JP2012001823A - High elastic modulus fiber with uniform structure and manufacturing method for the same - Google Patents

High elastic modulus fiber with uniform structure and manufacturing method for the same Download PDF

Info

Publication number
JP2012001823A
JP2012001823A JP2010134653A JP2010134653A JP2012001823A JP 2012001823 A JP2012001823 A JP 2012001823A JP 2010134653 A JP2010134653 A JP 2010134653A JP 2010134653 A JP2010134653 A JP 2010134653A JP 2012001823 A JP2012001823 A JP 2012001823A
Authority
JP
Japan
Prior art keywords
fiber
liquid crystalline
crystalline polyester
molten liquid
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010134653A
Other languages
Japanese (ja)
Inventor
Yuuji Kikutani
雄士 鞠谷
Wataru Takarada
亘 宝田
Akihiro Uehata
章裕 上畠
Yuji Ogino
祐二 荻野
Riyoukei Endou
了慶 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2010134653A priority Critical patent/JP2012001823A/en
Publication of JP2012001823A publication Critical patent/JP2012001823A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide highly strong and highly elastic modulus fiber of molten liquid crystalline polyester fiber without using a conventional method of performing high degree polymerization by means of heat treatment.SOLUTION: In composite fiber made of core component of molten liquid crystal polyester and sheath component of polystyrene with a melt flow rate (MFR) of 1 g per 10 minutes or larger or block copolymer including polystyrene block and polyolefin block, a method of manufacturing molten liquid crystal polyester by removing the sheath component by a solvent is adopted, thereby obtaining liquid crystalline polyester fiber having a uniform structure without any portion devitrifying in a fiber axis direction when observed with an optical microscope.

Description

本発明は均一な構造を有する高弾性率繊維に関する。   The present invention relates to a high modulus fiber having a uniform structure.

溶融液晶性ポリエステル繊維は低吸湿性、耐薬品性等の諸性能に優れており、さらに製造方法によっては高弾性率を有する繊維が得られることから、幅広い分野での適用が期待されている。
従来、溶融液晶性ポリエステルは高重合度になるほど融点が高く、紡糸性が不良であるため、重合度の低いポリマーを用いて繊維化し熱処理を行うことにより高重合度化し高弾性率化している(例えば、特許文献1〜2参照。)。しかし、かかる方法では熱処理に多大な時間とコストを有するため汎用用途に適用しにくい。
The melted liquid crystalline polyester fiber is excellent in various properties such as low hygroscopicity and chemical resistance, and depending on the production method, a fiber having a high elastic modulus can be obtained, and therefore, application in a wide range of fields is expected.
Conventionally, the higher the degree of polymerization, the higher the melting point and the lower the spinnability of the molten liquid crystalline polyester, so that the degree of polymerization is increased and the elastic modulus is increased by fiberizing and heat-treating a polymer having a low degree of polymerization ( For example, see Patent Documents 1 and 2.) However, such a method has a great time and cost for heat treatment, and is difficult to apply to general purpose applications.

また、溶融液晶性ポリエステルは溶融紡糸法にて繊維化しているため比較的容易に複合繊維を製造することができ、具体的には液晶ポリエステルを芯成分、他のポリマーを鞘成分とする芯鞘複合繊維や、ポリマーブレンドした異種ポリマーを紡糸することにより得られるフィブリル化繊維などが提案されている(例えば、特許文献3〜5参照。)。しかし、これらの方法では高弾性率繊維を得ることは難しい。   In addition, since melted liquid crystalline polyester is made into a fiber by melt spinning, a composite fiber can be produced relatively easily. Specifically, a core sheath having liquid crystal polyester as a core component and another polymer as a sheath component. A fibrillated fiber obtained by spinning a composite fiber or a polymer-blended dissimilar polymer has been proposed (see, for example, Patent Documents 3 to 5). However, it is difficult to obtain a high modulus fiber by these methods.

特公昭55−002008号公報Japanese Patent Publication No. 55-002008 特開昭60−239600号公報JP 60-239600 A 特開平1−229815号公報JP-A-1-229815 特許第3266712号公報Japanese Patent No. 3266712 特許第3301672号公報Japanese Patent No. 3301672

本発明の目的は、溶融液晶性ポリエステル繊維において、従来の熱処理により高重合度化する方法を用いることなく高弾性率繊維を提供することにある。   An object of the present invention is to provide a high elastic modulus fiber in a melted liquid crystalline polyester fiber without using a conventional method for increasing the degree of polymerization by heat treatment.

本発明者等は、上記した繊維を得るべく鋭意検討した結果、芯成分に液晶ポリエステルポリマーを用いて芯鞘複合紡糸法にて繊維化を行った後、鞘ポリマーを溶脱することにより得られる液晶ポリエステル繊維が高弾性率を有することを見出し、本発明に到達した。   As a result of intensive studies to obtain the above-mentioned fibers, the present inventors have obtained a liquid crystal obtained by leaching the sheath polymer after fiberizing by a core-sheath compound spinning method using a liquid crystal polyester polymer as a core component. The inventors have found that the polyester fiber has a high elastic modulus and have reached the present invention.

すなわち本発明は、芯成分が溶融液晶性ポリエステル、鞘成分が230℃、荷重2.16kgfにおけるメルトフローレイト(MFR)が1g/10分以上であるポリスチレンまたはポリスチレンブロックとポリオレフィンブロックで構成されるブロックコポリマーで構成される複合繊維において、鞘成分を溶剤で除去して得られる溶融液晶性ポリエステル繊維の製造方法である。   That is, the present invention is a block composed of polystyrene or a polystyrene block and a polyolefin block whose core component is molten liquid crystalline polyester, sheath component is 230 ° C., and melt flow rate (MFR) at a load of 2.16 kgf is 1 g / 10 min or more. This is a method for producing a molten liquid crystalline polyester fiber obtained by removing a sheath component with a solvent in a composite fiber composed of a copolymer.

また本発明は上記の製造方法によって得られる繊維であって、光学顕微鏡下で観察した際に繊維軸方法に失透した部分がなく均一な構造を有することを特徴とする溶融液晶性ポリエステル繊維である。   The present invention also relates to a molten liquid crystalline polyester fiber obtained by the above production method, wherein the fiber axis method has a uniform structure without a portion devitrified when observed under an optical microscope. is there.

さらに本発明は上記の製造方法によって得られる繊維であって、かつ溶融紡糸後に200℃以上の熱処理を行わない状態において、繊維軸に平行な方向の屈折率n//と繊維軸に垂直な方向の屈折率nから下記式により計算される平均屈折率が1.711以上であることを特徴とする溶融液晶性ポリエステル繊維である。 Further, the present invention is a fiber obtained by the above production method, and in a state where heat treatment at 200 ° C. or higher is not performed after melt spinning, the refractive index n // in the direction parallel to the fiber axis and the direction perpendicular to the fiber axis a liquid crystalline polyester fiber, wherein the average refractive index which is calculated by the following equation from the refractive index n of is 1.711 or more.

Figure 2012001823
Figure 2012001823

本発明の芯成分が溶融液晶性ポリエステル、鞘成分がポリスチレンあるいはブロックコポリマーで構成される芯鞘型複合繊維において、鞘成分を溶剤で溶解除去することで高度の分子配向性を有する高弾性率の繊維を得ることができる。   In the core-sheath type composite fiber in which the core component of the present invention is a molten liquid crystalline polyester and the sheath component is made of polystyrene or a block copolymer, the sheath component is dissolved and removed with a solvent, and has a high degree of molecular orientation. Fiber can be obtained.

以下、本発明について詳細に説明する。本発明にいう溶融液晶性(異方性)とは、溶融相において光学的液晶性(異方性)を示すことである。例えば試料をホットステージに載せ、窒素雰囲気下で昇温加熱し、試料の透過光を観察することにより認定できる。
本発明に用いる溶融液晶性ポリエステルは、芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸等の反復構成単位からなり、例えば下記化1〜化2に示す反復構成単位の組合せからなるものが好ましい。
Hereinafter, the present invention will be described in detail. The molten liquid crystallinity (anisotropy) referred to in the present invention is to show optical liquid crystallinity (anisotropic) in the melt phase. For example, it can be recognized by placing the sample on a hot stage, heating and heating in a nitrogen atmosphere, and observing the transmitted light of the sample.
The molten liquid crystalline polyester used in the present invention is composed of repeating structural units such as aromatic diol, aromatic dicarboxylic acid, and aromatic hydroxycarboxylic acid, for example, those composed of a combination of repeating structural units shown in Chemical Formulas 1 to 2 below. preferable.

Figure 2012001823
Figure 2012001823

Figure 2012001823
Figure 2012001823

これらのうち、好ましくは化1および化2に示される反復構成単位の組合せのうち(5)、(6)、(7)および(9)からなるポリマーである。   Of these, a polymer comprising (5), (6), (7) and (9) among the combinations of repeating structural units represented by Chemical Formula 1 and Chemical Formula 2 is preferred.

特に下記化3に示す反復構成単位の組合せからなるポリマーが好ましく、具体的には(A)及び(B)の反復構成単位からなる部分が65質量%以上であるポリマーであり、特に(B)の成分が4〜45質量%である芳香族ポリエステルが好ましい。   In particular, a polymer composed of a combination of repeating structural units shown in the following chemical formula 3 is preferred, specifically a polymer having a portion composed of repeating structural units of (A) and (B) of 65% by mass or more, particularly (B) An aromatic polyester having a component of 4 to 45% by mass is preferred.

Figure 2012001823
Figure 2012001823

本発明で好適に用いられる全芳香族ポリエステルの融点は250〜360℃の範囲であることが好ましく、より好ましくは260〜320℃である。なお、ここでいう融点とは、JIS K7121試験法に準拠し、示差走差熱量計(DSC;メトラー社製「TA3000」)で測定し、観察される主吸収ピーク温度である。具体的には、前記DSC装置に、サンプルを10〜20mgをとりアルミ製パンへ封入した後、キャリヤーガスとして窒素を100cc/分流し、20℃/分で昇温したときの吸熱ピークを測定する。ポリマーの種類によってはDSC測定において1st runで明確なピークが現れない場合は、50℃/分の昇温速度で予想される流れ温度よりも50℃高い温度まで昇温し、その温度で3分間完全に溶融した後、−80℃/分の降温速度で50℃まで冷却し、しかる後に20℃/分の昇温速度で吸熱ピークを測定するとよい。   The melting point of the wholly aromatic polyester suitably used in the present invention is preferably in the range of 250 to 360 ° C, more preferably 260 to 320 ° C. The melting point referred to here is the main absorption peak temperature measured and observed with a differential scanning calorimeter (DSC; “TA3000” manufactured by METTLER) according to the JIS K7121 test method. Specifically, after taking 10-20 mg of sample in the DSC apparatus and sealing it in an aluminum pan, nitrogen is flowed as a carrier gas at 100 cc / min, and the endothermic peak is measured when the temperature is raised at 20 ° C./min. . Depending on the type of polymer, if a clear peak does not appear at 1st run in DSC measurement, the temperature is increased to 50 ° C higher than the expected flow temperature at a temperature increase rate of 50 ° C / min, and the temperature is increased for 3 minutes. After complete melting, the sample is cooled to 50 ° C. at a temperature decrease rate of −80 ° C./min, and then an endothermic peak is measured at a temperature increase rate of 20 ° C./min.

なお、本発明で芯成分として用いる溶融液晶性ポリエステルには、本発明の効果を損なわない範囲で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアリレート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、フッ素樹脂等の熱可塑性ポリマーを添加してもよい。また酸化チタン、カオリン、シリカ、酸化バリウム等の無機物、カーボンブラック、染料や顔料等の着色剤、酸化防止剤、紫外線吸収剤、光安定剤等の各種添加剤を含んでいてもよい。   In addition, the molten liquid crystalline polyester used as a core component in the present invention includes polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyether ether ketone, as long as the effects of the present invention are not impaired. You may add thermoplastic polymers, such as a fluororesin. Further, it may contain various additives such as inorganic substances such as titanium oxide, kaolin, silica and barium oxide, carbon black, colorants such as dyes and pigments, antioxidants, ultraviolet absorbers and light stabilizers.

本発明の複合繊維における鞘成分は、溶融液晶性ポリエステルの紡糸性を妨げるものであってはならない。極細繊維等の製造に用いられる易アルカリ減量性変性ポリエチレンテレフタレートおよび水分散性変性ポリエチレンテレフタレートは水で溶脱ができること、紡糸性が良好であるなどの理由で用いられる場合が多いが、これらの変性ポリエチレンテレフタレートでは、溶融液晶性ポリエステル成分の配向度が溶融液晶性ポリエステル単独で紡糸した場合と同等となる。その理由は、ポリエチレンテレフタレートの固化温度が溶融液晶性ポリエステルの固化温度に近いために、複合紡糸した場合もポリエチレンテレフタレート単独で紡糸した場合とほとんど同じ固化状態となるためと考えられる。
これに対し、本発明においては芯成分の溶融液晶性ポリエステルの配向度を向上させる鞘成分を後述するポリスチレンあるいはポリスチレンブロックとポリオレフィンブロックで構成されるブロックコポリマーとすることで、ポリマーの固化温度は低下するが、芯成分の溶融液晶性ポリエステル側が先に固化して紡糸応力が集中するようになり、その結果、溶融液晶性ポリエステル単独で紡糸して得られた繊維に比べて低い巻取速度で配向度とヤング率が高い繊維が得られる。
一方、鞘成分の固化温度の低下に伴い、巻き取られた繊維が膠着して単繊維分離性が悪くなることが懸念されるが、本発明においては、高速紡糸によって繊維自体の強度を十分に高くすることによって、単繊維分離性を良好とすることが可能である。
The sheath component in the conjugate fiber of the present invention should not interfere with the spinnability of the molten liquid crystalline polyester. Easily alkali-reduced modified polyethylene terephthalate and water-dispersible modified polyethylene terephthalate used in the production of ultrafine fibers are often used for reasons such as being leached with water and good spinnability. In terephthalate, the degree of orientation of the molten liquid crystalline polyester component is the same as when spinning with the molten liquid crystalline polyester alone. The reason is considered that the solidification temperature of polyethylene terephthalate is close to the solidification temperature of the molten liquid crystalline polyester, so that the composite spinning is almost the same as the case of spinning with polyethylene terephthalate alone.
On the other hand, in the present invention, the solidification temperature of the polymer is lowered by making the sheath component improving the degree of orientation of the melted liquid crystalline polyester of the core component into a block copolymer composed of polystyrene or a polystyrene block and a polyolefin block described later. However, the melted liquid crystalline polyester side of the core component solidifies first and the spinning stress is concentrated, and as a result, the orientation is reduced at a lower winding speed than the fiber obtained by spinning with the molten liquid crystalline polyester alone. A fiber having a high degree and Young's modulus can be obtained.
On the other hand, with the decrease in the solidification temperature of the sheath component, there is a concern that the wound fibers are stuck and the single fiber separation property is deteriorated, but in the present invention, the strength of the fiber itself is sufficiently increased by high-speed spinning. By making it high, it is possible to improve the single fiber separation property.

本発明で鞘成分として用いられるポリマーはポリスチレンあるいはポリスチレンブロックとポリオレフィンブロックで構成されるブロックコポリマーである。
これらのポリマー成分とすることにより、a.高速紡糸性を満足し、b.単繊維分離性も良く、c.人体に有害性の少ない植物由来のリモネンを主成分とする溶剤にも可溶であり、d.鞘成分が除去された芯成分からなるフィラメントが高度の分子配向性を有し、さらに沸水収縮率が低く、そのままでも実用に供することが可能な繊維となり、e.しかも、これらの鞘成分や溶剤を回収して同一用途に再利用できるため環境に優しく、コスト的にも安価にすることができる。
The polymer used as the sheath component in the present invention is a block copolymer composed of polystyrene or a polystyrene block and a polyolefin block.
By making these polymer components a. Satisfied high-speed spinnability; b. Good single fiber separation, c. Soluble in solvents based on limonene derived from plants that are less harmful to the human body, d. The filament composed of the core component from which the sheath component has been removed has a high degree of molecular orientation, has a low boiling water shrinkage, and becomes a fiber that can be used as it is, e. In addition, since these sheath components and solvents can be recovered and reused for the same application, it is environmentally friendly and can be reduced in cost.

本発明において、複合紡糸において紡糸安定性の面からは鞘成分のMFRが1g/分以上であることが必要であり、3g/分以上であることが好ましく、さらに好ましくは5g/分以上150g/分以下である。MFRが大きいということは、鞘成分のポリマーの分子量が小さいことを意味し、一定の分子量範囲のみが高速紡糸性を満足することを意味する。本発明におけるMFRは、JIS K7210試験法に準拠し、230℃、荷重2.16kgfの条件で測定した。   In the present invention, from the viewpoint of spinning stability in composite spinning, the MFR of the sheath component needs to be 1 g / min or more, preferably 3 g / min or more, more preferably 5 g / min or more to 150 g / min. Is less than a minute. High MFR means that the molecular weight of the polymer of the sheath component is small, and that only a certain molecular weight range satisfies the high-speed spinnability. MFR in the present invention was measured under the conditions of 230 ° C. and a load of 2.16 kgf in accordance with the JIS K7210 test method.

本発明の複合繊維における芯成分と鞘成分は、特定の比率の範囲においてのみ、前記a−eの全てを同時に満足することができる。その構成比率は好ましくは芯成分が50%以上95%以下であり、鞘成分が50%以下5%以上であり、より好ましくは芯成分が58%以上92%以下であり、鞘成分が42%以下8%以上であり、さらに好ましくは芯成分が65%以上90%以下、鞘成分が35%以下10%以上である。   The core component and the sheath component in the conjugate fiber of the present invention can satisfy all of the ae at the same time only within a specific ratio range. Preferably, the core component is 50% or more and 95% or less, the sheath component is 50% or less and 5% or more, more preferably the core component is 58% or more and 92% or less, and the sheath component is 42%. The core component is 65% or more and 90% or less, and the sheath component is 35% or less and 10% or more.

本発明の複合繊維には、必要に応じて酸化チタン、シリカ、硫酸バリウム等の無機物、カーボンブラック、染料や顔料等の着色剤、酸化防止剤、紫外線吸収剤、光安定剤等の各種添加剤を含んでいてもよい。   In the composite fiber of the present invention, various additives such as inorganic substances such as titanium oxide, silica and barium sulfate, carbon black, colorants such as dyes and pigments, antioxidants, ultraviolet absorbers, and light stabilizers as necessary. May be included.

本発明は、上記芯成分と鞘成分からなる融液が複合紡糸ノズルによって押し出されることによって、複合紡糸されることを特徴とする。複合紡糸ノズルは芯鞘型複合紡糸ノズルを用いて芯鞘型複合繊維とすることができる。本発明は、溶融液晶性ポリエステルポリマー単独を紡糸して得られる繊維よりも高配向化を可能にしたことに特徴がある。溶融液晶性ポリエステルポリマー単独での紡糸は、紡糸速度500〜4000m/分の範囲で通常行われるが、この範囲では溶融液晶性ポリエステルの配向は変化しない。一方、本発明の複合繊維を製造するための紡糸速度は1500〜4000m/分の範囲で行うことが好ましい。本発明では、複合紡糸において溶融液晶ポリエステル成分よりも相対的に固化温度の低いポリスチレンあるいはポリスチレンブロックとポリオレフィンブロックで構成されるブロックコポリマー成分を用いるため、溶融液晶性ポリエステル成分が先に固化して応力が集中し、高配向の繊維構造が形成される。さらには複合紡糸ノズルの設計により溶融液晶性ポリエステル成分を繊維表面に露出させないように制御すれば、4000m/分を超えた紡糸速度であっても不均一構造が生じにくく、糸質の良好なフィラメントとなる。このように本発明においては、単に生産性やコスト面のみならず鞘成分の単繊維分離性が高速紡糸によって良好なものとなるという良好な要件となる。   The present invention is characterized in that the melt composed of the core component and the sheath component is subjected to composite spinning by being extruded by a composite spinning nozzle. The composite spinning nozzle can be a core-sheath type composite fiber using a core-sheath type composite spinning nozzle. The present invention is characterized by enabling higher orientation than fibers obtained by spinning a molten liquid crystalline polyester polymer alone. Spinning with a molten liquid crystalline polyester polymer alone is usually carried out at a spinning speed of 500 to 4000 m / min, but the orientation of the molten liquid crystalline polyester does not change within this range. On the other hand, the spinning speed for producing the conjugate fiber of the present invention is preferably in the range of 1500 to 4000 m / min. In the present invention, since a block copolymer component composed of polystyrene or a polystyrene block and a polyolefin block having a lower solidification temperature than a molten liquid crystal polyester component is used in composite spinning, the molten liquid crystalline polyester component is first solidified and stressed. Concentrate to form a highly oriented fiber structure. Furthermore, by controlling the molten liquid crystalline polyester component not to be exposed on the fiber surface by designing a composite spinning nozzle, a filament with good yarn quality is unlikely to form even at spinning speeds exceeding 4000 m / min. It becomes. Thus, in the present invention, it is a good requirement that not only productivity and cost, but also the single fiber separation of the sheath component is improved by high speed spinning.

本発明においては、複合繊維から鞘成分を溶剤除去することにより繊維断面形態が制御される。従来のポリエチレンテレフタレート繊維の減量加工では、水酸化ナトリウム溶液を使用して高温(100℃前後)で長時間(60分前後)を要していたが、本発明では、四塩化炭素あるいは植物由来のリモネンを主成分とする溶剤により低温(40℃前後)、短時間(15分前後)で処理して鞘成分を除去することができる。   In the present invention, the fiber cross-sectional shape is controlled by removing the sheath component from the composite fiber with a solvent. Conventional weight loss processing of polyethylene terephthalate fibers requires a long time (around 60 minutes) at a high temperature (around 100 ° C.) using a sodium hydroxide solution. In the present invention, carbon tetrachloride or plant-derived The sheath component can be removed by treatment with limonene as a main component at a low temperature (around 40 ° C.) and a short time (around 15 minutes).

本発明の複合繊維の鞘成分が溶剤除去された溶融液晶性ポリエステル繊維は、光学顕微鏡下で観察した際に繊維軸方法に失透した部分がなく均一な構造を有する。   The molten liquid crystalline polyester fiber from which the sheath component of the composite fiber of the present invention is removed by solvent has a uniform structure with no devitrified portion in the fiber axis method when observed under an optical microscope.

さらに本発明の複合繊維の鞘成分が溶剤除去された溶融液晶性ポリエステル繊維は、溶融紡糸後に200℃以上の熱処理を行わない状態において、繊維軸に平行な方向の屈折率n//と繊維軸に垂直な方向の屈折率nから下記式により計算される平均屈折率が1.711以上であることが好ましい。平均屈折率が高い繊維ほど密度・結晶化度が高く、高い弾性率が期待できる。 具体的には、平均屈折率が1.711以上であることが好ましく、1.712以上がより好ましい。 Further, the melt liquid crystalline polyester fiber from which the sheath component of the composite fiber of the present invention is removed is a refractive index n // in the direction parallel to the fiber axis and the fiber axis in a state where heat treatment at 200 ° C. or higher is not performed after melt spinning. the average refractive index which is calculated by the following equation from a vertical direction of the refractive index n to is preferably not 1.711 or more. The higher the average refractive index, the higher the density and crystallinity, and a higher elastic modulus can be expected. Specifically, the average refractive index is preferably 1.711 or more, more preferably 1.712 or more.

また本発明の複合繊維の鞘成分が溶剤除去された溶融液晶性ポリエステル繊維は分子配向性が高いという特性を有する。分子配向性の評価は、通常、複屈折を測定することにより行われる。本発明により得られる溶融液晶性ポリエステル繊維は複屈折が0.380以上であることが好ましく、0.385以上であることがさらに好ましい。分子配向性を向上させた溶融液晶性ポリエステル繊維は、複屈折とともに結晶化度も高く、十分な強度と高い耐熱特性を有するため、テンションメンバーをはじめとする幅広い用途で利用可能となる。   In addition, the melted liquid crystalline polyester fiber from which the sheath component of the composite fiber of the present invention is removed has a characteristic of high molecular orientation. Evaluation of molecular orientation is usually performed by measuring birefringence. The molten liquid crystalline polyester fiber obtained by the present invention preferably has a birefringence of 0.380 or more, and more preferably 0.385 or more. Molten liquid crystalline polyester fibers with improved molecular orientation have high crystallinity as well as birefringence, and have sufficient strength and high heat resistance, so that they can be used in a wide range of applications including tension members.

以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何等限定されるものではない。なお、以下の実施例において、平均屈折率、繊維繊度、弾性率は下記の方法により測定したものを示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by this Example. In the following examples, the average refractive index, fiber fineness, and elastic modulus are those measured by the following methods.

[繊維強度 弾性率 cN/dtex]
JIS L1013に準拠し、試長20cm、初荷重0.1g/d、引張速度10cm/分の条件にて強度、弾性率を測定した。
[Fiber strength Elastic modulus cN / dtex]
In accordance with JIS L1013, the strength and elastic modulus were measured under the conditions of a test length of 20 cm, an initial load of 0.1 g / d, and a tensile speed of 10 cm / min.

[平均屈折率]
干渉顕微鏡(カールツアイス社製インターファコ)を用い、繊維の平行方向については屈折率1.97の浸漬液を、垂直方向については屈折率1.57の浸漬液を用いて、繊維の平行方向の屈折率(n//)、垂直方向の屈折率(n)をそれぞれ測定し、下記式により平均屈折率を算出した。
[Average refractive index]
Using an interference microscope (Interfaco manufactured by Carl Zeiss), an immersion liquid having a refractive index of 1.97 is used for the parallel direction of the fiber, and an immersion liquid having a refractive index of 1.57 is used for the vertical direction. The refractive index (n // ) and the vertical refractive index (n ) were measured, and the average refractive index was calculated according to the following formula.

Figure 2012001823
Figure 2012001823

[実施例1〜3、比較例1〜4]
(1)芯成分として溶融液晶性ポリエステル(ポリプラスチックス(株)製「A920RX」、以下LCPと記す)、鞘成分としてポリスチレン(実施例1、PSジャパン社製「HH32」、以下PSと記す)、ブロックコポリマーとして、株式会社クラレ製「セプトン2063」(実施例2、以下SEPS−1と記す)、「セプトン2002」(実施例3、以下SEPS−2と記す)、「セプトン2104」(比較例1、以下SEPS−3と記す)、水分散性ポリエステル(比較例2、イーストマン社製「EASTONE S112」、以下E−PETと記す)、および5−ナトリウムスルホイソフタル酸ジメチル(I)が共重合ポリエステルを構成する全酸成分の2.5モル%、分子量2000のポリエチレングリコール(II)および化4で表されるポリオキシエチレングリシジルエーテル(III)が全共重合ポリエステルのそれぞれ10質量%を占め、残りがテレフタル酸、エチレングリコールである共重合ポリエステル(固有粘度0.58dl/g)を用いた(比較例3、以下R−PETと記す)。なお、比較例3において、該共重合ポリエステルは、該ポリエチレングリコールとポリオキシエチレングリシジルエーテルの合計量に対して5質量%の酸化分解防止剤(アメリカンサイアミッド社製「サイアノックス1790」)を含有するものを用いた。
[Examples 1 to 3, Comparative Examples 1 to 4]
(1) Molten liquid crystalline polyester (“A920RX” manufactured by Polyplastics Co., Ltd., hereinafter referred to as LCP) as a core component, and polystyrene (Example 1, “HH32” manufactured by PS Japan, hereinafter referred to as PS) as a sheath component As a block copolymer, Kuraray Co., Ltd. “Septon 2063” (Example 2, hereinafter referred to as SEPS-1), “Septon 2002” (Example 3, hereinafter referred to as SEPS-2), “Septon 2104” (Comparative Example) 1, hereinafter referred to as SEPS-3), water-dispersible polyester (Comparative Example 2, "EASTONE S112" manufactured by Eastman, hereinafter referred to as E-PET), and dimethyl (I) 5-sodium sulfoisophthalate Polyethylene glycol (II) having a molecular weight of 2000 mol% and a molecular weight of 2000 mol of all acid components constituting the polyester The polyoxyethylene glycidyl ether (III) represented accounted for 10% by mass of the total copolymerized polyester, and the remaining polyester (terminated viscosity 0.58 dl / g) was terephthalic acid and ethylene glycol (comparative). Example 3, hereinafter referred to as R-PET). In Comparative Example 3, the copolymer polyester contains 5% by mass of an oxidative degradation inhibitor (“Sianox 1790” manufactured by American Siamid Inc.) based on the total amount of the polyethylene glycol and polyoxyethylene glycidyl ether. We used what to do.

Figure 2012001823
Figure 2012001823

(2)実施例1〜3および比較例1〜3において、LCPを複合繊維の芯成分、表1に記した6種類のポリマーを鞘成分として複合紡糸を行った。芯鞘各成分のポリマーはそれぞれシリンダー温度310℃、290℃で溶融し、芯鞘複合ノズルの温度を310℃、複合紡糸における芯、鞘成分の吐出量をそれぞれ5g/分、2g/分とし、紡糸口金径1mm、巻取速度2500m/分で巻き取った。
さらに比較例4としてLCP単独での溶融紡糸をシリンダー温度300℃、ノズル温度310℃、吐出量7g/min、紡糸口金径1mm、巻取速度2500m/分として巻き取った。
曳糸性については、設定した巻取温度にて試作糸が得られた場合を○、巻取りに際して紡糸線上で糸が破断し、試作糸が得られなかった場合を×とした。
(3)次に実施例1については四塩化炭素、実施例2、3および比較例1についてはD−LIMONENE、比較例2については水、比較例3については3%水酸化ナトリウム水溶液にて鞘成分を除去した。実施例1〜3、比較例1〜3については鞘成分除去後の強度、弾性率、平均屈折率を測定・算出した。なお、比較例4は巻取り後の糸の強度、弾性率、平均屈折率を測定・算出した。結果を表1に示す。
(2) In Examples 1 to 3 and Comparative Examples 1 to 3, composite spinning was performed using LCP as the core component of the composite fiber and six types of polymers listed in Table 1 as the sheath component. The polymer of each component of the core-sheath was melted at a cylinder temperature of 310 ° C. and 290 ° C., respectively, the temperature of the core-sheath composite nozzle was 310 ° C., and the discharge amount of the core and sheath component in the composite spinning was 5 g / min, 2 g / min, Winding was performed at a spinneret diameter of 1 mm and a winding speed of 2500 m / min.
Further, as Comparative Example 4, melt spinning with LCP alone was wound at a cylinder temperature of 300 ° C., a nozzle temperature of 310 ° C., a discharge rate of 7 g / min, a spinneret diameter of 1 mm, and a winding speed of 2500 m / min.
With respect to the spinnability, the case where the prototype yarn was obtained at the set winding temperature was marked as “◯”, and the case where the yarn was broken on the spinning line during winding and the prototype yarn was not obtained was marked as “X”.
(3) Next, carbon tetrachloride for Example 1, D-LIMONENE for Examples 2, 3 and Comparative Example 1, water for Comparative Example 2, and 3% aqueous sodium hydroxide solution for Comparative Example 3 Ingredients were removed. For Examples 1 to 3 and Comparative Examples 1 to 3, the strength, elastic modulus, and average refractive index after removal of the sheath component were measured and calculated. In Comparative Example 4, the strength, elastic modulus, and average refractive index of the yarn after winding were measured and calculated. The results are shown in Table 1.

Figure 2012001823
Figure 2012001823

本発明の製造方法により得られる溶融液晶性ポリエステル繊維は、複屈折とともに結晶化度も高く、十分な強度と高い耐熱特性を有するため、テンションメンバーをはじめとする幅広い用途で利用可能となる。   The molten liquid crystalline polyester fiber obtained by the production method of the present invention has high birefringence and high crystallinity, and has sufficient strength and high heat resistance, so that it can be used in a wide range of applications including tension members.

Claims (3)

芯成分が溶融液晶性ポリエステル、鞘成分が230℃、荷重2.16kgfにおけるメルトフローレイト(MFR)が1g/10分以上であるポリスチレンまたはポリスチレンブロックとポリオレフィンブロックで構成されるブロックコポリマーで構成される複合繊維において、鞘成分を溶剤で除去して得られる溶融液晶性ポリエステル繊維の製造方法。   It is composed of a melt liquid crystalline polyester as the core component, a sheath component as 230 ° C., a melt flow rate (MFR) at a load of 2.16 kgf of 1 g / 10 min or more, or a block copolymer composed of a polystyrene block and a polyolefin block. A method for producing a molten liquid crystalline polyester fiber obtained by removing a sheath component with a solvent in a composite fiber. 請求項1記載の製造方法によって得られる繊維であって、光学顕微鏡下で観察した際に繊維軸方法に失透した部分がなく均一な構造を有することを特徴とする溶融液晶性ポリエステル繊維。   A molten liquid crystalline polyester fiber obtained by the production method according to claim 1, wherein the fiber axis method has a uniform structure without a portion devitrified when observed under an optical microscope. 請求項1記載の製造方法によって得られる繊維であって、かつ溶融紡糸後に200℃以上の熱処理を行わない状態において、繊維軸に平行な方向の屈折率n//と繊維軸に垂直な方向の屈折率n⊥から下記式により計算される平均屈折率が1.711以上であることを特徴とする溶融液晶性ポリエステル繊維。
Figure 2012001823
A fiber obtained by the production method according to claim 1 and having a refractive index n // in a direction parallel to the fiber axis and a direction perpendicular to the fiber axis in a state where heat treatment at 200 ° C or higher is not performed after melt spinning. A melted liquid crystalline polyester fiber having an average refractive index of 1.711 or more calculated from the refractive index n⊥ according to the following formula.
Figure 2012001823
JP2010134653A 2010-06-14 2010-06-14 High elastic modulus fiber with uniform structure and manufacturing method for the same Pending JP2012001823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010134653A JP2012001823A (en) 2010-06-14 2010-06-14 High elastic modulus fiber with uniform structure and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010134653A JP2012001823A (en) 2010-06-14 2010-06-14 High elastic modulus fiber with uniform structure and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2012001823A true JP2012001823A (en) 2012-01-05

Family

ID=45534127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010134653A Pending JP2012001823A (en) 2010-06-14 2010-06-14 High elastic modulus fiber with uniform structure and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2012001823A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316826A (en) * 1994-05-12 1995-12-05 Glaverbel Sa Method of forming silver coating film on glass substrate
JP2000355844A (en) * 1999-06-11 2000-12-26 Kuraray Co Ltd Mesh cloth and its production
JP2001140141A (en) * 1999-11-04 2001-05-22 Kuraray Co Ltd Mesh fabric for screen gauze and method of producing the same
JP2010084257A (en) * 2008-09-30 2010-04-15 Tokyo Metropolitan Industrial Technology Research Institute Cross sectional form-controlled fiber and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316826A (en) * 1994-05-12 1995-12-05 Glaverbel Sa Method of forming silver coating film on glass substrate
JP2000355844A (en) * 1999-06-11 2000-12-26 Kuraray Co Ltd Mesh cloth and its production
JP2001140141A (en) * 1999-11-04 2001-05-22 Kuraray Co Ltd Mesh fabric for screen gauze and method of producing the same
JP2010084257A (en) * 2008-09-30 2010-04-15 Tokyo Metropolitan Industrial Technology Research Institute Cross sectional form-controlled fiber and method for producing the same

Similar Documents

Publication Publication Date Title
JPH04228613A (en) Polyketone fiber and its manufacture
WO2007037512A1 (en) Process for producing sea-island-type composite spun fiber
WO2013099863A1 (en) Liquid-crystalline polyester multifilament
KR20140010069A (en) Cationic-dyeable polyester fiber and conjugated fiber
CN108456948B (en) Heat-storage temperature-regulating fiber and preparation method thereof
JP2011047068A (en) Water-repelling polyester blended yarn
JP5812786B2 (en) High strength nonwoven fabric
JP2012001823A (en) High elastic modulus fiber with uniform structure and manufacturing method for the same
JP2002061064A (en) Thermotropic liquid crystal polyester nonwoven fabric and method for producing the same
JP5137768B2 (en) Cross-sectional shape control fiber and manufacturing method thereof
JP5117983B2 (en) Antistatic core-sheath type polytrimethylene terephthalate extra fine yarn
JPH08113829A (en) New polymer blend fiber and its production
JP2020111847A (en) Fiber dispersion
JPS58219230A (en) Wholly aromatic copolyester
WO2019021978A1 (en) Liquid crystalline polyester fiber and method for producing same
JP6059487B2 (en) Method for producing thermoplastic resin fibers for papermaking
JP3568443B2 (en) Polyester fiber and method for producing the same
WO2020101002A1 (en) Ultrafine fibers and liquid fiber dispersion
JP7176886B2 (en) Island-in-the-sea composite fibers and ultrafine fiber bundles
JPH06184824A (en) Thermally fusable cnjugate fiber
KR100678501B1 (en) Seath-core polyester composite fiber having groove and manufacturing method thereof
JP2008057054A (en) Polyester fiber
JPH0368904A (en) Optical transmissible plastic fiber
KR20230132789A (en) Wet Laid Nonwoven Sheets
JP2019052395A (en) Sea-island type composite fiber and ultra fine fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520