JP2012002896A - Display device - Google Patents

Display device Download PDF

Info

Publication number
JP2012002896A
JP2012002896A JP2010135849A JP2010135849A JP2012002896A JP 2012002896 A JP2012002896 A JP 2012002896A JP 2010135849 A JP2010135849 A JP 2010135849A JP 2010135849 A JP2010135849 A JP 2010135849A JP 2012002896 A JP2012002896 A JP 2012002896A
Authority
JP
Japan
Prior art keywords
intermediate layer
light
display device
layer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010135849A
Other languages
Japanese (ja)
Inventor
Daisuke Yamada
大輔 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010135849A priority Critical patent/JP2012002896A/en
Publication of JP2012002896A publication Critical patent/JP2012002896A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a display device in which light extraction efficiency is improved, and luminance unevenness and flicker are decreased.SOLUTION: The display device is composed of a plurality of pixels, and each pixel in the plurality of pixels includes a light emission layer, a diffraction grating having an in-plane refraction index distribution, and an intermediate layer arranged between the light emission layer and the diffraction grating and composed of at least one or more layers. The intermediate layer includes an in-plane concavo-convex structure having an optical path length difference equal to or more than prescribed times of the wavelength of light emitted by the light emission layer, in order to uniformize the extraction rate of the light extracted to the outside.

Description

本発明は、表示装置に関し、特に、回折格子を用いて光の取り出し効率を高める表示装置に関する。   The present invention relates to a display device, and more particularly to a display device that uses a diffraction grating to increase light extraction efficiency.

近年、蛍光性物質などを用いた電子放出素子型ディスプレイ・有機ELディスプレイ・LEDディスプレイなどの自発光型表示装置の開発が行われ、大画面化が急速に進んでいる。
電子放出素子型ディスプレイは、電子源から放出させた電子を励起源とし、蛍光体などから成る発光層を励起・発光させ、外部に光を取り出す構成である。
有機ELディスプレイ・LEDディスプレイは、励起源として電流を発光層に注入し、発光させ、外部に光を取り出す構成となる。
いずれの構成においても、発光層から射出した光は、前面板や電極などを介して外部に光を取り出す。
しかしながら、発光層・前面板・電極などの界面で屈折率差が生じるため、発光層から射出した光のうち臨界角以上の射出角の光は全反射を起こす。このため、外部に光を取り出すことができず、光の取り出し効率が低くくなり、表示装置の輝度が低下する。
従来において、光の取り出し効率を向上させる手法として、例えば特許文献1では、発光層の表面側または裏面側に回折格子(屈折率分布層)を形成し、発光層からの光を回折させ、外部に光を取り出す有機エレクトロルミネッセンス素子が提案されている。
In recent years, self-luminous display devices such as an electron-emitting device display, an organic EL display, and an LED display using a fluorescent substance have been developed, and the screen size is rapidly increasing.
An electron-emitting device type display has a configuration in which electrons emitted from an electron source are used as an excitation source, a light-emitting layer made of a phosphor or the like is excited and emitted, and light is extracted outside.
The organic EL display / LED display has a configuration in which a current is injected as an excitation source into a light emitting layer to emit light and light is extracted outside.
In any configuration, the light emitted from the light emitting layer takes out the light to the outside through the front plate or the electrode.
However, since a difference in refractive index occurs at the interface of the light emitting layer, the front plate, the electrode, etc., light having an emission angle greater than the critical angle among the light emitted from the light emitting layer causes total reflection. For this reason, light cannot be extracted to the outside, the light extraction efficiency is lowered, and the luminance of the display device is lowered.
Conventionally, as a technique for improving the light extraction efficiency, for example, in Patent Document 1, a diffraction grating (refractive index distribution layer) is formed on the front surface side or the back surface side of the light emitting layer to diffract the light from the light emitting layer and externally. An organic electroluminescence element that extracts light is proposed.

特許第02991183号公報Japanese Patent No. 02991183

しかしながら、上記従来例の特許文献1のものにおいては、つぎのような課題を有している。
すなわち、上記従来例のものでは、発光層と回折格子を直接隣接させて作製することは困難であり、また、発光層の発光特性を悪化させる要因になる。こうした発光特性の悪化を回避するためには、発光層と回折格子の間に中間層を形成する必要がある。
しかし、表示装置の大画面化に伴い、表示装置の全面(全画素)で中間層の膜厚を均一に作製することは困難である。光の取り出し効率は中間層の膜厚に非常に敏感であるため、表示装置の画素ごとに中間層の膜厚がばらついていれば、光の取り出し効率が画素ごとに変化する。結果として、表示装置の輝度ムラまたはちらつきとなり、表示装置の視覚特性を劣化させることとなる。
However, the conventional example of Patent Document 1 has the following problems.
That is, in the above conventional example, it is difficult to fabricate the light emitting layer and the diffraction grating directly adjacent to each other, and the light emission characteristics of the light emitting layer are deteriorated. In order to avoid such deterioration of the light emission characteristics, it is necessary to form an intermediate layer between the light emitting layer and the diffraction grating.
However, as the screen of the display device becomes larger, it is difficult to produce the intermediate layer with a uniform thickness over the entire surface of the display device (all pixels). Since the light extraction efficiency is very sensitive to the film thickness of the intermediate layer, if the film thickness of the intermediate layer varies from pixel to pixel of the display device, the light extraction efficiency varies from pixel to pixel. As a result, luminance unevenness or flickering of the display device occurs, and the visual characteristics of the display device are deteriorated.

本発明は、上記課題に鑑み、光の取り出し効率の向上を図ることができ、輝度ムラ、ちらつきを低減させることが可能となる表示装置の提供を目的とする。   In view of the above problems, an object of the present invention is to provide a display device that can improve light extraction efficiency and can reduce luminance unevenness and flicker.

本発明の表示装置は、複数の画素で構成され、該複数の画素における各画素が、
発光層と、面内で屈折率分布を有する回折格子と、該発光層と該回折格子の間に位置して少なくとも1層以上の層で形成される中間層と、を有する表示装置であって、
前記中間層は、該発光層から放射された光が外部に取り出される割合を平均化するため、該中間層の面内に前記光の波長の所定倍以上の光路長差を有する凹凸構造を備えていることを特徴とする。
The display device of the present invention includes a plurality of pixels, and each pixel in the plurality of pixels is
A display device comprising: a light emitting layer; a diffraction grating having an in-plane refractive index distribution; and an intermediate layer formed between the light emitting layer and the diffraction grating and including at least one layer. ,
The intermediate layer includes a concavo-convex structure having an optical path length difference equal to or greater than a predetermined multiple of the wavelength of the light in the plane of the intermediate layer in order to average the rate at which the light emitted from the light emitting layer is extracted to the outside. It is characterized by.

本発明によれば、光の取り出し効率の向上を図ることができ、輝度ムラ、ちらつきを低減させることが可能となる表示装置を実現することができる。   According to the present invention, it is possible to realize a display device that can improve the light extraction efficiency and can reduce luminance unevenness and flicker.

実施例1の表示装置の断面概略図。1 is a schematic cross-sectional view of a display device of Example 1. FIG. 実施例1の規格化した光路長と光の取り出し効率の関係を示すグラフ。3 is a graph showing the relationship between the normalized optical path length and light extraction efficiency in Example 1. 実施例1の表示装置の断面概略図。1 is a schematic cross-sectional view of a display device of Example 1. FIG. 実施例1の光路長と光の取り出し効率の関係を示すグラフ。3 is a graph showing the relationship between the optical path length and the light extraction efficiency in Example 1. 実施例1の光路長と光の取り出し効率の関係を示すグラフ。3 is a graph showing the relationship between the optical path length and the light extraction efficiency in Example 1. 実施例1の表示装置の断面概略図。1 is a schematic cross-sectional view of a display device of Example 1. FIG. 実施例2の表示装置の断面概略図。FIG. 6 is a schematic cross-sectional view of a display device of Example 2. 実施例3の表示装置の製造プロセスを表す図。FIG. 10 is a diagram illustrating a manufacturing process of the display device according to the third embodiment.

本発明における表示装置を実施するための形態を、以下の実施例により図面を参照して説明する。
なお、実施例を説明するための全図において、同一の機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
The form for implementing the display apparatus in this invention is demonstrated with reference to drawings by the following Examples.
In all the drawings for explaining the embodiments, parts having the same function are given the same reference numerals, and repeated explanation thereof is omitted.

[実施例1]
実施例1として、本発明を適用した表示装置の構成例について、図1を用いて説明する。
図1には、複数の画素で形成される電界放出素子型ディスプレイの単一画素の断面概略図が示されている。
本実施例の表示装置は、電子源101から放出させた電子102を、蛍光体から成る発光層103に照射し、各画素に対応した色の発光を放射させるように構成されている。
放射した光は中間層104を介し、回折格子105で一部の光が回折され外部に取り出される。
但し、回折格子105は面内で屈折率分布を有する構造である。また、中間層は面内に上記光の波長の所定倍以上の光路長差を有する凹凸構造を備えている。
具体的には、中間層104は、Kの値が次の式(1)で求められるとき、面内で波長のK倍以上の光路長差を有する凹凸構造から成る。
但し、nは中間層の平均屈折率、nは発光層の屈折率である。

Figure 2012002896
[Example 1]
As Example 1, a configuration example of a display device to which the present invention is applied will be described with reference to FIG.
FIG. 1 shows a schematic cross-sectional view of a single pixel of a field emission device type display formed of a plurality of pixels.
The display device according to the present embodiment is configured to irradiate the light emitting layer 103 made of a phosphor with the electrons 102 emitted from the electron source 101 and emit light of a color corresponding to each pixel.
The emitted light is diffracted by the diffraction grating 105 through the intermediate layer 104 and extracted to the outside.
However, the diffraction grating 105 has a structure having an in-plane refractive index distribution. Further, the intermediate layer has an uneven structure having an optical path length difference equal to or greater than a predetermined multiple of the light wavelength in the plane.
Specifically, the intermediate layer 104 has a concavo-convex structure having an optical path length difference equal to or greater than K times the wavelength in the plane when the value of K is obtained by the following equation (1).
However, n m is the average refractive index of the intermediate layer, n L is the refractive index of the light-emitting layer.
Figure 2012002896

ここで、発光層103から放射した光が外部に取り出される割合(光の取り出し効率)は、中間層の光路長に応じて、波長のK倍の周期で増減する。
そこで、画素内で中間層104を波長のK倍以上の光路長差を有する凹凸構造を設けると、画素内の領域ごとに光の取り出し効率は変化するが、単一画素内全体の光の取り出し効率は画素内の領域ごとの効率が平均化され一定値となる。
このとき、画素間で中間層の膜厚が製造誤差等により異なる値に揺らいでも、各画素は平均化された一定の光の取り出し効率の値をもつため、表示装置全面の画素の光の取り出し効率は全て同じ一定値となる。
以上より、中間層に凹凸構造を設けることで、中間層の膜厚に対する光の取り出し効率の敏感度を低下させることができる。結果として、画素内や画素間の膜厚の揺らぎによる光の取り出し効率の変化を低減させ、表示装置の輝度ムラまたはちらつきを低減させることができる。
但し、中間層は単一層に限らず複数層で構成して、層ごとに凹凸形状を作製してもよい。
また、凹凸形状は回折格子の形状とは異なる形状であり、周期的でもよいし、非周期的でもよい。
Here, the rate at which the light emitted from the light emitting layer 103 is extracted to the outside (light extraction efficiency) increases or decreases in a cycle of K times the wavelength according to the optical path length of the intermediate layer.
Therefore, when the intermediate layer 104 is provided with an uneven structure having an optical path length difference of K times or more of the wavelength in the pixel, the light extraction efficiency changes for each region in the pixel, but the entire light extraction in a single pixel is performed. The efficiency is a constant value obtained by averaging the efficiency of each region in the pixel.
At this time, even if the film thickness of the intermediate layer fluctuates between pixels due to a manufacturing error or the like, each pixel has a constant light extraction efficiency value that is averaged. The efficiency is all the same constant value.
As described above, by providing the uneven structure in the intermediate layer, the sensitivity of the light extraction efficiency with respect to the film thickness of the intermediate layer can be reduced. As a result, a change in light extraction efficiency due to fluctuations in film thickness within or between pixels can be reduced, and luminance unevenness or flickering of the display device can be reduced.
However, the intermediate layer is not limited to a single layer, and may be composed of a plurality of layers, and an uneven shape may be produced for each layer.
Further, the uneven shape is a shape different from the shape of the diffraction grating, and may be periodic or aperiodic.

ここで、光の取り出し効率ηが中間層104の光路長(膜厚)に応じて周期的に変化する理由を詳細に説明する。
まず、光の取り出し効率ηは中間層104に応じて、次の式(2)で示すように変化する。

Figure 2012002896
Here, the reason why the light extraction efficiency η periodically changes according to the optical path length (film thickness) of the intermediate layer 104 will be described in detail.
First, the light extraction efficiency η varies according to the intermediate layer 104 as shown by the following equation (2).
Figure 2012002896

ここで、αは中間層での反射光間の位相差、η、Δηはそれぞれ光の取り出し効率の平均値、光の取り出し効率の変化量である。η、Δηは発光層103・回折格子105などの屈折率・構成により異なる値を示す。
また、光の取り出し効率ηとは発光層103から等方的に放射した光が前面板106の外部(空気)に取り出される割合である。
図2に中間層での反射光間の位相差αと光の取り出し効率の関係を示す。
Here, α is the phase difference between the reflected light at the intermediate layer, and η 0 and Δη are the average value of the light extraction efficiency and the amount of change in the light extraction efficiency, respectively. η 0 and Δη have different values depending on the refractive index and configuration of the light emitting layer 103, the diffraction grating 105, and the like.
Further, the light extraction efficiency η is a ratio at which light isotropically emitted from the light emitting layer 103 is extracted to the outside (air) of the front plate 106.
FIG. 2 shows the relationship between the phase difference α between the reflected light at the intermediate layer and the light extraction efficiency.

このとき、光の取り出し効率の高い領域と低い領域が生じる理由を説明する。発光層103と回折格子105の間に中間層104を形成すると、臨界角より大きな角で発光層から放射した光は、中間層または発光層の界面で多重反射し、中間層や発光層内に閉じ込められる。
閉じ込められた光は、中間層や発光層内を伝播しながら、回折格子と結合し外部に取り出される(図3(a))。
中間層の界面で多重反射する成分の位相が合致し強め合うとき(α=(4m+1)π/2 mは0以上の整数)、発光層から放射した光は中間層への閉じ込めが強くなる(図3(b))。
中間層に閉じ込められた光は損失が少なく、回折格子との結合効率が高くなるため、光の取り出し効率が高くなる(図2領域1)。
一方、中間層の界面で多重反射する成分の位相が弱め合うとき、中間層への光の閉じ込めが弱くなり、発光層から放射した光は主に発光層に閉じ込められる(図3(c))。
発光層に閉じ込められた光は、発光層内の蛍光体に再吸収されたり、裏面から放射されたり、画素端の吸収材料に到達し吸収される。このように放射した光の一部が損失となるため、光の取り出し効率は低くなる(図2領域2)。
At this time, the reason why a region having a high light extraction efficiency and a region having a low light extraction efficiency will be described. When the intermediate layer 104 is formed between the light-emitting layer 103 and the diffraction grating 105, light emitted from the light-emitting layer at an angle larger than the critical angle is multiple-reflected at the intermediate layer or the interface of the light-emitting layer, and is reflected in the intermediate layer or the light-emitting layer. Be trapped.
The confined light is coupled to the diffraction grating and extracted to the outside while propagating through the intermediate layer and the light emitting layer (FIG. 3A).
When the phases of the components that are multiple-reflected at the interface of the intermediate layer match and strengthen each other (α = (4m + 1) π / 2 m is an integer of 0 or more), the light emitted from the light emitting layer is strongly confined in the intermediate layer ( FIG. 3 (b)).
The light confined in the intermediate layer has little loss and the coupling efficiency with the diffraction grating is high, so that the light extraction efficiency is high (region 1 in FIG. 2).
On the other hand, when the phases of the components that undergo multiple reflection at the interface of the intermediate layer weaken each other, the confinement of light in the intermediate layer becomes weak, and the light emitted from the light emitting layer is mainly confined in the light emitting layer (FIG. 3C). .
The light confined in the light emitting layer is reabsorbed by the phosphor in the light emitting layer, is emitted from the back surface, or reaches the absorbing material at the pixel end and is absorbed. Since part of the emitted light is lost, the light extraction efficiency is reduced (region 2 in FIG. 2).

次に、中間層での反射光間の位相差αは、中間層の光路長ndを用いて、次の式(3)で表される。

Figure 2012002896
Then, the phase difference between the reflected light in the intermediate layer α, using the optical path length n m d of the intermediate layer is expressed by the following equation (3).
Figure 2012002896

但し、nは中間層の平均屈折率、dは中間層の膜厚、λは真空中の波長である。
中間層の平均屈折率は、中間層の光路長を中間層の総膜厚で除した値とする。また、θは中間層を伝播する光の角であり、スネルの法則より次の式(4)を満たす。

Figure 2012002896
Where nm is the average refractive index of the intermediate layer, d is the film thickness of the intermediate layer, and λ 0 is the wavelength in vacuum.
The average refractive index of the intermediate layer is a value obtained by dividing the optical path length of the intermediate layer by the total film thickness of the intermediate layer. Θ m is the angle of light propagating through the intermediate layer, and satisfies the following equation (4) from Snell's law.
Figure 2012002896

ここで、nは発光層の屈折率であり、θは発光層を伝播する光の角で80°から90°である。
つまり、θが80°から90°の光が、光の取り出し効率の増減に寄与する。これは、立体角が大きいほど発光層から放射する光量が大きくなるためである。また、初期位相(α)は、中間層で発生するエバネッセント波と回折格子との結合により生じ、エバネッセント波の侵入長に起因している。
上記した式(1)(2)(3)(4)より、光の取り出し効率ηは、次の式(5)で示す周期Λで変化する。

Figure 2012002896
Here, n L is a refractive index of the light emitting layer, and θ L is an angle of light propagating through the light emitting layer, and is 80 ° to 90 °.
That is, light having θ L of 80 ° to 90 ° contributes to increase / decrease in light extraction efficiency. This is because the amount of light emitted from the light emitting layer increases as the solid angle increases. The initial phase (α 0 ) is generated by the coupling between the evanescent wave generated in the intermediate layer and the diffraction grating, and is caused by the penetration length of the evanescent wave.
From the above formulas (1), (2), (3), and (4), the light extraction efficiency η varies with the period Λ shown in the following formula (5).
Figure 2012002896

中間層の光路長ndの差が波長のK倍以上のとき、光の取り出し効率は1周期以上の増減を有する。
このとき、画素全体の光の取り出し効率は領域ごとの効率が平均化された光の取り出し効率の平均値ηが得られる。
また、中間層の光路長が揺らいでも、光の取り出し効率の平均値ηは変化しない。
このため、画素間で製造誤差などによる膜厚の変化が生じても、各画素の光の取り出し効率が光の取り出し効率の平均値ηとなる。結果として、表示画面の全体で輝度ムラ・ちらつきを低減することできる。
When the difference in the optical path length n md of the intermediate layer is greater than or equal to K times the wavelength, the light extraction efficiency has an increase or decrease of one period or more.
At this time, the light extraction efficiency of the entire pixel is obtained as an average value η 0 of the light extraction efficiency obtained by averaging the efficiency of each region.
Even if the optical path length of the intermediate layer fluctuates, the average value η 0 of the light extraction efficiency does not change.
For this reason, even if a change in film thickness occurs due to a manufacturing error between pixels, the light extraction efficiency of each pixel becomes the average value η 0 of the light extraction efficiency. As a result, luminance unevenness and flicker can be reduced over the entire display screen.

つぎに、数値実施例について説明をする。
表示装置は1画素内に横100μm、縦250μmの発光層103を有し、発光層103は屈折率1.7、中心波長550nmで発光する蛍光体を含む層で構成される。
回折格子105は屈折率1.8、膜厚950nmのAlに直径1450nmの空孔を三角格子状に周期2300nmで形成する。
中間層は少なくとも1層以上の層で形成され、本数値実施例での中間層104は透明電極と高誘電体層、低誘電体層の3層で構成される。
そして、この異なる2層以上の誘電体層によって、K倍以上の光路長差を有する凹凸構造が構成される。
透明電極は屈折率1.8、膜厚300nmのITOで形成し、高誘電体層は屈折率2.2のTiOで形成し、低誘電体層は屈折率1.46のSiOで形成する。
また、高誘電体層と低誘電体層は周期10μmの波状形状で接した構造とする。このとき、中間層の面内の最短光路長と最長光路長の差(光路長差)を1μmとする。
よって、中間層の光路長差は波長の1.8倍となり、式(4)のK(=1.5)より大きくなる。
このとき、発光層103から放射した光は中間層の光路長に応じて、図5に示すように光の取り出し効率が周期的に変化する。
本実施例では中間層を波状構造とし、画素内に1周期以上の変化を有したことで、画素全体から平均化された値η0=57.5%が得られる。
このとき、中間層の膜厚に対する光の取り出し効率の敏感度を低くすることができ、輝度ムラやちらつきを低減させた表示装置を得ることができる。
Next, numerical examples will be described.
The display device includes a light emitting layer 103 having a width of 100 μm and a length of 250 μm in one pixel, and the light emitting layer 103 includes a layer containing a phosphor that emits light with a refractive index of 1.7 and a center wavelength of 550 nm.
The diffraction grating 105 is formed of Al 2 O 3 having a refractive index of 1.8 and a film thickness of 950 nm with holes having a diameter of 1450 nm in a triangular lattice pattern with a period of 2300 nm.
The intermediate layer is formed of at least one layer, and the intermediate layer 104 in this numerical example is composed of three layers of a transparent electrode, a high dielectric layer, and a low dielectric layer.
The two or more different dielectric layers constitute an uneven structure having an optical path length difference of K times or more.
The transparent electrode is made of ITO having a refractive index of 1.8 and a film thickness of 300 nm, the high dielectric layer is made of TiO 2 having a refractive index of 2.2, and the low dielectric layer is made of SiO 2 having a refractive index of 1.46. To do.
In addition, the high dielectric layer and the low dielectric layer are in contact with each other in a wavy shape with a period of 10 μm. At this time, the difference (optical path length difference) between the shortest optical path length and the longest optical path length in the plane of the intermediate layer is set to 1 μm.
Therefore, the optical path length difference of the intermediate layer is 1.8 times the wavelength, which is larger than K (= 1.5) in Expression (4).
At this time, the light extraction efficiency of the light emitted from the light emitting layer 103 periodically changes as shown in FIG. 5 according to the optical path length of the intermediate layer.
In this embodiment, the intermediate layer has a wave-like structure and has a change of one cycle or more in the pixel, so that an average value η0 = 57.5% is obtained from the entire pixel.
At this time, the sensitivity of the light extraction efficiency with respect to the film thickness of the intermediate layer can be reduced, and a display device with reduced luminance unevenness and flicker can be obtained.

本実施例では、中間層104の平均屈折率は回折格子105の有効屈折率より大きい構成としたが、必ずしも回折格子の有効屈折率より大きい必要はない。
但し、中間層の平均屈折率が回折格子の有効屈折率より大きいと、発光層から放射した光が中間層に強く閉じ込める。
中間層に閉じ込められた光は損失が少なく、回折格子との結合効率が高いため、中間層の平均屈折率は回折格子の有効屈折率より大きい方が望ましい。
但し、回折格子の有効屈折率とは、回折格子を構成する材料ごとの充填率と屈折率の積を総和した値である。
また、本実施例では中間層の光路長差を2層の高誘電体層、低誘電体層のみで形成したが、必ずしも、2層の誘電体層で構成しなくてもよい。しかしながら、2層以上で形成すると、中間層の光路長を面内で変化させ、かつ、中間層を平坦化させることができるため望ましい。
また、誘電体層のみで形成した方が作製プロセスが少なく、容易に作製できるため望ましい。
In this embodiment, the average refractive index of the intermediate layer 104 is set to be larger than the effective refractive index of the diffraction grating 105, but it is not necessarily required to be larger than the effective refractive index of the diffraction grating.
However, when the average refractive index of the intermediate layer is larger than the effective refractive index of the diffraction grating, the light emitted from the light emitting layer is strongly confined in the intermediate layer.
Since the light confined in the intermediate layer has little loss and high coupling efficiency with the diffraction grating, the average refractive index of the intermediate layer is preferably larger than the effective refractive index of the diffraction grating.
However, the effective refractive index of the diffraction grating is a value obtained by summing up the products of the filling rate and the refractive index for each material constituting the diffraction grating.
In this embodiment, the optical path length difference of the intermediate layer is formed by only the two high dielectric layers and the low dielectric layer. However, the intermediate layer may not necessarily be formed by the two dielectric layers. However, it is preferable to form two or more layers because the optical path length of the intermediate layer can be changed in the plane and the intermediate layer can be flattened.
In addition, it is preferable to form only the dielectric layer because the number of manufacturing processes is small and the manufacturing can be easily performed.

また、本実施例では、中間層104にITOから成る電極を含む構成としたが、必ずしも、中間層に電極層を必要とせず、前面板と回折格子の間に電極を形成してもよく、回折格子を電極で形成してもよい。
しかしながら、発光層近傍に電極を形成したほうが、発光層の内部量子効率が向上するため望ましい。
また、本実施例では、凹凸構造を周期的な波状の形状で構成した。ただし、中間層の光路長差を有すれば、図6に示すような非周期構造な構成としてもよい。
また、凹凸構造が周期構造であるとき、画素サイズの2分の1以下の周期であることが望ましい。
これは、単一画素内に複数個の光路長差を有する構造をもつ方が、全体の光の取り出し効率の誤差が小さくなるためである。また、より望ましくは周期を画素サイズの4分の1以下にすればよい。
また、周期構造の周期は5μm以上であることが望ましい。これは、発光層から放射した光は中間層を伝播する。十分に安定して伝播するために、5μm以上の構造周期であることが望ましい。
また、本実施例では、中間層を無機材料であるSiO、TiO、ITOで形成したが、必ずしも無機材料のみで形成する必要はなく、有機材料を用いて形成してもよい。ただし、無機材料で形成すると、発光層で発生する熱にも強い構成となり、高い耐久性が得られるため望ましい。
In this embodiment, the intermediate layer 104 includes an electrode made of ITO. However, the intermediate layer does not necessarily require an electrode layer, and an electrode may be formed between the front plate and the diffraction grating. The diffraction grating may be formed of electrodes.
However, it is desirable to form an electrode near the light emitting layer because the internal quantum efficiency of the light emitting layer is improved.
In the present embodiment, the concavo-convex structure is formed in a periodic wavy shape. However, as long as the intermediate layer has an optical path length difference, a non-periodic structure as shown in FIG. 6 may be used.
In addition, when the concavo-convex structure is a periodic structure, it is desirable that the period is a half or less of the pixel size.
This is because an error in overall light extraction efficiency is smaller when a structure having a plurality of optical path length differences in a single pixel is used. More preferably, the period may be set to ¼ or less of the pixel size.
The period of the periodic structure is preferably 5 μm or more. This is because light emitted from the light emitting layer propagates through the intermediate layer. In order to propagate sufficiently stably, it is desirable that the structure period is 5 μm or more.
In this embodiment, the intermediate layer is formed of SiO 2 , TiO 2 , or ITO, which are inorganic materials. However, the intermediate layer is not necessarily formed of only an inorganic material, and may be formed using an organic material. However, it is desirable to form with an inorganic material because the structure is strong against heat generated in the light emitting layer and high durability is obtained.

つぎに、発光層103の発光波長のみが異なる場合の数値実施例について説明する。
発光層から放射する光の波長が450nm、650nmのとき、中間層の光路長と光の取り出し効率は図5(a)(b)に示すようになる。
このとき、中間層の光路長差はそれぞれ波長の2.2倍、1.5倍となり、式(4)のK(=1.5)より大きくなり、画素内に1周期以上の光の取り出し効率の変化を有する。よって、画素全体からそれぞれ平均化された値η0=56.0%、54.5%が得られる。
以上により、中間層の膜厚に対する光の取り出し効率の敏感度を低くすることができ、輝度ムラやちらつきを低減させた表示装置を得ることができる。
Next, numerical examples where only the emission wavelength of the light emitting layer 103 is different will be described.
When the wavelengths of light emitted from the light emitting layer are 450 nm and 650 nm, the optical path length of the intermediate layer and the light extraction efficiency are as shown in FIGS.
At this time, the optical path length difference of the intermediate layer is 2.2 times and 1.5 times of the wavelength, respectively, and is larger than K (= 1.5) in the equation (4), and light of one period or more is extracted into the pixel. Has a change in efficiency. Therefore, averaged values η0 = 56.0% and 54.5% are obtained from the entire pixels.
As described above, the sensitivity of the light extraction efficiency with respect to the film thickness of the intermediate layer can be reduced, and a display device with reduced luminance unevenness and flicker can be obtained.

[実施例2]
実施例2として、実施例1と異なる形態の表示装置の構成例について、図7を用いて説明する。
図7には、複数の画素で形成される有機ELディスプレイの単一画素の断面概略図が示されている。
本実施例の表示装置は、電極201と透明電極214に電位差を与え、電流を注入することで、発光層203を励起させ、各画素に対応した色の発光を放射させるように構成されている。
放射した光は、中間層204である透明電極214、誘電体層224を介し、回折格子205で一部の光が回折され外部に取り出される。回折格子205は、周期的な回折格子、対称性が高い準フォトニック結晶、非周期に配列された微粒子などの回折格子であればいずれの構成でもよい。
また、誘電体層224はランダムに配列されたシリカ微粒子をTiO膜で埋めた膜であり、膜厚は2.5μmである。このとき、発光層203の発光波長が550nmであれば、誘電体層224の領域により光路長差1.0μm以上の構成を得ることができる。
[Example 2]
As Example 2, a configuration example of a display device having a different form from Example 1 will be described with reference to FIG.
FIG. 7 shows a schematic cross-sectional view of a single pixel of an organic EL display formed of a plurality of pixels.
The display device of this embodiment is configured to excite the light emitting layer 203 by emitting a potential difference between the electrode 201 and the transparent electrode 214 and injecting a current to emit light of a color corresponding to each pixel. .
A part of the emitted light is diffracted by the diffraction grating 205 through the transparent electrode 214 and the dielectric layer 224 which are the intermediate layer 204 and extracted to the outside. The diffraction grating 205 may have any configuration as long as it is a diffraction grating such as a periodic diffraction grating, a highly quasi-photonic crystal having high symmetry, and fine particles arranged non-periodically.
The dielectric layer 224 is a film in which randomly arranged silica particles are filled with a TiO 2 film, and the film thickness is 2.5 μm. At this time, when the emission wavelength of the light emitting layer 203 is 550 nm, a configuration with an optical path length difference of 1.0 μm or more can be obtained by the region of the dielectric layer 224.

したがって、式(4)のK(=1.5)より大きくなる。そのため、画素内に1周期以上の光の取り出し効率の変化を有する構造を得るため、単一画素全体からそれぞれ平均化された値が得られる。
また、画素間で膜厚が変動しても、各画素の平均化された値は変化しないため、画素間での光の取り出し効率が一定値となり、輝度ムラやちらつきを低減させた表示装置を得ることができる。
本実施例では、中間層の光路長差をランダムに分散させた微粒子球と背景媒質の屈折率差で形成した。このとき、エッチングプロセスがなく、低コストで作製できる。
Therefore, it becomes larger than K (= 1.5) of Formula (4). Therefore, in order to obtain a structure having a change in light extraction efficiency for one period or more in the pixel, averaged values are obtained from the entire single pixel.
In addition, even if the film thickness varies between pixels, the average value of each pixel does not change. Therefore, a light extraction efficiency between pixels becomes a constant value, and a display device that reduces luminance unevenness and flickering is provided. Obtainable.
In this embodiment, the difference in the optical path length of the intermediate layer is formed by the difference in refractive index between the fine particle sphere and the background medium that are randomly dispersed. At this time, there is no etching process and it can be manufactured at low cost.

[実施例3]
実施例3として、実施例1または実施例2などの製造プロセスを、図8を用いて説明する。
本実施例の製造プロセスは、まず、ガラス基板106に回折格子305を形成するため、材料1を積層する(図8(a))。
続いて、レジスト膜を蒸着またはスパッタし、所定位置を感光してレジストマスク307を形成する(図8(b))。
その後、RIEなどのエッチング手法により、材料1を所定の深さまでエッチングし、アッシング等によりレジストマスク307を除去する(図8(c))。
次に、材料1に形成した空孔に、誘電体などから成る材料2を埋めこむ(図8(d))。
続いて、凹凸構造を有する中間層を形成するため、材料3を凹凸構造にエッチング、または分散させる(図8(e))。
その後、必要に応じてリフロー法などにより、材料3を変形させてもよいし(図8(f))、直進性のよいスパッタまたは蒸着等により材料4を堆積させ波状に形成させる。
次に、材料3または材料4と屈折率の異なる材料5を積層させ、中間層を平坦化させる。
このとき、必要があればCMP法などの平坦化処理をしてもよい。続いて、必要に応じてITOなどの電極314を蒸着またはスパッタし、中間層304を形成する(図8(g))。
その後、発光層303を形成し(図8(h))、必要に応じて、電極または後面板を作製し表示装置を得る。
[Example 3]
As Example 3, a manufacturing process of Example 1 or Example 2 will be described with reference to FIG.
In the manufacturing process of this embodiment, first, the material 1 is laminated in order to form the diffraction grating 305 on the glass substrate 106 (FIG. 8A).
Subsequently, a resist film is deposited or sputtered, and a predetermined position is exposed to form a resist mask 307 (FIG. 8B).
Thereafter, the material 1 is etched to a predetermined depth by an etching method such as RIE, and the resist mask 307 is removed by ashing or the like (FIG. 8C).
Next, the material 2 made of a dielectric or the like is embedded in the holes formed in the material 1 (FIG. 8D).
Subsequently, in order to form an intermediate layer having an uneven structure, the material 3 is etched or dispersed in the uneven structure (FIG. 8E).
Thereafter, the material 3 may be deformed by a reflow method or the like as necessary (FIG. 8 (f)), or the material 4 is deposited and formed into a wave shape by sputtering or vapor deposition with good straightness.
Next, the material 3 or the material 5 having a refractive index different from that of the material 4 is laminated, and the intermediate layer is flattened.
At this time, if necessary, a planarization process such as a CMP method may be performed. Subsequently, an electrode 314 such as ITO is deposited or sputtered as necessary to form the intermediate layer 304 (FIG. 8G).
Thereafter, a light emitting layer 303 is formed (FIG. 8H), and an electrode or a rear plate is produced as necessary to obtain a display device.

1、2、3、4、5:材料
101:電子源
102:電子
103、203、303:発光層
104、204、304:中間層
105、205、305:回折格子
106:前面板
307:レジストマスク
1, 2, 3, 4, 5: Material 101: Electron source 102: Electrons 103, 203, 303: Light emitting layers 104, 204, 304: Intermediate layers 105, 205, 305: Diffraction grating 106: Front plate 307: Resist mask

Claims (10)

複数の画素で構成され、該複数の画素における各画素が、
発光層と、面内で屈折率分布を有する回折格子と、該発光層と該回折格子の間に位置して少なくとも1層以上の層で形成される中間層と、を有する表示装置であって、
前記中間層は、該発光層から放射された光が外部に取り出される割合を平均化するため、該中間層の面内に前記光の波長の所定倍以上の光路長差を有する凹凸構造を備えていることを特徴とする表示装置。
It is composed of a plurality of pixels, and each pixel in the plurality of pixels is
A display device comprising: a light emitting layer; a diffraction grating having an in-plane refractive index distribution; and an intermediate layer formed between the light emitting layer and the diffraction grating and including at least one layer. ,
The intermediate layer includes a concavo-convex structure having an optical path length difference equal to or greater than a predetermined multiple of the wavelength of the light in the plane of the intermediate layer in order to average the rate at which the light emitted from the light emitting layer is extracted to the outside. A display device.
前記中間層の光路長差は、Kの値が次の式(1)で求められるとき、前記光の波長のK倍以上の光路長差を有することを特徴とする請求項1に記載の表示装置。
Figure 2012002896
但し、
:中間層の平均屈折率
:発光層の屈折率
2. The display according to claim 1, wherein the optical path length difference of the intermediate layer has an optical path length difference equal to or greater than K times the wavelength of the light when the value of K is obtained by the following expression (1). apparatus.
Figure 2012002896
However,
n m : Average refractive index of the intermediate layer n L : Refractive index of the light emitting layer
前記中間層の平均屈折率は、前記面内で屈折率分布を有する回折格子の有効屈折率よりも大きいことを特徴とする請求項1または請求項2に記載の表示装置。   The display device according to claim 1, wherein an average refractive index of the intermediate layer is larger than an effective refractive index of a diffraction grating having a refractive index distribution in the plane. 前記中間層は、異なる2層以上の誘電体層を有し、該誘電体層により前記K倍以上の光路長差を有する凹凸構造が構成されていることを特徴とする請求項1から3のいずれか1項に記載の表示装置。   The said intermediate | middle layer has two or more different dielectric layers, and the uneven structure which has the optical path length difference more than said K times is comprised by this dielectric material layer. The display device according to any one of the above. 前記中間層は、電極を含む層を有することを特徴とする請求項1から4のいずれか1項に記載の表示装置。   The display device according to claim 1, wherein the intermediate layer includes a layer including an electrode. 前記中間層の凹凸構造は、周期的な凹凸構造で構成されていることを特徴とする請求項1から5のいずれか1項に記載の表示装置。   The display device according to claim 1, wherein the uneven structure of the intermediate layer is configured by a periodic uneven structure. 前記凹凸構造の周期が、画素サイズの2分の1以下の周期であることを特徴とする請求項6に記載の表示装置。   The display device according to claim 6, wherein a period of the concavo-convex structure is a period of half or less of a pixel size. 前記凹凸構造は周期が、5μm以上の周期であることを特徴とする請求項6に記載の表示装置。   The display device according to claim 6, wherein the uneven structure has a period of 5 μm or more. 前記中間層の凹凸構造は、非周期的な凹凸構造で構成されていることを特徴とする請求項1から5のいずれか1項に記載の表示装置。   The display device according to any one of claims 1 to 5, wherein the uneven structure of the intermediate layer is formed of an aperiodic uneven structure. 前記中間層は、無機材料で形成されていることを特徴とする請求項1から9のいずれか1項に記載の表示装置。   The display device according to claim 1, wherein the intermediate layer is made of an inorganic material.
JP2010135849A 2010-06-15 2010-06-15 Display device Pending JP2012002896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135849A JP2012002896A (en) 2010-06-15 2010-06-15 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135849A JP2012002896A (en) 2010-06-15 2010-06-15 Display device

Publications (1)

Publication Number Publication Date
JP2012002896A true JP2012002896A (en) 2012-01-05

Family

ID=45534984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135849A Pending JP2012002896A (en) 2010-06-15 2010-06-15 Display device

Country Status (1)

Country Link
JP (1) JP2012002896A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019153422A1 (en) * 2018-02-09 2019-08-15 武汉华星光电技术有限公司 Microcrystalline light-emitting diode display panel
CN114038320A (en) * 2021-11-19 2022-02-11 武汉华星光电半导体显示技术有限公司 Display panel and display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019153422A1 (en) * 2018-02-09 2019-08-15 武汉华星光电技术有限公司 Microcrystalline light-emitting diode display panel
CN114038320A (en) * 2021-11-19 2022-02-11 武汉华星光电半导体显示技术有限公司 Display panel and display device
CN114038320B (en) * 2021-11-19 2023-07-25 武汉华星光电半导体显示技术有限公司 Display panel and display device

Similar Documents

Publication Publication Date Title
JP5219493B2 (en) Light emitting element and light emitting device using the same
JP6193914B2 (en) Light extraction film for organic light emitting diode display device
JP4386285B2 (en) Organic electroluminescent device and manufacturing method thereof
JP5219745B2 (en) Light emitting device
JP6310638B2 (en) Organic light-emitting device substrate with improved light extraction efficiency, manufacturing method thereof, and organic light-emitting device including the same
US8921841B2 (en) Porous glass substrate for displays and method of manufacturing the same
JP2004247278A (en) Electroluminescent display device and its manufacturing method
JP2012226931A (en) Display device
JP2007035430A (en) Organic light emitting device
CN101176214A (en) Electroluminescence light source
KR102283499B1 (en) Organic light emitting diode structure
US20130076236A1 (en) Display apparatus
JP2012038542A (en) Light-emitting element
JP2015090810A (en) El display device, and method of manufacturing el display device
JP2013073800A (en) Display device
JP2012221686A (en) Display device
JP2009272194A (en) Light-emitting device
JP2010287562A (en) Display device
JP2012002896A (en) Display device
US20070177388A1 (en) Light-enhancing structure
JP5595033B2 (en) Display device
US9515295B2 (en) Light extraction substrate for organic light emitting device, fabrication method therefor and organic light emitting device including same
JP2012221687A (en) Display device
JP2013073887A (en) Display device
US8669559B2 (en) Image display apparatus and image display apparatus manufacturing method