JP2012002443A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2012002443A
JP2012002443A JP2010138521A JP2010138521A JP2012002443A JP 2012002443 A JP2012002443 A JP 2012002443A JP 2010138521 A JP2010138521 A JP 2010138521A JP 2010138521 A JP2010138521 A JP 2010138521A JP 2012002443 A JP2012002443 A JP 2012002443A
Authority
JP
Japan
Prior art keywords
current
value
current value
consumption
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010138521A
Other languages
Japanese (ja)
Other versions
JP5482490B2 (en
Inventor
Tomoyuki Mori
智之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2010138521A priority Critical patent/JP5482490B2/en
Publication of JP2012002443A publication Critical patent/JP2012002443A/en
Application granted granted Critical
Publication of JP5482490B2 publication Critical patent/JP5482490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner configured to use a current consumption measuring circuit including a current transformer and a shunt resistor generally provided in the air conditioner to calculate current consumption as accurately as possible at a relatively low cost.SOLUTION: The air conditioner includes a current value estimation means for determining an estimated current consumption value corresponding to the operation state of the air conditioner, and a current consumption selection means for selecting a measured current value or the estimated current value. The current value estimation means stores current consumption values to be consumed in main electric parts of the air conditioner in advance, and selects and extracts the current consumption values of the electric parts according to the operation state of the air conditioner, and calculates the total thereof to obtain the estimated current value. As a result of comparing the measured current value with a predetermined first threshold, the current consumption selection means selects the estimated current value when the measured current value is smaller than the first threshold, or the measured current value when the measured current value is larger than the first threshold, respectively.

Description

本発明は、空気調和機に係わり、より詳細には、正確な消費電流を求める測定手段や算出手段に関する。   The present invention relates to an air conditioner, and more particularly to a measuring means and a calculating means for obtaining an accurate current consumption.

従来、空気調和機において消費電流を求める構成としては、図6に示すものが開示されている。
この空気調和機は、設定された空気調和機の最高使用消費電力値を記憶する記憶保持装置9と、凝縮温度と蒸発温度から圧縮機1の消費電力値を演算する演算手段10と、圧縮機1以外の電気部品の消費電力値を記憶する記憶保持装置11と、演算手段10から得られる消費電力値と記憶された圧縮機1以外の電気部品の消費電力値から空気調和機の消費電力値の総和を演算する演算手段12と、最高使用消費電力値と演算手段12の消費電力値を比較して圧縮機1の出力を制御する制御手段とを備えている。
Conventionally, a configuration shown in FIG. 6 is disclosed as a configuration for obtaining current consumption in an air conditioner.
This air conditioner includes a storage and holding device 9 that stores the set maximum power consumption value of the air conditioner, a calculation means 10 that calculates the power consumption value of the compressor 1 from the condensation temperature and the evaporation temperature, and the compressor A storage and holding device 11 that stores power consumption values of electrical components other than 1, and a power consumption value of the air conditioner from the power consumption values obtained from the calculation means 10 and the stored power consumption values of electrical components other than the compressor 1 And a control means for controlling the output of the compressor 1 by comparing the maximum power consumption value with the power consumption value of the calculation means 12.

この空気調和機は、凝縮温度と蒸発温度から圧縮機1の消費電力値を演算して求め、さらにこの求めた消費電力値に、圧縮機以外の電気部品で消費される電流を基にして予め算出しておいた固定の消費電力値を加算して空気調和機全体の消費電力を求める構成になっている(例えば、特許文献1参照。)。   This air conditioner is obtained by calculating the power consumption value of the compressor 1 from the condensing temperature and the evaporation temperature, and based on the calculated power consumption value based on the current consumed by the electrical components other than the compressor. The calculated fixed power consumption value is added to obtain the power consumption of the entire air conditioner (see, for example, Patent Document 1).

また、消費電力を計算のみでなく電流検出素子、例えばカレントトランスを用いて測定した室外機の入力電流を用いて算出する構成を備えた空気調和機が開示されている(例えば、特許文献2参照。)。この空気調和機では算出した消費電力から電気料金を算出し、この電気料金を操作者に表示するようになっている。   In addition, an air conditioner having a configuration for calculating power consumption not only by calculation but also by using an input current of an outdoor unit measured using a current detection element such as a current transformer is disclosed (for example, see Patent Document 2). .) In this air conditioner, an electricity charge is calculated from the calculated power consumption, and this electricity charge is displayed to the operator.

また、低価格の空気調和機では、比較的高価なカレントトランスを用いないで、圧縮機の電流を測定するシャント抵抗を用いる方式もある。このようなカレントトランスやシャント抵抗で測定した電流値は、空気調和機の消費電流を一定値以下で運転する制限電流機能や、圧縮機の過電流を検出するために用いられている。このため、一般的に10アンペア以上の領域を測定するように設計されている。   In addition, in a low-cost air conditioner, there is a method using a shunt resistor that measures the current of the compressor without using a relatively expensive current transformer. The current value measured by such a current transformer or shunt resistance is used for detecting a current limiting function for operating the air conditioner with a current consumption below a certain value or an overcurrent of the compressor. For this reason, it is generally designed to measure an area of 10 amperes or more.

以上説明したように消費電力を求めるため、主に電力を消費すると共に、運転状態により変化の激しい圧縮機の電流と、それ以外の電気部品で消費される固定の電流値とを加算する方法と、直接、カレントトランスで室外機の消費電流を測定する方法とがある。   As described above, in order to obtain the power consumption, a method of adding mainly the current of the compressor and the current of the compressor that changes drastically depending on the operation state and the fixed current value consumed by other electrical components, as described above. There is a method of directly measuring the current consumption of the outdoor unit with a current transformer.

しかしながら、圧縮機以外の電気部品での消費電力を固定とする方法では、冷房運転や暖房運転で切り換えられる四方弁、室外機用のファンモータの回転数で左右されるファンモータ消費電流、室外機を停止して室内機のファンモータのみを回転させる送風運転など、細かい運転状況による消費電流の変化に対応していない。   However, in the method of fixing the power consumption in the electric parts other than the compressor, the four-way valve that is switched by the cooling operation or the heating operation, the fan motor consumption current that depends on the rotation speed of the fan motor for the outdoor unit, the outdoor unit It is not compatible with changes in current consumption due to detailed operating conditions, such as blowing operation in which only the fan motor of the indoor unit is rotated after stopping.

また、室外機に備えられたカレントトランスやシャント抵抗を用いる方法では、室内機の消費電流を考慮していないため、実際の消費電流よりも少なく検出してしまう。さらに、これらの方式では前述のように比較的大電流の測定を前提として設計されているため、比較的小さな電流の測定では誤差が大きいという問題がある。   Further, in the method using a current transformer and a shunt resistor provided in the outdoor unit, the current consumption of the indoor unit is not taken into consideration, and therefore, detection is performed with less than the actual current consumption. Furthermore, since these methods are designed on the premise of measuring a relatively large current as described above, there is a problem that an error is large when measuring a relatively small current.

内部の処理だけに消費電流の値を用いるのなら、この誤差はさほどの問題でないが、近年はユーザーの省エネ意識を向上させるため消費電流を基に消費電力を算出し、これを電気料金として表示させる機能を備えた空気調和機が販売されている。この場合、比較的消費電流が小さい運転、例えば送風運転や空調負荷が小さい場合の運転、さらに圧縮機の予熱運転などが長時間続いた場合、消費電力の累積誤差が大きくなり、ユーザーに正確な電気料金を通知することができなくなってしまう場合があった。   If the value of current consumption is used only for internal processing, this error is not a significant problem, but in recent years, power consumption is calculated based on current consumption and displayed as an electricity bill in order to improve the user's energy conservation awareness. Air conditioners with a function to make them available are on sale. In this case, if an operation with a relatively small current consumption, for example, an operation when the air blowing operation or the air conditioning load is small, or a preheating operation of the compressor continues for a long time, the accumulated error of the power consumption becomes large, and it is accurate for the user. In some cases, it was impossible to notify the electricity bill.

正確な消費電流を測定するためには、室内機と室外機との共通の電源ラインに消費電流計を設置すればよいが、このような測定機器は一般的に、空気調和機にとっては高価であり、コストの観点から採用することができなかった。   In order to accurately measure the current consumption, a current consumption meter may be installed on a common power line between the indoor unit and the outdoor unit. However, such a measuring device is generally expensive for an air conditioner. Yes, it could not be adopted from the viewpoint of cost.

特開平5−133590号公報(第3−4頁、図1)JP-A-5-133590 (page 3-4, FIG. 1) 特開2000−147029号公報(第3−4頁、図1)JP 2000-147029 A (page 3-4, FIG. 1)

本発明は以上述べた問題点を解決し、一般的に空気調和機に備えられているカレントトランスやシャント抵抗による消費電流測定回路を用いて、安価に、また、正確な消費電流を算出する構成を備えた空気調和機を提供することを目的とする。   The present invention solves the above-described problems, and generally uses a current transformer or a shunt resistance measuring circuit provided in an air conditioner to calculate an accurate current consumption at low cost. It aims at providing the air conditioner provided with.

本発明は上述の課題を解決するため、圧縮機と、複数の電気部品とを有する空気調和機であって、
前記圧縮機で消費する電流、もしくは、入力電流を測定して測定電流値を求める電流検出手段と、
前記空気調和機の運転状態に応じて前記圧縮機及び前記複数の電気部品で消費される消費電流値を予め記憶した消費電流値テーブルと、
同消費電流値テーブルから前記空気調和機の運転状態に対応した前記複数の電気部品の消費電流値を抽出すると共に、抽出した消費電流値を合算して推測電流値を求める電流値推測手段と、
前記測定電流値と予め定めた第1閾値との比較結果に対応して前記推測電流値または前記測定電流値のいずれかを選択する消費電流選択手段とを備え、
同消費電流選択手段で選択された消費電流に基づいて前記空気調和機全体の消費電流を求めることを特徴とする。
In order to solve the above-mentioned problems, the present invention is an air conditioner having a compressor and a plurality of electrical components,
Current detecting means for measuring a current consumed by the compressor or measuring a current value by measuring an input current; and
A consumption current value table that prestores consumption current values consumed by the compressor and the plurality of electrical components according to the operating state of the air conditioner;
Extracting the current consumption values of the plurality of electrical components corresponding to the operating state of the air conditioner from the current consumption value table, and adding the extracted current consumption values to obtain an estimated current value;
Consumption current selecting means for selecting either the estimated current value or the measured current value corresponding to a comparison result between the measured current value and a predetermined first threshold;
The current consumption of the entire air conditioner is obtained based on the consumption current selected by the consumption current selection means.

前記消費電流選択手段は、前記測定電流値と前記第1閾値とを比較した結果、前記測定電流値が第1閾値よりも小さい場合には前記推測電流値を、前記測定電流値が第1閾値よりも大きい場合には前記測定電流値を、それぞれ選択してなることを特徴とする。   As a result of comparing the measured current value with the first threshold value, the consumption current selecting means determines the estimated current value when the measured current value is smaller than the first threshold value, and the measured current value is the first threshold value. If the value is larger than the measured current value, the measured current value is selected.

前記消費電流選択手段は、前記測定電流値が、前記第1閾値よりも小さい第2閾値と前記第1閾値よりも大きい第3閾値との間で予め定めた切換領域内の値であるとき、
前記推測電流値と前記測定電流値との値の乖離を示す乖離度を算出し、同乖離度が予め定めた所定値よりも小さい場合には前記測定電流値を、同乖離度が予め定めた所定値よりも大きい場合には前記推測電流値を、それぞれ選択することを特徴とする。
The consumption current selection means, when the measured current value is a value within a predetermined switching region between a second threshold value smaller than the first threshold value and a third threshold value larger than the first threshold value,
A divergence degree indicating a divergence between the estimated current value and the measured current value is calculated, and when the divergence degree is smaller than a predetermined value, the measured current value is determined in advance. If the value is larger than the predetermined value, the estimated current value is selected.

前記消費電流選択手段は、前記測定電流値が前記第2閾値よりも小さい場合には前記推測電流値を、前記測定電流値が前記第3閾値よりも大きい場合には前記測定電流値をそれぞれ選択することを特徴とする。   The consumption current selection means selects the estimated current value when the measured current value is smaller than the second threshold, and selects the measured current value when the measured current value is larger than the third threshold. It is characterized by doing.

以上の手段を用いることにより、本発明による空気調和機によれば、
請求項1に係わる発明は、実際に測定した測定電流値、もしくは、予め試験により求めた部品毎の電流値を組み合わせて推測した推測電流値とを、電流検出手段における測定結果の大小に対応して選択的に用いるため、空気調和機全体の消費電流における測定値の誤差を低減させることができる。
By using the above means, according to the air conditioner of the present invention,
The invention according to claim 1 corresponds to the magnitude of the measurement result in the current detection means by using the measured current value actually measured or the estimated current value estimated by combining the current values for each part obtained in advance by the test. Therefore, it is possible to reduce the error of the measured value in the current consumption of the entire air conditioner.

請求項2に係わる発明は、比較的消費電流が大きい場合には、精度がよい測定電流値を使用し、比較的消費電流が小さい場合には、精度がよい推測電流値を使用するので、消費電流の大小に係わらず精度のよい消費電流を求めることができる。   The invention according to claim 2 uses a measured current value with high accuracy when the current consumption is relatively large, and uses an estimated current value with high accuracy when the current consumption is relatively small. Accurate current consumption can be obtained regardless of the magnitude of the current.

請求項3に係わる発明は、測定電流値と推測電流値とでいずれの電流値が正確か不明な切換領域において、実測した電流値と推定した電流値とが一定以上乖離した場合に、推定した電流値を選択するようにしたので、測定電流値の誤差が大きい場合でも空気調和機全体の消費電流における測定値の誤差を低減させることができる。   The invention according to claim 3 is estimated when a measured current value and an estimated current value deviate by a certain amount or more in a switching region in which any of the measured current value and the estimated current value is not accurate. Since the current value is selected, the error of the measured value in the current consumption of the entire air conditioner can be reduced even when the error of the measured current value is large.

請求項4に係わる発明は、切換領域より大きい場合の消費電流は測定電流値を、また、切換領域より小さい場合の消費電流は推測電流値を、それぞれ選択して精度が高い方式で求めるため、消費電流の大小に係わらず精度のよい消費電流を求めることができる。   In the invention according to claim 4, since the current consumption when the current is larger than the switching region is obtained by selecting a measured current value, and the current consumption when the current is smaller than the switching region is obtained by selecting an estimated current value in a highly accurate manner. Accurate current consumption can be obtained regardless of the current consumption.

本発明による空気調和機の実施例を示す要部ブロック図である。It is a principal part block diagram which shows the Example of the air conditioner by this invention. 本発明による空気調和機に使用される電流検出回路の特性を説明するグラフである。It is a graph explaining the characteristic of the electric current detection circuit used for the air conditioner by this invention. 本発明による消費電流の求め方を説明する説明図である。It is explanatory drawing explaining the calculation method of the consumption current by this invention. 本発明による予測消費電流を予め規定した説明図である。It is explanatory drawing which prescribed | regulated the estimated consumption current by this invention previously. 本発明による空気調和機の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the air conditioner by this invention. 従来の空気調和機を示す要部ブロック図である。It is a principal part block diagram which shows the conventional air conditioner.

以下、本発明の実施の形態を、添付図面に基づいた実施例として詳細に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail as examples based on the attached drawings.

図1は空気調和機を示す制御ブロックである。この空気調和機は室内機1と室外機10とで構成され、これらは電源線で接続されている。なお、熱交換器や冷媒回路などの本願と直接関係ない構成の図示を省略している。   FIG. 1 is a control block showing an air conditioner. This air conditioner includes an indoor unit 1 and an outdoor unit 10, which are connected by a power line. In addition, illustration of the structure which is not directly related to this application, such as a heat exchanger and a refrigerant circuit, is abbreviate | omitted.

室内機1は、図示しないリモコンの赤外線信号を受信するリモコン受信部2と、室内機電源部3と、室外機10への電源供給をオン/オフする電源供給リレー4と、室内機ファンモータ7と、電源線を介して室外機10とデータの送受信を行なう室内機通信部5と、電気料金を表示する表示部6と、室内機ファンモータ7と電源供給リレー4とリモコン受信部2と室内機通信部5と表示部6とを制御する室内機制御部8とを備えている。   The indoor unit 1 includes a remote control receiving unit 2 that receives an infrared signal of a remote controller (not shown), an indoor unit power supply unit 3, a power supply relay 4 that turns on / off power supply to the outdoor unit 10, and an indoor unit fan motor 7 And an indoor unit communication unit 5 that transmits and receives data to and from the outdoor unit 10 through a power line, a display unit 6 that displays an electricity bill, an indoor unit fan motor 7, a power supply relay 4, a remote control receiving unit 2, and an indoor unit. An indoor unit control unit 8 that controls the unit communication unit 5 and the display unit 6 is provided.

一方、室外機10は、室外機電源部13と、室外機電源部13の消費電流、つまり室外機10の入力電流を測定する電流検出手段である電流検出部14と、圧縮機モータ17を駆動する圧縮機駆動部16と、電源線を介して室内機とデータの送受信を行なう室外機通信部15と、冷媒の循環方向を切り換える四方弁19と、室外機ファンモータ20と、電流検出部14と圧縮機駆動部16と室外機通信部15と、四方弁19と、室外機ファンモータ20とを制御する室外機制御部18とを備えている。   On the other hand, the outdoor unit 10 drives an outdoor unit power supply unit 13, a current detection unit 14 that is a current detection unit that measures current consumption of the outdoor unit power supply unit 13, that is, an input current of the outdoor unit 10, and a compressor motor 17. Compressor driving unit 16 that performs, outdoor unit communication unit 15 that transmits and receives data to and from the indoor unit through a power line, four-way valve 19 that switches the circulation direction of the refrigerant, outdoor unit fan motor 20, and current detection unit 14 And a compressor drive unit 16, an outdoor unit communication unit 15, a four-way valve 19, and an outdoor unit control unit 18 that controls the outdoor unit fan motor 20.

また、電流検出部14は、室外機電源部13へ供給される電流を検出して電圧に変換するカレントトランス14aと、変換された電圧を整流するダイオード14bと、整流された電圧を平滑するコンデンサ14cなどで構成されている。そして平滑された電圧(室外機10の消費電流と対応)は室外機制御部18に出力され、室外機制御部18内部の図示しないA/Dコンバータで電流値に変換される。なお、リップル電圧を低減させるフィルタ回路などは図示を省略している。   Further, the current detection unit 14 detects a current supplied to the outdoor unit power supply unit 13 and converts it into a voltage, a diode 14b that rectifies the converted voltage, and a capacitor that smoothes the rectified voltage 14c and the like. The smoothed voltage (corresponding to the consumption current of the outdoor unit 10) is output to the outdoor unit control unit 18 and converted into a current value by an A / D converter (not shown) inside the outdoor unit control unit 18. A filter circuit for reducing the ripple voltage is not shown.

また、圧縮機駆動部16は、室外機電源部13から供給される直流電圧を入力し、室外機制御部18の制御により圧縮機モータ17を三相駆動するインバータ部16aと、インバータ部16aへの入力電流(消費電流)を電圧に変換するシャント抵抗16bとを備えている。そしてこの変換された消費電流に対応する電圧は、室外機制御部18に出力され、室外機制御部18内部の図示しないA/Dコンバータで電流値に変換される。これらの電流値は、背景技術で説明したように電流制限機能や過電流検出機能で用いられると共に、本願による消費電流の算出にも用いられる。   In addition, the compressor driving unit 16 inputs a DC voltage supplied from the outdoor unit power supply unit 13, and controls the inverter motor 16 to three-phase drive the compressor motor 17 under the control of the outdoor unit control unit 18, and to the inverter unit 16a. And a shunt resistor 16b for converting the input current (current consumption) into a voltage. The voltage corresponding to the converted current consumption is output to the outdoor unit control unit 18 and converted into a current value by an A / D converter (not shown) inside the outdoor unit control unit 18. These current values are used in the current limiting function and the overcurrent detection function as described in the background art, and are also used in the calculation of current consumption according to the present application.

室内機電源部3は電源プラグに電源が供給されると、室内機1の各部へ電源を供給し、リモコン受信部2を介してリモコンから制御信号、例えば電源オンの信号が室内機制御部8へ伝えられると、同室内機制御部8は電源供給リレー4をオンした後、室内機通信部5を介して室外機制御部18に運転指示を与える。室外機制御部18は、与えられた指示に従って圧縮機駆動部16を制御し、指定された運転を行なう。なお、このとき、室外機電源部13へ供給される電流を電流検出部14を介して室外機制御部18で監視しており、予め規定された制限電流の範囲内で圧縮機の運転を行なうようになっている。   When power is supplied to the power supply plug, the indoor unit power supply unit 3 supplies power to each unit of the indoor unit 1, and a control signal, for example, a power-on signal is transmitted from the remote control via the remote control receiving unit 2 to the indoor unit control unit 8. The indoor unit control unit 8 turns on the power supply relay 4 and then gives an operation instruction to the outdoor unit control unit 18 via the indoor unit communication unit 5. The outdoor unit control unit 18 controls the compressor driving unit 16 in accordance with a given instruction and performs a specified operation. At this time, the current supplied to the outdoor unit power supply unit 13 is monitored by the outdoor unit control unit 18 via the current detection unit 14, and the compressor is operated within the range of the limited current defined in advance. It is like that.

図2は本実施例で用いられる電流検出部14の特性を説明するグラフであり、横軸は時間を、縦軸は電流(電流と対応する電圧)を示しており、0〜20A(アンペア)を測定するようになっている。そして、この電圧を前述したようにA/Dコンバータで電流値に変換する。室外機制御部18に備えられている低価格のマイコンは、一般的に分解能が8ビット、つまり、20Aを256段階で検出するようになっており、約0.1Aの測定単位となる。   FIG. 2 is a graph for explaining the characteristics of the current detection unit 14 used in this embodiment. The horizontal axis represents time, the vertical axis represents current (voltage corresponding to current), and 0 to 20 A (ampere). Is supposed to measure. Then, this voltage is converted into a current value by the A / D converter as described above. The low-cost microcomputer provided in the outdoor unit control unit 18 generally has a resolution of 8 bits, that is, 20A is detected in 256 stages, and is a measurement unit of about 0.1A.

また、前述したように電流検出部14は平滑用のコンデンサ14cを備えており、電流値と対応する電圧にはリップル電圧が含まれている。このリップル電圧は消費電流が大きい場合は相対的に比率が小さく、消費電流が小さい場合は相対的に比率が大きく、つまり誤差が大きくなる。従って、消費電流が小さい場合は約0.1Aの測定単位であっても誤差が大きくなり、正確な測定ができなくなってしまう。また、電流検出部14は室外機10の消費電流のみを測定しているため、消費電流が小さい場合は、相対的に消費電流の割合が大きい室内機1の消費電流が無視されるため、正確な測定ができなくなってしまう。   Further, as described above, the current detection unit 14 includes the smoothing capacitor 14c, and the voltage corresponding to the current value includes a ripple voltage. This ripple voltage has a relatively small ratio when the consumption current is large, and a relatively large ratio when the consumption current is small, that is, an error becomes large. Therefore, when the current consumption is small, the error becomes large even with a measurement unit of about 0.1 A, and accurate measurement cannot be performed. In addition, since the current detection unit 14 measures only the consumption current of the outdoor unit 10, when the consumption current is small, the consumption current of the indoor unit 1 having a relatively large consumption current is ignored. Will not be able to measure properly.

また、シャント抵抗16bを用いた方式では、カレントトランス14aを用いた方式のようにリップル電圧を考慮する必要がないが、測定精度を高めるためにシャント抵抗16bの値を大きくすれば、この抵抗による電力損失が大きくなり、電力損失を低減させるためにはシャント抵抗16bの抵抗値を小さくしなければならず、このため、測定誤差が大きくなる。背景技術で説明したように電流検出回路は10A以上の測定を前提として設計されているため、大電流の時と低電流の時でも検出精度自体は同じであっても、消費電流が小さい場合は測定した電流値に対する測定誤差の比率が高くなる。これはカレントトランス14aを用いた方式も同じである。つまり、カレントトランス14aを用いた方式でも、シャント抵抗16bを用いた方式であっても、消費電流が小さい場合は誤差が大きいという問題を抱えている。   Further, in the method using the shunt resistor 16b, it is not necessary to consider the ripple voltage unlike the method using the current transformer 14a. However, if the value of the shunt resistor 16b is increased in order to improve the measurement accuracy, In order to reduce the power loss, it is necessary to reduce the resistance value of the shunt resistor 16b, which increases the measurement error. As described in the background art, since the current detection circuit is designed on the assumption of measurement of 10 A or more, the detection accuracy itself is the same even when the current is large and when the current is low, but the current consumption is small. The ratio of measurement error to the measured current value increases. The same applies to the system using the current transformer 14a. In other words, both the method using the current transformer 14a and the method using the shunt resistor 16b have a problem that the error is large when the current consumption is small.

そこで本願は、電流検出部14の測定精度が高い、つまり消費電流が大きい場合は実際に測定した電流検出部14での電流値を用いて消費電流を算出し、電流検出部14の測定精度が低い、つまり消費電流が小さい場合は実際に測定した電流検出部14での電流値に代えて、予め空気調和機の動作により個別に求めた予測値を用いて消費電流を算出することを特徴としている。   Therefore, in the present application, when the measurement accuracy of the current detection unit 14 is high, that is, when the consumption current is large, the current consumption is calculated using the current value measured in the current detection unit 14 and the measurement accuracy of the current detection unit 14 is When the current consumption is low, that is, when the current consumption is small, the current consumption is calculated using a predicted value obtained individually by the operation of the air conditioner in advance, instead of the actually measured current value in the current detection unit 14. Yes.

図4は予め定められた電流値を示す表であり、実験的に求められた値である。図4の要素毎の予想消費電流の表は、室内機制御部8内の図示しない記憶部に消費電流値テーブルとして記憶されており、室内機1や室外機10で消費される電流値のデータを各ブロックや部品毎に規定してテーブル化したものである。例えば、室内機のみが稼働しており、室内ファンが停止している場合を『室内機基本状態』とし、この時、室内機1では0.5Aを消費するとしている。   FIG. 4 is a table showing predetermined current values, which are experimentally obtained values. The table of predicted current consumption for each element in FIG. 4 is stored as a current consumption value table in a storage unit (not shown) in the indoor unit control unit 8, and data on current values consumed by the indoor unit 1 and the outdoor unit 10. Is defined in a table for each block or component. For example, the case where only the indoor unit is operating and the indoor fan is stopped is referred to as “indoor unit basic state”. At this time, the indoor unit 1 consumes 0.5 A.

また、『室内ファン回転』の場合は、0.2A消費すると規定している。同様に、室外機10で『室外機基本状態』、つまり、室外機10に電源が供給されているが、圧縮機モータ17も四方弁19も室外機ファンモータ20も停止している場合を0.5Aと規定している。また、『圧縮機最小運転』、つまり、最低の回転数で回転している場合は1.0A、『予熱処理』は0.3A、『四方弁』の動作は0.2A、室外機ファンの回転は、回転数が増すにつれて0.1A〜0.3Aと規定している。   In the case of “indoor fan rotation”, it is defined that 0.2 A is consumed. Similarly, in the “outdoor unit basic state” in the outdoor unit 10, that is, when power is supplied to the outdoor unit 10, the compressor motor 17, the four-way valve 19, and the outdoor unit fan motor 20 are stopped. .5A. “Minimum compressor operation”, that is, 1.0A when rotating at the minimum speed, 0.3A for “pre-heat treatment”, 0.2A for “four-way valve” operation, The rotation is defined as 0.1 A to 0.3 A as the number of rotations increases.

図4の運転状態毎の予測消費電流の表は、図4の要素毎の予想消費電流の表に基づいて、空気調和機の運転状態毎に駆動されるブロックや部品の消費電流を算出したものである。この消費電流を算出により推測する手段が電流値推測手段である。電流値推測手段では、室内機制御部8や室外機制御部18が自身で各ブロックや部品を制御することを利用して、この制御を実行した時、同時に各ブロックや部品の予想電流値を加算して、空気調和機の各状態における消費電流を逐次、推測するようになっている。   The table of predicted current consumption for each operation state in FIG. 4 is a calculation of the current consumption of blocks and parts driven for each operation state of the air conditioner based on the table of predicted current consumption for each element in FIG. It is. Means for estimating the current consumption by calculation is current value estimation means. In the current value estimation means, when the indoor unit control unit 8 or the outdoor unit control unit 18 controls each block or component by itself and executes this control, the current value estimation unit simultaneously calculates the expected current value of each block or component. In addition, current consumption in each state of the air conditioner is sequentially estimated.

例えば『空気調和機の運転停止状態』であれば、図4の要素毎の予想消費電流の表の番号1であるため、予想電流0.5Aが予測値となる。『送風運転のみ』の場合は図4の要素毎の予想消費電流の表の番号1の値に、要素毎の予想消費電流の表の番号2の『室内ファン回転』の予想電流値である0.2Aを加算して合計0.7Aとなる。このように、空気調和機の各運転状態に対応して予測値(予測電流値)を求めることができる。なお、図4の運転状態毎の予測消費電流の表は一例であり、これ以外の場合も事前に規定しておく。もしくは、制御する都度に算出してもよい。   For example, in the case of “air conditioner shutdown state”, it is number 1 in the table of predicted current consumption for each element in FIG. In the case of “only blowing operation”, the value of No. 1 in the table of expected current consumption for each element in FIG. 4 is 0, which is the expected current value of “Indoor fan rotation” of No. 2 in the table of expected current consumption for each element. .2A is added to give a total of 0.7A. Thus, a predicted value (predicted current value) can be obtained corresponding to each operation state of the air conditioner. Note that the table of predicted current consumption for each operating state in FIG. 4 is an example, and other cases are also defined in advance. Alternatively, it may be calculated every time it is controlled.

図3は電流検出部14で測定した電流値と、推測による電流値とを切り換えるタイミングを説明する説明図である。横軸は時間、縦軸は消費電流(カレントトランス14aの整流電圧)であり、空気調和機の消費電流が徐々に増加する例を示している。   FIG. 3 is an explanatory diagram for explaining the timing for switching between the current value measured by the current detector 14 and the estimated current value. The horizontal axis represents time, and the vertical axis represents current consumption (rectified voltage of the current transformer 14a), showing an example in which the current consumption of the air conditioner gradually increases.

図3において、実線の曲線が電流検出部14で測定した測定電流値であり、点線の細い線が実際の電流値であり、階段状の実線が図4で説明した消費電流の推定値、つまり、推定電流値である。そして、矢印で示す電流切換点が測定電流値と推定電流値とを切り換えるタイミング点である。この測定電流値と推定電流値とを切り換える機能を室外機制御部14に備えられた消費電流選択手段で行っている。   In FIG. 3, the solid line curve is the measured current value measured by the current detector 14, the dotted thin line is the actual current value, and the stepped solid line is the estimated current consumption value described in FIG. 4, that is, The estimated current value. A current switching point indicated by an arrow is a timing point at which the measured current value and the estimated current value are switched. The function of switching between the measured current value and the estimated current value is performed by the consumption current selection means provided in the outdoor unit control unit 14.

消費電流選択手段において、基本的には測定電流値が第1閾値、例えば3.0A以上なら測定電流値を採用し、測定電流値が第1閾値、例えば3.0A未満なら推定電流値を採用するだけでよい。これにより、消費電流が小さい時には実測値に代えて予測値を用いるので検出する消費電流値の誤差を低減させることができる。   In the current consumption selection means, basically, if the measured current value is the first threshold, for example, 3.0A or more, the measured current value is adopted, and if the measured current value is less than the first threshold, for example, 3.0A, the estimated current value is adopted. Just do it. Thereby, when the consumption current is small, the predicted value is used instead of the actual measurement value, so that the error of the detected consumption current value can be reduced.

本実施例では消費電流選択手段において、測定電流値と推測電流値とでいずれの電流値がより正確か不明な切換領域を予め規定しており、この切換領域内で測定電流値と推定電流値とを切り換えるようにしている。なお、切換領域は第1閾値よりも小さい第2閾値と、第1閾値よりも大きい第3閾値とで範囲が規定されている。   In this embodiment, the current consumption selection means predefines a switching area in which the current value is more accurate or unknown between the measured current value and the estimated current value, and the measured current value and the estimated current value within this switching area. And are switched. The range of the switching area is defined by a second threshold value that is smaller than the first threshold value and a third threshold value that is larger than the first threshold value.

これは電流検出部14で測定した測定電流値の精度が、消費電流が小さいほど低くなるため、この精度の低い電流値を基にして測定電流値と推定電流値とを切り換えると、誤差が大きくなる可能性があるからである。本実施例では切換領域の間は、電流検出部14で測定した測定電流値と推定電流値とを比較し、その電流差が推定値に対して所定の割合、例えば20%以上乖離していたら、推定値電流を用いるようにしている。なお、切換領域の下限の電流値、つまり、第2閾値よりも測定電流値が低くなったら、強制的に推定電流値を選択するようにしている。   This is because the accuracy of the measured current value measured by the current detection unit 14 becomes lower as the current consumption is smaller. Therefore, when the measured current value and the estimated current value are switched based on the current value having a lower accuracy, the error increases. Because there is a possibility of becoming. In this embodiment, between the switching areas, the measured current value measured by the current detector 14 is compared with the estimated current value, and if the current difference deviates from the estimated value by a predetermined ratio, for example, 20% or more. The estimated current is used. Note that if the current value at the lower limit of the switching region, that is, the measured current value is lower than the second threshold value, the estimated current value is forcibly selected.

具体的には図3において、消費電流値が第3閾値:4.0A〜第2閾値:2.0Aの間を切換領域として規定する。この切換領域内において、推定電流値:1.9Aで、測定電流値:2.6Aの状態になった場合、推定電流値と測定電流値の電流差は0.7Aとなり、推定電流値に対する電流差の割合、つまり、乖離度が37%となる。この値は予め規定していた閾値の20%を越えるため、測定電流値から推定電流値に切り換える。この切換タイミングが電流値切換点である。   Specifically, in FIG. 3, the current consumption value is defined as a switching region between the third threshold value: 4.0A and the second threshold value: 2.0A. In this switching region, when the estimated current value is 1.9 A and the measured current value is 2.6 A, the difference between the estimated current value and the measured current value is 0.7 A, and the current with respect to the estimated current value is The difference ratio, that is, the degree of divergence is 37%. Since this value exceeds 20% of the predetermined threshold value, the measured current value is switched to the estimated current value. This switching timing is a current value switching point.

なお、乖離度は測定電流値と推定電流値との乖離度合いを示せばよいので、測定電流値と推定電流値との比率や、測定電流値に対する電流差の割合などを用いてもよい。また、切換領域は実験的に求めた誤差の分布などから予め決定しておく。なお、リップル電圧のリップル成分を除去するため、処理に手間が掛かるが、リップル電圧を周期的に取り込んで記憶し、平均化したものを用いてもよい。ただし、図2で説明したように、測定電流値は、値が小さい時ほど誤差の割合が大きくなるので、平均化した電流値を用いる場合でも乖離度を監視して電流値を選択する必要がある。   Since the degree of divergence only needs to indicate the degree of divergence between the measured current value and the estimated current value, the ratio between the measured current value and the estimated current value, the ratio of the current difference to the measured current value, or the like may be used. The switching area is determined in advance from an experimentally obtained error distribution or the like. Note that although processing is troublesome in order to remove the ripple component of the ripple voltage, the ripple voltage may be periodically taken in, stored, and averaged. However, as described with reference to FIG. 2, the measured current value has a larger error rate as the value is smaller. Therefore, even when using an averaged current value, it is necessary to monitor the degree of deviation and select a current value. is there.

図1に示すように室外機制御部18は室外機10での測定電流値または推定電流値を選択して求め、この電流値を室外機通信部15を介して室内機制御部8へ送信する。室内機1では実際に電流を測定する回路がないため、室内機制御部8は、図4で示した予測消費電流値を算出し、この値に室外機10の消費電流値を加算して空気調和機全体の消費電流を求める。そして、この消費電流値に電圧を乗じて消費電力を求め、この消費電力を累積して消費電力量を算出し、これに所定の単位電力料金を乗じて電気料金を算出し、これを表示部6へ表示する。   As shown in FIG. 1, the outdoor unit control unit 18 selects and obtains a measured current value or an estimated current value in the outdoor unit 10, and transmits this current value to the indoor unit control unit 8 via the outdoor unit communication unit 15. . Since the indoor unit 1 does not have a circuit for actually measuring the current, the indoor unit control unit 8 calculates the predicted current consumption value shown in FIG. 4 and adds the current consumption value of the outdoor unit 10 to this value. Obtain the current consumption of the entire harmonic machine. Then, the power consumption is obtained by multiplying the current consumption value by the voltage, and the power consumption is calculated by accumulating the power consumption, and the electricity charge is calculated by multiplying the power consumption by a predetermined unit power charge. 6 is displayed.

以上説明したように、実際に測定した測定電流値、もしくは、予め試験により求めた部品毎の電流値を組み合わせて推測した推測電流値とを、電流検出手段における測定結果の大小に対応して選択的に用いるため、空気調和機全体の消費電流における測定値の誤差を低減させることができる。   As described above, the measured current value actually measured or the estimated current value estimated by combining the current values for each part obtained in advance by the test is selected according to the magnitude of the measurement result in the current detection means. Therefore, the measurement value error in the current consumption of the entire air conditioner can be reduced.

また、比較的消費電流が大きい場合には、精度がよい測定電流値を使用し、比較的消費電流が小さい場合には、精度がよい推測電流値を使用するので、消費電流の大小に係わらず精度のよい消費電流を求めることができる。   In addition, when the current consumption is relatively large, the measured current value with high accuracy is used, and when the current consumption is relatively small, the estimated current value with high accuracy is used. Accurate current consumption can be obtained.

また、測定電流値と推測電流値とでいずれの電流値が正確か不明な切換領域において、実測した電流値と推定した電流値が一定以上乖離した場合に、推定した電流値を選択するようにしたので、測定電流値の誤差が大きい場合でも空気調和機全体の消費電流における測定値の誤差を低減させることができる。
さらに、切換領域より大きい場合の消費電流は測定電流値を、また、切換領域より小さい場合の消費電流は推測電流値を、それぞれ選択して精度が高い方式で求めるため、消費電流の大小に係わらず精度のよい消費電流を求めることができる。
In addition, when the measured current value and the estimated current value deviate more than a certain value in the switching region where it is unknown which current value is accurate between the measured current value and the estimated current value, the estimated current value is selected. Therefore, even when the measurement current value error is large, the measurement value error in the current consumption of the entire air conditioner can be reduced.
In addition, since the current consumption when it is larger than the switching area is determined by a highly accurate method by selecting the measured current value and the current consumption when it is smaller than the switching area, respectively, it depends on the magnitude of the current consumption. Therefore, accurate current consumption can be obtained.

次に、空気調和機の電気料金を求めて表示する処理を図5に示す室内機の処理と室外機の処理とのフローチャートを用いて説明する。図5に記載のSTはステップを表し、これに続く数字はステップ番号を、また、YはYesを、NはNoをそれぞれ表している。なお、室内機の処理フローは室内機制御部8、室外機の処理フローは室外機制御部18のそれぞれの動作ステップを示している。   Next, the process for obtaining and displaying the electricity charge of the air conditioner will be described with reference to the flowchart of the indoor unit process and the outdoor unit process shown in FIG. ST shown in FIG. 5 represents a step, the number following this represents a step number, Y represents Yes, and N represents No. The processing flow of the indoor unit shows the operation steps of the indoor unit control unit 8, and the processing flow of the outdoor unit shows the operation steps of the outdoor unit control unit 18.

図5(1)室内機の処理について説明する。室内機制御部8は動作を開始すると、まず、リモコン信号を受信したか確認する(ST1)。リモコン信号を受信した場合は(ST1−Y)、このリモコン信号によって指示された運転、例えば冷暖房、温度設定、風量設定などの処理を行う。また、この処理に対応して室外機10へ運転指示を送信する。(ST2)。   FIG. 5 (1) Processing of the indoor unit will be described. When the indoor unit control unit 8 starts operating, it first checks whether a remote control signal has been received (ST1). When the remote control signal is received (ST1-Y), the operation instructed by the remote control signal, for example, air conditioning, temperature setting, air volume setting, and the like are performed. In response to this processing, an operation instruction is transmitted to the outdoor unit 10. (ST2).

次に室内機1の推定電流を算出する(ST3)。これは図4で説明したように、動作しているユニットや部品などの動作状態に対応して消費電流を推測する処理である。次に室外機10から、室外機10の消費電流値のデータを受信する(ST4)。   Next, the estimated current of the indoor unit 1 is calculated (ST3). As described with reference to FIG. 4, this is a process of estimating the current consumption corresponding to the operating state of the operating unit or component. Next, the data of the consumption current value of the outdoor unit 10 is received from the outdoor unit 10 (ST4).

そして、室内機1の推定電流値と室外機10の消費電流値とを加算して空気調和機全体の消費電流を算出し、これに定格電圧を乗じて電力値を算出する。そして、これを積算して消費電力量を求め、さらに、この消費電力量に電気料金の単位金額を乗じて電気料金に換算する(ST5)。なお、積算された電力量はユーザーの操作によりクリアされるようになっている。   Then, the estimated current value of the indoor unit 1 and the consumption current value of the outdoor unit 10 are added to calculate the consumption current of the entire air conditioner, and the power value is calculated by multiplying this by the rated voltage. Then, the amount of power consumption is obtained by integrating this, and the amount of power consumption is multiplied by the unit amount of the electricity bill to convert it into an electricity bill (ST5). The accumulated power amount is cleared by a user operation.

次に、算出した電気料金を表示部6に表示し(ST6)、ST1へジャンプする。
一方、リモコン信号を受信していない場合は(ST1−N)、電気料金を算出するためにST3へジャンプする。
Next, the calculated electricity bill is displayed on the display unit 6 (ST6), and the process jumps to ST1.
On the other hand, if the remote control signal is not received (ST1-N), the process jumps to ST3 to calculate the electricity bill.

次に、図5(2)室外機の処理について説明する。室外機制御部18は動作を開始すると、まず、室内機1からの運転指示を受信したか確認する(ST11)。室内機1からの運転指示を受信した場合(ST11−Y)、運転指示に対応した制御、例えば圧縮機の運転開始や冷暖房の切換、予熱処理や除霜運転などを実施する(ST12)。   Next, FIG. 5 (2) processing of the outdoor unit will be described. When the outdoor unit control unit 18 starts operating, it first checks whether an operation instruction from the indoor unit 1 has been received (ST11). When an operation instruction is received from the indoor unit 1 (ST11-Y), control corresponding to the operation instruction, for example, starting operation of the compressor, switching between cooling and heating, pre-heat treatment, defrosting operation, etc. is performed (ST12).

次に室外機10の推定電流を算出する(ST13)。これは図4で説明したように、動作しているユニットや部品などの動作状態に対応して消費電流を推測する処理である。次に電流検出部14を介して室外機10の消費電流(測定電流値)を測定する(ST14)。   Next, the estimated current of the outdoor unit 10 is calculated (ST13). As described with reference to FIG. 4, this is a process of estimating the current consumption corresponding to the operating state of the operating unit or component. Next, the consumption current (measured current value) of the outdoor unit 10 is measured via the current detection unit 14 (ST14).

なお、図3で説明したように測定した消費電流値について、第3閾値:4.0A〜第2閾値:2.0Aの間を切換領域として規定しているので、この切換領域内の値か確認するため、次に、この測定電流値が2アンペアより小さいか確認する(ST15)。測定電流値が2アンペア以上の場合(ST15−N)、測定電流値が4アンペアより大きいか確認する(ST16)。測定電流値が4アンペア以下の場合(ST16−N)、室外機10の推定電流値と測定電流値との差を求め、これを推定電流値で除算して乖離度を求める(ST17)。   Since the current consumption value measured as described in FIG. 3 is defined as the switching area between the third threshold value: 4.0A and the second threshold value: 2.0A, is the value within this switching area? In order to confirm, next, it is confirmed whether this measured current value is smaller than 2 amperes (ST15). When the measured current value is 2 amperes or more (ST15-N), it is confirmed whether the measured current value is larger than 4 amperes (ST16). When the measured current value is 4 amperes or less (ST16-N), the difference between the estimated current value of the outdoor unit 10 and the measured current value is obtained and divided by the estimated current value to obtain the degree of divergence (ST17).

次に乖離度が20%よりも大きいか確認する(ST18)。乖離度が20%以下の場合(ST18−N)、測定電流値を室外機10の消費電流値とする(ST19)。次にこの室外機10の消費電流値のデータを室内機1へ送信する(ST20)。そしてST11へジャンプする。   Next, it is confirmed whether the deviation degree is larger than 20% (ST18). When the degree of deviation is 20% or less (ST18-N), the measured current value is set as the current consumption value of the outdoor unit 10 (ST19). Next, the data of the consumption current value of the outdoor unit 10 is transmitted to the indoor unit 1 (ST20). Then jump to ST11.

一方、室内機1からの運転指示を受信していない場合(ST11−N)、ST13へジャンプする。また、測定電流値が2アンペアより小さい場合(ST15−Y)、推定電流値を室外機10の消費電流値とする(ST21)。そしてST20へジャンプする。また、測定電流値が4アンペアより大きい場合(ST16−Y)、ST19へジャンプする。また、乖離度が20%より大きい場合(ST18−Y)、ST21へジャンプする。   On the other hand, when the operation instruction from the indoor unit 1 has not been received (ST11-N), the process jumps to ST13. When the measured current value is smaller than 2 amperes (ST15-Y), the estimated current value is set as the current consumption value of the outdoor unit 10 (ST21). Then jump to ST20. If the measured current value is larger than 4 amperes (ST16-Y), the process jumps to ST19. If the divergence degree is greater than 20% (ST18-Y), the process jumps to ST21.

なお、室内機制御部8と室外機制御部18は図示しないマイコンを内蔵しており、図5の各フローチャートの各ステップと対応するプログラムを各マイコンが実行することで前述した各手段の機能が実現されている。   The indoor unit control unit 8 and the outdoor unit control unit 18 incorporate a microcomputer (not shown), and each microcomputer executes a program corresponding to each step in each flowchart in FIG. It has been realized.

具体的にはステップ3やステップ13が電流値推測手段で実行されるステップを示しており、ステップ14が電流検出手段を、また、ステップ15〜19とステップ21とが消費電流選択手段で実行されるステップをそれぞれ示している。
このようにして算出された消費電力、電気料金は室内機1の表示部6に表示され、ユーザーが確認できるようになっている。なお、赤外線式リモコンに代替した無線リモコンに消費電力や電気料金を表示するような構成にしてもよい。
Specifically, Step 3 and Step 13 are steps executed by the current value estimating means, Step 14 is executed by the current detecting means, and Steps 15 to 19 and Step 21 are executed by the consumed current selecting means. Each step is shown.
The power consumption and the electricity charge calculated in this way are displayed on the display unit 6 of the indoor unit 1 so that the user can check them. Note that power consumption and electricity charges may be displayed on a wireless remote controller that replaces the infrared remote controller.

次に本発明による別の実施例を説明する。この実施例では比較的安価な空気調和機を想定しており、室外機10に備えられている電流検出部14が省略された構成となっている。この電流検出部14の代替として、圧縮機駆動部16内の電流検出手段からなるシャント抵抗16bで検出した圧縮機モータ17の駆動電流である圧縮機測定電流値を用いる。   Next, another embodiment according to the present invention will be described. In this embodiment, a relatively inexpensive air conditioner is assumed, and the current detection unit 14 provided in the outdoor unit 10 is omitted. As an alternative to the current detection unit 14, a compressor measured current value that is a drive current of the compressor motor 17 detected by a shunt resistor 16 b that is a current detection unit in the compressor drive unit 16 is used.

室外機10における消費電流の大部分は圧縮機モータ17の駆動に係わるものであるため、圧縮機モータ17の圧縮機測定電流値に、室外機10における圧縮機モータ17以外の部品で消費する推定電流値を合算して室外機10の消費電流である合成電流値を求める。この推定電流値の考え方は図4で説明したように各部品やユニットの制御状態により所定の回路の消費電流を予測するものである。   Since most of the current consumption in the outdoor unit 10 is related to driving of the compressor motor 17, it is estimated that the compressor measured current value of the compressor motor 17 is consumed by components other than the compressor motor 17 in the outdoor unit 10. The combined current value that is the current consumption of the outdoor unit 10 is obtained by adding the current values. The concept of the estimated current value is to predict the current consumption of a predetermined circuit according to the control state of each component or unit as described with reference to FIG.

ただし、圧縮機モータ17の消費電流が少ない場合、前述したようにシャント抵抗16bの値によっては電流値の相対的な誤差が大きくなる。このため、本実施例では実施例1で説明した消費電流選択手段を備えている。この消費電流選択手段では、シャント抵抗16bで測定した電流値が閾値、例えば4アンペア以下の時は圧縮機測定電流値に代替して、圧縮機モータ17の消費電流値の推測電流値を用い、この推測電流値と圧縮機モータ17以外の部品で消費する推定電流値とを加算して室外機10全体の消費電流値を算出するように切り換えている。   However, when the consumption current of the compressor motor 17 is small, the relative error of the current value increases depending on the value of the shunt resistor 16b as described above. For this reason, the present embodiment includes the consumption current selection means described in the first embodiment. In this consumption current selection means, when the current value measured by the shunt resistor 16b is a threshold value, for example, 4 amperes or less, the estimated current value of the consumption current value of the compressor motor 17 is used instead of the compressor measurement current value, The estimated current value and the estimated current value consumed by components other than the compressor motor 17 are added to calculate the consumed current value of the entire outdoor unit 10.

そして、このように切り換えた測定電流値と推測電流値を加算した値、もしくは、推測電流値を室外機10の消費電流値として室内機1へ送信する。これ以降の室内機1の処理は実施例1と同じであるため説明を省略する。   Then, a value obtained by adding the measured current value thus switched and the estimated current value, or the estimated current value is transmitted to the indoor unit 1 as the current consumption value of the outdoor unit 10. Since the subsequent processing of the indoor unit 1 is the same as that of the first embodiment, the description thereof is omitted.

以上説明したように、入力電流の測定に代替して圧縮機モータ17の駆動電流を測定する空気調和機において、実際に測定した電流値、もしくは、予め試験により求めた部品毎の電流値を組み合わせて推測した推測電流値とを、電流検出手段における測定結果の大小に対応して選択的に用いるため、空気調和機全体の消費電流における測定値の誤差を低減させることができる。   As described above, in the air conditioner that measures the drive current of the compressor motor 17 instead of the measurement of the input current, the actually measured current value or the current value of each component obtained in advance by a test is combined. Since the estimated current value estimated in this way is selectively used corresponding to the magnitude of the measurement result in the current detection means, the error in the measured value in the current consumption of the entire air conditioner can be reduced.

なお、各実施例において、室内機1と室外機10とが通信可能となっており、各電流値データを通信で送受信できるため、電流値推測手段や消費電流選択手段、合計電流を求める加算処理などは、本実施例に限るものでなく、室内機1と室外機10とのいずれかで実施すればよい。   In each embodiment, the indoor unit 1 and the outdoor unit 10 can communicate with each other, and each current value data can be transmitted and received by communication. Therefore, a current value estimation unit, a consumption current selection unit, and an addition process for obtaining a total current The above is not limited to the present embodiment, and may be performed by either the indoor unit 1 or the outdoor unit 10.

1 室内機
2 リモコン受信部
3 室内機電源部
4 電源供給リレー
5 室内機通信部
6 表示部
7 室内機ファンモータ
8 室内機制御部
10 室外機
13 室外機電源部
14 電流検出部
14a カレントトランス
14b ダイオード
14c コンデンサ
15 室外機通信部
16 圧縮機駆動部
16a インバータ部
16b シャント抵抗
17 圧縮機モータ
18 室外機制御部
19 四方弁
20 室外機ファンモータ
DESCRIPTION OF SYMBOLS 1 Indoor unit 2 Remote control receiving part 3 Indoor unit power supply part 4 Power supply relay 5 Indoor unit communication part 6 Display part 7 Indoor unit fan motor 8 Indoor unit control part 10 Outdoor unit 13 Outdoor unit power supply part 14 Current detection part 14a Current transformer 14b Diode 14c Capacitor 15 Outdoor unit communication unit 16 Compressor drive unit 16a Inverter unit 16b Shunt resistor 17 Compressor motor 18 Outdoor unit control unit 19 Four-way valve 20 Outdoor unit fan motor

Claims (4)

圧縮機と、複数の電気部品とを有する空気調和機であって、
前記圧縮機で消費する電流、もしくは、入力電流を測定して測定電流値を求める電流検出手段と、
前記空気調和機の運転状態に応じて前記圧縮機及び前記複数の電気部品で消費される消費電流値を予め記憶した消費電流値テーブルと、
同消費電流値テーブルから前記空気調和機の運転状態に対応した前記複数の電気部品の消費電流値を抽出すると共に、抽出した消費電流値を合算して推測電流値を求める電流値推測手段と、
前記測定電流値と予め定めた第1閾値との比較結果に対応して前記推測電流値または前記測定電流値のいずれかを選択する消費電流選択手段とを備え、
同消費電流選択手段で選択された消費電流に基づいて前記空気調和機全体の消費電流を求めることを特徴とする空気調和機。
An air conditioner having a compressor and a plurality of electrical components,
Current detecting means for measuring a current consumed by the compressor or measuring a current value by measuring an input current; and
A consumption current value table that prestores consumption current values consumed by the compressor and the plurality of electrical components according to the operating state of the air conditioner;
Extracting the current consumption values of the plurality of electrical components corresponding to the operating state of the air conditioner from the current consumption value table, and adding the extracted current consumption values to obtain an estimated current value;
Consumption current selecting means for selecting either the estimated current value or the measured current value corresponding to a comparison result between the measured current value and a predetermined first threshold;
An air conditioner characterized in that the current consumption of the entire air conditioner is obtained based on the consumption current selected by the consumption current selection means.
前記消費電流選択手段は、前記測定電流値と前記第1閾値とを比較した結果、前記測定電流値が第1閾値よりも小さい場合には前記推測電流値を、前記測定電流値が第1閾値よりも大きい場合には前記測定電流値を、それぞれ選択してなることを特徴とする請求項1記載の空気調和機。   As a result of comparing the measured current value with the first threshold value, the consumption current selecting means determines the estimated current value when the measured current value is smaller than the first threshold value, and the measured current value is the first threshold value. 2. The air conditioner according to claim 1, wherein the measured current value is selected for each of the air conditioners when the value is larger. 前記消費電流選択手段は、前記測定電流値が、前記第1閾値よりも小さい第2閾値と前記第1閾値よりも大きい第3閾値との間で予め定めた切換領域内の値であるとき、
前記推測電流値と前記測定電流値との値の乖離を示す乖離度を算出し、同乖離度が予め定めた所定値よりも小さい場合には前記測定電流値を、同乖離度が予め定めた所定値よりも大きい場合には前記推測電流値を、それぞれ選択することを特徴とする請求項1記載の空気調和機。
The consumption current selection means, when the measured current value is a value within a predetermined switching region between a second threshold value smaller than the first threshold value and a third threshold value larger than the first threshold value,
A divergence degree indicating a divergence between the estimated current value and the measured current value is calculated, and when the divergence degree is smaller than a predetermined value, the measured current value is determined in advance. 2. The air conditioner according to claim 1, wherein when the estimated current value is larger than a predetermined value, the estimated current value is selected.
前記消費電流選択手段は、前記測定電流値が前記第2閾値よりも小さい場合には前記推測電流値を、前記測定電流値が前記第3閾値よりも大きい場合には前記測定電流値をそれぞれ選択することを特徴とする請求項3記載の空気調和機。   The consumption current selection means selects the estimated current value when the measured current value is smaller than the second threshold, and selects the measured current value when the measured current value is larger than the third threshold. The air conditioner according to claim 3.
JP2010138521A 2010-06-17 2010-06-17 Air conditioner Active JP5482490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010138521A JP5482490B2 (en) 2010-06-17 2010-06-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138521A JP5482490B2 (en) 2010-06-17 2010-06-17 Air conditioner

Publications (2)

Publication Number Publication Date
JP2012002443A true JP2012002443A (en) 2012-01-05
JP5482490B2 JP5482490B2 (en) 2014-05-07

Family

ID=45534638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138521A Active JP5482490B2 (en) 2010-06-17 2010-06-17 Air conditioner

Country Status (1)

Country Link
JP (1) JP5482490B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018203669A1 (en) * 2018-03-12 2019-09-12 Siemens Aktiengesellschaft A method for monitoring an air conditioner, monitoring device and air conditioning

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288391A (en) * 1992-04-03 1993-11-02 Sanyo Electric Co Ltd Method and device for detecting current for air conditioner
JPH05328733A (en) * 1992-05-18 1993-12-10 Hitachi Ltd Air conditioner
JPH0919156A (en) * 1995-06-28 1997-01-17 Sharp Corp Air conditioner
JP2001021193A (en) * 1999-07-06 2001-01-26 Fujitsu General Ltd Method for controlling air conditioner
JP2004343823A (en) * 2003-05-13 2004-12-02 Matsushita Electric Ind Co Ltd Air conditioner
JP2010096450A (en) * 2008-10-17 2010-04-30 Toshiba Carrier Corp Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288391A (en) * 1992-04-03 1993-11-02 Sanyo Electric Co Ltd Method and device for detecting current for air conditioner
JPH05328733A (en) * 1992-05-18 1993-12-10 Hitachi Ltd Air conditioner
JPH0919156A (en) * 1995-06-28 1997-01-17 Sharp Corp Air conditioner
JP2001021193A (en) * 1999-07-06 2001-01-26 Fujitsu General Ltd Method for controlling air conditioner
JP2004343823A (en) * 2003-05-13 2004-12-02 Matsushita Electric Ind Co Ltd Air conditioner
JP2010096450A (en) * 2008-10-17 2010-04-30 Toshiba Carrier Corp Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018203669A1 (en) * 2018-03-12 2019-09-12 Siemens Aktiengesellschaft A method for monitoring an air conditioner, monitoring device and air conditioning

Also Published As

Publication number Publication date
JP5482490B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
US9762168B2 (en) Compressor having a control and diagnostic module
US10344998B2 (en) Air conditioner
US5835383A (en) System-interconnected generator for converting solar energy to AC power
CN105099322A (en) Variable-frequency air-conditioner current frequency limiting method and device
JP2004201425A (en) Motor temperature estimation device and compressor interior-state estimation device
US9372021B2 (en) Air-conditioning apparatus
CN105091220A (en) Method and device for detecting electric consumption of air conditioner and air conditioner
JP2014092301A (en) Air conditioning apparatus and program for air conditioning apparatus
CN105066344A (en) Power consumption detection method and device for air conditioner and air conditioner
JP6268477B2 (en) Air conditioner
JP2012070531A (en) Inverter device
JP2009195015A (en) Inverter apparatus
JP6494798B2 (en) Water heater and energy management system
JP5482490B2 (en) Air conditioner
CN105091223A (en) Power consumption detection method and device for air conditioner and air conditioner
CN105091222A (en) Power consumption detecting method and device of air conditioner and air conditioner
JP2011117683A (en) Air conditioner and control method thereof
JP2007318838A (en) Controller
JPH0755225A (en) Demand control system for air conditioner
JP3213662B2 (en) Air conditioner
JP2009136052A (en) Motor control device and air conditioner with the same
JPH08228487A (en) Inverter of air conditioner
CN105066345A (en) Method and device for detecting power consumption of air conditioner and air conditioner
JP2012233604A (en) Air conditioner
JP2012063035A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R151 Written notification of patent or utility model registration

Ref document number: 5482490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350