JP2012002908A - Photo mask - Google Patents

Photo mask Download PDF

Info

Publication number
JP2012002908A
JP2012002908A JP2010135945A JP2010135945A JP2012002908A JP 2012002908 A JP2012002908 A JP 2012002908A JP 2010135945 A JP2010135945 A JP 2010135945A JP 2010135945 A JP2010135945 A JP 2010135945A JP 2012002908 A JP2012002908 A JP 2012002908A
Authority
JP
Japan
Prior art keywords
light
pattern
photomask
reflective film
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010135945A
Other languages
Japanese (ja)
Inventor
Masatoshi Hirono
方敏 廣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
NEC Corp
Original Assignee
Toshiba Corp
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, NEC Corp filed Critical Toshiba Corp
Priority to JP2010135945A priority Critical patent/JP2012002908A/en
Publication of JP2012002908A publication Critical patent/JP2012002908A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photo mask with which the defect such as foreign body or pattern deformation can be detected with high accuracy in the defect inspection using a reflection image.SOLUTION: A photo mask in which a pattern is formed in a pattern region includes a glass substrate, a reflective film provided on the entire surface of the pattern region on the glass substrate and having higher reflectance with respect to light than that of the glass substrate, and a light shielding film forming patterns on the reflective film and having higher reflectance with respect to light than that of the reflective film.

Description

本発明は、欠陥を高感度で検出可能とするフォトマスクに関する。   The present invention relates to a photomask that can detect defects with high sensitivity.

近年、半導体パターンの微細化は著しく進んでいる。半導体は、一般的にフォトマスクに描画されたパターンを縮小投影する形で製造される。そのため、半導体の微細化にはフォトマスクパターンの微細化が不可欠である。微細パターンに対応したフォトマスクにはバイナリーマスクや位相シフトマスクなどがある。   In recent years, the miniaturization of semiconductor patterns has advanced remarkably. A semiconductor is generally manufactured by reducing and projecting a pattern drawn on a photomask. Therefore, miniaturization of a photomask pattern is indispensable for miniaturization of a semiconductor. Photomasks corresponding to fine patterns include binary masks and phase shift masks.

これら従来のフォトマスクは、パターンが描かれたガラス上の薄膜(以下、遮光膜と呼ぶ)の反射率が露光波長において極めて低い。例えば、位相シフトマスクの反射率は19.4%であり、近年、新たに提案されているOMOG(Opaque MoSi on Glass)マスクにいたっては11.7%しかない(例えば、非特許文献1参照)。   In these conventional photomasks, the reflectance of a thin film on glass (hereinafter referred to as a light shielding film) on which a pattern is drawn is extremely low at the exposure wavelength. For example, the reflectivity of the phase shift mask is 19.4%, and the recently proposed OMOG (Opaque MoSi on Glass) mask has only 11.7% (see Non-Patent Document 1, for example). ).

フォトマスクの微細化に伴い、最近ではマスク検査波長が露光波長に肉薄している。このため、遮光膜の反射率の低さはフォトマスクの反射像を用いるマスク検査の妨げになっている。   With the miniaturization of photomasks, the mask inspection wavelength has recently become thinner than the exposure wavelength. For this reason, the low reflectance of the light shielding film hinders mask inspection using a reflected image of the photomask.

Kojima, et al. “Alternating phase−shift mask and binary mask for 45−nm node and beyond: the impact on the mask error control”. Proc. SPIE Vol. 6607, 66070C (2007).Kojima, et al. “Alternating phase-shift mask and binary mask for 45-nm node and beyond: the impact on the mask error control”. Proc. SPIE Vol. 6607, 66070C (2007).

本発明は、上記事情に鑑み、反射像による欠陥検査において異物やパターン変形などの欠陥を高精度に検出可能とするフォトマスクを提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a photomask capable of detecting a defect such as a foreign matter or pattern deformation with high accuracy in defect inspection using a reflected image.

本発明の一態様のフォトマスクは、パターン領域内にパターンが形成されるフォトマスクであって、ガラス基板と、前記ガラス基板上の前記パターン領域全面に設けられ、前記ガラス基板より光に対する反射率の高い反射膜と、前記反射膜上に設けられ、前記パターンを形成し、前記反射膜よりも前記光に対する反射率が高い遮光膜と、を有することを特徴とする。   The photomask of one embodiment of the present invention is a photomask in which a pattern is formed in a pattern region, and is provided on the entire surface of the pattern region on the glass substrate and the glass substrate, and has a reflectance with respect to light from the glass substrate. And a light-shielding film that is provided on the reflective film, forms the pattern, and has a higher reflectance with respect to the light than the reflective film.

上記態様のフォトマスクにおいて、前記反射膜の前記光の透過率が80%以上であることが望ましい。   In the photomask of the above aspect, it is desirable that the light transmittance of the reflective film is 80% or more.

上記態様のフォトマスクにおいて、前記光の波長が180nm以上200nm以下であることが望ましい。   In the photomask of the above aspect, it is preferable that the wavelength of the light is 180 nm or more and 200 nm or less.

上記態様のフォトマスクにおいて、前記反射膜がルテニウムであることが望ましい。   In the photomask of the above aspect, the reflective film is preferably ruthenium.

本発明によれば、反射像による欠陥検査において異物やパターン変形などの欠陥を高精度に検出可能とするフォトマスクを提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the photomask which can detect a defect, such as a foreign material and a pattern deformation, in the defect inspection by a reflected image with high precision.

実施の形態のフォトマスクの模式図である。It is a schematic diagram of the photomask of embodiment. 従来技術のフォトマスクの検査光の反射光強度分布を示す図である。It is a figure which shows the reflected light intensity distribution of the inspection light of the photomask of a prior art. 高反射遮光膜のフォトマスクの検査光の反射光強度分布を示す図である。It is a figure which shows the reflected light intensity distribution of the inspection light of the photomask of a highly reflective light shielding film. 本実施の形態のフォトマスクの検査光の反射光強度分布を示す図である。It is a figure which shows the reflected light intensity distribution of the inspection light of the photomask of this Embodiment.

以下、本発明の実施の形態について図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施の形態のフォトマスクは、パターン領域内にパターンが形成されるフォトマスクであって、ガラス基板と、ガラス基板上のパターン領域全面に設けられ、ガラス基板より光に対する反射率の高い反射膜と、反射膜上に設けられ、パターンを形成し、反射膜よりも光に対する反射率が高い遮光膜と、を有する。   A photomask according to an embodiment of the present invention is a photomask in which a pattern is formed in a pattern region, and is provided on the entire surface of the pattern region on the glass substrate and the glass substrate, and has a higher reflectance to light than the glass substrate. A reflective film; and a light-shielding film that is provided on the reflective film, forms a pattern, and has a higher reflectance with respect to light than the reflective film.

図1は、本実施の形態のフォトマスクの模式図である。図1(a)が平面図、図1(b)が図1(a)のA−A断面図である。   FIG. 1 is a schematic diagram of a photomask according to the present embodiment. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along the line AA in FIG.

本実施の形態のフォトマスク10は、その一方の面のパターン領域12内に複数のパターンとして、例えば、第1のパターン14a、第2のパターン14bが形成されている。フォトマスク10は、ガラス基板16と、このガラス基板16上のパターン領域12全面に設けられ、ガラス基板16より光に対する反射率の高い反射膜18と、この反射膜18上に設けられ、第1のパターン14a、第2のパターン14bを形成し、反射膜18よりも光に対する反射率が高い遮光膜20と、を備えている。   In the photomask 10 of the present embodiment, for example, a first pattern 14a and a second pattern 14b are formed as a plurality of patterns in the pattern region 12 on one surface thereof. The photomask 10 is provided on the entire surface of the glass substrate 16 and the pattern region 12 on the glass substrate 16. The photomask 10 is provided on the reflective film 18 having a higher light reflectance than the glass substrate 16 and on the reflective film 18. Pattern 14a and second pattern 14b are formed, and a light shielding film 20 having a higher reflectance with respect to light than the reflective film 18 is provided.

ここで、ガラス基板16、反射膜18、遮光膜20の反射率を比較する際の光は、フォトマスクの欠陥検査の際の検査光の波長であり、例えば、180nm以上200nm以下である。   Here, the light at the time of comparing the reflectance of the glass substrate 16, the reflective film 18, and the light shielding film 20 is the wavelength of the inspection light at the time of defect inspection of the photomask, and is, for example, 180 nm to 200 nm.

なお、ここでは、第1のパターン14a、第2のパターン14bは、遮光膜20の残しパターンとして形成される場合を例に説明している。しかし、第1のパターン14a、第2のパターン14bは、遮光膜20の抜きパターンとして形成されても構わない。   Here, the case where the first pattern 14a and the second pattern 14b are formed as the remaining pattern of the light shielding film 20 is described as an example. However, the first pattern 14 a and the second pattern 14 b may be formed as a blank pattern of the light shielding film 20.

ガラス基板16は、例えば、透明の石英ガラスである。その他の、光に対して透明な材料であってもかまわない。   The glass substrate 16 is, for example, transparent quartz glass. Other materials that are transparent to light may be used.

また、反射膜18は、例えば、金属であるルテニウムである。反射膜18の光の透過率が80%以上、より好ましくは95%以上であることが望ましい。この範囲を下回ると、フォトマスクを用いたリソグラフィ工程におけるパターン形成に対する影響が大きくなるからである。   The reflective film 18 is made of ruthenium, which is a metal, for example. It is desirable that the light transmittance of the reflective film 18 is 80% or more, more preferably 95% or more. This is because if it falls below this range, the influence on the pattern formation in the lithography process using the photomask increases.

また、反射膜18がルテニウムの場合、膜厚は、1nm以上3nm以下であることが好ましい。この範囲を下回ると、十分な反射率が得られなくなる恐れがあるからである。また、この範囲を上回ると、光の透過率が劣化する恐れがあるからである。   When the reflective film 18 is ruthenium, the film thickness is preferably 1 nm or more and 3 nm or less. This is because if it falls below this range, sufficient reflectance may not be obtained. Further, if it exceeds this range, the light transmittance may be deteriorated.

遮光膜20は、例えば、金属またはMoSi(モリブデンシリサイド)等の金属シリサイドで形成される。   The light shielding film 20 is made of, for example, metal or metal silicide such as MoSi (molybdenum silicide).

次に、従来技術の問題点および本実施の形態のフォトマスクの作用・効果について、図2〜図4を参照して説明する。図2は、従来技術のフォトマスクの検査光の反射光強度分布を示す図である。図3は、高反射遮光膜のフォトマスクの検査光の反射光強度分布を示す図である。図4は、本実施の形態のフォトマスクの検査光の反射光強度分布を示す図である。図2(a)、図3(a)、図4(a)は幅の広いラインアンドスペースパターンの場合、図2(b)、図3(b)、図4(b)は検査光の波長を下回るような幅の狭いラインアンドスペースパターンの場合を示す。   Next, problems of the prior art and actions / effects of the photomask of the present embodiment will be described with reference to FIGS. FIG. 2 is a diagram showing a reflected light intensity distribution of inspection light of a conventional photomask. FIG. 3 is a diagram showing a reflected light intensity distribution of inspection light of a photomask having a high reflection light shielding film. FIG. 4 is a diagram showing the reflected light intensity distribution of the inspection light of the photomask according to the present embodiment. 2 (a), 3 (a), and 4 (a) are wide line and space patterns, and FIGS. 2 (b), 3 (b), and 4 (b) are wavelengths of inspection light. The case of a line-and-space pattern with a narrow width that is smaller than 1 mm is shown.

図2に示すように、従来技術のマスクでは遮光膜20aの反射率が低い。このため、検査光に対する幅の狭い部分での反射光強度分布について、振幅WN1が検査を高精度にするために十分な大きさではないという問題がある。 As shown in FIG. 2, the reflectance of the light shielding film 20a is low in the conventional mask. For this reason, there is a problem that the amplitude W N1 of the reflected light intensity distribution in the narrow portion with respect to the inspection light is not large enough to make the inspection highly accurate.

これに対し、検査光に対して高い反射率を有する遮光膜20bを用いて、振幅を大きくする方法が考えられる。この場合、図3に示すように、幅の狭い部分の振幅WN2を大きくすることができる。同時に、幅の広い部分の振幅WW2も大きくなる。 On the other hand, a method of increasing the amplitude by using the light shielding film 20b having a high reflectance with respect to the inspection light can be considered. In this case, as shown in FIG. 3, the amplitude W N2 of the narrow portion can be increased. At the same time, the amplitude WW2 of the wide portion also increases.

もっとも、発明者らによる反射強度シミュレーションの結果、図3に示すように、微細化された幅の狭い部分では、ガラス部分の反射強度が、高い反射率を有する遮光膜20bにひきずられて明るくなってしまい、幅の広い部分のガラス部分の反射強度と差異が生じる傾向のあることが判明した。   However, as a result of the reflection intensity simulation by the inventors, as shown in FIG. 3, in the finer and narrower part, the reflection intensity of the glass part becomes brighter than the light shielding film 20 b having a high reflectance. As a result, it has been found that there is a tendency for a difference from the reflection intensity of the wide glass portion.

マスク検査装置でフォトマスクを検査する場合、CCD等の画像撮像素子を用いて、反射光強度を取得し、画素毎に反射光強度を階調値(または、グレイスケールビット数)に変換する。このとき、撮像素子や画像処理方法等から画素がとり得る最大階調値は、例えば、8ビットである256階調のように、所定の値に固定される。   When inspecting a photomask with a mask inspection apparatus, the reflected light intensity is acquired using an image pickup device such as a CCD, and the reflected light intensity is converted into a gradation value (or the number of gray scale bits) for each pixel. At this time, the maximum gradation value that a pixel can take from the image sensor, the image processing method, and the like is fixed to a predetermined value, for example, 256 gradations of 8 bits.

そして、最大階調値は、検査するパターン領域から得られる最大振幅、例えば、図2〜4の、振幅WW1〜3、または、これらの最大振幅に一定のマージンを加えた強度に対して割り当てられる。 The maximum gradation value is assigned to the maximum amplitude obtained from the pattern area to be inspected, for example, the amplitudes W W1 to 3 in FIGS. 2 to 4 or the intensity obtained by adding a certain margin to these maximum amplitudes. It is done.

反射光強度分布が同一の振幅を有する場合、この振幅をより多くの階調値で分割できる方が、検査によって得られる反射像の階調分解能が向上し、高精度な欠陥検査が実現される。   When the reflected light intensity distribution has the same amplitude, the gradation resolution of the reflected image obtained by the inspection is improved and the highly accurate defect inspection is realized if the amplitude can be divided by more gradation values. .

図3の場合、例えば、振幅WW2を最大階調値として設定すると、ガラス部分の差異部分にも階調値を割り当てることになり、無駄が生ずる。このため、階調値幅を有効に利用できず、せっかく、大きくなった幅の狭い部分の振幅WN2を検査の高精度化に最大限に活用できないことになる。 In the case of FIG. 3, for example, when the amplitude WW2 is set as the maximum gradation value, the gradation value is also assigned to the difference portion of the glass portion, resulting in waste. For this reason, the gradation value width cannot be used effectively, and the amplitude W N2 of the narrow portion with the increased width cannot be utilized to the maximum extent for the high accuracy of the inspection.

本実施の形態では、反射膜18がガラス部分に存在することにより、図4(a)に示すように、幅の広い部分でガラス部分の反射光強度が大きくなる。一方、幅の狭い部分でのガラス部分の反射光強度は、スペースが検査光の波長を下回るほど狭いことから、反射光強度が上がらず、反射膜18の影響はほとんどない。このため、振幅WN3は、振幅WN2と同程度の大きさに保たれることになる。 In the present embodiment, since the reflection film 18 exists in the glass portion, the reflected light intensity of the glass portion increases in a wide portion as shown in FIG. On the other hand, the reflected light intensity of the glass portion in the narrow portion is so narrow that the space is lower than the wavelength of the inspection light, so that the reflected light intensity does not increase and the reflection film 18 has little influence. For this reason, the amplitude W N3 is kept at the same level as the amplitude W N2 .

したがって、図3で生じていたような、幅の広い部分と狭い部分でのガラス部分の反射強度の差異が消滅する。このため、WW2より小さくなる振幅WW3を最大階調値として設定することによって、幅の狭い部分の振幅WN3に、図3の場合より多くの階調値を割り当てることができる。したがって、高い反射率を有する遮光膜20bで広がった振幅WN3に最大限に活用することができる。言い換えれば、画像のグレイスケールビット数を図3の場合より有効に利用できることになる。 Therefore, the difference in the reflection intensity between the glass portion at the wide portion and the narrow portion as generated in FIG. 3 disappears. Therefore, by setting the amplitude W W3 smaller than W W2 as the maximum gradation value, more gradation values can be assigned to the amplitude W N3 of the narrower portion than in the case of FIG. Therefore, the amplitude W N3 spread by the light shielding film 20b having a high reflectance can be utilized to the maximum. In other words, the number of gray scale bits of the image can be used more effectively than in the case of FIG.

この結果、反射像の階調分解能を向上でき、検査性能が向上できる。よって、本実施の形態によれば、反射像による欠陥検査において異物やパターン変形などの欠陥を高精度に検出可能とするフォトマスクを提供することが可能となる。   As a result, the gradation resolution of the reflected image can be improved, and the inspection performance can be improved. Therefore, according to the present embodiment, it is possible to provide a photomask that can detect defects such as foreign matter and pattern deformation with high accuracy in defect inspection using a reflected image.

検査光波長を199nm、石英ガラスのガラス基板、厚さ2nm程度のルテニウムの反射膜、従来のフォトマスクより大幅に反射率を大きくした遮光膜に対するシミュレーションにより、複数の空間周波数成分についてガラス部分の反射光強度が等しくなり、図4のようなプロファイルが得られることが確認されている。この時、石英ガラスの反射率は4.7%程度、ルテニウムの反射膜の反射率は9.0%である。また、ルテニウムの反射膜の透過率は80%以上である。   Reflection of glass part for multiple spatial frequency components by simulation for inspection light wavelength of 199 nm, quartz glass substrate, ruthenium reflection film of about 2 nm thickness, and light-shielding film whose reflectivity is significantly larger than conventional photomask It has been confirmed that the light intensities are equal and a profile as shown in FIG. 4 is obtained. At this time, the reflectance of quartz glass is about 4.7%, and the reflectance of the ruthenium reflective film is 9.0%. Further, the transmittance of the ruthenium reflective film is 80% or more.

以上、具体例を参照しつつ本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。本発明の説明に直接必要しない部分等については記載を省略したが、必要とされるフォトマスクの構成等を適宜選択して用いることができる。その他、本発明の要素を具備し、当業者が適宜設計変更しうる全てのフォトマスクは、本発明の範囲に包含される。   The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. Although the description of the portions that are not directly necessary for the description of the present invention is omitted, the required configuration of the photomask can be appropriately selected and used. In addition, all photomasks that include the elements of the present invention and that can be appropriately modified by those skilled in the art are included in the scope of the present invention.

例えば、実施の形態では、一層の遮光膜でパターンが形成される場合を例に説明したが、パターンが多層膜で形成され、その最上層が反射膜よりも光に対する反射率が高い遮光膜とする構成であっても構わない。   For example, in the embodiment, the case where the pattern is formed by a single light shielding film has been described as an example, but the pattern is formed by a multilayer film, and the uppermost layer is a light shielding film having a higher reflectance to light than the reflective film. You may be the structure to do.

また、例えば、実施の形態では、ガラス基板全面に反射膜を形成する場合を例に説明したが、反射膜がパターン領域のみに形成される構成であっても構わない。   For example, in the embodiment, the case where the reflective film is formed on the entire surface of the glass substrate has been described as an example. However, the reflective film may be formed only in the pattern region.

10 フォトマスク
12 パターン領域
14a,b パターン
16 ガラス基板
18 反射膜
20 遮光膜
DESCRIPTION OF SYMBOLS 10 Photomask 12 Pattern area | region 14a, b Pattern 16 Glass substrate 18 Reflective film 20 Light-shielding film

Claims (4)

パターン領域内にパターンが形成されるフォトマスクであって、
ガラス基板と、
前記ガラス基板上の前記パターン領域全面に設けられ、前記ガラス基板より光に対する反射率の高い反射膜と、
前記反射膜上に設けられ、前記パターンを形成し、前記反射膜よりも前記光に対する反射率が高い遮光膜と、
を有することを特徴とするフォトマスク。
A photomask in which a pattern is formed in a pattern region,
A glass substrate;
A reflective film that is provided on the entire surface of the pattern region on the glass substrate, and has a higher reflectance with respect to light than the glass substrate;
A light-shielding film provided on the reflective film, forming the pattern, and having a higher reflectance with respect to the light than the reflective film;
A photomask comprising:
前記反射膜の前記光の透過率が80%以上であることを特徴とする請求項1記載のフォトマスク。   2. The photomask according to claim 1, wherein the light transmittance of the reflective film is 80% or more. 前記光の波長が180nm以上200nm以下であることを特徴とする請求項1または請求項2記載のフォトマスク。   3. The photomask according to claim 1, wherein a wavelength of the light is 180 nm or more and 200 nm or less. 前記反射膜がルテニウムであることを特徴とする請求項1ないし請求項3いずれか一項記載のフォトマスク。







4. The photomask according to claim 1, wherein the reflective film is ruthenium.







JP2010135945A 2010-06-15 2010-06-15 Photo mask Pending JP2012002908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135945A JP2012002908A (en) 2010-06-15 2010-06-15 Photo mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135945A JP2012002908A (en) 2010-06-15 2010-06-15 Photo mask

Publications (1)

Publication Number Publication Date
JP2012002908A true JP2012002908A (en) 2012-01-05

Family

ID=45534990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135945A Pending JP2012002908A (en) 2010-06-15 2010-06-15 Photo mask

Country Status (1)

Country Link
JP (1) JP2012002908A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109960105A (en) * 2017-12-26 2019-07-02 Hoya株式会社 The manufacturing method of photomask blank and photomask, the manufacturing method of display device
JP2019117376A (en) * 2017-12-26 2019-07-18 Hoya株式会社 Photomask blank and manufacturing method of photomask, manufacturing method of display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11249283A (en) * 1997-12-19 1999-09-17 Hoya Corp Half-tone type phase shift mask and half-tone type phase shift mask blank
JP2003241363A (en) * 2001-12-10 2003-08-27 Hoya Corp Halftone type phase shift mask
WO2004070472A1 (en) * 2003-02-03 2004-08-19 Hoya Corporation Photomask blank, photomask, and pattern transfer method using photomask
JP2007298631A (en) * 2006-04-28 2007-11-15 Shin Etsu Chem Co Ltd Method for manufacturing photomask blank, and the photomask blank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11249283A (en) * 1997-12-19 1999-09-17 Hoya Corp Half-tone type phase shift mask and half-tone type phase shift mask blank
JP2003241363A (en) * 2001-12-10 2003-08-27 Hoya Corp Halftone type phase shift mask
WO2004070472A1 (en) * 2003-02-03 2004-08-19 Hoya Corporation Photomask blank, photomask, and pattern transfer method using photomask
JP2007298631A (en) * 2006-04-28 2007-11-15 Shin Etsu Chem Co Ltd Method for manufacturing photomask blank, and the photomask blank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109960105A (en) * 2017-12-26 2019-07-02 Hoya株式会社 The manufacturing method of photomask blank and photomask, the manufacturing method of display device
JP2019117376A (en) * 2017-12-26 2019-07-18 Hoya株式会社 Photomask blank and manufacturing method of photomask, manufacturing method of display device
JP7113724B2 (en) 2017-12-26 2022-08-05 Hoya株式会社 Method for manufacturing photomask blank and photomask, and method for manufacturing display device

Similar Documents

Publication Publication Date Title
US9417191B2 (en) Using reflected and transmission maps to detect reticle degradation
KR102251087B1 (en) Mask blank, mask blank with negative resist film, phase shift mask, and method for producing patterned body using same
JP4853685B2 (en) Inspection method and pass / fail judgment method for photomask blank or manufacturing intermediate thereof
TWI782324B (en) Method for defect inspection
KR101846065B1 (en) Method of manufacturing a photomask blank and a photomask using the same, and manufacturing method of the display device
JP3237928B2 (en) Pattern inspection method and apparatus
US9739723B1 (en) Methods of defect inspection for photomasks
JP2012002908A (en) Photo mask
Fukugami et al. Black border with etched multilayer on EUV mask
Broadbent et al. Field results from a new die-to-database reticle inspection platform
Dayal et al. Optimized inspection of advanced reticles on the TeraScan reticle inspection tool
KR20110001150A (en) Apparatus and method for measuring cd uniformity of patterns in photomask
Broadbent et al. Results from a new die-to-database reticle inspection platform
US20230305385A1 (en) System, method and program product for photomask surface treatment
JP2003330163A (en) Apparatus and method for inspecting photomask
KR100924334B1 (en) Correction pattern for alignment and light calibration
JP4791207B2 (en) Phase shift reticle, manufacturing method thereof, and defect inspection method thereof
Sier et al. Inspection results for 32nm logic and sub-50nm half-pitch memory reticles using the TeraScanHR
JP5005370B2 (en) Halftone mask and patterning method using the same
KR20070104156A (en) Defect inspection method of phase shift photo mask
JP2007011169A (en) Method for inspecting phase shift mask
JPH10115909A (en) Device and method for inspecting phase shift mask
Sier et al. Inspection results of advanced (sub-50nm design rule) reticles using the TeraScanHR
KR20090029436A (en) Method for fabricating phase shift mask in semicondutor device
KR20190013517A (en) Method for inspecting a photomask, method for manufacturing a photomask, and apparatus for inspecting a photomask

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821