にして電極インクを得た。この電極インクを実施例6と同じ方法で電極触媒層、及びMEAを作製し、燃料電池評価、及び剥離試験評価を行った。このMEAを用いて燃料電池評価を行った結果、電圧0.6Vにおける電流密度は0.7A/cmであった。剥離試験評価結果については、表2に示す。
(Comparative Example 2)
An electrode ink was obtained in the same manner as in Example 6 except that Nafion® DE2020 (manufactured by DuPont) was used as the ionomer for the electrode. An electrode catalyst layer and an MEA were produced from this electrode ink in the same manner as in Example 6, and a fuel cell evaluation and a peeling test evaluation were performed. As a result of fuel cell evaluation using this MEA, the current density at a voltage of 0.6 V was 0.7 A / cm 2 . The peel test evaluation results are shown in Table 2.

Figure 2012004048
Figure 2012004048

本発明の電解質膜及び電極触媒層は、固体高分子電解質型燃料電池に好適に利用できる。 The electrolyte membrane and electrode catalyst layer of the present invention can be suitably used for a solid polymer electrolyte fuel cell.

Claims (21)

含フッ素共重合体からなる固体高分子電解質型燃料電池用の電解質膜であって、
含フッ素共重合体は、フッ化ビニリデンに基づく重合単位(A)と、−SOX基を側鎖に有する重合単位(B)と、からなり、
−SOX基は、−SOH、−SONR、及び−SO 1/L
(但し、R、R、R及びRは、同一又は異なり、水素原子若しくは炭素数1〜4のアルキル基を表し、Mは、同一若しくは異なって、L価の金属を表し、前記L価の金属は、周期表の1族、2族、4族、8族、11族、12族又は13族に属する金属(但し、Liを除く。)を表す。)からなる群より選択される少なくとも1種の官能基である
ことを特徴とする電解質膜。
An electrolyte membrane for a solid polymer electrolyte fuel cell comprising a fluorine-containing copolymer,
The fluorine-containing copolymer comprises a polymer unit (A) based on vinylidene fluoride and a polymer unit (B) having a —SO 3 X group in the side chain,
The —SO 3 X group is —SO 3 H, —SO 3 NR 1 R 2 R 3 R 4 , and —SO 3 M 1 1 / L.
(However, R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; M 1 is the same or different and represents an L-valent metal; The L-valent metal is selected from the group consisting of metals belonging to Group 1, Group 2, Group 4, Group 8, Group 11, Group 12, Group 13 or Group 13 of the periodic table (excluding Li). An electrolyte membrane, wherein the electrolyte membrane is at least one functional group.
重合単位(B)は、
−CF−C(−O−(CFCFY−O)−(CFY−SO)F− (2)
(式中、Xは、H、Na、K又はNHを表し、Yは、F、Cl又はCFを表し、YはF又はClを表し、n及びmは0〜2の整数を表す。)
で表される請求項1記載の電解質膜。
The polymerization unit (B) is
-CF 2 -C (-O- (CF 2 CFY 1 -O) n - (CFY 2) m -SO 3 X 1) F- (2)
(Wherein, X 1 represents H, Na, K or NH 4 , Y 1 represents F, Cl or CF 3 , Y 2 represents F or Cl, and n and m are integers of 0 to 2) Represents.)
The electrolyte membrane of Claim 1 represented by these.
含フッ素共重合体は、重合単位(B)が、全重合単位に対して3〜50モル%である請求項1又は2記載の電解質膜。 The electrolyte membrane according to claim 1 or 2, wherein the fluorine-containing copolymer has a polymerization unit (B) of 3 to 50 mol% with respect to all the polymerization units. 含フッ素共重合体は、更に、テトラフルオロエチレンに基づく重合単位及びヘキサフルオロプロピレンに基づく重合単位からなる群より選択される少なくとも1種の重合単位(C)と、からなる請求項1、2又は3記載の電解質膜。 The fluorine-containing copolymer further comprises at least one polymer unit (C) selected from the group consisting of polymer units based on tetrafluoroethylene and polymer units based on hexafluoropropylene. 3. The electrolyte membrane according to 3. 含フッ素共重合体は、重合単位(A)と重合単位(C)とのモル比A/(A+C)が0.80〜0.95である請求項4記載の電解質膜。 The electrolyte membrane according to claim 4, wherein the fluorine-containing copolymer has a molar ratio A / (A + C) of the polymerized unit (A) to the polymerized unit (C) of 0.80 to 0.95. 含フッ素共重合体及び燃料電池触媒からなる固体高分子電解質型燃料電池用の電極触媒層であって、
含フッ素共重合体は、フッ化ビニリデンに基づく重合単位(A)と、−SOX基を側鎖に有する重合単位(B)と、からなり、
−SOX基は、−SOH、−SONR、及び−SO 1/L
(但し、R、R、R及びRは、同一又は異なり、水素原子若しくは炭素数1〜4のアルキル基を表し、Mは、同一若しくは異なって、L価の金属を表し、前記L価の金属は、周期表の1族、2族、4族、8族、11族、12族又は13族に属する金属(但し、Liを除く。)を表す。)からなる群より選択される少なくとも1種の官能基である
ことを特徴とする電極触媒層。
An electrode catalyst layer for a solid polymer electrolyte fuel cell comprising a fluorine-containing copolymer and a fuel cell catalyst,
The fluorine-containing copolymer comprises a polymer unit (A) based on vinylidene fluoride and a polymer unit (B) having a —SO 3 X group in the side chain,
The —SO 3 X group is —SO 3 H, —SO 3 NR 1 R 2 R 3 R 4 , and —SO 3 M 1 1 / L.
(However, R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; M 1 is the same or different and represents an L-valent metal; The L-valent metal is selected from the group consisting of metals belonging to Group 1, Group 2, Group 4, Group 8, Group 11, Group 12, Group 13 or Group 13 of the periodic table (excluding Li). An electrode catalyst layer, which is at least one kind of functional group.
重合単位(B)は、
−CF−C(−O−(CFCFY−O)−(CFY−SO)F− (2)
(式中、Xは、H、Na、K又はNHを表し、Yは、F、Cl又はCFを表し、YはF又はClを表し、n及びmは0〜2の整数を表す。)
で表される請求項6記載の電極触媒層。
The polymerization unit (B) is
-CF 2 -C (-O- (CF 2 CFY 1 -O) n - (CFY 2) m -SO 3 X 1) F- (2)
(Wherein, X 1 represents H, Na, K or NH 4 , Y 1 represents F, Cl or CF 3 , Y 2 represents F or Cl, and n and m are integers of 0 to 2) Represents.)
The electrode catalyst layer of Claim 6 represented by these.
含フッ素共重合体は、重合単位(B)が、全重合単位に対して3〜50モル%である請求項6又は7記載の電極触媒層。 The electrode catalyst layer according to claim 6 or 7, wherein the fluorine-containing copolymer has a polymerization unit (B) of 3 to 50 mol% based on the total polymerization units. 含フッ素共重合体は、更に、テトラフルオロエチレンに基づく重合単位及びヘキサフルオロプロピレンに基づく重合単位からなる群より選択される少なくとも1種の重合単位(C)からなる請求項6、7又は8記載の電極触媒層。 The fluorine-containing copolymer further comprises at least one polymer unit (C) selected from the group consisting of a polymer unit based on tetrafluoroethylene and a polymer unit based on hexafluoropropylene. Electrode catalyst layer. 含フッ素共重合体は、重合単位(A)と重合単位(C)とのモル比A/(A+C)が0.50〜0.90である請求項9記載の電極触媒層。 The electrode catalyst layer according to claim 9, wherein the fluorine-containing copolymer has a molar ratio A / (A + C) of the polymerization unit (A) to the polymerization unit (C) of 0.50 to 0.90. 燃料電池触媒は、触媒金属である請求項6、7、8、9又は10記載の電極触媒層。 The electrode catalyst layer according to claim 6, 7, 8, 9 or 10, wherein the fuel cell catalyst is a catalyst metal. 触媒金属は、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、バナジウム、およびこれらの合金からなる群より選択される少なくとも一種の金属である請求項11記載の電極触媒層。 The catalytic metal is at least one metal selected from the group consisting of platinum, gold, silver, palladium, iridium, rhodium, ruthenium, iron, cobalt, nickel, chromium, tungsten, manganese, vanadium, and alloys thereof. Item 12. The electrode catalyst layer according to Item 11. 請求項1、2、3、4又は5記載の電解質膜を備えることを特徴とする膜電極接合体。 A membrane electrode assembly comprising the electrolyte membrane according to claim 1, 2, 3, 4 or 5. 請求項6、7、8、9、10、11又は12記載の電極触媒層を備えることを特徴とする膜電極接合体。 A membrane electrode assembly comprising the electrode catalyst layer according to claim 6, 7, 8, 9, 10, 11, or 12. 請求項13又は14記載の膜電極接合体を備えることを特徴とする固体高分子電解質型燃料電池。 A solid polymer electrolyte fuel cell comprising the membrane electrode assembly according to claim 13 or 14. 請求項1、2、3、4又は5記載の電解質膜を製造する方法であって、
フッ化ビニリデンと−SOX基を有する共単量体とを水性媒体中でラジカル重合して含フッ素共重合体を含む電解質エマルションを得る重合工程と、
得られた電解質エマルションに有機溶媒を添加して含フッ素重合体が溶解した電解質溶液を得る工程と、
電解質溶液を基材に塗布する工程と、
基材に塗布した電解質溶液を乾燥させて電解質膜を得る工程と、を含み、
−SOX基は、−SOH、−SONR、及び−SO 1/L
(但し、R、R、R及びRは、同一又は異なり、水素原子若しくは炭素数1〜4のアルキル基を表し、Mは、同一若しくは異なって、L価の金属を表し、前記L価の金属は、周期表の1族、2族、4族、8族、11族、12族又は13族に属する金属(但し、Liを除く。)を表す。)からなる群より選択される少なくとも1種の官能基である
ことを特徴とする電解質膜の製造方法。
A method for producing the electrolyte membrane according to claim 1, 2, 3, 4 or 5,
A polymerization step of radically polymerizing vinylidene fluoride and a comonomer having —SO 3 X group in an aqueous medium to obtain an electrolyte emulsion containing a fluorine-containing copolymer;
Adding an organic solvent to the obtained electrolyte emulsion to obtain an electrolyte solution in which the fluoropolymer is dissolved;
Applying an electrolyte solution to a substrate;
Drying the electrolyte solution applied to the substrate to obtain an electrolyte membrane,
The —SO 3 X group is —SO 3 H, —SO 3 NR 1 R 2 R 3 R 4 , and —SO 3 M 1 1 / L.
(However, R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; M 1 is the same or different and represents an L-valent metal; The L-valent metal is selected from the group consisting of metals belonging to Group 1, Group 2, Group 4, Group 8, Group 11, Group 12, Group 13 or Group 13 of the periodic table (excluding Li). A method for producing an electrolyte membrane, wherein the method comprises at least one functional group.
重合工程は、更に、テトラフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種の単量体を水性媒体中でラジカル重合するものである請求項16記載の電解質膜の製造方法。 The method for producing an electrolyte membrane according to claim 16, wherein the polymerization step further comprises radical polymerization of at least one monomer selected from the group consisting of tetrafluoroethylene and hexafluoropropylene in an aqueous medium. −SOX基を有する共単量体は、下記一般式(II)
CF=CF−O−(CFCFY−O)−(CFY−SO (II)
(式中、Xは、H、Na、K又はNHを表し、Yは、F、Cl又はCFを表し、YはF又はClを表し、n及びmは0〜2の整数を表す。)
で表されるビニルエーテルである請求項16又は17記載の電解質膜の製造方法。
The comonomer having a —SO 3 X group is represented by the following general formula (II):
CF 2 = CF-O- (CF 2 CFY 1 -O) n - (CFY 2) m -SO 3 X 1 (II)
(Wherein, X 1 represents H, Na, K or NH 4 , Y 1 represents F, Cl or CF 3 , Y 2 represents F or Cl, and n and m are integers of 0 to 2) Represents.)
The method for producing an electrolyte membrane according to claim 16 or 17, wherein the vinyl ether is represented by the formula:
請求項6、7、8、9、10、11又は12記載の電極触媒層を製造する方法であって、
フッ化ビニリデンと−SOX基を有する共単量体とを水性媒体中でラジカル重合して含フッ素共重合体を含む電解質エマルションを得る重合工程と、
得られた電解質エマルションに有機溶媒を添加して含フッ素共重合体が溶解した電解質溶液を得る工程と、
電解質溶液に、燃料電池触媒を分散させて触媒組成物を調製する工程と、
触媒組成物を基材に塗布する工程と、
基材に塗布した触媒組成物を乾燥させて電極触媒層を得る工程と、を含み、
−SOX基は、−SOH、−SONR、及び−SO 1/L
(但し、R、R、R及びRは、同一又は異なり、水素原子若しくは炭素数1〜4のアルキル基を表し、Mは、同一若しくは異なって、L価の金属を表し、前記L価の金属は、周期表の1族、2族、4族、8族、11族、12族又は13族に属する金属(但し、Liを除く。)を表す。)からなる群より選択される少なくとも1種の官能基である
ことを特徴とする電極触媒層の製造方法。
A method for producing an electrode catalyst layer according to claim 6, 7, 8, 9, 10, 11 or 12,
A polymerization step of radically polymerizing vinylidene fluoride and a comonomer having —SO 3 X group in an aqueous medium to obtain an electrolyte emulsion containing a fluorine-containing copolymer;
Adding an organic solvent to the obtained electrolyte emulsion to obtain an electrolyte solution in which the fluorine-containing copolymer is dissolved;
A step of dispersing a fuel cell catalyst in an electrolyte solution to prepare a catalyst composition;
Applying the catalyst composition to the substrate;
Drying the catalyst composition applied to the substrate to obtain an electrode catalyst layer,
The —SO 3 X group is —SO 3 H, —SO 3 NR 1 R 2 R 3 R 4 , and —SO 3 M 1 1 / L.
(However, R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; M 1 is the same or different and represents an L-valent metal; The L-valent metal is selected from the group consisting of metals belonging to Group 1, Group 2, Group 4, Group 8, Group 11, Group 12, Group 13 or Group 13 of the periodic table (excluding Li). A method for producing an electrocatalyst layer, characterized by comprising at least one functional group.
重合工程は、更に、テトラフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種の単量体を水性媒体中でラジカル重合するものである請求項19記載の電極触媒層の製造方法。 The method for producing an electrode catalyst layer according to claim 19, wherein the polymerization step further comprises radical polymerization of at least one monomer selected from the group consisting of tetrafluoroethylene and hexafluoropropylene in an aqueous medium. −SOX基を有する共単量体は、下記一般式(II)
CF=CF−O−(CFCFY−O)−(CFY−SO (II)
(式中、Xは、H、Na、K又はNHを表し、Yは、F、Cl又はCFを表し、YはF又はClを表し、n及びmは0〜2の整数を表す。)
で表されるビニルエーテルである請求項19又は20記載の電極触媒層の製造方法。
The comonomer having a —SO 3 X group is represented by the following general formula (II):
CF 2 = CF-O- (CF 2 CFY 1 -O) n - (CFY 2) m -SO 3 X 1 (II)
(Wherein, X 1 represents H, Na, K or NH 4 , Y 1 represents F, Cl or CF 3 , Y 2 represents F or Cl, and n and m are integers of 0 to 2) Represents.)
The method for producing an electrode catalyst layer according to claim 19 or 20, wherein the vinyl ether is represented by the formula:
JP2010139852A 2010-06-18 2010-06-18 Electrolyte membrane and method for producing the same, electrode catalyst layer and method for producing the same, membrane electrode assembly, and solid polymer electrolyte fuel cell Active JP5607435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010139852A JP5607435B2 (en) 2010-06-18 2010-06-18 Electrolyte membrane and method for producing the same, electrode catalyst layer and method for producing the same, membrane electrode assembly, and solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139852A JP5607435B2 (en) 2010-06-18 2010-06-18 Electrolyte membrane and method for producing the same, electrode catalyst layer and method for producing the same, membrane electrode assembly, and solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2012004048A true JP2012004048A (en) 2012-01-05
JP5607435B2 JP5607435B2 (en) 2014-10-15

Family

ID=45535803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139852A Active JP5607435B2 (en) 2010-06-18 2010-06-18 Electrolyte membrane and method for producing the same, electrode catalyst layer and method for producing the same, membrane electrode assembly, and solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5607435B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143348A1 (en) * 2015-03-12 2016-09-15 凸版印刷株式会社 Catalyst ink for forming electrode catalyst layer of solid polymer fuel cell, and method for manufacturing said catalyst ink
JPWO2020105650A1 (en) * 2018-11-19 2021-09-30 ダイキン工業株式会社 Composition and stretched product
WO2022177160A1 (en) * 2021-02-16 2022-08-25 주식회사 웨스피 Membrane-electrode assembly for polymer electrolyte water electrolysis stack and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329062A (en) * 1998-05-13 1999-11-30 Daikin Ind Ltd Solid polymer electrode material suitable for use for fuel cell
WO2004078842A1 (en) * 2003-03-03 2004-09-16 Daikin Industries Ltd. Liquid fluoropolymer composition, process for producing organosol, film, and fuel cell
JP2004534892A (en) * 2001-07-13 2004-11-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Functional fluorine-containing polymers and ionomers derived therefrom
WO2009116446A1 (en) * 2008-03-19 2009-09-24 旭化成イーマテリアルズ株式会社 Polyelectrolyte and process for producing the polyelectrolyte
JP2011034928A (en) * 2009-08-06 2011-02-17 Sony Corp Ion conductive composite, membrane electrode assembly (mea), and electrochemical device
WO2011034179A1 (en) * 2009-09-18 2011-03-24 旭化成イーマテリアルズ株式会社 Electrolyte emulsion and process for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329062A (en) * 1998-05-13 1999-11-30 Daikin Ind Ltd Solid polymer electrode material suitable for use for fuel cell
JP2004534892A (en) * 2001-07-13 2004-11-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Functional fluorine-containing polymers and ionomers derived therefrom
WO2004078842A1 (en) * 2003-03-03 2004-09-16 Daikin Industries Ltd. Liquid fluoropolymer composition, process for producing organosol, film, and fuel cell
WO2009116446A1 (en) * 2008-03-19 2009-09-24 旭化成イーマテリアルズ株式会社 Polyelectrolyte and process for producing the polyelectrolyte
JP2011034928A (en) * 2009-08-06 2011-02-17 Sony Corp Ion conductive composite, membrane electrode assembly (mea), and electrochemical device
WO2011034179A1 (en) * 2009-09-18 2011-03-24 旭化成イーマテリアルズ株式会社 Electrolyte emulsion and process for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143348A1 (en) * 2015-03-12 2016-09-15 凸版印刷株式会社 Catalyst ink for forming electrode catalyst layer of solid polymer fuel cell, and method for manufacturing said catalyst ink
JP2016170949A (en) * 2015-03-12 2016-09-23 凸版印刷株式会社 Catalyst ink for formation of electrode catalyst layer of solid polymer fuel cell, and method for manufacturing the same
JPWO2020105650A1 (en) * 2018-11-19 2021-09-30 ダイキン工業株式会社 Composition and stretched product
JP7299510B2 (en) 2018-11-19 2023-06-28 ダイキン工業株式会社 Composition and stretched body
WO2022177160A1 (en) * 2021-02-16 2022-08-25 주식회사 웨스피 Membrane-electrode assembly for polymer electrolyte water electrolysis stack and manufacturing method therefor

Also Published As

Publication number Publication date
JP5607435B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
US9627702B2 (en) Electrolyte emulsion and process for producing same
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
US8993682B2 (en) Polyelectrolyte and process for producing the polyelectrolyte
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP6063000B2 (en) High oxygen permeability ionomer
JP4810868B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY FOR SOLID POLYMER TYPE FUEL CELL, AND METHOD FOR OPERATING THE SAME
KR101233384B1 (en) Polymer membrane composition for fuel cell, polymer membranes prepared from same, and membrane-electrode assembly and fuel cell including same
US12018106B2 (en) Fluorosulfonyl group-containing fluoropolymer and method for producing same, sulfonic acid group-containing fluoropolymer and method for producing same, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
JP4957544B2 (en) PROTON CONDUCTIVE ELECTROLYTE MEMBRANE, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER TYPE FUEL CELL USING THE PROTON CONDUCTIVE ELECTROLYTE MEMBRANE
WO2009125695A1 (en) Fluorine-containing ion exchange resin dispersed composition
JP5607435B2 (en) Electrolyte membrane and method for producing the same, electrode catalyst layer and method for producing the same, membrane electrode assembly, and solid polymer electrolyte fuel cell
EP2036927B1 (en) Ionic polymer particle dispersion liquid and method for producing the same
JP5465840B2 (en) Method for producing polymer electrolyte fuel cell
EP2202830A1 (en) Membrane electrode assembly and fuel cell
WO2008041622A1 (en) Membrane electrode assembly and method for producing the same
JP2008108723A (en) Membrane electrode assembly and its manufacturing method
JP2005060516A (en) Fluorine-based ion exchange membrane
JP2006260901A (en) Complex membrane of fluorine-containing sulfonic acid polymer
JP7306950B2 (en) Fluorine-containing polymer electrolyte
JP2023026321A (en) Ion exchange membrane, membrane electrode assembly, fuel cell, redox flow secondary battery, water electrolyzer, and electrolyzer for organic hydride synthesis
JP2006179292A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140828

R150 Certificate of patent or registration of utility model

Ref document number: 5607435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250