JP2012001747A - Noble metal adsorbent using copper smelting slag as raw material, and method for producing the same - Google Patents

Noble metal adsorbent using copper smelting slag as raw material, and method for producing the same Download PDF

Info

Publication number
JP2012001747A
JP2012001747A JP2010135748A JP2010135748A JP2012001747A JP 2012001747 A JP2012001747 A JP 2012001747A JP 2010135748 A JP2010135748 A JP 2010135748A JP 2010135748 A JP2010135748 A JP 2010135748A JP 2012001747 A JP2012001747 A JP 2012001747A
Authority
JP
Japan
Prior art keywords
adsorbent
noble metal
slag
producing
metal adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010135748A
Other languages
Japanese (ja)
Other versions
JP5367648B2 (en
Inventor
Naoki Hiroyoshi
直樹 廣吉
Masami Tsunekawa
昌美 恒川
Mayumi Ito
真由美 伊藤
Diaz Alorro Richard
ディアズ アロロ リチャード
Azuma Kijitani
東 雉子谷
Hidemasa Okamoto
秀征 岡本
Daiji Ochi
大司 越智
Yoshihisa Takahashi
佳久 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Hokkaido University NUC
Original Assignee
Sumitomo Metal Mining Co Ltd
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Hokkaido University NUC filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010135748A priority Critical patent/JP5367648B2/en
Publication of JP2012001747A publication Critical patent/JP2012001747A/en
Application granted granted Critical
Publication of JP5367648B2 publication Critical patent/JP5367648B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Furnace Details (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a noble metal adsorbent which uses magnetite in slag produced in copper smelting as a raw material, and to provide a method for producing the same.SOLUTION: The method for producing the noble metal adsorbent includes providing slag produced in copper smelting as a raw material, and successively subjecting the slag to (i) a grinding step, (ii) a classification step, and (iii) a concentration step by magnetic concentration method, thereby separating the adsorbent containing magnetite in the slag. The noble metal adsorbent is obtained by the production and is used for recovery of noble metals in a wet smelting step, or recovery of noble metals from fine particle-containing sludge.

Description

本発明は、貴金属吸着材およびその製法に関し、さらに詳しくは、銅製錬において生成するスラグ中のマグネライトを原料とする貴金属吸着材およびその製法に関する。   The present invention relates to a noble metal adsorbent and a method for producing the same, and more particularly to a noble metal adsorbent made from magnelite in slag produced in copper smelting and a method for producing the same.

天然鉱石からの金や白金などの貴金属の抽出には、湿式製錬法が広く用いられている。この湿式製錬法では、鉱石中の貴金属を水溶液にイオンとして浸出した後、種々の工程を経て、貴金属を回収する。
一般に、浸出液中の貴金属イオンの濃度は、低いので、これを濃縮する工程が不可欠であり、このための吸着材(または吸着剤)として、活性炭や金属亜鉛粉末などが従来から用いられてきている。
The hydrometallurgical method is widely used for extraction of precious metals such as gold and platinum from natural ores. In this hydrometallurgical method, the noble metal in the ore is leached as ions in the aqueous solution, and then the noble metal is recovered through various processes.
In general, since the concentration of noble metal ions in the leachate is low, a step of concentrating the noble metal ions is indispensable, and activated carbon or zinc metal powder has been conventionally used as an adsorbent (or adsorbent) for this purpose. .

また、上記湿式製錬法は、近年、重要になってきたスクラップやスラッジからの貴金属のリサイクリングにも、応用されているが、この場合、鉄や銅など、貴金属以外の一般金属類が浸出液中に高濃度に共存することが多い。
このため、貴金属のリサイクリングでは、浸出液中に存在する低濃度の貴金属を、高濃度の一般金属類から選択的に分離・濃縮できる吸着材を開発することが強く要望されている。
さらに、微細粒子含有スラッジから、貴金属をリサイクルする場合、スラッジ中の貴金属が浸出液に完全に溶出できたとしても、スラッジと浸出液の固液分離が不完全なので、浸出液の一部が固体残渣(スラッジ)に付着して系外に排出され、貴金属の回収率が低下してしまうことが多い。
したがって、微粒子を含むスラッジ中の貴金属を、高い回収率で回収する方法を確立することも、強く要望されている。
The hydrometallurgical process has also been applied to the recycling of precious metals from scrap and sludge, which has become important in recent years. In this case, general metals other than precious metals such as iron and copper are leached. Often coexist in high concentration.
For this reason, in the recycling of precious metals, there is a strong demand to develop an adsorbent that can selectively separate and concentrate a low concentration of precious metals present in the leachate from high concentrations of general metals.
In addition, when recycling precious metals from sludge containing fine particles, even if the precious metals in the sludge can be completely dissolved in the leachate, the solid-liquid separation between the sludge and the leachate is incomplete, so part of the leachate is a solid residue (sludge ) And discharged out of the system, the precious metal recovery rate often decreases.
Accordingly, there is a strong demand to establish a method for recovering precious metals in sludge containing fine particles at a high recovery rate.

一方、銅製錬操業において、装入原料中のFeの一部が過酸化を受けスラグ中に、鉄の過酸化物であるマグネタイト(Fe)が生成する。 On the other hand, in the copper smelting operation, a part of Fe in the charged raw material is peroxidized and magnetite (Fe 3 O 4 ), which is an iron peroxide, is generated in the slag.

上記マグネタイトを吸着剤(材)として用いる公知技術として、特許文献1には、重金属成分含有液から重金属成分を回収するにあたり、特定のマグネタイト粒子を該重金属成分含有液に分散させて、該重金属成分含有液を弱酸性からアルカリ性にして、重金属成分を該マグネタイト粒子の表面に吸着させた後、磁気的な力でマグネタイト粒子を回収し、重金属成分をマグネタイト粒子と共に液中から分離し、更に分離したマグネタイト粒子を水に分散させ、該分散液を酸性に調整することにより、重金属成分を液中に再溶出し、重金属成分を回収することを特徴とする重金属成分の回収方法が開示されている。
そして、特許文献1では、マグネタイト粒子の製造方法は、湿式酸化法が望ましいと記載され、その一例として、第一鉄塩水溶液と、該第一鉄塩水溶液中の第一鉄塩に対し所定当量の水酸化アルカリ及び/又は炭酸アルカリを含む水溶液とを混合し、水酸化第一鉄コロイド及び/又は炭酸第一鉄コロイドを含む懸濁液を得、次いで、この懸濁液(第一鉄塩反応水溶液)を60〜100℃の温度範囲に加熱しながら酸素含有ガスを通気して酸化反応を行いマグネタイト粒子を生成させると、開示されている。
As a known technique using the above magnetite as an adsorbent (material), Patent Document 1 discloses that when recovering a heavy metal component from a heavy metal component-containing liquid, specific magnetite particles are dispersed in the heavy metal component-containing liquid, After the contained liquid is made weakly acidic to alkaline and the heavy metal component is adsorbed on the surface of the magnetite particles, the magnetite particles are recovered by magnetic force, and the heavy metal component is separated from the liquid together with the magnetite particles and further separated. A method for recovering a heavy metal component is disclosed, in which magnetite particles are dispersed in water and the dispersion is adjusted to be acidic, whereby the heavy metal component is re-eluted in the liquid and the heavy metal component is recovered.
And in patent document 1, it describes that the manufacturing method of a magnetite particle | grain is desirable for a wet oxidation method, As an example, predetermined equivalent with respect to the ferrous salt aqueous solution and the ferrous salt in this ferrous salt aqueous solution Is mixed with an aqueous solution containing alkali hydroxide and / or alkali carbonate to obtain a suspension containing ferrous hydroxide colloid and / or ferrous carbonate colloid, and then the suspension (ferrous salt) It is disclosed that an oxygen-containing gas is passed through an oxygen-containing gas while heating the reaction aqueous solution) to a temperature range of 60 to 100 ° C. to generate magnetite particles.

上記のように、湿式製錬法における貴金属の吸着材として適切なものが、例えば、貴金属のリサイクリングでは、浸出液中に存在する低濃度の貴金属を、高濃度の一般金属類から選択的に分離・濃縮できる吸着材を開発することが、望まれている。   As described above, suitable adsorbents for precious metals in the hydrometallurgical process include, for example, precious metal recycling, which selectively separates low concentrations of precious metals present in leachate from high concentrations of general metals. -It is desired to develop an adsorbent that can be concentrated.

特開2006−206952号公報JP 2006-206952 A

本発明の目的は、従来技術の問題点に鑑み、銅製錬において生成するスラグ中のマグネライトを原料とする貴金属吸着材およびその製法を提供することにある。   In view of the problems of the prior art, an object of the present invention is to provide a noble metal adsorbent using magnelite in slag produced in copper smelting as a raw material and a method for producing the same.

本発明者らは、上記目的を達成するために、鋭意研究を重ねた結果、製錬スラグを原料とする新たな貴金属吸着材の製造方法を見出した。すなわち、銅の乾式製錬の工程で副産物として発生するスラグを原料に用い、これを粉砕・分級した後に、磁気選別で磁着物を回収することにより、貴金属吸着材を製造すると、この吸着材は、成分として、Fe、Cu、CuSのいずれかひとつ、或いは複数を含んでおり、湿式製錬法での吸着材として、従来から用いられてきた活性炭や金属亜鉛粉末などとは、組成が全く異なっており、しかも、貴金属に対する選択的吸着性能が良好であることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found a new method for producing a noble metal adsorbent using smelted slag as a raw material. That is, when slag generated as a by-product in the process of dry smelting of copper is used as a raw material, and after pulverizing and classifying it, magnetic deposits are collected by magnetic sorting to produce a precious metal adsorbent. In addition, as an ingredient, any one or more of Fe 3 O 4 , Cu, Cu 2 S is included, and as an adsorbent in the hydrometallurgical process, activated carbon and metal zinc powder that have been conventionally used The present inventors have found that the compositions are completely different and that the selective adsorption performance for noble metals is good, and the present invention has been completed.

すなわち、本発明の第1の発明によれば、銅製錬において生成するスラグを原料とし、(i)粉砕工程、(ii)分級工程、及び(iii)磁力選鉱法による選鉱工程を順次施すことにより、該スラグ中のマグネタイトを含む吸着材を分離してなることを特徴とする貴金属吸着材の製造方法が提供される。   That is, according to the first invention of the present invention, slag produced in copper smelting is used as a raw material, and (i) a pulverization step, (ii) classification step, and (iii) a beneficiation step by a magnetic beneficiation method are sequentially performed. There is provided a method for producing a noble metal adsorbent comprising separating an adsorbent containing magnetite in the slag.

また、本発明の第2の発明によれば、第1の発明において、前記吸着材は、前記マグネタイト以外に、金属銅または硫化銅の少なくとも一種を含むことを特徴とする貴金属吸着材の製造方法が提供される。
さらに、本発明の第3の発明によれば、第1又は2の発明において、前記吸着材は、50%粒子径が1〜1000μm、比表面積が1〜100m/gであることを特徴とする貴金属吸着材の製造方法が提供される。
According to a second invention of the present invention, in the first invention, the adsorbent contains at least one of metallic copper or copper sulfide in addition to the magnetite. Is provided.
Furthermore, according to a third invention of the present invention, in the first or second invention, the adsorbent has a 50% particle diameter of 1-1000 μm and a specific surface area of 1-100 m 2 / g. A method for producing a noble metal adsorbent is provided.

また、本発明の第4の発明によれば、第1〜3のいずれかの発明に係る製錬方法により得られてなることを特徴とする貴金属吸着材が提供される。
さらに、本発明の第5の発明によれば、第4の発明において、湿式製錬法における貴金属の回収または微細粒子含有スラッジからの貴金属の回収に用いられることを特徴とする貴金属吸着材が提供される。
According to a fourth aspect of the present invention, there is provided a noble metal adsorbent characterized by being obtained by the smelting method according to any one of the first to third aspects.
Furthermore, according to the fifth invention of the present invention, there is provided a noble metal adsorbent according to the fourth invention, which is used for recovering noble metals in a hydrometallurgical process or for recovering noble metals from fine particle-containing sludge. Is done.

本発明の貴金属吸着材の製造方法によれば、廃棄物である銅製錬スラグを原料として、安価に金や白金などの貴金属用吸着材を製造することができ、その工業的価値は、極めて大きい。   According to the method for producing a noble metal adsorbent of the present invention, it is possible to produce an adsorbent for noble metals such as gold and platinum at a low cost by using copper smelting slag as a raw material, and its industrial value is extremely large. .

銅製錬スラグを原料とする貴金属吸着材の製造プロセスの概要を示すフロー図である。It is a flowchart which shows the outline | summary of the manufacturing process of the noble metal adsorbent which uses copper smelting slag as a raw material.

本発明の貴金属吸着材の製造方法は、銅製錬において生成するスラグを原料とし、(i)粉砕工程、(ii)分級工程、及び(iii)磁力選鉱法による選鉱工程を順次施すことにより、該スラグ中のマグネタイトを含む吸着材を分離してなることを特徴とする。
本発明の貴金属吸着材の製造方法を、以下に詳細に説明する。
The method for producing a noble metal adsorbent of the present invention uses slag produced in copper smelting as a raw material, and sequentially performs (i) a pulverizing step, (ii) a classification step, and (iii) a beneficiation step by a magnetic beneficiation method. It is characterized by separating the adsorbent containing magnetite in the slag.
The manufacturing method of the noble metal adsorbent of the present invention will be described in detail below.

本発明の貴金属吸着材の製造方法は、貴金属吸着材の出発原料として、銅製錬の過程で生じるスラグを使用する。
上記銅製錬においては、通常、硫化銅精鉱を原料として用いて、熔錬炉で酸化溶融させ、銅と鉄を主成分として含む硫化物からなるマットと、鉄分とシリカを主成分とするスラグとを形成し、次いで、該マットを転炉で酸化吹錬して粗銅を得る溶融製錬法が広く行なわれている。例えば、熔錬炉として自熔炉を用いる自熔炉法においては、自熔炉から排出されるスラグを、錬カン炉と呼ばれる電気炉内に導き、加熱しながら、スラグ中に懸垂するマットをセトリングすることにより、スラグとマットを分離して、それぞれ炉外へ排出させ回収することが行なわれている。ここで、錬カン炉スラグは、通常、水砕処理に付され、その後、最終廃棄処分がなされている。
本発明では、出発原料として、廃棄処分される上記銅製錬スラグを用い、銅製錬スラグは、SiO、Al、CaOなどの電気化学的に不活性な成分のほかに、電気化学的に活性なマグネタイト(FeあるいはFeO・Fe)、金属銅(Cu)、硫化銅(CuS)などの成分も含んでいる。
In the method for producing a noble metal adsorbent of the present invention, slag generated in the process of copper smelting is used as a starting material for the noble metal adsorbent.
In the above copper smelting, copper sulfide concentrate is usually used as a raw material, oxidized and melted in a smelting furnace, and a slag containing iron and silica as main components and a mat made of sulfide containing copper and iron as main components. Next, a melt smelting method in which the mat is oxidized and blown in a converter to obtain crude copper is widely used. For example, in a self-smelting furnace method using a self-smelting furnace as a smelting furnace, the slag discharged from the self-smelting furnace is introduced into an electric furnace called a smelting furnace, and the mat that is suspended in the slag is set while heating. Thus, the slag and the mat are separated and discharged to the outside of the furnace and collected. Here, the smelting furnace slag is usually subjected to a water granulation process, and then finally disposed of.
In the present invention, the copper smelting slag to be disposed of is used as a starting material. The copper smelting slag is electrochemically inactive in addition to electrochemically inactive components such as SiO 2 , Al 2 O 3 , and CaO. It also contains components such as active magnetite (Fe 3 O 4 or FeO · Fe 2 O 3 ), metallic copper (Cu), and copper sulfide (Cu 2 S).

これらの活性成分(マグネタイト:Fe、金属銅:Cu、硫化銅:CuS)は、金や白金などの貴金属のイオンを含む水溶液中で電子供与体として働き、例えば、下記のような銅と金イオンの反応により、貴金属を還元析出させる。
全反応:3Cu+2Au3+=3Cu2++2Au
アノード半電池反応:Cu=Cu2++2e
カソード半電池反応:Au3+=Au+3e
These active components (magnetite: Fe 3 O 4 , copper metal: Cu, copper sulfide: Cu 2 S) function as an electron donor in an aqueous solution containing noble metal ions such as gold and platinum. For example, The noble metal is reduced and precipitated by the reaction of copper and gold ions.
Total reaction: 3Cu + 2Au 3+ = 3Cu 2+ + 2Au
Anode half-cell reaction: Cu = Cu 2+ + 2e
Cathode half-cell reaction: Au 3+ = Au + 3e

このような還元析出反応は、カソード半電池反応の酸化還元電位が、電子供与体となるマグネタイトFe、金属銅Cu、硫化銅CuSのアノード半電池反応の酸化還元電位よりも貴な場合にのみ、自発的に進行する。このため、この機構で吸着材に析出してくる金属は、Au、Pt、Pdなど、貴な酸化還元電位をもつ貴金属に限定され、Fe、Al、Cu、Pb、Znなどの一般金属は、酸化還元電位が卑なので析出しない。 In such a reduction precipitation reaction, the redox potential of the cathode half-cell reaction is nobler than the redox potential of the anode half-cell reaction of magnetite Fe 3 O 4 , metal copper Cu, or copper sulfide Cu 2 S as electron donors. Only when it is spontaneous. For this reason, the metal deposited on the adsorbent by this mechanism is limited to noble metals having a noble oxidation-reduction potential such as Au, Pt, Pd, and general metals such as Fe, Al, Cu, Pb, Zn are It does not precipitate because the redox potential is low.

本発明では、原料となる銅製錬スラグを、例えば、図1に示すように、(i)粉砕工程、(ii)分級工程、及び(iii)磁力選鉱法による選鉱工程を順次施すことにより、貴金属吸着材を製造する。   In the present invention, as shown in FIG. 1, for example, as shown in FIG. 1, copper smelting slag as a raw material is subjected to (i) a pulverizing step, (ii) a classification step, and (iii) a beneficiation step by a magnetic beneficiation method in order, Manufacture adsorbent.

上記(i)粉砕工程では、原料となる銅乾式製錬スラグを、例えば、ボールミルなどの適切な粉砕機にて粉砕する。   In the above (i) pulverization step, the copper dry smelting slag as a raw material is pulverized by an appropriate pulverizer such as a ball mill.

そして、(ii)分級工程では、前工程の粉砕物を、例えば、ふるい分けなどの方法で所定の粒度に調製する。粒度としては、貴金属吸着材としての用途を考慮して、50%粒子径が1〜1000μmで、好ましくは10〜100μm程度であり、また、比表面積が0.1〜100m/gで、好ましくは1〜10m/g程度である。
尚、50%粒子径は、光回折法(Microtrac Size Analyzer MT3300SX,USA)で測定した値である。また、比表面積は、窒素ガスを吸着分子として用いてBET法により測定した値である。
In the classification step (ii), the pulverized product from the previous step is prepared to have a predetermined particle size by a method such as sieving. As the particle size, in consideration of the use as a noble metal adsorbent, the 50% particle size is 1-1000 μm, preferably about 10-100 μm, and the specific surface area is 0.1-100 m 2 / g, preferably Is about 1 to 10 m 2 / g.
The 50% particle diameter is a value measured by a light diffraction method (Microtrac Size Analyzer MT3300SX, USA). The specific surface area is a value measured by the BET method using nitrogen gas as an adsorbed molecule.

次いで、(iii)磁力選鉱法による選鉱工程では、上記の分級産物を、磁力選別機により選別し、磁着物を貴金属吸着材とする。そして、非磁着物は、堆積などへ廃棄する。   Next, (iii) in the beneficiation process by the magnetic beneficiation method, the classified product is sorted by a magnetic sorter, and the magnetic deposit is used as a noble metal adsorbent. Then, the non-magnetized material is discarded for deposition.

スラグのマグネタイトFe含有部は、強い磁性を示す。このため、本発明により製造した貴金属吸着材は、スラッジと共に浸出液に懸濁して、溶出貴金属を吸着させた後に、磁気選別により、固体・液体残渣から分離回収することができる。
したがって、本発明の吸着材を使用すれば、不完全な固液分離による損失を伴わずに、スラッジなどの微粒子から、高い回収率で貴金属を回収できる。
また、本発明により得られた貴金属吸着材は、天然鉱石からの金や白金などの貴金属の抽出における湿式製錬法にも、用いることができ、貴金属を回収することができる。
Magnetite Fe 3 O 4 content of the slag, show strong magnetism. For this reason, the noble metal adsorbent produced according to the present invention can be separated and recovered from the solid / liquid residue by magnetic separation after being suspended in the leachate together with the sludge and adsorbing the eluted noble metal.
Therefore, if the adsorbent of the present invention is used, noble metals can be recovered from fine particles such as sludge at a high recovery rate without loss due to incomplete solid-liquid separation.
Moreover, the noble metal adsorbent obtained by the present invention can also be used in a hydrometallurgical method in the extraction of noble metals such as gold and platinum from natural ores, and the noble metals can be recovered.

さらに、本発明によれば、銅製錬スラグを粉砕・分級することにより、スラグ中のマグネタイトFe、金属銅Cu、硫化銅CuSなどの活性成分を、SiO、Al、CaOなどの不活性成分から露出させて、貴金属の回収効率を高めることができる。また、磁気選別を施すことにより、マグネタイトFeを多く含む成分が回収され、スラッジ等からの貴金属回収に適した、強い磁性を持つ貴金属吸着材を製造できる。 Furthermore, according to the present invention, active components such as magnetite Fe 3 O 4 , metallic copper Cu, and copper sulfide Cu 2 S in the slag are converted to SiO 2 , Al 2 O 3 by pulverizing and classifying copper smelted slag. It is possible to enhance the recovery efficiency of noble metals by exposing them from inert components such as CaO. Further, by performing magnetic sorting, a component containing a large amount of magnetite Fe 3 O 4 is recovered, and a noble metal adsorbent having strong magnetism suitable for recovering noble metal from sludge or the like can be produced.

以下に、本発明の実施例によって、本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。   EXAMPLES The present invention will be described in more detail below with reference to examples of the present invention, but the present invention is not limited to these examples.

[実施例1]
国内銅製錬所産の転炉スラグを、ステンレスロッドを媒体とする転動ミルにより、粉砕・分級し、50%粒子径が30μm、比表面積が2.2m/gの粉砕産物を得た。
次に、この粉砕産物を日本エリーズマグネチックス(株)製のL−8 電磁式湿式ドラム型磁選機によって、磁選し、歩留まり31.8%にて磁着物を得た。
[Example 1]
The converter slag from domestic copper smelters was pulverized and classified by a rolling mill using a stainless rod as a medium to obtain a pulverized product having a 50% particle size of 30 μm and a specific surface area of 2.2 m 2 / g.
Next, this pulverized product was magnetically selected by an L-8 electromagnetic wet drum type magnetic separator manufactured by Nippon Elise Magnetics Co., Ltd., and a magnetic deposit was obtained at a yield of 31.8%.

このように製造した貴金属吸着材(50%粒子径30μm、比表面積2.2m/g)0.1gと、各種金属塩化物を溶かしたNaCl水溶液(金属濃度0.05molm−3、NaCl濃度0.1kmolm−3)を、容量50cmのガラス製三角フラスコに入れ、25℃で、24h撹拌して、上澄みを採取し、溶液に残留する金属量から金属の吸着量を算出した。 0.1 g of the noble metal adsorbent thus produced (50% particle size 30 μm, specific surface area 2.2 m 2 / g) and various aqueous metal chloride solutions (metal concentration 0.05 mol −3 , NaCl concentration 0) 0.1 kmolm −3 ) was placed in a 50 cm 3 glass Erlenmeyer flask, stirred at 25 ° C. for 24 h, the supernatant was collected, and the amount of metal adsorbed was calculated from the amount of metal remaining in the solution.

下記表1に各種金属の吸着量を示す。   Table 1 below shows the amount of each metal adsorbed.

Figure 2012001747
Figure 2012001747

表1の結果から明らかに、貴金属のAu、Pt、Pdは、本発明に係る吸着材に吸着するが、Cu、Ni、Znは、吸着しなかった。
このことは、本発明により製造した吸着材が貴金属のみを選択的に吸着することを示している。
Apparently from the results in Table 1, the noble metals Au, Pt, and Pd adsorb to the adsorbent according to the present invention, but Cu, Ni, and Zn did not adsorb.
This indicates that the adsorbent produced according to the present invention selectively adsorbs only noble metals.

本発明の貴金属吸着材の製造方法は、銅製錬において生成するスラグを原料とし、(i)粉砕工程、(ii)分級工程、及び(iii)磁力選鉱法による選鉱工程を順次施すことにより、該スラグ中のマグネタイトを含む吸着材を分離してなることを特徴とするから、通常は廃棄物となる銅製錬スラグを有効活用でき、安価に貴金属の金や白金などの吸着材を製造できるので、その工業的価値は極めて大きい。   The method for producing a noble metal adsorbent of the present invention uses slag produced in copper smelting as a raw material, and sequentially performs (i) a pulverizing step, (ii) a classification step, and (iii) a beneficiation step by a magnetic separation method, Since it is characterized by separating the adsorbent containing magnetite in the slag, usually copper smelting slag that becomes waste can be effectively used, and adsorbents such as gold and platinum of precious metals can be produced at low cost, Its industrial value is extremely large.

Claims (5)

銅製錬において生成するスラグを原料とし、(i)粉砕工程、(ii)分級工程、及び(iii)磁力選鉱法による選鉱工程を順次施すことにより、該スラグ中のマグネタイトを含む吸着材を分離してなることを特徴とする貴金属吸着材の製造方法。   Using slag produced in copper smelting as a raw material, (i) crushing step, (ii) classification step, and (iii) magnetic separation method are sequentially performed to separate the adsorbent containing magnetite in the slag. A method for producing a noble metal adsorbent, characterized by comprising: 前記吸着材は、前記マグネタイト以外に、金属銅または硫化銅の少なくとも一種を含むことを特徴とする請求項1に記載の貴金属吸着材の製造方法。   The method for producing a noble metal adsorbent according to claim 1, wherein the adsorbent contains at least one of metallic copper and copper sulfide in addition to the magnetite. 前記吸着材は、50%粒子径が1〜1000μm、比表面積が0.1〜100m/gであることを特徴とする請求項1又は2に記載の貴金属吸着材の製造方法。 3. The method for producing a noble metal adsorbent according to claim 1, wherein the adsorbent has a 50% particle diameter of 1 to 1000 μm and a specific surface area of 0.1 to 100 m 2 / g. 請求項1〜3のいずれかに記載の製錬方法により得られてなることを特徴とする貴金属吸着材。   A noble metal adsorbent obtained by the smelting method according to any one of claims 1 to 3. 湿式製錬法における貴金属の回収または微細粒子含有スラッジからの貴金属の回収に用いられることを特徴とする請求項4に記載の貴金属吸着材。   The noble metal adsorbent according to claim 4, wherein the adsorbent is used for recovering noble metals in a hydrometallurgical process or for recovering noble metals from sludge containing fine particles.
JP2010135748A 2010-06-15 2010-06-15 Noble metal adsorbent made from copper smelting slag and its production method Expired - Fee Related JP5367648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135748A JP5367648B2 (en) 2010-06-15 2010-06-15 Noble metal adsorbent made from copper smelting slag and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135748A JP5367648B2 (en) 2010-06-15 2010-06-15 Noble metal adsorbent made from copper smelting slag and its production method

Publications (2)

Publication Number Publication Date
JP2012001747A true JP2012001747A (en) 2012-01-05
JP5367648B2 JP5367648B2 (en) 2013-12-11

Family

ID=45534068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135748A Expired - Fee Related JP5367648B2 (en) 2010-06-15 2010-06-15 Noble metal adsorbent made from copper smelting slag and its production method

Country Status (1)

Country Link
JP (1) JP5367648B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190085410A (en) * 2018-01-10 2019-07-18 (주)다남이엔이 Method for recovering metal and Process for recovering metal comprising the same
KR20200061800A (en) * 2018-11-26 2020-06-03 (주)다남이엔이 Method for recovering metal using absorbent
CN111715195A (en) * 2020-06-22 2020-09-29 武汉科技大学 Copper slag polyaniline magnetic composite adsorbent and preparation method thereof
CN114196831A (en) * 2021-11-30 2022-03-18 西北矿冶研究院 Method for inducing and enriching rare and noble metals by adopting low-value metals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194448A (en) * 2000-12-28 2002-07-10 Nippon Mining & Metals Co Ltd Method for recovering metal from electronic or electric parts with resin
JP2003039056A (en) * 2001-07-31 2003-02-12 Nippon Steel Corp Waste treatment method and apparatus utilizing metal refining process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194448A (en) * 2000-12-28 2002-07-10 Nippon Mining & Metals Co Ltd Method for recovering metal from electronic or electric parts with resin
JP2003039056A (en) * 2001-07-31 2003-02-12 Nippon Steel Corp Waste treatment method and apparatus utilizing metal refining process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190085410A (en) * 2018-01-10 2019-07-18 (주)다남이엔이 Method for recovering metal and Process for recovering metal comprising the same
KR102025071B1 (en) * 2018-01-10 2019-09-25 (주)다남이엔이 Method for recovering metal and Process for recovering metal comprising the same
KR20200061800A (en) * 2018-11-26 2020-06-03 (주)다남이엔이 Method for recovering metal using absorbent
KR102138194B1 (en) 2018-11-26 2020-07-27 (주)다남이엔이 Method for recovering metal using absorbent
US11473169B2 (en) 2018-11-26 2022-10-18 Danam-Ene Co. Ltd. Metal recovery method using adsorbent
CN111715195A (en) * 2020-06-22 2020-09-29 武汉科技大学 Copper slag polyaniline magnetic composite adsorbent and preparation method thereof
CN114196831A (en) * 2021-11-30 2022-03-18 西北矿冶研究院 Method for inducing and enriching rare and noble metals by adopting low-value metals

Also Published As

Publication number Publication date
JP5367648B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
Rao et al. Challenges and opportunities in the recovery of gold from electronic waste
Shen et al. Review of rhenium extraction and recycling technologies from primary and secondary resources
Su et al. Extraction and separation of tin from tin-bearing secondary resources: a review
CN106756084B (en) Method for extracting noble metal by taking iron-based material as trapping agent
Cramer The extractive metallurgy of South Africa’s platinum ores
Ramanayaka et al. Urban mining of E-waste: Treasure hunting for precious nanometals
JP5860034B2 (en) Tantalum recovery method
CN110551897B (en) Process for preparing pure copper powder by treating waste circuit board through mechanical and physical method
US9194023B2 (en) Recovery of gold from roaster calcine leach tailings
JP2021501259A (en) Process of recovering metal from electronic waste
AU2014245391B2 (en) Method for recovering gold from gold ore containing pyrite
Mussapyrova et al. Selective room-temperature leaching of copper from mechanically activated copper smelter slag
JP5367648B2 (en) Noble metal adsorbent made from copper smelting slag and its production method
JP2005042155A (en) Method for concentrating noble metal contained in leaching residue from hydrometallurgical copper refining process
CN111041207A (en) Electrochemical gold leaching agent and method for recovering gold from waste gold-plated circuit board
WO2013129017A1 (en) Method for recovering gold adsorbed on activated carbon and gold manufacturing process using same
US20030129112A1 (en) Selective metal leaching process
Xanthopoulos et al. Recovery of copper, zinc and lead from photovoltaic panel residue
Jafari et al. Improvement of chalcopyrite atmospheric leaching using controlled slurry potential and additive treatments
JP2015214731A (en) Gold recovery method
JP5835961B2 (en) Metal leaching method
JP2010229542A (en) Method of separating pyrite from copper-containing material
CN108950195B (en) Method for extracting valuable metals from zinc concentrate oxidizing slag by using chlorine-containing wastewater
JP2018035413A (en) Noble metal recovery method
EP4059884A1 (en) Method for producing copper metal from copper concentrates without generating waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R150 Certificate of patent or registration of utility model

Ref document number: 5367648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees