JP2012002586A - Ultrasonic probe and ultrasonic flaw detection method - Google Patents

Ultrasonic probe and ultrasonic flaw detection method Download PDF

Info

Publication number
JP2012002586A
JP2012002586A JP2010136231A JP2010136231A JP2012002586A JP 2012002586 A JP2012002586 A JP 2012002586A JP 2010136231 A JP2010136231 A JP 2010136231A JP 2010136231 A JP2010136231 A JP 2010136231A JP 2012002586 A JP2012002586 A JP 2012002586A
Authority
JP
Japan
Prior art keywords
ultrasonic
inspected
shoe material
ultrasonic probe
shoe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010136231A
Other languages
Japanese (ja)
Other versions
JP5542534B2 (en
Inventor
Takahiro Miura
崇広 三浦
Setsu Yamamoto
摂 山本
Takeshi Hoshi
岳志 星
Makoto Ochiai
誠 落合
Satoshi Nagai
敏 長井
Kazumi Watabe
和美 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010136231A priority Critical patent/JP5542534B2/en
Publication of JP2012002586A publication Critical patent/JP2012002586A/en
Application granted granted Critical
Publication of JP5542534B2 publication Critical patent/JP5542534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate an ultrasonic flaw detection even for an inspection object surface having a complicated shape.SOLUTION: An ultrasonic probe 10 comprises: an ultrasonic transmitting/receiving element 11 for oscillating and receiving ultrasonic waves for an ultrasonic flaw detection of a specimen; and a shoe member 12 interposed between the ultrasonic transmitting/receiving element 11 and a specimen 16. Since the shoe member 12 is composed of polymer gel which is solid material that is polymers crosslinked to form a three-dimensional network structure and absorbing liquid component to be swollen, the shoe member 12 forms propagation paths of ultrasonic waves. A part where the shoe member 12 contacts with the specimen 16 forms a convex surface.

Description

この発明は、超音波探触子およびそれを用いた探傷方法に関するものであって、特に、複雑な形状の検査対象にも適用できる超音波探触子および超音波探傷方法に関する。   The present invention relates to an ultrasonic probe and a flaw detection method using the same, and more particularly to an ultrasonic probe and an ultrasonic flaw detection method that can be applied to an inspection object having a complicated shape.

超音波探傷技術は、非破壊で構造材の健全性を確認することができる技術であり、様々な分野で欠くことができない技術として使用されている。特に近年は、検査対象の表面が曲面形状等の複雑形状部を持つ構造物に対しても検査要求があり、超音波探傷技術への要求が高度化している現状がある。   The ultrasonic flaw detection technique is a technique capable of confirming the soundness of a structural material in a non-destructive manner, and is used as an indispensable technique in various fields. In particular, in recent years, there has been a demand for inspection even for structures having a complicated shape portion such as a curved surface on the surface to be inspected, and the demand for ultrasonic flaw detection technology has been increasing.

一方で、対象が曲面形状等の複雑形状である場合には、超音波が適切に検査対象へ入射できない場合がある。たとえば、溶接線およびその熱影響部においては、溶接の入熱によるひずみや傘折れが生じたり、溶金を盛ったあとの凸形状など、設計上は平坦とすべき箇所が曲面などの複雑形状を持ってしまうことが多い。そのため、一般的に使用されているアクリルやポリスチレンなどのシュー材が被検査体の表面の形状に追従できず、超音波送受信素子から発振した超音波が被検査体内部へ透過せず、検査ができない場合がある。また、そもそも検査対象箇所が平坦でない形状を持つ配管ノズル部やエルボ部、T字形配管継手部や、タービン翼など、構造上複雑な形状を持つ対象も多い。近年までこのように複雑な形状を持つ対象に対しては、超音波探触子やシュー材を直接接触させることが困難であった。   On the other hand, when the target is a complicated shape such as a curved surface shape, the ultrasonic wave may not be appropriately incident on the inspection target. For example, in the weld line and its heat-affected zone, distortion and umbrella breakage due to welding heat input, or convex shapes after depositing molten metal, etc. I often have. For this reason, commonly used shoe materials such as acrylic and polystyrene cannot follow the shape of the surface of the object to be inspected, and the ultrasonic wave oscillated from the ultrasonic transmitting / receiving element does not pass through the inside of the object to be inspected. There are cases where it is not possible. Also, there are many objects having a complicated structure such as a piping nozzle part, elbow part, T-shaped pipe joint part, turbine blade, etc., where the inspection target part is not flat in the first place. Until recently, it has been difficult to directly contact an ultrasonic probe or a shoe material with an object having such a complicated shape.

そのような課題を解決するために、たとえば特許文献1に記載された技術では、複雑形状に接触するための柔軟性を有するシュー材を用い、柔軟性を利用して被検査体の表面形状に合うように密着させ、超音波を入射している。   In order to solve such a problem, for example, in the technique described in Patent Document 1, a shoe material having flexibility for contacting a complex shape is used, and the surface shape of the object to be inspected is utilized using the flexibility. Ultrasonic waves are incident so that they are in close contact with each other.

特開2007−263697号公報JP 2007-263697 A 特開2010−38820号公報JP 2010-38820 A 特許第4349073号公報Japanese Patent No. 4349073 特開2003−254947号公報JP 2003-254947 A 特開2009−92650号公報JP 2009-92650 A

しかし、柔軟性を持つ材料として挙げられている材料例において、たとえばゴムは超音波減衰が非常に大きいという欠点がある。また、ゲル材の一部においては、やはり減衰が大きいものもある。また、柔軟性などの問題から、複雑形状に適していないゲル材もある。さらに、ゲル材は非圧縮性材料であるためゲル自体はほとんど収縮しない。そのため、シュー材がホルダーからはみ出すという問題がある。また、シュー材自体の形状と被検査体の表面形状の密着性の問題から、複雑形状に密着するものの、超音波が被検査体内部へ伝播しない状況が生じる場合がある。   However, in the material examples listed as materials having flexibility, for example, rubber has a drawback that ultrasonic attenuation is very large. In addition, some of the gel materials also have a large attenuation. Some gel materials are not suitable for complex shapes due to problems such as flexibility. Furthermore, since the gel material is an incompressible material, the gel itself hardly shrinks. Therefore, there is a problem that the shoe material protrudes from the holder. Further, due to the problem of adhesion between the shape of the shoe material itself and the surface shape of the object to be inspected, there may be a situation in which the ultrasonic wave does not propagate into the object to be inspected although it adheres to the complex shape.

また、特許文献2に記載された例では、一般的なシュー材に柔軟性のゲル状部材を取り付ける超音波検査装置を提案している。しかし、たとえば一般的に使用されるアクリルやポリスチレンによるシュー材とゲルの間には音響インピーダンス差があるため、界面で超音波が反射される。これは、実際の探傷範囲にノイズとして現れるため、探傷範囲に不感帯が生じること、および界面反射により超音波の感度が低下し、検出性が低下するという問題がある。   In the example described in Patent Document 2, an ultrasonic inspection apparatus in which a flexible gel-like member is attached to a general shoe material is proposed. However, for example, there is an acoustic impedance difference between the shoe material and gel made of acrylic or polystyrene, which are generally used, so that ultrasonic waves are reflected at the interface. Since this appears as noise in the actual flaw detection range, there is a problem that a dead zone occurs in the flaw detection range, and the sensitivity of the ultrasonic wave is lowered due to interface reflection, and the detectability is lowered.

さらに、一般的な超音波探傷においては、水やグリセリンなど液状の接触媒質を被検査体表面に塗布する必要がある。しかし、接触媒質は、検査後の後処理が必要であることや、被検査体によっては嫌水性材料である場合も多く、使用を好まれない場合が多い。   Further, in general ultrasonic flaw detection, it is necessary to apply a liquid contact medium such as water or glycerin to the surface of the object to be inspected. However, the contact medium often requires post-processing after inspection, and is often an anaerobic material depending on the object to be inspected, and is not preferred for use.

しかし、一般的なアクリル等のシュー材では接触媒質なしで超音波を被検査体へ入射することができない。この問題を解決するために、たとえば特許文献3では、被検査対象がコンクリートである場合に、液状のポリマー溶液を塗布し、そのポリマーの溶液をシート化させた後、そのシート上に接触媒質を塗布して探傷し、探傷後にそのシートを除去することで、被検査体へ接触媒質を直接塗布しない手法が提案されている。しかし、この提案では、被検査体へポリマー溶液を塗布する必要がある。そのため、検査に必要な探傷プローブと一体化されておらず、検査の利便性が低いという問題がある。   However, ordinary shoe materials such as acrylic cannot make ultrasonic waves incident on the object to be inspected without a contact medium. In order to solve this problem, for example, in Patent Document 3, when the object to be inspected is concrete, a liquid polymer solution is applied, and after the polymer solution is formed into a sheet, a contact medium is formed on the sheet. There has been proposed a method in which a contact medium is not directly applied to an object to be inspected by applying and flaw detection and removing the sheet after flaw detection. However, in this proposal, it is necessary to apply a polymer solution to the object to be inspected. Therefore, it is not integrated with a flaw detection probe necessary for inspection, and there is a problem that convenience of inspection is low.

さらに、特許文献4や特許文献5では、ゲル材をシュー材の材料として挙げているが、ゲル材の種類によっては超音波の伝播が困難な材料もある。   Furthermore, in Patent Document 4 and Patent Document 5, the gel material is cited as the material for the shoe material, but there are materials in which it is difficult to propagate ultrasonic waves depending on the type of the gel material.

この発明はかかる事情に鑑みてなされたものであって、複雑形状を持つ被検査対象表面に対しても、容易に超音波探傷できるようにすることを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to make it possible to easily perform ultrasonic flaw detection even on a surface to be inspected having a complicated shape.

上記目的を達成するために、本発明に係る超音波探触子の一態様は、被検査体の超音波探傷を行うための超音波を発振して受信する超音波送受信素子と、前記超音波送受信素子と前記被検査体の間に介在して、高分子が架橋されて3次元網目構造をなして液体成分を吸収して膨潤した固体状の材料である高分子ゲル材料によって超音波の伝播路を形成するシュー材と、を有する超波探触子であって、前記シュー材が被検査体に当たる部分が、被検査体に当たる方向に向かって凸面を形成していることを特徴とする。   In order to achieve the above object, an aspect of the ultrasonic probe according to the present invention includes an ultrasonic transmission / reception element that oscillates and receives an ultrasonic wave for performing ultrasonic flaw detection on an object to be inspected, and the ultrasonic wave Propagation of ultrasonic waves by a polymer gel material, which is a solid material which is interposed between a transmitting / receiving element and the object to be inspected and a polymer is crosslinked to form a three-dimensional network structure and absorbs a liquid component to swell. An ultrasonic probe having a shoe material that forms a path, wherein a portion of the shoe material that contacts the object to be inspected forms a convex surface in a direction that contacts the object to be inspected.

また、本発明に係る超音波探触子の他の一態様は、被検査体の超音波探傷を行うための超音波を発振してかつ受信する超音波送受信素子と、前記超音波送受信素子と前記被検査体の間に介在して、高分子が架橋されて3次元網目構造をなして液体成分を吸収して膨潤した固体状の材料である高分子ゲル材料によって超音波の伝播路を形成するシュー材と、を有する超波探触子において、前記被検査体の超音波探傷の対象となる部分の表面が凸面であって、前記シュー材が被検査体に当たる部分が、前記被検査体の超音波探傷の対象となる部分の表面の曲率半径よりも大きい曲率半径の凹面であること、を特徴とする。   Another aspect of the ultrasonic probe according to the present invention is an ultrasonic transmission / reception element that oscillates and receives an ultrasonic wave for performing ultrasonic flaw detection on an inspection object; and the ultrasonic transmission / reception element; An ultrasonic wave propagation path is formed by a polymer gel material, which is a solid material that is interspersed between the objects to be inspected and forms a three-dimensional network structure by cross-linking polymers to absorb liquid components and swell. The surface of the portion to be ultrasonically flawed of the object to be inspected is a convex surface, and the portion where the shoe material hits the object to be inspected is the ultrasonic probe having the shoe material to be inspected. The concave surface has a radius of curvature larger than the radius of curvature of the surface of the portion to be subjected to ultrasonic flaw detection.

さらに、本発明に係る超音波探傷方法の一態様は、超音波を発振して受信する超音波送受信素子と超音波を伝播させるシュー材とを有する超波探触子を前記被検査体に押し付けて、前記超音波送受信素子で発振した超音波を前記シュー材を介して前記被検査体に伝播させ、前記被検査体で反射した超音波を前記シュー材を介して前記超波探触子で受信することによって被検査体の探傷を行う超音波探傷方法であって、前記シュー材は、前記超音波送受信素子と前記被検査体の間に介在して、高分子が架橋されて3次元網目構造をなして液体成分を吸収して膨潤した固体状の材料である高分子ゲル材料によって超音波の伝播路を形成するものであり、前記超波探触子を前記被検査体に押し付けるにあたり、初めは前記被検査体の表面の一か所の初期接触部が前記シュー材の一か所の初期接触部と接触し、さらに押し付けを進めることによって前記シュー材が変形して、接触部が前記初期接触部の周縁から連続して順次広がるようにして前記シュー材と前記被検査体とを接触させること、を特徴とする。   Furthermore, in one aspect of the ultrasonic flaw detection method according to the present invention, an ultrasonic probe having an ultrasonic transmission / reception element that oscillates and receives an ultrasonic wave and a shoe material that propagates the ultrasonic wave is pressed against the object to be inspected. Then, the ultrasonic wave oscillated by the ultrasonic transmission / reception element is propagated to the inspection object through the shoe material, and the ultrasonic wave reflected by the inspection object is transmitted by the ultrasonic probe through the shoe material. An ultrasonic flaw detection method in which a test object is flawed by receiving, wherein the shoe material is interposed between the ultrasonic transmitting / receiving element and the test object, and a polymer is crosslinked to form a three-dimensional network. In the structure, an ultrasonic wave propagation path is formed by a polymer gel material that is a solid material that absorbs and swells a liquid component, and when the ultrasonic probe is pressed against the object to be inspected, Initially, one place on the surface of the object to be inspected The initial contact portion comes into contact with one initial contact portion of the shoe material, and further pressing further causes the shoe material to deform so that the contact portion continuously spreads continuously from the periphery of the initial contact portion. The shoe material and the object to be inspected are brought into contact with each other.

この発明によれば、複雑形状を持つ被検査対象表面に対しても、容易に超音波探傷することができる。   According to the present invention, ultrasonic flaw detection can be easily performed even on a surface to be inspected having a complicated shape.

本発明に係る超音波探触子の第1の実施形態の断面図である。It is sectional drawing of 1st Embodiment of the ultrasonic probe which concerns on this invention. 図1のII−II線矢視縦断面図である。FIG. 2 is a longitudinal sectional view taken along the line II-II in FIG. 1. 本発明に係る超音波探触子の第1の実施形態のシュー材の幅を示す断面図である。It is sectional drawing which shows the width | variety of the shoe material of 1st Embodiment of the ultrasonic probe which concerns on this invention. 本発明に係る超音波探触子の第1の実施形態のシュー材の長さを示す縦断面図である。It is a longitudinal cross-sectional view which shows the length of the shoe material of 1st Embodiment of the ultrasonic probe which concerns on this invention. 本発明に係る超音波探触子の第1の実施形態を被検査対象表面に押し付けた状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which pressed 1st Embodiment of the ultrasonic probe which concerns on this invention against the surface to be examined. 従来技術によるポリスチレン製シュー材を用いて音響接触媒質を塗布しない場合の超音波エコーの検出結果を示すタイムチャートである。It is a time chart which shows the detection result of the ultrasonic echo when not applying an acoustic contact medium using the shoe material made from polystyrene by a prior art. 従来技術によるポリスチレン製シュー材を用いて音響接触媒質を塗布した場合の超音波エコーの検出結果を示すタイムチャートである。It is a time chart which shows the detection result of the ultrasonic echo at the time of apply | coating an acoustic contact medium using the shoe material made from polystyrene by a prior art. 本発明に係る超音波探触子の第1の実施形態によるポリスチレン系ゲルのシュー材を用いて音響接触媒質を塗布しない場合の超音波エコーの検出結果を示すタイムチャートである。It is a time chart which shows the detection result of the ultrasonic echo in case the acoustic contact medium is not apply | coated using the shoe material of the polystyrene-type gel by 1st Embodiment of the ultrasonic probe which concerns on this invention. 本発明に係る超音波探触子の第1の実施形態によるポリスチレン系ゲルのシュー材を用いて音響接触媒質を塗布した場合の超音波エコーの検出結果を示すタイムチャートである。It is a time chart which shows the detection result of the ultrasonic echo at the time of apply | coating an acoustic contact medium using the shoe material of the polystyrene-type gel by 1st Embodiment of the ultrasonic probe which concerns on this invention. 本発明に係る超音波探触子の第2の実施形態のシュー材の縦断面図であって、第1の実施形態の図2の方向から見た縦断面図である。It is the longitudinal cross-sectional view of the shoe material of 2nd Embodiment of the ultrasonic probe which concerns on this invention, Comprising: It is the longitudinal cross-sectional view seen from the direction of FIG. 2 of 1st Embodiment. 本発明に係る超音波探触子の第3の実施形態のシュー材の縦断面図である。It is a longitudinal cross-sectional view of the shoe material of 3rd Embodiment of the ultrasonic probe which concerns on this invention. 図11のXII−XII線矢視断面図である。FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. 11. 本発明に係る超音波探触子の第4の実施形態のシュー材の縦断面図である。It is a longitudinal cross-sectional view of the shoe material of 4th Embodiment of the ultrasonic probe which concerns on this invention. 図13のXIV線矢視側面図である。FIG. 14 is a side view taken along line XIV in FIG. 13. 本発明に係る超音波探触子の第5の実施形態のシュー材の縦断面図である。It is a longitudinal cross-sectional view of the shoe material of 5th Embodiment of the ultrasonic probe which concerns on this invention. 図15のXVI−XVI線矢視側断面図である。FIG. 16 is a side sectional view taken along line XVI-XVI in FIG. 15. 本発明に係る超音波探触子の第6の実施形態のシュー材の縦断面図である。It is a longitudinal cross-sectional view of the shoe material of 6th Embodiment of the ultrasonic probe which concerns on this invention. 図17のXVIII−XVIII線矢視断面図である。It is XVIII-XVIII arrow directional cross-sectional view of FIG. 本発明に係る超音波探触子の第7の実施形態のシュー材とそれに対向する被検査体表面付近を示す模式的断面図である。It is typical sectional drawing which shows the shoe material of 7th Embodiment of the ultrasonic probe which concerns on this invention, and the to-be-inspected object surface vicinity which opposes it. 本発明に係る超音波探触子の第8の実施形態のシュー材とそれに対向する被検査体表面付近を示す模式的断面図である。It is typical sectional drawing which shows the shoe material of 8th Embodiment of the ultrasonic probe which concerns on this invention, and to-be-inspected object surface vicinity facing it. 本発明に係る超音波探触子の第9の実施形態の断面図であり、超音波探触子の先端が被検査対象表面に押し付けられてわずかに変形した状態を示す図である。It is sectional drawing of 9th Embodiment of the ultrasonic probe which concerns on this invention, and is a figure which shows the state which the front-end | tip of an ultrasonic probe was pressed on the to-be-inspected surface and deform | transformed slightly. 図21の超音波探触子が被検査対象表面にさらに押し付けられた状況を示す断面図である。It is sectional drawing which shows the condition where the ultrasonic probe of FIG. 21 was further pressed on the surface to be examined. 本発明に係る超音波探触子の第10の実施形態の断面図である。It is sectional drawing of 10th Embodiment of the ultrasonic probe which concerns on this invention. 本発明に係る超音波探触子の第11の実施形態の断面図であり、超音波探触子の先端が被検査体表面から離れた状態を示す図である。It is sectional drawing of 11th Embodiment of the ultrasonic probe which concerns on this invention, and is a figure which shows the state which the front-end | tip of the ultrasonic probe left | separated from the to-be-inspected object surface. 図24の超音波探触子が被検査対象表面に押し付けられた状況を示す断面図である。It is sectional drawing which shows the condition where the ultrasonic probe of FIG. 24 was pressed on the surface to be examined. 本発明に係る超音波探触子の第12の実施形態を示す図であって、図27のXXVI−のXXVI線矢視横断面図である。It is a figure which shows 12th Embodiment of the ultrasonic probe which concerns on this invention, Comprising: It is XXVI line XXVI arrow cross-sectional view of FIG. 図26のXXVII−XXVII線矢視縦断面図である。It is a XXVII-XXVII line longitudinal cross-sectional view of FIG. 本発明に係る超音波探触子の第13の実施形態のシュー材の縦断面図である。It is a longitudinal cross-sectional view of the shoe material of 13th Embodiment of the ultrasonic probe which concerns on this invention. 本発明に係る超音波探触子の第14の実施形態のシュー材の縦断面図である。It is a longitudinal cross-sectional view of the shoe material of 14th Embodiment of the ultrasonic probe which concerns on this invention. 本発明に係る超音波探触子の第15の実施形態のシュー材の縦断面図である。It is a longitudinal cross-sectional view of the shoe material of 15th Embodiment of the ultrasonic probe which concerns on this invention. 本発明に係る超音波探触子の第16の実施形態の断面図である。It is sectional drawing of 16th Embodiment of the ultrasonic probe which concerns on this invention. 本発明に係る超音波探触子の第17の実施形態の断面図である。It is sectional drawing of 17th Embodiment of the ultrasonic probe which concerns on this invention. 本発明に係る超音波探触子の第18の実施形態の断面図である。It is sectional drawing of 18th Embodiment of the ultrasonic probe which concerns on this invention.

以下に、図面を参照しながら本発明の実施形態について説明する。ここで、互いに同じまたは類似の部分には共通の符号を付して、重複説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.

[第1の実施形態]
図1は、本発明に係る超音波探触子の第1の実施形態の断面図であり、図2は図1のII−II線矢視縦断面図である。図3は上記超音波探触子の第1の実施形態のシュー材の幅を示す断面図である。図4は上記超音波探触子の第1の実施形態のシュー材の長さを示す縦断面図である。図5は第1の実施形態の超音波探触子を被検査対象表面に押し付けた状態を示す縦断面図である。
[First Embodiment]
FIG. 1 is a cross-sectional view of a first embodiment of an ultrasonic probe according to the present invention, and FIG. 2 is a vertical cross-sectional view taken along line II-II in FIG. FIG. 3 is a cross-sectional view showing the width of the shoe material of the first embodiment of the ultrasonic probe. FIG. 4 is a longitudinal sectional view showing the length of the shoe material of the first embodiment of the ultrasonic probe. FIG. 5 is a longitudinal sectional view showing a state in which the ultrasonic probe of the first embodiment is pressed against the surface to be inspected.

超音波探触子10は、超音波送受信素子11と、超音波送受信素子11に接触して取り付けられたシュー材12と、超音波送受信素子11およびシュー材12を保持する保持部(ホルダー)13と、保持部13の先端に取り付けられた接触保護部14とを有する。   The ultrasonic probe 10 includes an ultrasonic transmission / reception element 11, a shoe material 12 attached in contact with the ultrasonic transmission / reception element 11, and a holding unit (holder) 13 that holds the ultrasonic transmission / reception element 11 and the shoe material 12. And a contact protection part 14 attached to the tip of the holding part 13.

この超音波探触子10を用いて被検査体16の検査を行なうときは、シュー材12の先端部15を被検査体16に押し付けて、シュー材12を変形させて被検査体16とシュー材12とを密着させ、超音波送受信素子11から超音波を発振させ、その超音波をシュー材12中に伝搬させ、被検査体16に超音波を当てる。被検査体16の表面および内部で超音波が反射し、この反射した超音波が再びシュー材12中を伝搬して超音波送受信素子11で受信される。   When the inspection object 16 is inspected using the ultrasonic probe 10, the tip 15 of the shoe material 12 is pressed against the inspection object 16 to deform the shoe material 12 to deform the inspection object 16 and the shoe. The material 12 is brought into close contact with each other, an ultrasonic wave is oscillated from the ultrasonic transmitting / receiving element 11, the ultrasonic wave is propagated in the shoe material 12, and the ultrasonic wave is applied to the inspection object 16. Ultrasonic waves are reflected on the surface and inside of the inspection object 16, and the reflected ultrasonic waves propagate through the shoe material 12 again and are received by the ultrasonic transmitting / receiving element 11.

超音波送受信素子11は、たとえば、セラミクス製や複合材料、またはそれ以外の圧電効果により超音波を発生することができる圧電素子や高分子フィルムによる圧電素子またはそれ以外の超音波を発生できる機構と、超音波をダンピングするダンピング材と、超音波の発振面に取り付けられた前面板とを有する。超音波を発生するのみならず、超音波を受信して電気信号に変換する機能も有する。   The ultrasonic transmitting / receiving element 11 is, for example, a ceramic or composite material, a piezoelectric element that can generate ultrasonic waves by other piezoelectric effects, a piezoelectric element by a polymer film, or a mechanism that can generate ultrasonic waves other than that. And a damping material for damping the ultrasonic wave, and a front plate attached to the ultrasonic oscillation surface. In addition to generating ultrasonic waves, it also has a function of receiving ultrasonic waves and converting them into electrical signals.

シュー材12は、超音波送受信素子11で発振された超音波を被検査体に伝送し、また、被検査体16で反射した超音波を超音波送受信素子11に伝送するものである。シュー材12は、高分子が架橋されて3次元網目構造を有し、液体成分(溶媒)を吸収して膨潤した固体状の材料である高分子ゲルとする。   The shoe material 12 transmits the ultrasonic wave oscillated by the ultrasonic transmission / reception element 11 to the inspection object, and transmits the ultrasonic wave reflected by the inspection object 16 to the ultrasonic transmission / reception element 11. The shoe material 12 is a polymer gel that is a solid material having a three-dimensional network structure in which a polymer is cross-linked and that has swollen by absorbing a liquid component (solvent).

適用可能な高分子ゲルとしては、たとえば、スチレン系、ポリスチレン系、ポリエチレン系、ウレタン系、シリコン系のゲル材とする。使用する溶媒は、たとえば、水媒体であるハイドロゲル(ヒドロゲル)、または油性媒質であるリポゲル(オルガノゲル)とする。また、使用するゲルの硬度は、たとえば日本ゴム協会標準規格であるSRIS0101に規定されているアスカー硬度で、硬度0から50までのゲル材とする。なお、JIS K 6253タイプEにおける硬度表記もSRIS0101と同等である。さらに、ゲル材の伸び率に関して、1000%以上の伸び率を持つものが好ましい。以上の条件を持つゲル材を適用することで、超音波減衰が低く、かつ柔軟性を持ったシュー材として超音波探傷に適用可能である。   As an applicable polymer gel, for example, a styrene-based, polystyrene-based, polyethylene-based, urethane-based, or silicon-based gel material is used. The solvent used is, for example, a hydrogel (hydrogel) that is an aqueous medium or a lipogel (organogel) that is an oily medium. The gel used is a gel material having a hardness of 0 to 50, for example, Asker hardness defined in SRIS0101, which is a standard of the Japan Rubber Association. The hardness notation in JIS K 6253 type E is also equivalent to SRIS0101. Further, the gel material preferably has an elongation rate of 1000% or more. By applying the gel material having the above conditions, it is applicable to ultrasonic flaw detection as a shoe material having low ultrasonic attenuation and flexibility.

保持部13は、たとえば金属製であって、超音波送受信素子11の背面および側面、ならびにシュー材12の側面を覆って、超音波送受信素子11およびシュー材12を保持している。   The holding unit 13 is made of metal, for example, and covers the back and side surfaces of the ultrasonic transmission / reception element 11 and the side surface of the shoe material 12 to hold the ultrasonic transmission / reception element 11 and the shoe material 12.

保持部13の先端には接触保護部14は、例えば樹脂製であり、保持部13に固定されている。超音波探触子10を被検査体16に向かって押し付けたときに、接触保護部14が被検査体16に接触する。超音波探触子10を被検査体16に押し付けた状態で移動させて被検査体16上を走査する際、樹脂等の柔らかい材料を用いた接触保護部14により、被検査体16が超音波探触子10との摩擦で傷つくことを防止できる。   The contact protection part 14 is made of, for example, resin at the tip of the holding part 13 and is fixed to the holding part 13. When the ultrasonic probe 10 is pressed toward the inspection object 16, the contact protection unit 14 contacts the inspection object 16. When the ultrasonic probe 10 is moved in a state of being pressed against the inspection object 16 to scan the inspection object 16, the inspection object 16 is ultrasonicated by the contact protection unit 14 using a soft material such as resin. It can prevent being damaged by friction with the probe 10.

シュー材12はほぼ直方体形状であって、シュー材12の先端部15の中央が、被検査体16の検査表面に向かって突出している。また、シュー材12の後端部17は平坦であって、超音波送受信素子11に密着している。   The shoe material 12 has a substantially rectangular parallelepiped shape, and the center of the tip portion 15 of the shoe material 12 protrudes toward the inspection surface of the inspection object 16. Further, the rear end portion 17 of the shoe material 12 is flat and is in close contact with the ultrasonic transmitting / receiving element 11.

シュー材12は先端部15に向かって徐々に細くなるようにテーパー部18が形成されている。   The shoe material 12 is formed with a tapered portion 18 so as to become gradually narrower toward the distal end portion 15.

また、図3および図4に示すように、超音波送受信素子2から発振する超音波の広がりの被検査体16の表面位置での幅SFよりもシュー材12の幅Wの方が大きい。   As shown in FIGS. 3 and 4, the width W of the shoe material 12 is larger than the width SF at the surface position of the inspected object 16 where the ultrasonic wave oscillated from the ultrasonic transmitting / receiving element 2 spreads.

この実施形態では、超音波探触子10を被検査体16に押し付けることによってシュー材12が柔軟に変形するので、被検査体16が複雑な形状であっても、図5に示すように、被検査体16とシュー材12を密着させることができる。また、超音波がシュー材12の内部を伝播するときの減衰が少ない。   In this embodiment, since the shoe material 12 is flexibly deformed by pressing the ultrasonic probe 10 against the inspection object 16, even if the inspection object 16 has a complicated shape, as shown in FIG. The inspection object 16 and the shoe material 12 can be brought into close contact with each other. Further, there is little attenuation when ultrasonic waves propagate through the shoe material 12.

さらに、超音波探触子10を被検査体16に押し付けるにあたり、初めにシュー材12の先端部15の突出部が被検査体16の表面に当たり、シュー材12が押しつぶされて変形するに従って、被検査体16とシュー材12との接触部が次第に拡大していって、先端部15全体が被検査体16の表面に密着する。そのため、被検査体16とシュー材12との接触部に気泡ができて超音波の伝播に障害が生じるのを防ぐことができる。   Furthermore, when the ultrasonic probe 10 is pressed against the object 16 to be inspected, the protrusion of the tip 15 of the shoe material 12 first hits the surface of the object 16 to be inspected as the shoe material 12 is crushed and deformed. The contact portion between the inspection body 16 and the shoe material 12 is gradually enlarged, and the entire tip portion 15 is in close contact with the surface of the inspection body 16. Therefore, it is possible to prevent bubbles from being generated at the contact portion between the object 16 to be inspected and the shoe material 12 and obstructing the propagation of ultrasonic waves.

また、シュー材12の先端部15にテーパー部18が形成されていることにより、シュー材12が被検査体16に押し付けられ押しつぶされたときに横に広がることができ、シュー材12の先端部15と被検査体16との接触に悪影響が生じるのを避けることができる。   Further, since the tapered portion 18 is formed at the distal end portion 15 of the shoe material 12, the shoe material 12 can be spread laterally when being pressed against the object 16 and crushed. It is possible to avoid an adverse effect on the contact between the test piece 15 and the test object 16.

一般に、シュー材12としてゲル材を適用する場合、高い柔軟性を持つことから圧縮性材料であると思われがちであるが、実際にはポアソン比は液体とほぼ等しく、押し付けてもほとんど体積変化しない非圧縮性材料である。このため、たとえば特許文献1に記載されたようにシュー材の先端部にテーパー部が形成されていない構造であると、たとえば被検査体の表面が平坦である場合でも、ホルダー内のゲルによるシュー材は、被検査体表面への押し付けに対してゲルの体積が逃れる場所がないことになり、シュー材と被検査体表面の接触部がきちんと接触できないという問題が生じる。   In general, when a gel material is applied as the shoe material 12, it tends to be considered to be a compressible material because of its high flexibility, but in reality, the Poisson's ratio is almost equal to that of a liquid, and the volume changes almost even when pressed. Not an incompressible material. For this reason, for example, as described in Patent Document 1, when the tip portion of the shoe material is not formed with a tapered portion, for example, even if the surface of the object to be inspected is flat, the shoe by the gel in the holder The material does not have a place where the gel volume escapes against pressing against the surface of the object to be inspected, and a problem arises in that the contact portion between the shoe material and the surface of the object to be inspected cannot be contacted properly.

この第1の実施形態では、シュー材12の先端部15にテーパー部18が形成されていることにより、シュー材12を押し付ける方向に対してゲルの体積を逃がすことができる。これにより、シュー材と被検査体表面との接触不良を防ぐことができる。   In the first embodiment, since the tapered portion 18 is formed at the distal end portion 15 of the shoe material 12, the gel volume can be released with respect to the direction in which the shoe material 12 is pressed. Thereby, contact failure with a shoe material and the to-be-inspected object surface can be prevented.

つぎに、この実施形態の効果を確認する試験の結果について説明する。   Next, the results of a test for confirming the effect of this embodiment will be described.

図6は、従来技術による厚さ30mmの硬質のポリスチレン製シュー材を用いて、音響接触媒質を塗布しない場合の超音波エコーの検出結果を示すタイムチャートである。この場合は、シュー材と被検査体との間の密着が不十分であるため、底面エコーを計測することができない。図7は図6の場合と同じポリスチレン製シューを用いて、さらに音響接触媒質を塗布した場合の超音波エコーの検出結果を示すタイムチャートである。この場合は、被検査体16の底面から反射する底面エコーB1およびその多重エコーを計測することができることがわかる。   FIG. 6 is a time chart showing detection results of ultrasonic echoes when a hard polystyrene shoe material having a thickness of 30 mm according to the prior art is used and no acoustic contact medium is applied. In this case, since the adhesion between the shoe material and the object to be inspected is insufficient, the bottom echo cannot be measured. FIG. 7 is a time chart showing the detection result of ultrasonic echoes when the acoustic contact medium is further applied using the same polystyrene shoe as in FIG. In this case, it can be seen that the bottom surface echo B1 reflected from the bottom surface of the device under test 16 and its multiple echoes can be measured.

図8は、第1の実施形態の超音波探触子によるポリスチレン系ゲルのシュー材を用いて音響接触媒質を塗布しない場合の超音波エコーの検出結果を示すタイムチャートである。この場合は、図7の場合と同様に、被検査体16の底面から反射する底面エコーB1およびその多重エコーを計測することができることがわかる。さらに、図9は、図8の場合と同じくこの実施形態のポリスチレン系ゲルのシュー材を用いて音響接触媒質を塗布した場合の超音波エコーの検出結果を示すタイムチャートである。この場合も、図7および図8の場合と同様に、底面エコーB1およびその多重エコーを計測することができることがわかる。   FIG. 8 is a time chart showing detection results of ultrasonic echoes when the acoustic contact medium is not applied using the polystyrene gel shoe material by the ultrasonic probe of the first embodiment. In this case, as in the case of FIG. 7, it can be seen that the bottom echo B1 reflected from the bottom surface of the inspection object 16 and its multiple echoes can be measured. Further, FIG. 9 is a time chart showing the detection result of the ultrasonic echo when the acoustic contact medium is applied using the polystyrene gel shoe material of this embodiment as in the case of FIG. Also in this case, it can be seen that the bottom echo B1 and its multiple echoes can be measured as in the case of FIGS.

すなわち、この実施形態によれば、音響接触媒質の塗布の有無にかかわらず、底面エコーB1およびその多重エコーを計測することができる。したがって、超音波探傷を行なうに当たって、音響接触媒質の塗布作業を省くことができる。   That is, according to this embodiment, the bottom echo B1 and its multiple echoes can be measured regardless of whether or not the acoustic contact medium is applied. Therefore, the application of the acoustic contact medium can be omitted when performing the ultrasonic flaw detection.

[第2の実施形態]
図10は、本発明に係る超音波探触子の第2の実施形態のシュー材の縦断面図であって、第1の実施形態の図2の方向から見た縦断面図である。
[Second Embodiment]
FIG. 10 is a longitudinal sectional view of the shoe material of the second embodiment of the ultrasonic probe according to the present invention, and is a longitudinal sectional view of the first embodiment viewed from the direction of FIG.

この実施形態では、シュー材12の先端部15が、長手方向中央の突出点20で最も突出するように傾斜している。   In this embodiment, the tip portion 15 of the shoe material 12 is inclined so as to protrude most at the protruding point 20 at the center in the longitudinal direction.

この実施形態では、シュー材12を被検査体16表面に押し付けるときに、初めにシュー材12の先端部15の突出点20が1点で被検査体16表面に接触する。シュー材12をさらに押し付けるに従って徐々にシュー材12が押しつぶされて変形して被検査体16表面との接触部が突出点20の周りに連続的に拡大していき、シュー材12の先端15の面全体が接触するようになる。このようにして、接触面に気泡が残るのを避けることができる。   In this embodiment, when the shoe material 12 is pressed against the surface of the object 16 to be inspected, first, the protruding point 20 of the tip 15 of the shoe material 12 contacts the surface of the object 16 to be inspected at one point. As the shoe material 12 is further pressed, the shoe material 12 is gradually crushed and deformed, and the contact portion with the surface of the object 16 to be inspected continuously expands around the protruding point 20. The entire surface comes into contact. In this way, bubbles can be avoided from remaining on the contact surface.

なお、第2の実施形態では、第1の実施形態に比べて、図1は共通で、図2に対応する図10は異なる形状とした。第2の実施形態の変形として、図1の方向から見た図で、シュー材12の先端部15が中央で突出していないものも可能である(図示省略)。この場合は、図10に示す長手方向中央の突出点20が図10の紙面に垂直な方向に直線的に延びた形状になる。その場合は、初めにシュー材12の先端15が被検査体16表面に接触するときは、長手方向中央の突出点20の1点でなくて、1本の線で接触することになる。そして、シュー材12を被検査体16にさらに押し付けていくと、シュー材12が押しつぶされて、接触部の線が次第に太くなっていく。この場合も接触面に気泡が残るのを避けることができる。   In the second embodiment, compared to the first embodiment, FIG. 1 is common and FIG. 10 corresponding to FIG. 2 has a different shape. As a modification of the second embodiment, it is possible to use the shoe member 12 in which the distal end portion 15 does not protrude at the center (not shown) as viewed from the direction of FIG. In this case, the projecting point 20 at the center in the longitudinal direction shown in FIG. 10 is linearly extended in a direction perpendicular to the paper surface of FIG. In that case, when the tip 15 of the shoe material 12 first comes into contact with the surface of the object 16 to be inspected, it comes into contact with one line instead of one point of the projecting point 20 at the center in the longitudinal direction. When the shoe material 12 is further pressed against the object 16 to be inspected, the shoe material 12 is crushed and the line of the contact portion becomes gradually thicker. In this case as well, it is possible to avoid bubbles remaining on the contact surface.

[第3の実施形態]
図11は本発明に係る超音波探触子の第3の実施形態のシュー材の縦断面図であり、図12は図11のXII−XII線矢視断面図である。
[Third Embodiment]
FIG. 11 is a longitudinal sectional view of the shoe material of the third embodiment of the ultrasonic probe according to the present invention, and FIG. 12 is a sectional view taken along the line XII-XII in FIG.

第1および第2の実施形態のシュー材12は横方向に長い略直方体であるとしたが、この第3の実施形態では、シュー材12が略正四角柱形状である。シュー材12の先端部15は、中央の一点の突出点20で最も突出するように傾斜している。   Although the shoe material 12 of the first and second embodiments is a substantially rectangular parallelepiped that is long in the lateral direction, in this third embodiment, the shoe material 12 has a substantially regular quadrangular prism shape. The tip portion 15 of the shoe material 12 is inclined so as to protrude most at a single protruding point 20 in the center.

この第3の実施形態では、第2の実施形態と同様に、シュー材12を被検査体16表面に押し付けるときに、初めにシュー材12の先端15の中央の突出点20が1点で被検査体16表面に接触し、さらに、シュー材12が押しつぶされて変形して被検査体16表面との接触部が中央の突出点20の周りに連続的に拡大していき、シュー材12の先端15の面全体が接触するようになる。このようにして、接触面に気泡が残るのを避けることができる。   In the third embodiment, as in the second embodiment, when the shoe material 12 is pressed against the surface of the object to be inspected 16, first, the projection point 20 at the center of the tip 15 of the shoe material 12 is covered by one point. The contact with the surface of the inspection object 16, and the shoe material 12 is crushed and deformed, and the contact portion with the surface of the inspection object 16 continuously expands around the central protruding point 20. The entire surface of the tip 15 comes into contact. In this way, bubbles can be avoided from remaining on the contact surface.

[第4の実施形態]
図13は本発明に係る超音波探触子の第4の実施形態のシュー材の縦断面図であり、図14は図13のXIV線矢視側面図である。
[Fourth Embodiment]
FIG. 13 is a longitudinal sectional view of a shoe material according to a fourth embodiment of the ultrasonic probe according to the present invention, and FIG. 14 is a side view taken along line XIV in FIG.

この第4の実施形態では、シュー材12は、第3の実施形態と同様にほぼ正四角柱形状である。シュー材12の先端15は、その中央ではなくて、端部の一点の突出点21が最も突出するように傾斜している。   In the fourth embodiment, the shoe material 12 has a substantially regular quadrangular prism shape as in the third embodiment. The tip 15 of the shoe material 12 is not centered but inclined so that one protruding point 21 at the end protrudes most.

この第4の実施形態では、シュー材12を被検査体16表面に押し付けるときに、初めにシュー材12の先端15の端部の突出点21が一点で被検査体16表面に接触し、さらに、シュー材12が押しつぶされて変形して被検査体16表面との接触部が点21から順次連続的に拡大していき、シュー材12の先端15の面全体が接触するようになる。このようにして、接触面に気泡が残るのを避けることができる。   In the fourth embodiment, when the shoe material 12 is pressed against the surface of the object 16 to be inspected, the protruding point 21 at the end of the tip 15 of the shoe material 12 first contacts the surface of the object 16 to be inspected. Then, the shoe material 12 is crushed and deformed, and the contact portion with the surface of the object 16 to be inspected successively expands sequentially from the point 21 so that the entire surface of the tip 15 of the shoe material 12 comes into contact. In this way, bubbles can be avoided from remaining on the contact surface.

[第5の実施形態]
図15は本発明に係る超音波探触子の第5の実施形態のシュー材の縦断面図であって、図16は図15のXVI−XVI線矢視側断面図である。
[Fifth Embodiment]
FIG. 15 is a longitudinal sectional view of the shoe material of the fifth embodiment of the ultrasonic probe according to the present invention, and FIG. 16 is a sectional side view taken along line XVI-XVI in FIG.

この第5の実施形態では、被検査体16の検査対象部の表面が凹面であり、シュー材12の先端部15は、この被検査体16の検査対象部の表面に適合して長手方向に湾曲した凸面をなしていて、しかも、シュー材12の先端部15の長手方向に沿ってその中央に線状の突出部22が形成されている。シュー材12の先端部15が被検査体16の検査対象部の表面に接触するときに、初めに、この線状の突出部22が被検査体16の検査対象部の表面と接触し、シュー材12をさらに押し付けていくと、シュー材12が押しつぶされて被検査体16との接触部の幅が次第に拡大していき、面接触となる。   In the fifth embodiment, the surface of the inspection target portion of the inspection object 16 is a concave surface, and the tip portion 15 of the shoe material 12 conforms to the surface of the inspection target portion of the inspection object 16 in the longitudinal direction. A curved projecting surface is formed, and a linear projecting portion 22 is formed at the center along the longitudinal direction of the distal end portion 15 of the shoe material 12. When the distal end portion 15 of the shoe material 12 comes into contact with the surface of the inspection target portion of the object 16 to be inspected, first, the linear protrusion 22 comes into contact with the surface of the inspection target portion of the object 16 to be inspected. As the material 12 is further pressed, the shoe material 12 is crushed and the width of the contact portion with the object 16 is gradually enlarged, resulting in surface contact.

この第5の実施形態では、被検査体16の検査対象部の表面が凹面である場合に、第1ないし第4の実施形態と同様に、接触面に気泡が残るのを避けることができる。   In the fifth embodiment, when the surface of the inspection target portion of the inspection object 16 is a concave surface, it is possible to avoid bubbles from remaining on the contact surface as in the first to fourth embodiments.

[第6の実施形態]
図17は本発明に係る超音波探触子の第6の実施形態のシュー材の縦断面図であって、図18は図17のXVIII−XVIII線矢視断面図である。
[Sixth Embodiment]
FIG. 17 is a longitudinal sectional view of the shoe material of the sixth embodiment of the ultrasonic probe according to the present invention, and FIG. 18 is a sectional view taken along line XVIII-XVIII in FIG.

この第6の実施形態では、第5の実施形態と同様に、被検査体16の検査対象部の表面が凹面であり、シュー材12の先端部15は、この被検査体16の検査対象部の表面に適合して長手方向に湾曲した凸面をなしている。そして、被検査体16の検査対象部の表面が凹面の曲率半径はシュー材12の先端部15の凸面の曲率半径よりも大きい。そのため、シュー材12の先端部15が被検査体16の検査対象部の表面に接触するときに、初めに、シュー材12の先端部15の長手方向の一か所で、長手方向に垂直な方向には短い1本の線状の突出部22が被検査体16の検査対象部の表面と接触する。シュー材12をさらに押し付けていくと、シュー材12が押しつぶされて被検査体16との接触部の幅が次第に拡大していき、面接触となる。   In the sixth embodiment, similarly to the fifth embodiment, the surface of the inspection target portion of the inspection object 16 is a concave surface, and the tip portion 15 of the shoe material 12 is the inspection target portion of the inspection object 16. A convex surface curved in the longitudinal direction in conformity with the surface of the film. The curvature radius of the concave surface of the inspection target portion of the inspection object 16 is larger than the curvature radius of the convex surface of the tip portion 15 of the shoe material 12. Therefore, when the distal end portion 15 of the shoe material 12 comes into contact with the surface of the inspection target portion of the object 16 to be inspected, first, the longitudinal direction of the distal end portion 15 of the shoe material 12 is perpendicular to the longitudinal direction. One linear protrusion 22 that is short in the direction comes into contact with the surface of the inspection target portion of the inspection object 16. When the shoe material 12 is further pressed, the shoe material 12 is crushed and the width of the contact portion with the object to be inspected 16 gradually increases, and surface contact occurs.

この第6の実施形態では、第5の実施形態と同様に、被検査体16の検査対象部の表面が凹面である場合に、接触面に気泡が残るのを避けることができる。   In the sixth embodiment, as in the fifth embodiment, it is possible to avoid bubbles remaining on the contact surface when the surface of the inspection target portion of the inspection object 16 is a concave surface.

[第7の実施形態]
図19は、本発明に係る超音波探触子の第7の実施形態のシュー材とそれに対向する被検査体表面付近を示す模式的断面図である。
[Seventh Embodiment]
FIG. 19 is a schematic cross-sectional view showing the shoe material of the seventh embodiment of the ultrasonic probe according to the present invention and the vicinity of the surface of the object to be inspected.

この実施形態では、被検査体16の検査対象部の表面が凹面の曲率半径Rの球面であって、シュー材12の先端部15表面は凸面の曲率半径rの球面である。ここで、凹面の曲率半径Rは、凸面の曲率半径rよりも大きい。これにより、シュー材12の先端部15を被検査体16の検査対象部の表面に接触させて押し付けるときに、初めに、シュー材12の先端部15の一点40で接触し、その後、シュー材12をさらに押し付けて押しつぶしていくと、最初の接触点の周りに接触部が次第に拡大していき、接触面に気泡が残るのを避けることができる。   In this embodiment, the surface of the inspection target portion of the inspection object 16 is a spherical surface with a concave curvature radius R, and the surface of the tip portion 15 of the shoe material 12 is a spherical surface with a convex curvature radius r. Here, the curvature radius R of the concave surface is larger than the curvature radius r of the convex surface. Thus, when the tip portion 15 of the shoe material 12 is brought into contact with and pressed against the surface of the inspection target portion of the object 16 to be inspected, the shoe material 12 is first contacted at one point 40 of the tip portion 15 of the shoe material 12 and then the shoe material. When 12 is further pressed and crushed, the contact portion gradually expands around the first contact point, and bubbles can be prevented from remaining on the contact surface.

上記説明では、被検査体16の検査対象部の表面とシュー材12の先端部15表面がともに球面であるとした。この実施形態の変形例として、被検査体16の検査対象部の表面が凹面の曲率半径Rの円柱面(円筒面)であって、シュー材12の先端部15表面は凸面の曲率半径rの円柱面であってもよい。この場合は、初めに、シュー材12の先端部15の一直線上で接触し、その後、シュー材12をさらに押し付けて押しつぶしていくと、最初の接触直線の幅方向に接触部が次第に拡大していき、接触面に気泡が残るのを避けることができる。   In the above description, it is assumed that the surface of the inspection target portion of the inspection object 16 and the surface of the tip portion 15 of the shoe material 12 are both spherical. As a modification of this embodiment, the surface of the inspection target portion of the inspection object 16 is a cylindrical surface (cylindrical surface) with a concave curvature radius R, and the tip portion 15 surface of the shoe material 12 has a convex curvature radius r. It may be a cylindrical surface. In this case, when the shoe material 12 is first contacted on the straight line 15 and then further pressed and crushed, the contact portion gradually expands in the width direction of the first contact line. It is possible to avoid leaving bubbles on the contact surface.

[第8の実施形態]
図20は、本発明に係る超音波探触子の第8の実施形態のシュー材とそれに対向する被検査体表面付近を示す模式的断面図である。
[Eighth Embodiment]
FIG. 20 is a schematic sectional view showing the shoe material of the eighth embodiment of the ultrasonic probe according to the present invention and the vicinity of the surface of the object to be inspected facing the shoe material.

この実施形態では、被検査体16の検査対象部の表面が凸面の曲率半径Rの球面であって、シュー材12の先端部15表面は凹面の曲率半径rの球面である。ここで、凹面の曲率半径rは、凸面の曲率半径Rよりも大きい。この実施形態でも、第7の実施形態と同様の効果を得ることができる。また、この実施形態でも、接触面が球面の代わりに円柱面であってもよい。   In this embodiment, the surface of the inspection target portion of the inspection object 16 is a spherical surface with a convex curvature radius R, and the tip portion 15 surface of the shoe material 12 is a spherical surface with a concave curvature radius r. Here, the radius of curvature r of the concave surface is larger than the radius of curvature R of the convex surface. Also in this embodiment, the same effect as in the seventh embodiment can be obtained. Also in this embodiment, the contact surface may be a cylindrical surface instead of a spherical surface.

なお、被検査体16の検査対象部の表面が図20に示すような凸面である場合は、シュー材12の先端部15表面は、必ずしも凹面でなくても、平面または凸面であってもよい。   When the surface of the inspection target portion of the inspection object 16 is a convex surface as shown in FIG. 20, the surface of the tip portion 15 of the shoe material 12 may not necessarily be a concave surface but may be a flat surface or a convex surface. .

[第9の実施形態]
図21は本発明に係る超音波探触子の第9の実施形態の断面図であり、シュー材12の先端が被検査体16の対象表面に押し付けられてわずかに変形した状態を示す図である。図22は図21の超音波探触子10が被検査体16の対象表面にさらに押し付けられた状況を示す断面図である。
[Ninth Embodiment]
FIG. 21 is a cross-sectional view of the ninth embodiment of the ultrasonic probe according to the present invention, and shows a state where the tip of the shoe material 12 is slightly deformed by being pressed against the target surface of the inspection object 16. is there. FIG. 22 is a cross-sectional view showing a state in which the ultrasonic probe 10 of FIG. 21 is further pressed against the target surface of the inspection object 16.

この実施形態は第1の実施形態の変形例であって、第1の実施形態の接触保護部14(図1)がないものである。   This embodiment is a modification of the first embodiment, and does not include the contact protection part 14 (FIG. 1) of the first embodiment.

図21および図22に示すように、シュー材12の先端が被検査体16の対象表面に押し付けられて変形したときに、シュー材12の一部がテーパー部18に逃げることができるので、シュー材12と被検査体16の表面が密着する。   As shown in FIGS. 21 and 22, when the tip of the shoe material 12 is pressed against the target surface of the object 16 to be deformed, a part of the shoe material 12 can escape to the tapered portion 18. The material 12 and the surface of the inspection object 16 are in close contact with each other.

[第10の実施形態]
図23は本発明に係る超音波探触子の第10の実施形態の断面図である。この実施形態は第9の実施形態の変形であって、テーパー部18がシュー材12の先端部15から後端部17まで延びている。この実施形態では、第9の実施形態よりもさらに、シュー材12の側面と保持部13との間の空間が大きくなっている。この場合も、シュー材12の先端が被検査体16の対象表面に押し付けられて変形したときに、シュー材12の一部がテーパー部18に逃げることができる。
[Tenth embodiment]
FIG. 23 is a cross-sectional view of the tenth embodiment of the ultrasonic probe according to the present invention. This embodiment is a modification of the ninth embodiment, and the tapered portion 18 extends from the front end portion 15 to the rear end portion 17 of the shoe material 12. In this embodiment, the space between the side surface of the shoe material 12 and the holding portion 13 is larger than that in the ninth embodiment. Also in this case, when the tip of the shoe material 12 is pressed against the target surface of the object 16 to be deformed, a part of the shoe material 12 can escape to the tapered portion 18.

[第11の実施形態]
図24は、本発明に係る超音波探触子の第11の実施形態の断面図であり、超音波探触子の先端が被検査体表面から離れた状態を示す図である。図25は図24の超音波探触子が被検査対象表面に押し付けられた状況を示す断面図である。
[Eleventh embodiment]
FIG. 24 is a cross-sectional view of the eleventh embodiment of the ultrasonic probe according to the present invention, showing a state where the tip of the ultrasonic probe is separated from the surface of the object to be inspected. FIG. 25 is a cross-sectional view showing a situation where the ultrasonic probe of FIG. 24 is pressed against the surface to be inspected.

この実施形態は第9の実施形態(図21、図22)の変形例であって、シュー材12にテーパー部18を設ける代わりに、シュー材12の先端部15近くの周囲に位置する保持部13側壁が、先端部に向かって外側に広がった拡大部23を形成している。   This embodiment is a modification of the ninth embodiment (FIGS. 21 and 22), and instead of providing the shoe material 12 with the tapered portion 18, the holding portion located around the tip portion 15 of the shoe material 12 is provided. 13 side walls form an enlarged portion 23 that spreads outward toward the tip.

図25に示すように、シュー材12の先端が被検査体16の対象表面に押し付けられて変形したときに、シュー材12の一部が保持部13の拡大部23に逃げることができるので、シュー材12と被検査体16の表面が密着する。   As shown in FIG. 25, when the tip of the shoe material 12 is pressed against the target surface of the object 16 to be deformed, a part of the shoe material 12 can escape to the enlarged portion 23 of the holding portion 13, The shoe material 12 and the surface of the inspection object 16 are in close contact with each other.

[第12の実施形態]
図26は、本発明に係る超音波探触子の第12の実施形態を示す図である。図27のXXVI−のXXVI線矢視横断面図である。図27は図26のXXVII−XXVII線矢視縦断面図である。
[Twelfth embodiment]
FIG. 26 is a diagram showing a twelfth embodiment of the ultrasonic probe according to the present invention. FIG. 28 is a cross-sectional view taken along line XXVI-XX in FIG. 27 is a longitudinal sectional view taken along line XXVII-XXVII in FIG.

この実施形態は、たとえば第9の実施形態(図21、図22)の変形であって、シュー材12はほぼ正四角柱であって、保持部13側壁が4面のうちの1面に切り欠き部24が形成されている。   This embodiment is, for example, a modification of the ninth embodiment (FIGS. 21 and 22), in which the shoe material 12 is a substantially square prism, and the side wall of the holding portion 13 is notched in one of the four surfaces. A portion 24 is formed.

この実施形態では、シュー材12の先端が被検査体16の対象表面に押し付けられて変形したときに、シュー材12の一部が保持部13の切り欠き部24に逃げることができるので、シュー材12と被検査体16の表面が密着する。   In this embodiment, when the tip of the shoe material 12 is pressed against the target surface of the object 16 to be deformed, a part of the shoe material 12 can escape to the cutout portion 24 of the holding portion 13. The material 12 and the surface of the inspection object 16 are in close contact with each other.

[第13の実施形態]
図28は本発明に係る超音波探触子の第13の実施形態のシュー材の縦断面図である。この実施形態では、シュー材12の側面に超音波散乱部30を設ける。超音波散乱部30はゲル材と同等の材料または他の材料とする。
[Thirteenth embodiment]
FIG. 28 is a longitudinal sectional view of the shoe material of the thirteenth embodiment of the ultrasonic probe according to the present invention. In this embodiment, the ultrasonic scattering unit 30 is provided on the side surface of the shoe material 12. The ultrasonic scattering unit 30 is made of a material equivalent to the gel material or other material.

この実施形態によれば、シュー材12内部で発生する超音波の反射や散乱によるノイズを低減することができる。   According to this embodiment, noise due to reflection or scattering of ultrasonic waves generated inside the shoe material 12 can be reduced.

[第14の実施形態]
図29は本発明に係る超音波探触子の第14の実施形態のシュー材の縦断面図である。この実施形態では、シュー材12の側面に超音波吸収部31を設ける。超音波吸収部31はゲル材3と音響インピーダンスが近く、超音波減衰がゲル材の減衰より大きいものとする。
[Fourteenth embodiment]
FIG. 29 is a longitudinal sectional view of the shoe material of the fourteenth embodiment of the ultrasonic probe according to the present invention. In this embodiment, the ultrasonic absorption part 31 is provided on the side surface of the shoe material 12. It is assumed that the ultrasonic absorber 31 has an acoustic impedance close to that of the gel material 3 and the ultrasonic attenuation is larger than that of the gel material.

この実施形態によれば、シュー材12内部で発生する超音波の反射や散乱によるノイズを低減することができる。   According to this embodiment, noise due to reflection or scattering of ultrasonic waves generated inside the shoe material 12 can be reduced.

[第15の実施形態]
図30は本発明に係る超音波探触子の第15の実施形態のシュー材の縦断面図である。この実施形態は第13および第14の実施形態の特徴を組み合わせたものであって、シュー材12の側面に、超音波散乱部30と超音波吸収部31の両方を設ける。
[Fifteenth embodiment]
FIG. 30 is a longitudinal sectional view of the shoe material of the fifteenth embodiment of the ultrasonic probe according to the present invention. This embodiment is a combination of the features of the thirteenth and fourteenth embodiments, and both the ultrasonic scattering unit 30 and the ultrasonic absorption unit 31 are provided on the side surface of the shoe material 12.

この実施形態によれば、シュー材12内部で発生する超音波の反射や散乱によるノイズを低減することができる。   According to this embodiment, noise due to reflection or scattering of ultrasonic waves generated inside the shoe material 12 can be reduced.

[第16の実施形態]
図31は本発明に係る超音波探触子の第16の実施形態の断面図である。この実施形態は第1の実施形態の変形であって、保持部13のうちのシュー材12側面を取り囲む部分の外側に、第13の実施形態(図28)と同様の超音波散乱部30を設ける。
[Sixteenth Embodiment]
FIG. 31 is a cross-sectional view of the sixteenth embodiment of the ultrasonic probe according to the present invention. This embodiment is a modification of the first embodiment, and an ultrasonic scattering unit 30 similar to that of the thirteenth embodiment (FIG. 28) is provided outside the portion surrounding the side surface of the shoe material 12 in the holding unit 13. Provide.

この実施形態によれば、シュー材12内部で発生する超音波の反射や散乱によるノイズを低減することができる。   According to this embodiment, noise due to reflection or scattering of ultrasonic waves generated inside the shoe material 12 can be reduced.

[第17の実施形態]
図32は本発明に係る超音波探触子の第17の実施形態の断面図である。この実施形態は第16の実施形態の変形であって、保持部13のうちのシュー材12側面を取り囲む部分の外側に、第15の実施形態(図30)と同様の超音波散乱部30と超音波吸収部31の両方を設ける。
[Seventeenth embodiment]
FIG. 32 is a cross-sectional view of the seventeenth embodiment of the ultrasonic probe according to the present invention. This embodiment is a modification of the sixteenth embodiment, and an ultrasonic scattering unit 30 similar to the fifteenth embodiment (FIG. 30) is provided outside the portion surrounding the side surface of the shoe material 12 in the holding unit 13. Both ultrasonic absorbers 31 are provided.

この実施形態によれば、シュー材12内部で発生する超音波の反射や散乱によるノイズを低減することができる。   According to this embodiment, noise due to reflection or scattering of ultrasonic waves generated inside the shoe material 12 can be reduced.

なお、この実施形態の変形として、保持部13のうちのシュー材12側面を取り囲む部分の外側に、第14の実施形態(図29)と同様の超音波吸収部31のみを設けてもよい(図示せず)。   As a modification of this embodiment, only the ultrasonic absorbing portion 31 similar to that of the fourteenth embodiment (FIG. 29) may be provided outside the portion surrounding the side surface of the shoe material 12 in the holding portion 13 ( Not shown).

[第18の実施形態]
図33は本発明に係る超音波探触子の第18の実施形態の断面図である。この実施形態はたとえば第1の実施形態の変形であって、シュー材12の後端部17すなわち超音波送受信素子11に対向する面が凸曲面をなしている。
[Eighteenth Embodiment]
FIG. 33 is a sectional view of an eighteenth embodiment of the ultrasonic probe according to the present invention. This embodiment is a modification of the first embodiment, for example, and the rear end portion 17 of the shoe material 12, that is, the surface facing the ultrasonic transmitting / receiving element 11 forms a convex curved surface.

この実施形態によれば、超音波送受信素子11とシュー材12との接触界面に気泡が生じることを防止することができる。   According to this embodiment, it is possible to prevent bubbles from being generated at the contact interface between the ultrasonic transmitting / receiving element 11 and the shoe material 12.

[他の実施形態]
以上説明した各実施形態は単なる例示であって、本発明はこれらに限定されるものではない。
[Other Embodiments]
Each embodiment described above is merely an example, and the present invention is not limited thereto.

たとえば、上記超音波探触子10は素子数が1個の単プローブや、1次元的に配列されたアレイセンサや、2次元的に配列されたマトリクスセンサであってもよい。   For example, the ultrasonic probe 10 may be a single probe having one element, an array sensor arranged one-dimensionally, or a matrix sensor arranged two-dimensionally.

また、上記各実施形態の特徴を種々に組み合わせてもよい。   Moreover, you may combine the characteristic of each said embodiment variously.

10 超音波探触子
11 超音波送受信素子
12 シュー材
13 保持部(ホルダー)
14 接触保護部
15 先端部
16 被検査体
17 後端部
18 テーパー部
20、21 突出点
23 拡大部
24 切り欠き部
30 超音波散乱部
31 超音波吸収部
DESCRIPTION OF SYMBOLS 10 Ultrasonic probe 11 Ultrasonic transmitting / receiving element 12 Shoe material 13 Holding part (holder)
14 Contact protection part 15 Front end part 16 Test object 17 Rear end part 18 Tapered part 20, 21 Projection point 23 Enlarged part 24 Notch part 30 Ultrasonic scattering part 31 Ultrasonic absorption part

Claims (12)

被検査体の超音波探傷を行うための超音波を発振して受信する超音波送受信素子と、
前記超音波送受信素子と前記被検査体の間に介在して、高分子が架橋されて3次元網目構造をなして液体成分を吸収して膨潤した固体状の材料である高分子ゲル材料によって超音波の伝播路を形成するシュー材と、
を有する超波探触子であって、
前記シュー材が被検査体に当たる部分が、被検査体に当たる方向に向かって凸面を形成していることを特徴とする超音波探触子。
An ultrasonic transmission / reception element that oscillates and receives ultrasonic waves for performing ultrasonic flaw detection on an object to be inspected;
The polymer gel material, which is a solid material that is interspersed between the ultrasonic transmitting / receiving element and the object to be inspected to form a three-dimensional network structure by absorbing a liquid component and swelled, is crosslinked. A shoe material that forms a propagation path of sound waves;
An ultrasonic probe having
An ultrasonic probe characterized in that a portion of the shoe material that contacts the object to be inspected forms a convex surface in a direction that contacts the object to be inspected.
前記被検査体の超音波探傷となる部分の表面が凹面である場合に、前記シュー材が被検査体に当たる部分が、前記被検査体の超音波探傷の対象となる部分の表面の曲率半径よりも小さい曲率半径の凸面であること、を特徴とする請求項1に記載の超音波探触子。   When the surface of the part to be inspected for ultrasonic inspection of the object to be inspected is concave, the part where the shoe material hits the object to be inspected is based on the radius of curvature of the surface of the part to be inspected for ultrasonic inspection of the object to be inspected. The ultrasonic probe according to claim 1, wherein the ultrasonic probe has a small curvature radius. 被検査体の超音波探傷を行うための超音波を発振してかつ受信する超音波送受信素子と、
前記超音波送受信素子と前記被検査体の間に介在して、高分子が架橋されて3次元網目構造をなして液体成分を吸収して膨潤した固体状の材料である高分子ゲル材料によって超音波の伝播路を形成するシュー材と、
を有する超波探触子において、
前記被検査体の超音波探傷の対象となる部分の表面が凸面であって、前記シュー材が被検査体に当たる部分が、前記被検査体の超音波探傷の対象となる部分の表面の曲率半径よりも大きい曲率半径の凹面であること、を特徴とする超音波探触子。
An ultrasonic transmission / reception element that oscillates and receives ultrasonic waves for ultrasonic testing of an object to be inspected;
The polymer gel material, which is a solid material that is interspersed between the ultrasonic transmitting / receiving element and the object to be inspected to form a three-dimensional network structure by absorbing a liquid component and swelled, is crosslinked. A shoe material that forms a propagation path of sound waves;
In the ultrasonic probe having
The radius of curvature of the surface of the portion of the inspection object to be subjected to ultrasonic flaw detection is such that the surface of the portion of the inspection object to be subjected to ultrasonic flaw detection is a convex surface, An ultrasonic probe characterized by being a concave surface having a larger radius of curvature.
前記シュー材は、前記超音波送受信素子から発信する超音波の広がり以上の幅を持つことを特徴とする請求項1ないし請求項3のいずれか一項に記載の超音波探触子。   4. The ultrasonic probe according to claim 1, wherein the shoe material has a width equal to or greater than a spread of an ultrasonic wave transmitted from the ultrasonic transmission / reception element. 5. 前記シュー材の、前記超音波送受信素子と前記被検査体に当たる面とを結ぶ直線からそれた側面に設けられ、超音波を散乱させる超音波散乱部を有すること、を特徴とする請求項1ないし請求項4のいずれか一項に記載の超音波探触子。   2. An ultrasonic scattering unit that scatters ultrasonic waves, provided on a side surface of the shoe material that is separated from a straight line that connects the ultrasonic transmitting / receiving element and a surface that contacts the object to be inspected. The ultrasonic probe according to claim 4. 前記シュー材の、前記超音波送受信素子と前記被検査体に当たる面とを結ぶ直線からそれた側面に設けられ、超音波を吸収する超音波吸収部を有すること、を特徴とする請求項1ないし請求項5のいずれか一項に記載の超音波探触子。   2. An ultrasonic wave absorbing portion that is provided on a side surface of the shoe material that is deviated from a straight line connecting the ultrasonic transmitting / receiving element and a surface that contacts the object to be inspected, and that absorbs ultrasonic waves. The ultrasonic probe according to claim 5. 前記超音波送受信素子と前記被検査体に当たる面とを結ぶ直線からそれた側面を囲んで前記シュー材を保持する保持部を有し、
前記超音波送受信素子を前記被検査体に当てて押し付けたときに前記シュー材が前記側面に向かって広がる変形を許容する隙間空間が、前記シュー材と前記保持部との間に形成されていること、を特徴とする請求項6に記載の超音波探触子。
A holding portion for holding the shoe material surrounding a side face deviating from a straight line connecting the ultrasonic transmission / reception element and a surface that contacts the object to be inspected;
A gap space is formed between the shoe material and the holding portion that allows the shoe material to deform toward the side surface when the ultrasonic transmitting / receiving element is pressed against the object to be inspected. The ultrasonic probe according to claim 6.
前記シュー材は、前記被検査体に当たる面に向かって徐々に細くなるように形成されていること、を特徴とする請求項7に記載の超音波探触子。   The ultrasonic probe according to claim 7, wherein the shoe material is formed so as to gradually become thinner toward a surface that contacts the object to be inspected. 前記保持部は、前記被検査体に向かって徐々に広がるように形成されていること、を特徴とする請求項7に記載の超音波探触子。   The ultrasonic probe according to claim 7, wherein the holding portion is formed so as to gradually spread toward the object to be inspected. 前記保持部の、前記シュー材に向う側と反対向きの側面に設けられ、超音波を散乱させる超音波散乱部を有すること、を特徴とする請求項7ないし請求項9のいずれか一項に記載の超音波探触子。   10. The ultrasonic wave scattering unit according to claim 7, further comprising an ultrasonic wave scattering unit that is provided on a side surface of the holding unit opposite to the side facing the shoe material and scatters ultrasonic waves. Ultrasonic probe. 前記保持部の、前記シュー材に向う側と反対向きの側面に設けられ、超音波を吸収する超音波する部を有すること、を特徴とする請求項7ないし請求項9のいずれか一項に記載の超音波探触子。   10. The ultrasonic wave absorbing portion according to claim 7, wherein the holding portion is provided on a side surface opposite to the side facing the shoe material, and has an ultrasonic wave absorbing portion. 10. Ultrasonic probe. 超音波を発振して受信する超音波送受信素子と超音波を伝播させるシュー材とを有する超波探触子を前記被検査体に押し付けて、前記超音波送受信素子で発振した超音波を前記シュー材を介して前記被検査体に伝播させ、前記被検査体で反射した超音波を前記シュー材を介して前記超波探触子で受信することによって被検査体の探傷を行う超音波探傷方法であって、
前記シュー材は、前記超音波送受信素子と前記被検査体の間に介在して、高分子が架橋されて3次元網目構造をなして液体成分を吸収して膨潤した固体状の材料である高分子ゲル材料によって超音波の伝播路を形成するものであり、
前記超波探触子を前記被検査体に押し付けるにあたり、初めは前記被検査体の表面の一か所の初期接触部が前記シュー材の一か所の初期接触部と接触し、さらに押し付けを進めることによって前記シュー材が変形して、接触部が前記初期接触部の周縁から連続して順次広がるようにして前記シュー材と前記被検査体とを接触させること、
を特徴とする超音波探傷方法。
An ultrasonic probe having an ultrasonic transmitting / receiving element that oscillates and receives ultrasonic waves and a shoe material that propagates ultrasonic waves is pressed against the object to be inspected, and the ultrasonic waves oscillated by the ultrasonic transmitting / receiving element are applied to the shoe. Ultrasonic flaw detection method for flaw detection of inspection object by propagating to inspection object through material and receiving ultrasonic wave reflected by said inspection object with said ultrasonic probe via said shoe material Because
The shoe material is a solid material that is interposed between the ultrasonic transmitting / receiving element and the object to be inspected and is a solid material that is swelled by absorbing a liquid component by crosslinking a polymer to form a three-dimensional network structure. Ultrasonic wave propagation path is formed by molecular gel material,
In pressing the ultrasonic probe against the object to be inspected, an initial contact portion at one location on the surface of the object to be inspected first comes into contact with an initial contact portion at one location on the shoe material. The shoe material is deformed by advancing, and the shoe material and the object to be inspected are brought into contact so that the contact portion continuously spreads sequentially from the periphery of the initial contact portion;
Ultrasonic flaw detection method characterized by.
JP2010136231A 2010-06-15 2010-06-15 Ultrasonic probe and ultrasonic flaw detection method Active JP5542534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010136231A JP5542534B2 (en) 2010-06-15 2010-06-15 Ultrasonic probe and ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010136231A JP5542534B2 (en) 2010-06-15 2010-06-15 Ultrasonic probe and ultrasonic flaw detection method

Publications (2)

Publication Number Publication Date
JP2012002586A true JP2012002586A (en) 2012-01-05
JP5542534B2 JP5542534B2 (en) 2014-07-09

Family

ID=45534761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010136231A Active JP5542534B2 (en) 2010-06-15 2010-06-15 Ultrasonic probe and ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JP5542534B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032360A (en) * 2010-08-03 2012-02-16 Ihi Inspection & Instrumentation Co Ltd Contact structure for ultrasonic probe
JP2015021742A (en) * 2013-07-16 2015-02-02 アイシン精機株式会社 Ultrasonic inspection device
JP2015111076A (en) * 2013-12-06 2015-06-18 三菱重工業株式会社 Ultrasonic flaw detector
KR101564645B1 (en) 2014-05-27 2015-11-02 한양대학교 산학협력단 Couplant pad for ultrasonic transducer and ultrasonic meter using the same of
KR101751958B1 (en) 2017-03-30 2017-06-30 주식회사 장민이엔씨 Test probe holder for concrete testing and test apparatus comprising the same
KR101751959B1 (en) 2017-03-30 2017-06-30 주식회사 장민이엔씨 Test probe holder for concrete testing and test apparatus comprising the same
KR101752479B1 (en) 2017-01-03 2017-07-03 주식회사 장민이엔씨 Test probe holder for concrete testing and test apparatus comprising the same
JP2018136159A (en) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 Weld zone inspection device
EP3261548A4 (en) * 2015-02-25 2019-07-31 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
JP2020098167A (en) * 2018-12-19 2020-06-25 日本製鉄株式会社 Ultrasonic wave flaw sensor
WO2020235529A1 (en) * 2019-05-20 2020-11-26 三菱パワー株式会社 Ultrasonic testing device, and testing method
WO2021038106A1 (en) * 2019-08-29 2021-03-04 M & H Inprocess Messtechnik Gmbh Ultrasonic measuring unit
CN112697878A (en) * 2020-11-11 2021-04-23 苏州通富超威半导体有限公司 Ultrasonic scanning apparatus and ultrasonic scanning method
US10993699B2 (en) 2011-10-28 2021-05-04 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
US11096661B2 (en) 2013-09-13 2021-08-24 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
US11154274B2 (en) 2019-04-23 2021-10-26 Decision Sciences Medical Company, LLC Semi-rigid acoustic coupling articles for ultrasound diagnostic and treatment applications
US11520043B2 (en) 2020-11-13 2022-12-06 Decision Sciences Medical Company, LLC Systems and methods for synthetic aperture ultrasound imaging of an object
US11737726B2 (en) 2015-10-08 2023-08-29 Decision Sciences Medical Company, LLC Acoustic orthopedic tracking system and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190854A (en) * 1983-12-19 1985-09-28 ザ・バブコツク・アンド・ウイルコツクス・カンパニ− Acoustic device and method for detecting presence of gas in sealed space
JPH02243137A (en) * 1989-03-17 1990-09-27 Toyo Medical Kk Contact terminal for ultrasonic probe
JPH03114453A (en) * 1989-09-29 1991-05-15 Terumo Corp Ultrasonic coupler and preparation thereof
JPH05309092A (en) * 1992-05-07 1993-11-22 Fujitsu Ltd Ultrasonic coupler and its manufacture
JPH08261997A (en) * 1995-03-24 1996-10-11 Hitachi Ltd Surface wave probe
JPH10227775A (en) * 1997-02-17 1998-08-25 Nippon Steel Corp Electronic scan type probe for angle beam method
JP2005249484A (en) * 2004-03-02 2005-09-15 Nissan Motor Co Ltd Ultrasonic probe
JP2006010314A (en) * 2004-06-22 2006-01-12 Hitachi Ltd Ultrasonic flaw detection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190854A (en) * 1983-12-19 1985-09-28 ザ・バブコツク・アンド・ウイルコツクス・カンパニ− Acoustic device and method for detecting presence of gas in sealed space
JPH02243137A (en) * 1989-03-17 1990-09-27 Toyo Medical Kk Contact terminal for ultrasonic probe
JPH03114453A (en) * 1989-09-29 1991-05-15 Terumo Corp Ultrasonic coupler and preparation thereof
JPH05309092A (en) * 1992-05-07 1993-11-22 Fujitsu Ltd Ultrasonic coupler and its manufacture
JPH08261997A (en) * 1995-03-24 1996-10-11 Hitachi Ltd Surface wave probe
JPH10227775A (en) * 1997-02-17 1998-08-25 Nippon Steel Corp Electronic scan type probe for angle beam method
JP2005249484A (en) * 2004-03-02 2005-09-15 Nissan Motor Co Ltd Ultrasonic probe
JP2006010314A (en) * 2004-06-22 2006-01-12 Hitachi Ltd Ultrasonic flaw detection method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032360A (en) * 2010-08-03 2012-02-16 Ihi Inspection & Instrumentation Co Ltd Contact structure for ultrasonic probe
US10993699B2 (en) 2011-10-28 2021-05-04 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
US11596388B2 (en) 2011-10-28 2023-03-07 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
US11957516B2 (en) 2011-10-28 2024-04-16 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
JP2015021742A (en) * 2013-07-16 2015-02-02 アイシン精機株式会社 Ultrasonic inspection device
US11607192B2 (en) 2013-09-13 2023-03-21 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
US11096661B2 (en) 2013-09-13 2021-08-24 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
JP2015111076A (en) * 2013-12-06 2015-06-18 三菱重工業株式会社 Ultrasonic flaw detector
KR101564645B1 (en) 2014-05-27 2015-11-02 한양대학교 산학협력단 Couplant pad for ultrasonic transducer and ultrasonic meter using the same of
EP3261548A4 (en) * 2015-02-25 2019-07-31 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
US11839512B2 (en) 2015-02-25 2023-12-12 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
US11191521B2 (en) 2015-02-25 2021-12-07 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
US10743838B2 (en) 2015-02-25 2020-08-18 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
US11737726B2 (en) 2015-10-08 2023-08-29 Decision Sciences Medical Company, LLC Acoustic orthopedic tracking system and methods
KR101752479B1 (en) 2017-01-03 2017-07-03 주식회사 장민이엔씨 Test probe holder for concrete testing and test apparatus comprising the same
JP2018136159A (en) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 Weld zone inspection device
KR101751959B1 (en) 2017-03-30 2017-06-30 주식회사 장민이엔씨 Test probe holder for concrete testing and test apparatus comprising the same
KR101751958B1 (en) 2017-03-30 2017-06-30 주식회사 장민이엔씨 Test probe holder for concrete testing and test apparatus comprising the same
JP2020098167A (en) * 2018-12-19 2020-06-25 日本製鉄株式会社 Ultrasonic wave flaw sensor
US11154274B2 (en) 2019-04-23 2021-10-26 Decision Sciences Medical Company, LLC Semi-rigid acoustic coupling articles for ultrasound diagnostic and treatment applications
JP2020190432A (en) * 2019-05-20 2020-11-26 三菱パワー株式会社 Ultrasonic inspection device
JP7391537B2 (en) 2019-05-20 2023-12-05 三菱重工業株式会社 Ultrasonic inspection device
WO2020235529A1 (en) * 2019-05-20 2020-11-26 三菱パワー株式会社 Ultrasonic testing device, and testing method
CN114599970B (en) * 2019-08-29 2024-02-23 M&H因普罗瑟斯测量技术有限公司 Ultrasonic measuring unit
CN114599970A (en) * 2019-08-29 2022-06-07 M&H因普罗瑟斯测量技术有限公司 Ultrasonic measuring unit
JP2022541859A (en) * 2019-08-29 2022-09-27 エムウントハー インプロセス メステクニク ゲーエムベーハー Ultrasonic measurement unit
US11573080B2 (en) 2019-08-29 2023-02-07 M & H Inprocess Messtechnik Gmbh Ultrasonic measuring unit
WO2021038106A1 (en) * 2019-08-29 2021-03-04 M & H Inprocess Messtechnik Gmbh Ultrasonic measuring unit
CN112697878A (en) * 2020-11-11 2021-04-23 苏州通富超威半导体有限公司 Ultrasonic scanning apparatus and ultrasonic scanning method
US11520043B2 (en) 2020-11-13 2022-12-06 Decision Sciences Medical Company, LLC Systems and methods for synthetic aperture ultrasound imaging of an object

Also Published As

Publication number Publication date
JP5542534B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5542534B2 (en) Ultrasonic probe and ultrasonic flaw detection method
Wilcox A rapid signal processing technique to remove the effect of dispersion from guided wave signals
Santoni et al. Lamb wave-mode tuning of piezoelectric wafer active sensors for structural health monitoring
JPWO2007113907A1 (en) Ultrasonic probe, ultrasonic flaw detection method and ultrasonic flaw detection apparatus
CN201408181Y (en) Ultrasonic probe of pressure pipeline elbow with dome-shaped wedge block
JP5311766B2 (en) Interface inspection apparatus and interface inspection method
JP2015040857A (en) Sensor module including adaptive backing layer
JP4446761B2 (en) Ultrasonic sensor head of ultrasonic nondestructive inspection equipment
EP2419722B1 (en) Method and apparatus for investigating a flexible hollow element using acoustic sensors
Lee et al. Investigation of a fibre wave piezoelectric transducer
JP2013127400A (en) Ultrasonic inspection device
CN100549637C (en) Energy exchanger of reflecting probe focusing acoustic field
JP2007263697A (en) Ultrasonic probe device
JP4241529B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
CN109596210A (en) A kind of sound field measurement of high intensity focused ultrasound method based on sound scattering
JP2020060490A (en) Clamp-on type ultrasonic wave flowmeter
Seo et al. Improvement of crack sizing performance by using nonlinear ultrasonic technique
KR101351315B1 (en) Line-contact surface wave guide wedge apparatus
JP4160601B2 (en) Defect detection method for cable connections
Drewry et al. Ultrasonic techniques for detection of weak adhesion
Aggelis et al. Ultrasonic characterization of the fiber-matrix interfacial bond in aerospace composites
JP2006284486A (en) Ultrasonic probe, and soft delay material for ultrasonic probe
Franco et al. Acoustic transmission with mode conversion phenomenon
Zabbal et al. Nonlinear ultrasound for nondestructive evaluation of adhesive joints
JP5909802B2 (en) Ultrasonic shear wave probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140507

R151 Written notification of patent or utility model registration

Ref document number: 5542534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151