JP2012002494A - Solar heat type air heating device - Google Patents

Solar heat type air heating device Download PDF

Info

Publication number
JP2012002494A
JP2012002494A JP2011043825A JP2011043825A JP2012002494A JP 2012002494 A JP2012002494 A JP 2012002494A JP 2011043825 A JP2011043825 A JP 2011043825A JP 2011043825 A JP2011043825 A JP 2011043825A JP 2012002494 A JP2012002494 A JP 2012002494A
Authority
JP
Japan
Prior art keywords
air
heat exchange
heat
exchange member
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011043825A
Other languages
Japanese (ja)
Inventor
Katsushige Nakamura
勝重 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitaka Kohki Co Ltd
Original Assignee
Mitaka Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitaka Kohki Co Ltd filed Critical Mitaka Kohki Co Ltd
Priority to JP2011043825A priority Critical patent/JP2012002494A/en
Publication of JP2012002494A publication Critical patent/JP2012002494A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar heat type air heating device which can surely heat air by utilizing a beam down-type solar light collector.SOLUTION: As a heat exchange member 9 receives the solar light L reflected downward by the beam down-type solar light collector, the heat exchange member 9 can be surely heated. Further, as the air a is allowed to pass through the heated heat exchange member 9, the air a is surely heated, and heat can be conveyed to a place needing heat as the heating air b. Further, as a top face of a housing 8 is constituted of a transparent window 13, attachment of dust to the heat exchange member 9 can be prevented.

Description

本発明は太陽熱式空気加熱装置に関するものである。   The present invention relates to a solar thermal air heater.

太陽光線をヘリオスタットと称される複数の一次ミラーで、高いタワーの頂部に支持された二次ミラーへ向けて反射し、二次ミラーから更に下向きに反射して、太陽光線を地上の一点に集めるビームダウン式の太陽集光装置が知られている(例えば、特許文献1参照)。   A number of primary mirrors, called heliostats, reflect sunlight toward a secondary mirror supported on the top of a high tower, reflecting further downward from the secondary mirror, and directing sunlight to a point on the ground A collecting beam-down solar concentrator is known (for example, see Patent Document 1).

この種のビームダウン構造の場合、下向きに反射された太陽光線を受光板に当てることで、受光板を1000度以上の高温にできることが知られている。   In the case of this type of beam-down structure, it is known that the light receiving plate can be heated to a high temperature of 1000 ° C. or more by applying sunlight reflected downward to the light receiving plate.

特開平11−119105号公報JP-A-11-119105

このように、太陽光線で受光板を直接加熱することにより、受光板が非常に高温になるため、その熱を熱交換により取り出せれば、非常に有用である。しかし、受光板があまりにも高温になるため、受光板と、熱交換用の流体(水やオイルなど)とを直接接触させることができず、有用な熱交換構造が今まで提案されずにいた。特に太陽熱で加熱しても燃焼したり急膨張しない空気を熱媒として利用できる太陽熱式空気加熱装置の提案が望まれていた。   In this way, by directly heating the light receiving plate with sunlight, the light receiving plate becomes very hot. Therefore, it is very useful if the heat can be taken out by heat exchange. However, since the light receiving plate is too hot, the light receiving plate cannot be brought into direct contact with the heat exchange fluid (water, oil, etc.), and a useful heat exchange structure has not been proposed so far. . In particular, there has been a demand for a solar air heating apparatus that can use air that does not burn or rapidly expand even when heated by solar heat as a heat medium.

本発明は、このような従来の技術に着目してなされたものであり、ビームダウン式太陽集光装置を利用して空気を確実に加熱することができる太陽熱式空気加熱装置を提供するものである。   The present invention has been made by paying attention to such a conventional technique, and provides a solar thermal air heating apparatus capable of reliably heating air using a beam down solar concentrator. is there.

請求項1記載の発明は、ハウジングの内部に該ハウジングの断面を塞ぐ状態で複数の上下貫通孔を有する耐熱性の熱交換部材を設け、該熱交換部材の上面にビームダウン式太陽集光装置で反射した下向きの太陽光を当てて該熱交換部材を加熱し、加熱された熱交換部材の上下貫通孔に空気を通して空気を加熱することを特徴とする。   According to the first aspect of the present invention, a heat-resistant heat exchange member having a plurality of upper and lower through-holes is provided inside the housing so as to block the cross section of the housing, and a beam-down solar concentrating device is provided on the upper surface of the heat exchange member The heat exchange member is heated by applying the downward sunlight reflected in step 1, and air is heated through the upper and lower through holes of the heated heat exchange member.

請求項2記載の発明は、ハウジングの上面を耐熱性を有する透明窓により形成し、太陽光を該透明窓を介して熱交換部材に当てると共に、熱交換部材の上部空間に空気取入部を形成し、熱交換部材の下部空間に空気排出部を設け、空気排出部側に空気の吸引部を設けたことを特徴とする。   According to the second aspect of the present invention, the upper surface of the housing is formed by a transparent window having heat resistance, and sunlight is applied to the heat exchange member through the transparent window, and an air intake portion is formed in the upper space of the heat exchange member. In addition, an air discharge portion is provided in the lower space of the heat exchange member, and an air suction portion is provided on the air discharge portion side.

請求項3記載の発明は、ハウジングの上面に開放部を形成し、太陽光を該開放部を介して熱交換部材に当てると共に、熱交換部材の上部空間に空気取入部を形成し、熱交換部材の下部空間に空気排出部を設け、空気排出部側に空気の吸引部を設けたことを特徴とする。   According to a third aspect of the present invention, an open portion is formed on the upper surface of the housing, and sunlight is applied to the heat exchange member through the open portion, and an air intake portion is formed in an upper space of the heat exchange member, thereby exchanging heat. An air discharge portion is provided in the lower space of the member, and an air suction portion is provided on the air discharge portion side.

請求項4記載の発明は、ハウジングの上面を耐熱性を有する透明窓により形成し、太陽光を該透明窓を介して熱交換部材に当てると共に、熱交換部材の上部空間に空気取入部を形成し、熱交換部材の下部空間に空気排出部を設け、空気取入部側に空気の送出部を設けたことを特徴とする。   According to a fourth aspect of the present invention, the upper surface of the housing is formed by a transparent window having heat resistance, sunlight is applied to the heat exchange member through the transparent window, and an air intake portion is formed in the upper space of the heat exchange member. In addition, an air discharge part is provided in the lower space of the heat exchange member, and an air delivery part is provided on the air intake part side.

請求項5記載の発明は、空気排出部を蓄熱材が内蔵された蓄熱装置内に貫通させた状態で設置し、蓄熱装置を通過した空気排出部から空気を排出することを特徴とする。   The invention according to claim 5 is characterized in that the air discharge part is installed in a state where the air discharge part is penetrated into the heat storage device in which the heat storage material is incorporated, and the air is discharged from the air discharge part that has passed through the heat storage apparatus.

請求項1記載の発明によれば、ビームダウン式太陽集光装置により下向きに反射された太陽光を、熱交換部材で受け止めるため、熱交換部材を確実に加熱させることができる。そして、その加熱した熱交換部材に空気を通過させるため、空気は確実に加熱され、加熱空気として熱を必要なところは搬送することができる。   According to the first aspect of the invention, since the sunlight reflected downward by the beam-down solar condensing device is received by the heat exchange member, the heat exchange member can be reliably heated. And since air is allowed to pass through the heated heat exchange member, the air is reliably heated, and heat can be transported where necessary as heated air.

請求項2記載の発明によれば、ハウジングの上面を透明窓により形成するため、熱交換部材に砂挨などが付着するのを防止することができる。   According to invention of Claim 2, since the upper surface of a housing is formed with a transparent window, it can prevent that dust etc. adhere to a heat exchange member.

請求項3記載の発明によれば、ハウジングの上面を開放部として、そこから空気を取り入れるようにしたため、大量の空気を取り入れることができる。   According to the third aspect of the present invention, since the upper surface of the housing is used as an open portion and air is taken in therefrom, a large amount of air can be taken in.

請求項4記載の発明によれば、空気の送出部により熱交換部材の上部空間から空気を導入して熱交換部材を通過させるため、送出部を通過する空気は加熱前であり、送出部を耐熱構造にする必要がない。   According to the fourth aspect of the present invention, since air is introduced from the upper space of the heat exchange member by the air delivery part and passes through the heat exchange member, the air passing through the delivery part is before heating, and the delivery part is There is no need for a heat-resistant structure.

請求項5記載の発明によれば、蓄熱装置を介して空気を排出するため、蓄熱装置内の蓄熱材を加熱した状態にしておけば、太陽光が一時的に雲などにより遮られていても、熱熱材に蓄えられた熱により空気を加熱して排出することができる。   According to the invention described in claim 5, since air is discharged through the heat storage device, if the heat storage material in the heat storage device is heated, sunlight may be temporarily blocked by clouds or the like. The air can be heated and discharged by the heat stored in the hot heat material.

本発明の第1実施形態に係るビームダウン式太陽集光装置を示す概略断面図。1 is a schematic cross-sectional view showing a beam down solar concentrator according to a first embodiment of the present invention. ビームダウン式太陽集光装置を示す概略平面図。The schematic plan view which shows a beam down type | formula solar condensing device. 太陽熱式空気加熱装置の内部構造を示す断面図。Sectional drawing which shows the internal structure of a solar-heat type air heating apparatus. 筒型集光鏡を示す平面図。The top view which shows a cylindrical collector mirror. 熱交換部材を示す平面図。The top view which shows a heat exchange member. 熱交換部材を示す斜視図。The perspective view which shows a heat exchange member. 第2実施形態に係る太陽熱式空気加熱装置の内部構造を示す断面図。Sectional drawing which shows the internal structure of the solar-heat type air heating apparatus which concerns on 2nd Embodiment. 第3実施形態に係る太陽熱式空気加熱装置の内部構造を示す断面図。Sectional drawing which shows the internal structure of the solar-heat type air heating apparatus which concerns on 3rd Embodiment. 第4実施形態に係る太陽熱式空気加熱装置の内部構造を示す断面図。Sectional drawing which shows the internal structure of the solar-heat type air heating apparatus which concerns on 4th Embodiment.

(第1実施形態)
図1〜図6は、本発明の第1実施形態を示す図である。まず、太陽熱を得るためのビームダウン式太陽集光装置の説明をする。この実施形態では日本のような北半球の中緯度の地域の場合を例にして説明する。
(First embodiment)
1-6 is a figure which shows 1st Embodiment of this invention. First, a beam-down solar concentrator for obtaining solar heat will be described. In this embodiment, a case of an area in the middle latitude of the northern hemisphere such as Japan will be described as an example.

ビームダウン式太陽集光装置の中心にはセンターミラー1が図示せぬ3本のタワーにより支持されている。センターミラー1は、日中に太陽が存在する方角とは反対側が切欠かれた部分回転楕円形状をしている。センターミラー1は図1に示すように、断面が楕円に合致した湾曲面を有し、下方に共焦点として第1焦点Aと第2焦点Bが存在する。   A center mirror 1 is supported by three towers (not shown) at the center of the beam-down solar concentrator. The center mirror 1 has a partial spheroid shape in which the opposite side to the direction in which the sun exists during the day is cut out. As shown in FIG. 1, the center mirror 1 has a curved surface whose section matches an ellipse, and a first focal point A and a second focal point B exist as confocal points below.

センターミラー1は図2に示すように、平面視で、半円よりも東側及び西側に所定の角度範囲だけ張り出した状態になっている。センターミラー1の北側及び東西両側には複数のヘリオスタット2がセンターミラー1を中心に放射状に設置されている。   As shown in FIG. 2, the center mirror 1 is in a state of projecting by a predetermined angle range to the east side and the west side from the semicircle in a plan view. A plurality of heliostats 2 are radially arranged around the center mirror 1 on the north side and the east and west sides of the center mirror 1.

ヘリオスタット2は図示せぬセンサーにより太陽の動きに連動して向きを変化させる構造となっており、常に太陽光Lを第1焦点Aへ向けて反射するように制御される。第1焦点Aを通過した太陽光Lはセンターミラー1で反射され第2焦点Bに集光する。   The heliostat 2 has a structure that changes its direction in conjunction with the movement of the sun by a sensor (not shown), and is always controlled to reflect the sunlight L toward the first focus A. The sunlight L that has passed through the first focal point A is reflected by the center mirror 1 and collected at the second focal point B.

第2焦点Bには筒型集光鏡3が設置されている。筒型集光鏡3は上部開口よりも下部開口が狭い概略テーパー筒形状で、内面はマルチミラー式の複数のセグメントにより構成された鏡面になっている。ヘリオスタット2の反射光は、センターミラー1で反射された後に、すべてこの筒型集光鏡3内に導入される。筒型集光鏡3の下側には空気加熱装置4が設けられ、そこで空気aを1000℃程度の加熱空気bにすることができる。   A cylindrical condenser mirror 3 is installed at the second focal point B. The cylindrical condenser mirror 3 has a generally tapered cylindrical shape in which the lower opening is narrower than the upper opening, and the inner surface is a mirror surface constituted by a plurality of multi-mirror segments. All the reflected light of the heliostat 2 is reflected by the center mirror 1 and then introduced into the cylindrical condenser mirror 3. An air heating device 4 is provided on the lower side of the cylindrical condenser 3, and the air a can be changed to heated air b of about 1000 ° C.

次に、図3〜図6に基づいて、加熱空気の製造について説明する。   Next, the production of heated air will be described with reference to FIGS.

筒型集光鏡3は周囲が角型のハウジング5により覆われていて、筒型集光鏡3とハウジング5との間には中空部6が存在する。ハウジング5の上部には中空部6への空気取入口7が形成されている。   The cylindrical condenser mirror 3 is covered with a rectangular housing 5, and a hollow portion 6 exists between the cylindrical condenser mirror 3 and the housing 5. An air inlet 7 to the hollow portion 6 is formed in the upper portion of the housing 5.

筒型集光鏡3の下側の空気加熱装置4は下部が細くなったロート状のハウジング8を有し、多数の熱交換部材9がハウジング8の断面を塞ぐように設けられている。すなわち、複数の熱交換部材9により、ハウジング8は上部空間10と下部空間11に区画されている。上部空間10と、筒型集光鏡3の中空部6とは、通気路12を介して連結されている。   The air heating device 4 on the lower side of the cylindrical condenser 3 has a funnel-shaped housing 8 with a thin lower portion, and a large number of heat exchange members 9 are provided so as to block the cross section of the housing 8. That is, the housing 8 is partitioned into an upper space 10 and a lower space 11 by a plurality of heat exchange members 9. The upper space 10 and the hollow portion 6 of the cylindrical condenser mirror 3 are connected via an air passage 12.

したがって、熱交換部材9はヘリオスタット2の反射光が導入されかつ通気路12、ハウジング8、空気排出部15等により規定される熱媒体の流路の断面を横断するように配置される。反射光が通過する上部空間10を熱媒体としての空気が通過するが、空気は太陽光を散乱しないため太陽光の光路と空気流の流路の共存が可能である。   Accordingly, the heat exchanging member 9 is arranged so as to cross the cross section of the flow path of the heat medium into which the reflected light of the heliostat 2 is introduced and which is defined by the ventilation path 12, the housing 8, the air discharge portion 15, and the like. Although air as a heat medium passes through the upper space 10 through which the reflected light passes, since the air does not scatter sunlight, the optical path of sunlight and the flow path of airflow can coexist.

筒型集光鏡3の下部開口に臨むハウジング8の上面には透明窓13が形成されている。この透明窓13は耐熱性を有する石英硝子等の硝子で形成されている。   A transparent window 13 is formed on the upper surface of the housing 8 facing the lower opening of the cylindrical collector mirror 3. The transparent window 13 is formed of glass such as quartz glass having heat resistance.

熱交換部材9は黒色で炭化珪素膜(SiC)製の多貫通孔構造で1000℃以上の耐熱性を有している。貫通孔の主軸は上下方向を向き、導入される反射光の主軸に略一致するとともに空気流の流路の主軸とも略一致する。そのため反射光の吸収効率が高く、通過空気との熱交換の効率も高い。   The heat exchange member 9 is black and has a multiple through-hole structure made of a silicon carbide film (SiC) and has heat resistance of 1000 ° C. or higher. The main axis of the through hole faces in the vertical direction, substantially coincides with the principal axis of the reflected light to be introduced, and substantially coincides with the principal axis of the air flow channel. Therefore, the absorption efficiency of reflected light is high, and the efficiency of heat exchange with passing air is also high.

この熱交換部材9は通過空気を均一化するためのロート状のカバー14(図6)内に収納されている。この熱交換部材9をカバー14と共に複数並べて設置することで、空気加熱部4の上部空間10と下部空間11を区画している。またカバー14は通過空気の流れをガイドして整える作用があり空気抵抗を低減している。なお、熱交換部材9の材質は熱吸収性が良く、上記の耐熱性を有するものであれば炭化珪素に限られない。   The heat exchange member 9 is housed in a funnel-shaped cover 14 (FIG. 6) for uniformizing the passing air. By arranging a plurality of the heat exchange members 9 together with the cover 14, the upper space 10 and the lower space 11 of the air heating unit 4 are partitioned. Further, the cover 14 has an action of guiding and adjusting the flow of the passing air, thereby reducing the air resistance. The material of the heat exchange member 9 is not limited to silicon carbide as long as it has good heat absorption and has the above heat resistance.

ハウジング8の下部は空気排出部15となっており、そこにはファン等の流路に沿って圧力勾配を生成し上流側の空気を吸引して下流側に流動させる吸引部16が設けられている。吸引部16の下流側は上流側よりも圧力が高くなり空気が下流側(大気圧等の低圧側)に排出される。   The lower part of the housing 8 is an air discharge part 15, which is provided with a suction part 16 that generates a pressure gradient along a flow path such as a fan and sucks air on the upstream side to flow downstream. Yes. The pressure on the downstream side of the suction unit 16 is higher than that on the upstream side, and air is discharged to the downstream side (low pressure side such as atmospheric pressure).

次に加熱空気bが製造される過程を説明する。   Next, the process for producing the heated air b will be described.

センターミラー1で反射された太陽光Lは全て筒型集光鏡3内に導入され、その内面で反射されて集光されるが、反射の際に筒型集光鏡3自体も加熱するため筒型集光鏡3自体が大変に高温になる。そのため、空気取入口7から取り入れられた空気aは中空部6内で筒型集光鏡3の裏面と接して予備的に加熱される。   All the sunlight L reflected by the center mirror 1 is introduced into the cylindrical collector mirror 3 and reflected and collected by the inner surface thereof, but the cylindrical collector mirror 3 itself is also heated during reflection. The cylindrical condenser mirror 3 itself becomes very hot. Therefore, the air a taken in from the air intake 7 is preliminarily heated in contact with the back surface of the cylindrical condenser mirror 3 in the hollow portion 6.

ある程度加熱された空気aは通気路12を介して空気加熱部4の上部空間10に導入される。上部空間10に導入された空気aは熱交換部材9を通過して下部空間11に至る。   The air a heated to some extent is introduced into the upper space 10 of the air heating unit 4 through the air passage 12. The air a introduced into the upper space 10 passes through the heat exchange member 9 and reaches the lower space 11.

この際、熱交換部材9には筒型集光鏡3の下部開口から透明窓13を経て高エネルギーの太陽光が集光された状態で照射され、熱交換部材9がきわめて高い効率で太陽熱を吸収するので大変な高温になっているため、空気aがその流路に配置された熱交換部材9を通過することにより加熱空気bとなる。加熱空気bは吸引部16により引かれて必要なところへ送ることができる。   At this time, the heat exchanging member 9 is irradiated with the high energy sunlight condensed from the lower opening of the cylindrical condenser mirror 3 through the transparent window 13, and the heat exchanging member 9 emits solar heat with extremely high efficiency. Since it absorbs and becomes very high temperature, when the air a passes the heat exchange member 9 arrange | positioned in the flow path, it becomes the heating air b. The heated air b can be drawn by the suction unit 16 and sent to a necessary place.

この実施形態によれば、ビームダウン式太陽集光装置により下向きに反射された太陽光Lを、熱交換部材9で受け止めるため、熱交換部材9を確実に加熱させることができる。   According to this embodiment, since the sunlight L reflected downward by the beam-down solar concentrator is received by the heat exchange member 9, the heat exchange member 9 can be reliably heated.

そして、その加熱した熱交換部材9に空気aを通過させるため、空気aは確実に加熱され、加熱空気bとして熱を必要なところは搬送することができる。したがって、熱交換部材9は太陽光Lの吸収と同時に熱媒体との熱交換を行うためエネルギー効率が高い。   And since the air a is allowed to pass through the heated heat exchange member 9, the air a is surely heated, and the portion where heat is required as the heated air b can be conveyed. Therefore, since the heat exchange member 9 performs heat exchange with the heat medium simultaneously with absorption of sunlight L, the energy efficiency is high.

また、ハウジング8の上面が透明窓13により塞がれているため、熱交換部材9の砂境などが付着せず、メンテナンスが容易である。   Further, since the upper surface of the housing 8 is closed by the transparent window 13, a sand boundary of the heat exchange member 9 does not adhere, and maintenance is easy.

(第2実施形態)
図7は、本発明の第2実施形態を示す図である。本実施形態は、前記第1実施形態と同様の構成要素を備えている。よって、それら同様の構成要素については共通の符号を付すとともに、重複する説明を省略する。
(Second Embodiment)
FIG. 7 is a diagram showing a second embodiment of the present invention. This embodiment includes the same components as those in the first embodiment. Therefore, the same constituent elements are denoted by common reference numerals, and redundant description is omitted.

この実施形態では、ハウジング17の上面の透明窓を省略して開放部18としたものである。開放部18とすることにより、大量の空気aを周囲から導入して熱交換部材9に通過させることができ、温度は多少低くても、大容量の加熱空気bが必要な場合に好適である。   In this embodiment, the transparent window on the upper surface of the housing 17 is omitted to form the open portion 18. By setting it as the open part 18, a large amount of air a can be introduced from the surroundings and allowed to pass through the heat exchange member 9, which is suitable when a large volume of heated air b is required even if the temperature is somewhat low. .

(第3実施形態)
図8は、本発明の第3実施形態を示す図である。本実施形態も、前記第1実施形態と同様の構成要素を備え、同様の構成要素については共通の符号を付すとともに、重複する説明を省略する。
(Third embodiment)
FIG. 8 is a diagram showing a third embodiment of the present invention. This embodiment also includes the same constituent elements as those of the first embodiment, and the same constituent elements are denoted by the same reference numerals and redundant description is omitted.

この実施形態では、空気取入口19を筒型集光鏡3のハウジング20を介さずに、熱交換部材9のハウジング21の上部空間10に直接形成した。そして、空気取入口19に空気aの送出部22を設けた。   In this embodiment, the air intake 19 is formed directly in the upper space 10 of the housing 21 of the heat exchange member 9 without using the housing 20 of the cylindrical condenser mirror 3. The air intake 19 is provided with an air a delivery section 22.

この実施形態によれば、送出部22から空気aを上部空間10内に送り込み、その空気aが熱交換部材9を通過する間に加熱されて空気排出部23より取り出すことができる。   According to this embodiment, air a is sent from the delivery unit 22 into the upper space 10, and the air a can be heated and taken out from the air discharge unit 23 while passing through the heat exchange member 9.

送出部22を通過する空気aはまだ加熱前であるため温度が低く、送出部22を耐熱性にする必要がなく、送出部22の構造を簡略化することができる。   Since the air a passing through the delivery part 22 is not yet heated, the temperature is low, and it is not necessary to make the delivery part 22 heat resistant, and the structure of the delivery part 22 can be simplified.

(第4実施形態)
図9は、本発明の第4実施形態を示す図である。本実施形態も、第1実施形態と同様の構成要素を備え、同様の構成要素については共通の符号を付すとともに、重複する説明を省略する。
(Fourth embodiment)
FIG. 9 is a diagram showing a fourth embodiment of the present invention. This embodiment is also provided with the same component as 1st Embodiment, and while attaching | subjecting a common code | symbol about the same component, the overlapping description is abbreviate | omitted.

この実施例では、空気排出部15の吸引部16よりも先の部分に延長部24を形成した。延長部24は蛇行した状態で蓄熱装置25を貫通する。蓄熱装置25内には溶融塩(硝酸カリウムと硝酸ナトリウムの混合物)による蓄熱材26が内蔵され、その中を延長部24が貫通している。   In this embodiment, the extension portion 24 is formed in a portion of the air discharge portion 15 ahead of the suction portion 16. The extension part 24 penetrates the heat storage device 25 in a meandering state. A heat storage material 26 made of a molten salt (a mixture of potassium nitrate and sodium nitrate) is built in the heat storage device 25, and the extension 24 penetrates through the heat storage material 26.

蓄熱材26は通常時に延長部24を通過する高温の空気bにより加熱され、その熱を内部に蓄えることができる。蓄熱材26である溶融塩は常温では固体だが加熱されると溶融するため、延長部24の表面との密着面積は大きくなり高効率の熱交換が行える。   The heat storage material 26 is heated by the high-temperature air b that passes through the extension 24 at normal times, and can store the heat therein. The molten salt that is the heat storage material 26 is solid at room temperature but melts when heated, so that the contact area with the surface of the extension 24 is increased, and highly efficient heat exchange can be performed.

太陽が南中位置に近い昼間は太陽光Lのエネルギーが大きいため、そのエネルギーにより十分に高温となった空気bにより、蓄熱材26は加熱されて内部に熱を蓄えることができる。そのため、仮に、太陽が雲に遮られて、本来空気aを加熱する熱交換部材9に太陽光Lによりが当たらない状態が一時的に生じても、空気排出部15から導かれた空気aは、延長部24を介して蓄熱材26を通過する際に、蓄熱材26との熱交換により加熱される。従って、延長部24を通過する間にことで空気aは加熱された空気bとなって排出される。   Since the energy of sunlight L is large in the daytime when the sun is close to the south-central position, the heat storage material 26 can be heated and stored in the interior by the air b sufficiently heated by the energy. Therefore, even if the sun is blocked by clouds and the heat exchange member 9 that originally heats the air a is temporarily not exposed to sunlight L, the air a guided from the air discharge unit 15 is When passing through the heat storage material 26 via the extension 24, the heat storage material 26 is heated by heat exchange. Therefore, while passing through the extension 24, the air a is discharged as heated air b.

このような蓄熱装置25を備えているため、太陽光Lが一時的に遮られるような状況が生じても、常に加熱された空気bを連続して排出することができる。   Since such a heat storage device 25 is provided, even if the situation where the sunlight L is temporarily blocked occurs, the heated air b can always be discharged continuously.

以上の各実施形態においては、熱交換部材9を水平状態で並べる例を示したが、中央を低くした湾曲状に並べても良い。ビームダウン式太陽集光装置のセンターミラー1は楕円形状に限定されず、その他の形状のものであっても良い。   In each of the above embodiments, the heat exchange members 9 are arranged in a horizontal state. However, the heat exchange members 9 may be arranged in a curved shape with a lower center. The center mirror 1 of the beam-down solar concentrator is not limited to an elliptical shape, and may have other shapes.

7、19 空気取入部
8、17、21 ハウジング
9 熱交換部材
10 上部空間
11 下部空間
13 透明窓
15、23 空気排出部
16 吸引部
22 送出部
24 延長部
25 蓄熱装置
26 蓄熱材
L 太陽光
7, 19 Air intake part 8, 17, 21 Housing 9 Heat exchange member 10 Upper space 11 Lower space 13 Transparent window 15, 23 Air discharge part 16 Suction part 22 Sending part 24 Extension part 25 Heat storage device 26 Heat storage material L Sunlight

第2焦点Bには筒型集光鏡3が設置されている。筒型集光鏡3は上部開口よりも下部開口が狭い概略テーパー筒形状で、内面はマルチミラー式の複数のセグメントにより構成された鏡面になっている。ヘリオスタット2の反射光は、センターミラー1で反射された後に、すべてこの筒型集光鏡3内に導入される。筒型集光鏡3の下側には空気加熱4が設けられ、そこで空気aを1000℃程度の加熱空気bにすることができる。 A cylindrical condenser mirror 3 is installed at the second focal point B. The cylindrical condenser mirror 3 has a generally tapered cylindrical shape in which the lower opening is narrower than the upper opening, and the inner surface is a mirror surface constituted by a plurality of multi-mirror segments. All the reflected light of the heliostat 2 is reflected by the center mirror 1 and then introduced into the cylindrical condenser mirror 3. An air heating unit 4 is provided on the lower side of the cylindrical condenser mirror 3, and the air a can be changed to heated air b of about 1000 ° C.

筒型集光鏡3の下側の空気加熱4は下部が細くなったロート状のハウジング8を有し、多数の熱交換部材9がハウジング8の断面を塞ぐように設けられている。すなわち、複数の熱交換部材9により、ハウジング8は上部空間10と下部空間11に区画されている。上部空間10と、筒型集光鏡3の中空部6とは、通気路12を介して連結されている。 The air heating unit 4 on the lower side of the cylindrical condenser 3 has a funnel-shaped housing 8 with a thin lower portion , and a large number of heat exchange members 9 are provided so as to block the cross section of the housing 8. That is, the housing 8 is partitioned into an upper space 10 and a lower space 11 by a plurality of heat exchange members 9. The upper space 10 and the hollow portion 6 of the cylindrical condenser mirror 3 are connected via an air passage 12.

また、ハウジング8の上面が透明窓13により塞がれているため、熱交換部材9の砂などが付着せず、メンテナンスが容易である。 Further, since the upper surface of the housing 8 is closed by a transparent window 13, such as sand dust of the heat exchange member 9 is not adhered, maintenance is easy.

太陽が南中位置に近い昼間は太陽光Lのエネルギーが大きいため、そのエネルギーにより十分に高温となった空気bにより、蓄熱材26は加熱されて内部に熱を蓄えることができる。そのため、仮に、太陽が雲に遮られて、本来空気aを加熱する熱交換部材9に太陽光L当たらない状態が一時的に生じても、空気排出部15から導かれた空気aは、延長部24を介して蓄熱材26を通過する際に、蓄熱材26との熱交換により加熱される。従って、延長部24を通過する間にことで空気aは加熱された空気bとなって排出される。 Since the energy of sunlight L is large in the daytime when the sun is close to the south-central position, the heat storage material 26 can be heated and stored in the interior by the air b sufficiently heated by the energy. Therefore, if the sun is blocked by the clouds, even state sunlight L does not hit the originally heat exchanging member 9 for heating the air a is generated temporarily, the air a guided from the air discharge unit 15, When passing through the heat storage material 26 via the extension 24, the heat storage material 26 is heated by heat exchange. Therefore, while passing through the extension 24, the air a is discharged as heated air b.

Claims (5)

ハウジングの内部に該ハウジングの断面を塞ぐ状態で複数の上下貫通孔を有する耐熱性の熱交換部材を設け、
該熱交換部材の上面にビームダウン式太陽集光装置で反射した下向きの太陽光を当てて該熱交換部材を加熱し、加熱された熱交換部材の上下貫通孔に空気を通して空気を加熱することを特徴とする太陽熱式空気加熱装置。
A heat-resistant heat exchange member having a plurality of upper and lower through holes in a state where the cross section of the housing is closed inside the housing,
Heating the heat exchange member by applying downward sunlight reflected by a beam-down solar concentrator on the upper surface of the heat exchange member, and heating the air through the upper and lower through holes of the heated heat exchange member A solar-heated air heating device.
ハウジングの上面を耐熱性を有する透明窓により形成し、太陽光を該透明窓を介して熱交換部材に当てると共に、熱交換部材の上部空間に空気取入部を形成し、熱交換部材の下部空間に空気排出部を設け、空気排出部側に空気の吸引部を設けたことを特徴とする請求項1記載の太陽熱式空気加熱装置。   The upper surface of the housing is formed by a heat-resistant transparent window, and sunlight is applied to the heat exchange member through the transparent window, and an air intake portion is formed in the upper space of the heat exchange member, and the lower space of the heat exchange member The solar heat type air heating device according to claim 1, wherein an air discharge portion is provided on the air discharge portion, and an air suction portion is provided on the air discharge portion side. ハウジングの上面に開放部を形成し、太陽光を該開放部を介して熱交換部材に当てると共に、熱交換部材の上部空間に空気取入部を形成し、熱交換部材の下部空間に空気排出部を設け、空気排出部側に空気の吸引部を設けたことを特徴とする請求項1記載の太陽熱式空気加熱装置。   An open part is formed on the upper surface of the housing, sunlight is applied to the heat exchange member through the open part, an air intake part is formed in the upper space of the heat exchange member, and an air discharge part is formed in the lower space of the heat exchange member The solar heat type air heating device according to claim 1, wherein an air suction part is provided on the air discharge part side. ハウジングの上面を耐熱性を有する透明窓により形成し、太陽光を該透明窓を介して熱交換部材に当てると共に、熱交換部材の上部空間に空気取入部を形成し、熱交換部材の下部空間に空気排出部を設け、空気取入部側に空気の送出部を設けたことを特徴とする請求項1記載の太陽熱式空気加熱装置。   The upper surface of the housing is formed by a heat-resistant transparent window, and sunlight is applied to the heat exchange member through the transparent window, and an air intake portion is formed in the upper space of the heat exchange member, and the lower space of the heat exchange member The solar heat type air heating device according to claim 1, wherein an air discharge portion is provided on the air intake portion, and an air delivery portion is provided on the air intake portion side. 空気排出部を蓄熱材が内蔵された蓄熱装置内に貫通させた状態で設置し、蓄熱装置を通過した空気を空気排出部から排出することを特徴とする請求項2〜4のいずれか1項に記載の太陽熱式空気加熱装置。   5. The air discharge unit is installed in a state where the air discharge unit penetrates the heat storage device in which the heat storage material is incorporated, and the air that has passed through the heat storage device is discharged from the air discharge unit. The solar-heated air heating apparatus as described in.
JP2011043825A 2010-05-18 2011-03-01 Solar heat type air heating device Pending JP2012002494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011043825A JP2012002494A (en) 2010-05-18 2011-03-01 Solar heat type air heating device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010114035 2010-05-18
JP2010114035 2010-05-18
JP2011043825A JP2012002494A (en) 2010-05-18 2011-03-01 Solar heat type air heating device

Publications (1)

Publication Number Publication Date
JP2012002494A true JP2012002494A (en) 2012-01-05

Family

ID=45534684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011043825A Pending JP2012002494A (en) 2010-05-18 2011-03-01 Solar heat type air heating device

Country Status (1)

Country Link
JP (1) JP2012002494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108507199A (en) * 2018-04-09 2018-09-07 河北珠峰仪器仪表设备有限公司 A kind of solar energy light gathering and heat collecting system and method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2680437A (en) * 1945-12-03 1954-06-08 Univ Board Of Regents Solar heat trap
JPS5321436A (en) * 1976-08-06 1978-02-27 Union Carbide Corp Solar air heater
JPS5659164A (en) * 1979-10-01 1981-05-22 San Waizu Inc Solar energy converter
JPS6034022B2 (en) * 1977-12-20 1985-08-06 高砂熱学工業株式会社 Indoor air conditioning and heating equipment that can utilize solar heat
JPS611951A (en) * 1984-06-14 1986-01-07 Matsushita Electric Works Ltd Handy air collector
WO1990001133A1 (en) * 1988-07-18 1990-02-08 Brien Philip T O Fluid-heating solar collector
US5088471A (en) * 1982-01-15 1992-02-18 Bottum Edward W Solar heating structure
JPH11119105A (en) * 1997-10-15 1999-04-30 Mitaka Koki Co Ltd Solar light converging system
JP2001304696A (en) * 2000-04-20 2001-10-31 Daiwa House Ind Co Ltd System of utilizing solar heat
JP2003314901A (en) * 2002-04-19 2003-11-06 Matsushita Electric Ind Co Ltd Solar energy collector
JP2007093066A (en) * 2005-09-28 2007-04-12 Eom Kk Air type heat collection member, and air type solar collector and ventilation system
US20100000520A1 (en) * 2007-07-26 2010-01-07 Vachon Christian Perforated transparent glazing for heat recovery and solar air heating
WO2010013632A1 (en) * 2008-07-31 2010-02-04 コスモ石油株式会社 Method for collecting sunlight in multi-tower beam down type light collecting system
JP2010085080A (en) * 2008-09-03 2010-04-15 Mitaka Koki Co Ltd Sunlight thermal converting device
JP2010096457A (en) * 2008-10-17 2010-04-30 Nippon Light Metal Co Ltd Air conditioning device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2680437A (en) * 1945-12-03 1954-06-08 Univ Board Of Regents Solar heat trap
JPS5321436A (en) * 1976-08-06 1978-02-27 Union Carbide Corp Solar air heater
JPS6034022B2 (en) * 1977-12-20 1985-08-06 高砂熱学工業株式会社 Indoor air conditioning and heating equipment that can utilize solar heat
JPS5659164A (en) * 1979-10-01 1981-05-22 San Waizu Inc Solar energy converter
US5088471A (en) * 1982-01-15 1992-02-18 Bottum Edward W Solar heating structure
JPS611951A (en) * 1984-06-14 1986-01-07 Matsushita Electric Works Ltd Handy air collector
WO1990001133A1 (en) * 1988-07-18 1990-02-08 Brien Philip T O Fluid-heating solar collector
JPH02502397A (en) * 1988-07-18 1990-08-02 オブライエン,フィリップ ティー. Solar collector for fluid heating
JPH11119105A (en) * 1997-10-15 1999-04-30 Mitaka Koki Co Ltd Solar light converging system
JP2001304696A (en) * 2000-04-20 2001-10-31 Daiwa House Ind Co Ltd System of utilizing solar heat
JP2003314901A (en) * 2002-04-19 2003-11-06 Matsushita Electric Ind Co Ltd Solar energy collector
JP2007093066A (en) * 2005-09-28 2007-04-12 Eom Kk Air type heat collection member, and air type solar collector and ventilation system
US20100000520A1 (en) * 2007-07-26 2010-01-07 Vachon Christian Perforated transparent glazing for heat recovery and solar air heating
WO2010013632A1 (en) * 2008-07-31 2010-02-04 コスモ石油株式会社 Method for collecting sunlight in multi-tower beam down type light collecting system
JP2010085080A (en) * 2008-09-03 2010-04-15 Mitaka Koki Co Ltd Sunlight thermal converting device
JP2010096457A (en) * 2008-10-17 2010-04-30 Nippon Light Metal Co Ltd Air conditioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108507199A (en) * 2018-04-09 2018-09-07 河北珠峰仪器仪表设备有限公司 A kind of solar energy light gathering and heat collecting system and method

Similar Documents

Publication Publication Date Title
USRE30027E (en) Solar radiation collector and concentrator
US4209222A (en) Installation for utilizing solar energy with wavelength selective reflector
CN104272035B (en) Tower type solar receptor
JP5898674B2 (en) Cross-line solar concentrator
US9062896B2 (en) System to create rotational energy from a wind-chimmey and solar-smelter
CN106839456B (en) Composite multi-curved-surface groove type solar concentrating collector with automatic defrosting function
WO2009024011A1 (en) A reflector and a solar tank-type heat collector applying it
US20120012102A1 (en) Solar power concentrating system
US20190326852A1 (en) Solar receivers and methods for capturing solar energy
CN105485936B (en) Two-dimensional sun-tracing energy beam condensing unit
JP2013228184A (en) Linear solar concentrator and solar concentration power generation system
KR101404375B1 (en) Solar heating system
JP2012002494A (en) Solar heat type air heating device
KR101010859B1 (en) Dish solar concentrator
KR102358978B1 (en) Parabolic trough concentrator type solar thermal energy system having concentrated photovoltaic
RU2569423C1 (en) Solar heater with protection against precipitation
KR100420867B1 (en) Solar asymmetric compound parabolic concentrator with a tubular absorber or flat plate absorber
JP2014163305A (en) Parallel structure of stirling engine
KR101056941B1 (en) Dish-Type Solar Collectors
WO2016017323A1 (en) Solar heat collecting device
JP6304975B2 (en) Solar heat collector
JP2014214660A (en) Solar gas turbine
KR20210066461A (en) Parabolic trough concentrator type solar thermal energy system capable of tracking solar using temperature sensor
JP2008190801A (en) Solar energy collector
KR20180077371A (en) Solar collector of direct absorption type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303