JP2012001070A - Rack shaft and method of manufacturing the same and rack pinion type steering gear unit - Google Patents

Rack shaft and method of manufacturing the same and rack pinion type steering gear unit Download PDF

Info

Publication number
JP2012001070A
JP2012001070A JP2010136944A JP2010136944A JP2012001070A JP 2012001070 A JP2012001070 A JP 2012001070A JP 2010136944 A JP2010136944 A JP 2010136944A JP 2010136944 A JP2010136944 A JP 2010136944A JP 2012001070 A JP2012001070 A JP 2012001070A
Authority
JP
Japan
Prior art keywords
rack
peripheral surface
shaft
rack shaft
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010136944A
Other languages
Japanese (ja)
Other versions
JP5402843B2 (en
Inventor
Toshiyuki Jo
俊之 城
Akio Sakai
明男 酒井
Kiyoshi Sadakata
清 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010136944A priority Critical patent/JP5402843B2/en
Publication of JP2012001070A publication Critical patent/JP2012001070A/en
Application granted granted Critical
Publication of JP5402843B2 publication Critical patent/JP5402843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To materialize structure of a rack shaft 7a constituting a rack pinion type steering gear unit and a method of manufacturing the rack shaft 7a, the structure enabling rack teeth 17a to be accurately formed in the process of manufacturing and the bending of the shaft to be accurately measured before bending correction work, and the structure further enabling the turning prevention function of the shaft in use to be increased.SOLUTION: The rack shaft 7a is made by forming the rack teeth 17a on the front face of an intermediate material which is constituted by cutting a drawn material at a prescribed length, wherein the outer circumference of the drawn material has a nearly polygonal cross section in which each apex is a circular arc with an equal radius of curvature around the center axis of the drawn material. The forming work of the rack teeth 17a is performed with an implement which is non-circularly engaged with a part of the outer circumference of the intermediate material, in a state in which the rotation of this intermediate material is inhibited. The bend measurement of the intermediate material is performed on the basis of the measurement of rotation deviation of a part corresponding to the circular arc part in the outer circumference of the intermediate material.

Description

本発明は、自動車のステアリング装置を構成するラックピニオン式ステアリングギヤユニットと、このラックピニオン式ステアリングギヤユニットを構成するラック軸と、このラック軸の製造方法との改良に関する。   The present invention relates to an improvement of a rack and pinion type steering gear unit that constitutes a steering device of an automobile, a rack shaft that constitutes the rack and pinion type steering gear unit, and a method of manufacturing the rack shaft.

自動車のステアリング装置として従来から、ラックピニオン式のステアリングギヤユニットを備えたものが広く使用されている。図12〜16は、この様なステアリング装置の従来構造の1例を示している。このステアリング装置は、図12に全体構成を示す様に、運転者が操作するステアリングホイール1の回転運動を、ラックピニオン式のステアリングギヤユニット5によって直線運動に変換する事により、図示しない左右の操舵輪に対して所望の舵角を付与可能な構成を有する。この様な構成を実現する為に具体的には、前記ステアリングホイール1を、ステアリングシャフト2の後端部に固定している。これと共に、このステアリングシャフト2の前端部を、1対の自在継手3、3及び中間シャフト4を介して、前記ステアリングギヤユニット5を構成するピニオン軸6の基端部に接続している。更に、このステアリングギヤユニット5を構成する、前記ピニオン軸6に噛合させたラック軸7の両端部に、それぞれが左右の操舵輪に対して連結される、1対のタイロッド8、8の基端部を接続している。   2. Description of the Related Art Conventionally, a vehicle equipped with a rack and pinion type steering gear unit has been widely used as a steering device for an automobile. 12 to 16 show an example of a conventional structure of such a steering device. As shown in the overall configuration of FIG. 12, the steering device converts the rotational movement of the steering wheel 1 operated by the driver into a linear movement by a rack and pinion type steering gear unit 5, whereby left and right steering (not shown) It has a configuration that can give a desired steering angle to the wheels. Specifically, in order to realize such a configuration, the steering wheel 1 is fixed to the rear end portion of the steering shaft 2. At the same time, the front end portion of the steering shaft 2 is connected to the base end portion of the pinion shaft 6 constituting the steering gear unit 5 via a pair of universal joints 3 and 3 and the intermediate shaft 4. Further, the base ends of a pair of tie rods 8 and 8 that are connected to the left and right steering wheels, respectively, at both ends of a rack shaft 7 that meshes with the pinion shaft 6 constituting the steering gear unit 5. Are connected.

前記ステアリングギヤユニット5は、図13〜16に詳示する様に、ハウジング9と、ピニオン軸6と、ラック軸7と、押圧手段10とを備える。
このうちのハウジング9は、車体に固定されるもので、前記ラック軸7の中間部を収容する第一収容体11と、前記ピニオン軸6の先半部を収容する第二収容体12と、前記押圧手段10を収容する第三収容体13とを、一体に備える。
又、前記ピニオン軸6は、外周面の先端寄り部分にピニオン歯14を有する。この様なピニオン軸6は、先半部を前記第二収容体12の内側に挿入した状態で、この第二収容体12に対し、1対の転がり軸受15、16により回転のみ可能に支持されている。
As shown in detail in FIGS. 13 to 16, the steering gear unit 5 includes a housing 9, a pinion shaft 6, a rack shaft 7, and a pressing means 10.
Of these, the housing 9 is fixed to the vehicle body, and includes a first housing 11 that houses the intermediate portion of the rack shaft 7, a second housing 12 that houses the tip half of the pinion shaft 6, A third housing 13 for housing the pressing means 10 is integrally provided.
The pinion shaft 6 has pinion teeth 14 near the tip of the outer peripheral surface. Such a pinion shaft 6 is supported by the pair of rolling bearings 15 and 16 so as to be rotatable only with respect to the second housing 12 with the first half inserted into the second housing 12. ing.

又、前記ラック軸7は、前面の軸方向一端寄り部分にラック歯17を有する。このラック軸7の外周面は、このラック歯17を形成した部分を除き、円筒面である。即ち、このラック軸7の外周面の断面形状は、軸方向に関して前記ラック歯17から外れた部分では円形であり、軸方向に関してこのラック歯17を形成した部分では、このラック歯17に対応する部分が直線で、残りの部分が円弧形である。この様なラック軸7は、軸方向中間部を前記第一収容体11の内側に挿通すると共に、前記ラック歯17を前記ピニオン歯14に噛合させた状態で、前記第一収容体11に対し、1対のラックブッシュ18、18を介して軸方向の変位を可能に支持されている。
尚、本明細書及び特許請求の範囲で「断面形状」とは、特に断らない限り、対象となる部材の、中心軸に直交する仮想平面に関する断面形状を言う。
The rack shaft 7 has rack teeth 17 at a portion near one end of the front surface in the axial direction. The outer peripheral surface of the rack shaft 7 is a cylindrical surface except for a portion where the rack teeth 17 are formed. In other words, the cross-sectional shape of the outer peripheral surface of the rack shaft 7 is circular at a portion deviating from the rack teeth 17 in the axial direction, and corresponds to the rack teeth 17 at a portion where the rack teeth 17 are formed in the axial direction. The part is a straight line and the remaining part is an arc. Such a rack shaft 7 is inserted into the first accommodating body 11 at an axially intermediate portion, and the rack teeth 17 are engaged with the pinion teeth 14 with respect to the first accommodating body 11. An axial displacement is supported through a pair of rack bushings 18 and 18.
In the present specification and claims, “cross-sectional shape” means a cross-sectional shape related to a virtual plane orthogonal to the central axis of a target member unless otherwise specified.

前記両ラックブッシュ18、18は、耐油性を有する合成樹脂、自己潤滑性を有する金属、含油メタル等の低摩擦材により、全体を円筒状に造られている。又、これら両ラックブッシュ18、18の内周面の円周方向複数箇所(図14〜15に示した例では、円周方向ほぼ等間隔の3箇所)にガイド凸部20、20を、同じく外周面の円周方向少なくとも1箇所(図14〜15に示した例では、円周方向等間隔の2箇所)に係合凸部21、21を、それぞれ有している。これら両ラックブッシュ18、18は、前記両係合凸部21、21を、前記第一収容体11の内周面の両端寄り部分に形成した係合凹部19、19に係合させる事により、円周方向の位置決めを図った状態で、この第一収容体11の内周面の両端寄り部分に内嵌固定されている。又、この状態で、前記各ガイド凸部20、20の先端面を、前記ラック軸7の外周面のうち、前記ラック歯17から外れた部分に対し、軸方向の摺動を可能に接触させている。   Both the rack bushes 18 and 18 are formed in a cylindrical shape as a whole by a low friction material such as an oil-resistant synthetic resin, a self-lubricating metal, and an oil-containing metal. In addition, the guide protrusions 20 and 20 are similarly provided at a plurality of circumferential positions on the inner circumferential surfaces of the rack bushes 18 and 18 (in the example shown in FIGS. 14 to 15, three positions at substantially equal intervals in the circumferential direction). At least one circumferential direction of the outer peripheral surface (in the example shown in FIGS. 14 to 15, two positions at equal intervals in the circumferential direction) have engaging convex portions 21 and 21, respectively. Both the rack bushes 18 and 18 are engaged by engaging the engaging protrusions 21 and 21 with engaging recesses 19 and 19 formed at both end portions of the inner peripheral surface of the first container 11. In a state where positioning in the circumferential direction is aimed, it is fitted and fixed to portions near both ends of the inner circumferential surface of the first container 11. Further, in this state, the front end surfaces of the respective guide projections 20 and 20 are brought into contact with the portion of the outer peripheral surface of the rack shaft 7 that is separated from the rack teeth 17 so as to be able to slide in the axial direction. ing.

又、前記押圧手段10は、前記第三収容体13の内側に収容されており、押圧部材22と、ばね23とを備える。そして、このうちの押圧部材22の先端面である押圧面を、前記ラック軸7の背面のうち、このラック軸7を挟んで前記ピニオン軸6と反対側の部分に対し、このラック軸7の軸方向の摺動を可能に接触させている。又、この状態で、前記ばね23により、前記押圧部材22を前記ラック軸7の背面に向け、弾性的に押圧している。これにより、前記ピニオン歯14と前記ラック歯17との噛合部に予圧を付与する事によって、この噛合部で異音が発生するのを抑制する共に、ステアリング装置の操作感を向上させている。尚、前記押圧部材22は、全体が上述の様な低摩擦材により造られているか、或いは、前記ラック軸7の背面と摺接する押圧面に低摩擦材層を有している。   The pressing means 10 is housed inside the third housing 13 and includes a pressing member 22 and a spring 23. Of these, the pressing surface, which is the front end surface of the pressing member 22, is placed on the opposite side of the rack shaft 7 to the opposite side of the rack shaft 7 from the rack shaft 7. Axial sliding is possible. In this state, the pressing member 22 is elastically pressed toward the back surface of the rack shaft 7 by the spring 23. Thus, by applying a preload to the meshing portion between the pinion teeth 14 and the rack teeth 17, it is possible to suppress the generation of abnormal noise at the meshing portion and improve the operational feeling of the steering device. The pressing member 22 is entirely made of a low friction material as described above, or has a low friction material layer on a pressing surface that is in sliding contact with the back surface of the rack shaft 7.

そして、上述の様に構成するステアリングギヤユニット5のうち、前記ピニオン軸6の基端部に、前記中間シャフト4の前端部を、自在継手3を介して接続している。これと共に、前記ラック軸7の軸方向両端部に、前記両タイロッド8、8の基端部を、ボールジョイント24、24を介して接続している。尚、これら両ボールジョイント24、24は、前記ラック軸7の両端部に対し、それぞれねじ止め等により固定されている。   In the steering gear unit 5 configured as described above, the front end portion of the intermediate shaft 4 is connected to the base end portion of the pinion shaft 6 via the universal joint 3. At the same time, the base end portions of the tie rods 8 and 8 are connected to both end portions in the axial direction of the rack shaft 7 via ball joints 24 and 24. These ball joints 24, 24 are fixed to both ends of the rack shaft 7 by screwing or the like.

上述の様に構成するステアリング装置の場合、運転者が前記ステアリングホイール1を操作すると、このステアリングホイール1の回転が、前記ステアリングシャフト2と、前記両自在継手3、3及び中間シャフト4とを介して、前記ピニオン軸6に伝達される。この結果、前記ラック軸7が軸方向に変位し、これに伴って、前記両タイロッド8、8が押し引きされる事により、左右の操舵輪に所望の舵角が付与される。   In the case of the steering apparatus configured as described above, when the driver operates the steering wheel 1, the rotation of the steering wheel 1 is transmitted through the steering shaft 2, the universal joints 3, 3, and the intermediate shaft 4. And transmitted to the pinion shaft 6. As a result, the rack shaft 7 is displaced in the axial direction, and accordingly, the tie rods 8 and 8 are pushed and pulled, whereby a desired steering angle is given to the left and right steering wheels.

上述した従来のラック軸7は、例えば図17に示す様な工程順で製造する。先ず、ステップ1(S1)で、素材となる、断面形状が円形のコイル材を用意する。次に、ステップ2(S2)で、この素材に対し、焼鈍の処理を施す事により、この素材の内部ひずみを取り除く。次に、ステップ3(S3)で、この焼鈍の処理を施した素材に対し、外径研削の処理を施す事により、この素材の外径寸法を所望の大きさに整える。次に、ステップ4(S4)で、この外径研削の処理を施した素材を所定の長さに切断する事により、所定の長さを有する円柱状の中間素材を得る。次に、ステップ5(S5)で、この中間素材に対し、両端加工を施す事により、この中間素材の両端面に、前記両ボールジョイント24、24をねじ止め固定する為のねじ孔を形成する。次に、ステップ6(S6)で、この両端加工を施した中間素材に対し、前面の軸方向一端寄り部分に歯加工(塑性加工と切削加工とのうちの少なくとも一方)を施す事により、当該部分に前記ラック歯17を形成する。次に、ステップ7(S7)で、この歯加工を施した中間素材に対し、熱処理を施す事により、前記ラック歯17の硬度等の機械的性質を向上させる。次に、ステップ8(S8)で、この熱処理を施した中間素材に対し、曲り直しの処理を施す。次に、ステップ9(S9)で、この曲り直しの処理を施した中間素材に対し、表面仕上げの処理を施す事により、前記ラック軸7を完成させる。そして、最後のステップ10(S10)で、このラック軸7の洗浄を行い、このラック軸7の製造作業を完了する。   The conventional rack shaft 7 described above is manufactured in the order of processes as shown in FIG. First, in step 1 (S1), a coil material having a circular cross-sectional shape as a material is prepared. Next, in step 2 (S2), the material is annealed to remove internal strain of the material. Next, in Step 3 (S3), the outer diameter dimension of the material is adjusted to a desired size by subjecting the material subjected to the annealing process to an outer diameter grinding process. Next, in step 4 (S4), the material subjected to the outer diameter grinding process is cut into a predetermined length to obtain a cylindrical intermediate material having a predetermined length. Next, in step 5 (S5), both ends of the intermediate material are processed to form screw holes for screwing and fixing the ball joints 24, 24 on both end surfaces of the intermediate material. . Next, in step 6 (S6), the intermediate material subjected to both end processing is subjected to tooth processing (at least one of plastic processing and cutting processing) on a portion near one end in the axial direction of the front surface, thereby The rack teeth 17 are formed in the portion. Next, in step 7 (S7), the intermediate material subjected to the tooth processing is subjected to a heat treatment to improve mechanical properties such as hardness of the rack teeth 17. Next, in step 8 (S8), the intermediate material subjected to the heat treatment is subjected to a bending process. Next, in step 9 (S9), the rack shaft 7 is completed by performing a surface finishing process on the intermediate material that has been subjected to the rebending process. In the final step 10 (S10), the rack shaft 7 is cleaned, and the manufacturing operation of the rack shaft 7 is completed.

ところで、上述の様なラック軸7の製造方法の場合、前記両端加工を施した後の中間素材に歯加工を施す際には、この中間素材に加工力の一成分として、大きな回転力が加わる。ところが、上述した従来構造の場合、この様な回転力に対抗する、前記中間素材の回転阻止力を十分に確保する事が難しい。即ち、この様な中間素材の回転阻止力を得る方法として、この中間素材の外周面のうち、歯加工を施す部分から外れた部分を、治具により押さえ付ける方法が考えられる。ところが、前記中間素材の外周面は、単なる円筒面である為、当該方法によって得られる回転阻止力は、前記中間素材の外周面と前記治具の表面との間に作用する摩擦力のみとなり、余り大きくできない。従って、前記中間素材に歯加工を施す際に、前記回転力が前記回転阻止力に打ち勝って、この中間素材が回動する可能性がある。この際に、この中間素材が僅かでも回動すると、前記ラック歯17を精度良く形成する事ができなくなる。そして、このラック歯17を精度良く形成できなかった場合には、使用時に、このラック歯17と前記ピニオン歯14との噛合部で異音が発生したり、この噛合部での動力伝達効率が低下して、前記ステアリングホイール1の操作感が悪化したり、更には、前記噛合部の摩耗が促進して、前記ラック軸7及びピニオン軸6の寿命が短くなると言った、各種の不具合が発生する。   By the way, in the case of the manufacturing method of the rack shaft 7 as described above, when the intermediate material after the both end processing is subjected to tooth processing, a large rotational force is applied to the intermediate material as one component of the processing force. . However, in the case of the conventional structure described above, it is difficult to sufficiently secure the rotation preventing force of the intermediate material that counters such a rotating force. That is, as a method for obtaining such a rotation preventing force of the intermediate material, a method of pressing a portion of the outer peripheral surface of the intermediate material that is out of the toothed portion with a jig is conceivable. However, since the outer peripheral surface of the intermediate material is a mere cylindrical surface, the rotation prevention force obtained by the method is only a frictional force acting between the outer peripheral surface of the intermediate material and the surface of the jig, Cannot be too big. Therefore, when tooth processing is performed on the intermediate material, the rotational force may overcome the rotation preventing force, and the intermediate material may rotate. At this time, if the intermediate material is slightly rotated, the rack teeth 17 cannot be formed with high accuracy. If the rack teeth 17 cannot be accurately formed, abnormal noise is generated at the meshing portion between the rack teeth 17 and the pinion teeth 14 during use, or the power transmission efficiency at the meshing portion is reduced. As a result, the operation feeling of the steering wheel 1 deteriorates, and further, wear of the meshing portion is promoted, and various problems such as shortening the life of the rack shaft 7 and the pinion shaft 6 occur. To do.

又、自動車の運転時に、前記ラック軸7には、車輪が逆動作する際に、回転力が作用する場合がある。ところが、上述した従来構造の場合には、この様な回転力に対して、前記ラック軸7の回動を阻止する機能が乏しい。即ち、上述した従来構造の場合、当該機能は、前記ラック軸7の円筒状の外周面と、前記各ラックブッシュ18、18の内周面及び前記押圧部材22の押圧面との摩擦係合によっては、殆ど発揮されず、実質的に、前記ラック歯17と前記ピニオン歯14との噛合のみによって発揮される。この為、前記ラック軸7に作用する回転力が大きくなった場合に、このラック軸7が僅かとは言え回動し、前記ラック歯17と前記ピニオン歯14との噛合状態が不適正になる可能性がある。そして、この噛合状態が不適正になった場合には、やはり、上述した様な各種の不具合が発生する。   Further, during the operation of the automobile, a rotational force may act on the rack shaft 7 when the wheels reversely move. However, in the case of the above-described conventional structure, the function of preventing the rotation of the rack shaft 7 with respect to such a rotational force is poor. That is, in the case of the conventional structure described above, the function is achieved by frictional engagement between the cylindrical outer peripheral surface of the rack shaft 7 and the inner peripheral surfaces of the rack bushes 18 and 18 and the pressing surfaces of the pressing members 22. Is hardly exerted and is substantially exerted only by meshing of the rack teeth 17 and the pinion teeth 14. For this reason, when the rotational force acting on the rack shaft 7 is increased, the rack shaft 7 is rotated slightly, but the meshing state of the rack teeth 17 and the pinion teeth 14 becomes inappropriate. there is a possibility. And when this meshing state becomes improper, various problems as described above also occur.

尚、特許文献1〜3には、ラック軸の外周面のうち、ラック歯から外れた部分に、断面形状が非円形の部分を設け、この断面形状が非円形の部分にラックブッシュの内周面や押圧部材の押圧面を係合させる事によって、前記ラック軸の回動を阻止する機能を高められる様にした構造が記載されている。
ところが、これら特許文献1〜3に記載された構造の場合、前記ラック軸は、所定の長さを有する円柱状又は円管状の中間素材から造られており、このラック軸の外周面のうち、前記ラック歯から外れた部分に存在する、断面形状が非円形の部分は、当該中間素材に鍛造加工を施す事によって形成されている。即ち、前記断面形状が非円形の部分を形成する作業は、製造すべきラック軸毎に、個別に行われている。従って、その分だけ製造コストが嵩む。
In Patent Documents 1 to 3, a portion having a non-circular cross-sectional shape is provided in a portion of the outer peripheral surface of the rack shaft that is out of the rack teeth, and the inner periphery of the rack bushing is provided in the non-circular cross-sectional portion. There is described a structure in which the function of preventing the rotation of the rack shaft can be enhanced by engaging a pressing surface of a surface or a pressing member.
However, in the case of the structures described in these Patent Documents 1 to 3, the rack shaft is made of a columnar or tubular intermediate material having a predetermined length, and of the outer peripheral surface of the rack shaft, A portion having a non-circular cross-sectional shape that exists in a portion deviated from the rack teeth is formed by forging the intermediate material. That is, the operation of forming the non-circular portion of the cross-sectional shape is performed individually for each rack shaft to be manufactured. Therefore, the manufacturing cost increases accordingly.

特開2000−238650号公報JP 2000-238650 A 特開2004−34829号公報JP 2004-34829 A 特開2008−213756号公報JP 2008-213756 A

本発明は、上述の様な事情に鑑み、外周面のうち、ラック歯から外れた部分の断面形状が非円形になっているラック軸を、精度良く、且つ、低コストで造れる構造、及び、その製造方法と、このラック軸を備えたラックピニオン式ステアリングギヤユニットを提供すべく発明したものである。   In view of the circumstances as described above, the present invention has a structure in which a rack shaft having a non-circular cross-sectional shape out of the rack teeth on the outer peripheral surface can be made with high accuracy and low cost, and The invention was invented to provide a manufacturing method thereof and a rack and pinion type steering gear unit provided with the rack shaft.

本発明のラック軸とその製造方法及びラックピニオン式ステアリングギヤユニットのうち、請求項1に記載したラック軸は、金属製で、前面(外周面の径方向片側面)の軸方向一部分にラック歯を有する。
特に、請求項1に記載したラック軸に於いては、素材となる引抜材を所定の長さに切断して成る中間素材の前面の軸方向一部分に、前記ラック歯を形成する事によって造られており、且つ、前記引抜材の外周面の断面形状が、各頂点がこの引抜材の中心軸を中心とする曲率半径の等しい円弧になった略多角形状である。言い換えれば、前記引抜材の外周面の断面形状が、基本となる多角形の各頂点部分を、それぞれ前記引抜材の中心軸を中心とする曲率半径の等しい円弧に置き換えた形状になっている。
Of the rack shaft of the present invention, the manufacturing method thereof, and the rack and pinion type steering gear unit, the rack shaft described in claim 1 is made of metal and has a rack tooth on a portion of the front surface (one side surface in the radial direction of the outer peripheral surface) in the axial direction. Have
In particular, the rack shaft according to claim 1 is formed by forming the rack teeth on a part of the front surface of an intermediate material formed by cutting a material to be drawn into a predetermined length. In addition, the cross-sectional shape of the outer peripheral surface of the drawn material is a substantially polygonal shape in which each vertex is an arc having the same radius of curvature with the central axis of the drawn material as the center. In other words, the cross-sectional shape of the outer peripheral surface of the drawn material is a shape in which each vertex portion of the basic polygon is replaced with an arc having the same radius of curvature around the central axis of the drawn material.

又、請求項2に記載したラック軸の製造方法は、上述の請求項1に記載したラック軸の製造方法であって、金属材料に引抜加工を施す事により、その外周面の断面形状が、各頂点がその中心軸を中心とする曲率半径の等しい円弧になった略多角形状である引抜材(言い換えれば、その外周面の断面形状が、基本となる多角形の各頂点部分を、それぞれその中心軸を中心とする曲率半径の等しい円弧に置き換えた形状になっている引抜材)を得る工程と、この引抜材を所定の長さに切断して成る中間素材を得る工程と、この中間素材の外周面のうち、前記ラック歯を形成すべき部分から外れた部分を、当該部分に非円形係合させた治具により押さえた状態(例えば、前記中間素材の外周面のうち、前記ラック歯を形成すべき部分から外れた部分であって、且つ、断面形状に関して前記略多角形状を構成する各直線部のうちの少なくとも2つの直線部に対応する部分を、治具により押さえた状態)で、前記中間素材の前面の軸方向一部分に前記ラック歯を形成する工程とを備える。   The rack shaft manufacturing method according to claim 2 is the rack shaft manufacturing method according to claim 1 described above, and the cross-sectional shape of the outer peripheral surface of the rack shaft is obtained by drawing a metal material. A drawing material having a substantially polygonal shape in which each vertex is an arc having the same radius of curvature with the central axis as the center (in other words, the cross-sectional shape of the outer peripheral surface of each vertex of the basic polygon is And a step of obtaining an intermediate material formed by cutting the drawn material into a predetermined length, and the intermediate material. Of the outer peripheral surface of the intermediate material, a portion removed from the portion where the rack teeth are to be formed is pressed by a jig that is non-circularly engaged with the portion (for example, the rack teeth on the outer peripheral surface of the intermediate material) The part that is out of the part that should be formed And a portion corresponding to at least two of the straight portions constituting the substantially polygonal shape with respect to the cross-sectional shape is pressed by a jig), and a part of the front surface of the intermediate material in the axial direction Forming the rack teeth.

又、請求項3に記載したラックピニオン式ステアリングギヤユニットは、ハウジングと、ラックブッシュと、ラック軸と、ピニオン軸と、押圧手段とを備える。
このうちのハウジングは、車体に固定されるものである。
又、前記ラックブッシュは、筒状に造られたもので、前記ハウジングの内側に固定されている。
又、前記ラック軸は、前面(外周面の径方向片側面)の軸方向一部分にラック歯を有するもので、外周面を、前記ラックブッシュの内周面により軸方向の摺動を可能に支持された状態で、前記ハウジングの内側に配置されている。
又、前記ピニオン軸は、外周面の軸方向一部分にピニオン歯を有するもので、このピニオン歯を前記ラック歯に噛合させた状態で、前記ハウジングの内側に回転可能に支持されている。
又、前記押圧手段は、押圧部材を有するもので、前記ラック軸の背面(外周面の径方向他側面)のうち、このラック軸を挟んで前記ピニオン軸と反対側の部分を前記押圧部材により弾性的に押圧した状態で、前記ハウジングの内側に配置されている。
特に、請求項3に記載したラックピニオン式ステアリングギヤユニットに於いては、前記ラック軸が、上述の請求項1に記載したラック軸である。
A rack and pinion type steering gear unit according to a third aspect includes a housing, a rack bush, a rack shaft, a pinion shaft, and a pressing means.
Of these, the housing is fixed to the vehicle body.
The rack bush is formed in a cylindrical shape and is fixed to the inside of the housing.
The rack shaft has rack teeth on a part of the front surface (one side surface in the radial direction of the outer peripheral surface) in the axial direction, and the outer peripheral surface is supported by the inner peripheral surface of the rack bush so as to be slidable in the axial direction. In this state, it is arranged inside the housing.
The pinion shaft has pinion teeth on a part of the outer peripheral surface in the axial direction, and is rotatably supported inside the housing with the pinion teeth meshed with the rack teeth.
The pressing means includes a pressing member, and a portion of the back surface of the rack shaft (the other side surface in the radial direction of the outer peripheral surface) on the side opposite to the pinion shaft is sandwiched by the pressing member. It is arranged inside the housing while being elastically pressed.
In particular, in the rack and pinion type steering gear unit described in claim 3, the rack shaft is the rack shaft described in claim 1 described above.

本発明のラックピニオン式ステアリングギヤユニットを実施する場合に、好ましくは、請求項4に記載した発明の様に、前記ラックブッシュの内周面と前記押圧部材の先端部に設けた押圧面とのうちの少なくとも一方の面を、前記ラック軸の外周面に対して、非円形係合させた状態で摺接させる。例えば、前記少なくとも一方の面を、前記ラック軸の外周面のうちで、断面形状に関して前記略多角形状を構成する各直線部のうちの少なくとも2つの直線部に対応する部分に摺接させる。   When the rack and pinion type steering gear unit according to the present invention is implemented, preferably, as in the invention described in claim 4, an inner peripheral surface of the rack bush and a pressing surface provided at a tip portion of the pressing member are provided. At least one of the surfaces is brought into sliding contact with the outer peripheral surface of the rack shaft in a non-circular engagement state. For example, the at least one surface is brought into sliding contact with a portion of the outer peripheral surface of the rack shaft corresponding to at least two straight portions of the straight portions constituting the substantially polygonal shape with respect to a cross-sectional shape.

より好ましくは、請求項5に記載した発明の様に、互いに摺接する前記ラックブッシュの内周面と前記ラック軸の外周面とのうちの何れか一方の周面に、1乃至複数の凸部又は凹部を、軸方向に連続する状態で形成する。   More preferably, as in the invention described in claim 5, one or more protrusions are provided on any one of the inner peripheral surface of the rack bush and the outer peripheral surface of the rack shaft that are in sliding contact with each other. Or a recessed part is formed in the state which follows an axial direction.

上述の様に構成する本発明のラック軸とその製造方法及びラックピニオン式ステアリングギヤユニットの場合には、ラック軸を製造する際に、ラック歯を精度良く形成する事ができる。即ち、本発明のラック軸は、素材となる引抜材を、所定の長さに切断して成る中間素材の前面の軸方向一部分に、前記ラック歯を形成する事によって造られるが、前記引抜材及び中間素材の外周面の断面形状は、非円形(各頂点がその中心軸を中心とする曲率半径の等しい円弧になった略多角形状)になっている。この為、請求項2に記載した発明の様に、前記中間素材の外周面のうち、前記ラック歯を形成すべき部分から外れた部分を、当該部分に非円形係合させた治具により押さえた状態で、前記ラック歯の形成を行えば、このラック歯を形成する際の、前記中間素材の回転防止効果を十分に高める事ができる。この為、前記ラック歯を精度良く形成する事ができる。   In the case of the rack shaft of the present invention configured as described above, the manufacturing method thereof, and the rack and pinion type steering gear unit, rack teeth can be formed with high accuracy when the rack shaft is manufactured. That is, the rack shaft according to the present invention is formed by forming the rack teeth on a part of the front surface of the intermediate material formed by cutting the material to be drawn into a predetermined length. And the cross-sectional shape of the outer peripheral surface of the intermediate material is non-circular (substantially polygonal shape in which each vertex is an arc having the same radius of curvature with its central axis as the center). For this reason, as in the second aspect of the invention, a portion of the outer peripheral surface of the intermediate material that is out of the portion where the rack teeth are to be formed is pressed by a jig that is non-circularly engaged with the portion. If the rack teeth are formed in a state where the rack teeth are formed, the effect of preventing the rotation of the intermediate material when forming the rack teeth can be sufficiently enhanced. For this reason, the rack teeth can be formed with high accuracy.

又、本発明のラック軸を製造する際には、素材である引抜材を得た段階で、完成後のラック軸の外周面のうち、ラック歯から外れた部分に必要な断面形状を得られる。この為、製造すべきラック軸の中間素材毎に、当該部分に必要な断面形状を得る為の加工を施す必要がなくなる。従って、その分だけ加工工数を少なくする事ができ、製造コストの低減を図れる。   In addition, when the rack shaft of the present invention is manufactured, a necessary cross-sectional shape can be obtained at a portion of the outer peripheral surface of the completed rack shaft that is out of the rack teeth at the stage of obtaining the drawn material. . For this reason, it is not necessary to perform processing for obtaining a necessary cross-sectional shape for the intermediate material of the rack shaft to be manufactured. Therefore, the number of processing steps can be reduced by that amount, and the manufacturing cost can be reduced.

又、本発明のラック軸の素材となる引抜材の様に、外周面の断面形状が非円形になっている引抜材は、製造に伴って曲がりが生じ易い。但し、本発明のラック軸の素材となる引抜材の場合には、外周面の断面形状が、各頂点がこの引抜材の中心軸を中心とする曲率半径の等しい円弧になった略多角形状になっている。この様な引抜材の場合には、外周面の断面形状が単なる多角形(各頂点が、断面形状を表す線に関して、微分不能な角部になった多角形)である引抜材に比べて、製造に伴って生じる曲がりを抑えられる。但し、この様な効果を得られるにしても、製造に伴って曲がりが生じる可能性はある。この為、本発明のラック軸を製造する場合も、前述の図17に示した従来のラック軸の製造方法の場合と同様、製造工程の何れかの段階で、前記中間素材の曲り直しの処理を行う事が好ましい。   Further, like a drawn material used as a material for the rack shaft of the present invention, a drawn material having a non-circular cross-sectional shape on the outer peripheral surface is likely to be bent during manufacture. However, in the case of the drawn material used as the material of the rack shaft of the present invention, the cross-sectional shape of the outer peripheral surface is a substantially polygonal shape in which each vertex is an arc having the same radius of curvature centering on the central axis of the drawn material. It has become. In the case of such a drawn material, compared to a drawn material in which the cross-sectional shape of the outer peripheral surface is a simple polygon (a polygon in which each vertex is a non-differentiable corner with respect to a line representing the cross-sectional shape), Bending caused by manufacturing can be suppressed. However, even if such an effect can be obtained, there is a possibility that bending will occur with the manufacture. Therefore, when the rack shaft of the present invention is manufactured, the intermediate material is bent again at any stage of the manufacturing process, as in the case of the conventional rack shaft manufacturing method shown in FIG. It is preferable to carry out.

この様に、前記中間素材の曲り直しの処理を行う場合には、先ず、この中間素材に生じている、曲がりを測定する必要がある。本発明のラック軸の場合には、前記中間素材の外周面のうち、この外周面の断面形状の前記各円弧部に対応する部分に、R面取り部が存在する。これら各R面取り部は、曲率中心が前記中間素材の中心軸で総て一致しており、且つ、曲率半径も総て等しくなっている。この為、従来から知られている、断面形状が円形である丸棒の曲がり測定を行う場合と同様の方法で、前記中間素材の曲がりを、前記各R面取り部を利用して、精度良く測定する事が可能となる。具体的には、前記中間素材を、前記各R面取り部の軸方向2箇所位置で支持した状態で、この中間素材を回転させる。そして、この回転に伴って生じる、前記各R面取り部の、軸方向に関して前記2箇所位置から外れた位置での振れを測定する事に基づいて、前記中間素材の曲がりを精度良く測定する事ができる。この為、この様に測定した中間素材の曲がりに基づいて、この中間素材の曲り直し作業を精度良く行う事ができる。   Thus, when the process of rebending the intermediate material is performed, it is first necessary to measure the bend generated in the intermediate material. In the case of the rack shaft of the present invention, an R chamfered portion exists in a portion of the outer peripheral surface of the intermediate material corresponding to each arc portion of the cross-sectional shape of the outer peripheral surface. Each of these R chamfered portions has the same center of curvature at the central axis of the intermediate material, and all have the same radius of curvature. For this reason, the bending of the intermediate material is accurately measured by using the respective R chamfered portions in the same manner as the conventional method for measuring the bending of a round bar having a circular cross section. It becomes possible to do. Specifically, the intermediate material is rotated in a state where the intermediate material is supported at two positions in the axial direction of each R chamfer. And it is possible to accurately measure the bending of the intermediate material on the basis of measuring the deflection of each R chamfered portion that occurs with this rotation at a position deviating from the two positions with respect to the axial direction. it can. For this reason, based on the bending of the intermediate material measured in this way, the intermediate material can be bent again with high accuracy.

又、本発明の場合、前記ラック軸の外周面のうち、ラック歯から外れた部分の断面形状が、軸方向の全長に亙り、同一の非円形形状になっている。この為、例えば請求項4に記載した発明の様に、ラックピニオン式ステアリングギヤユニットの組立状態で、ラックブッシュの内周面と押圧部材の押圧面とのうちの少なくとも一方の面を、前記ラック軸の外周面に対して非円形係合させた状態で摺接させれば、使用時に於ける、前記ラック軸の回転阻止効果を高める事ができる。従って、前記ラック歯と前記ピニオン歯との噛み合い状態を適正な状態に維持し易くできる。   Further, in the case of the present invention, the cross-sectional shape of the portion of the outer peripheral surface of the rack shaft that is off the rack teeth is the same non-circular shape over the entire length in the axial direction. Therefore, for example, as in the invention described in claim 4, in the assembled state of the rack and pinion type steering gear unit, at least one of the inner peripheral surface of the rack bush and the pressing surface of the pressing member is attached to the rack. By making sliding contact with the outer peripheral surface of the shaft in a non-circular engagement, the effect of preventing rotation of the rack shaft during use can be enhanced. Therefore, the meshing state of the rack teeth and the pinion teeth can be easily maintained in an appropriate state.

又、本発明のラックピニオン式ステアリングギヤユニットの場合、前記ラック軸の外周面のうち、前記ラック歯から外れた部分の加工方向である、前記素材となる引抜材の引抜方向と、当該部分に対する前記ラックブッシュの内周面及び前記押圧部材の押圧面の摺動方向とが、それぞれ前記ラック軸の軸方向になっていて、互いに一致している。この為、これら各面同士の摺接部に於ける軸方向の摺動抵抗を小さくできる。
更に、請求項5に記載した発明の構成を採用すれば、前記ラックブッシュの内周面と前記ラック軸の外周面との摺接面積が少なくなると共に、これら両周面同士の間に潤滑油を保持し易くなる。この為、これら両周面同士の摺接部に於ける軸方向の摺動抵抗を、より小さくできる。
Further, in the case of the rack and pinion type steering gear unit of the present invention, the drawing direction of the drawing material as the material, which is the processing direction of the portion outside the rack teeth, of the outer peripheral surface of the rack shaft, and the portion The sliding directions of the inner peripheral surface of the rack bush and the pressing surface of the pressing member are respectively the axial directions of the rack shaft and coincide with each other. For this reason, the sliding resistance in the axial direction at the sliding contact portion between these surfaces can be reduced.
Furthermore, if the configuration of the invention described in claim 5 is adopted, the sliding contact area between the inner peripheral surface of the rack bush and the outer peripheral surface of the rack shaft is reduced, and a lubricating oil is provided between the two peripheral surfaces. It becomes easy to hold. For this reason, the sliding resistance in the axial direction at the sliding contact portion between these two peripheral surfaces can be further reduced.

本発明の実施の形態の第1例に関する、図13の拡大a−a断面に相当する図。The figure equivalent to the expanded aa cross section of FIG. 13 regarding the 1st example of embodiment of this invention. 同じく、図13の拡大b−b断面に相当する図。Similarly, the figure equivalent to the expanded bb cross section of FIG. 同じく、図16のc部に相当する図。Similarly, the figure equivalent to the c section of FIG. 同じく、ラック軸の製造工程を示すフローチャート。Similarly, the flowchart which shows the manufacturing process of a rack axis | shaft. ラック軸を製造する為の、素材及び中間素材の断面図(A)、及び、第二中間素材の、ラック歯を形成した位置での断面図(B)。Sectional drawing (A) of a raw material and an intermediate raw material for manufacturing a rack axis | shaft, and sectional drawing (B) in the position which formed the rack tooth of the 2nd intermediate raw material. 第二中間素材の曲がりを測定する際の、軸方向に関する、この第二中間素材の支持箇所と振れの測定箇所とを表した略図。The schematic diagram showing the support location of this 2nd intermediate material, and the measurement location of a shake regarding the axial direction at the time of measuring the bending of a 2nd intermediate material. 第二中間素材の曲がりを測定する際の、円周方向に関する、この第二中間素材の支持箇所と径方向位置の測定箇所とを説明する為の断面図。Sectional drawing for demonstrating the support location of this 2nd intermediate material and the measurement location of a radial direction position regarding the circumferential direction at the time of measuring the bending of a 2nd intermediate material. 軸方向に関する、第二中間素材の支持箇所と振れの測定箇所との別例を示す、図6と同様の図。The figure similar to FIG. 6 which shows the other example of the support location of a 2nd intermediate material, and the measurement location of shake regarding an axial direction. ラック歯の形成範囲が異なる第二中間素材に関する、図7と同様の図。The same figure as FIG. 7 regarding the 2nd intermediate | middle raw material from which the formation range of a rack tooth differs. 本発明の実施の形態の第2例を示す、図1のd部に相当する拡大図。The enlarged view equivalent to the d section of Drawing 1 showing the 2nd example of an embodiment of the invention. ラック軸のR面取り部に軸方向の全長に亙る複数の凹部(A)又は凸部(B)を形成した例を示す、このR面取り部とラックブッシュの内周面との摺接部の拡大断面図。Enlargement of the sliding contact portion between the R chamfered portion and the inner peripheral surface of the rack bush, showing an example in which a plurality of concave portions (A) or convex portions (B) extending over the entire axial length is formed on the R chamfered portion of the rack shaft. Sectional drawing. 本発明の対象となるラックピニオン式ステアリングギヤユニットを備えた自動車用ステアリング装置の1例を示す部分切断側面図。1 is a partially cutaway side view showing an example of an automotive steering apparatus including a rack and pinion type steering gear unit that is an object of the present invention. 図12の拡大e−e断面図。The expanded ee sectional drawing of FIG. 図13の拡大a−a断面図。FIG. 14 is an enlarged aa cross-sectional view of FIG. 13. 図13の拡大b−b断面図。FIG. 14 is an enlarged bb cross-sectional view of FIG. 13. 図12の拡大f−f断面図。The expanded ff sectional view of FIG. 従来のラック軸の製造工程の1例を示すフローチャート。The flowchart which shows an example of the manufacturing process of the conventional rack shaft.

[実施の形態の第1例]
請求項1〜4に対応する、本発明の実施の形態の第1例に就いて、図1〜7を参照しつつ説明する。尚、本例の特徴は、ラック軸7aの外周面の形状と、1対のラックブッシュ18a、18aの内周面の形状と、押圧手段10aを構成する押圧部材22aの先端面の形状と、前記ラック軸7aの製造方法とにある。その他の部分の構造及び作用は、前述の図12〜16に示した従来構造の場合と同様であるから、同等部分には同一符号を付して、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
A first example of an embodiment of the present invention corresponding to claims 1 to 4 will be described with reference to FIGS. The feature of this example is that the shape of the outer peripheral surface of the rack shaft 7a, the shape of the inner peripheral surface of the pair of rack bushes 18a, 18a, the shape of the tip surface of the pressing member 22a constituting the pressing means 10a, It is in the manufacturing method of the rack shaft 7a. Since the structure and operation of the other parts are the same as those of the conventional structure shown in FIGS. 12 to 16, the same parts are denoted by the same reference numerals, and overlapping illustrations and descriptions are omitted or simplified. Hereinafter, the description will focus on the features of this example.

本例の場合、図1〜3に示す様に、前記ラック軸7aの外周面のうち、このラック軸7aの前面(図1〜3に於ける上面)の軸方向一端寄り部分に形成されたラック歯17aから外れた部分の断面形状は、軸方向の全長に亙り、同一の非円形形状になっている。具体的には、正八角形の各頂点部分を、それぞれ前記ラック軸7aの中心軸を中心とする曲率半径の等しい円弧に置き換えた、略正八角形状になっている。即ち、この様なラック軸7aの外周面のうち、前記ラック歯17aから外れた部分には、前記略正八角形状の各直線部に対応する部分に、それぞれ平面部25、25が配置されており、前記各円弧部に対応する部分に、それぞれR面取り部26、26が配置されている。   In the case of this example, as shown in FIGS. 1 to 3, the outer peripheral surface of the rack shaft 7 a is formed at a portion closer to one end in the axial direction of the front surface of the rack shaft 7 a (upper surface in FIGS. 1 to 3). The cross-sectional shape of the portion deviated from the rack teeth 17a is the same non-circular shape over the entire length in the axial direction. Specifically, each of the apex portions of the regular octagon is replaced with an arc having the same radius of curvature around the central axis of the rack shaft 7a. That is, of the outer peripheral surface of the rack shaft 7a, the flat portions 25 and 25 are arranged in the portions corresponding to the linear portions of the substantially regular octagonal shape, respectively, on the portions that are separated from the rack teeth 17a. In addition, R chamfered portions 26 and 26 are arranged at portions corresponding to the respective arc portions.

又、本例の場合、図1〜2に示す様に、前記両ラックブッシュ18a、18aの内周面を、単なる円筒面としている。そして、これら両ラックブッシュ18a、18aの内周面を、前記ラック軸17aの外周面のうち、前記各R面取り部26、26部分にのみ、軸方向の摺動を可能に接触させている。
又、本例の場合、図3に示す様に、前記押圧手段10aを構成する押圧部材22aは、先端面に、1対の平坦な押圧面27、27を備えている。そして、これら両押圧面27、27を、前記ラック軸7aの背面(図1〜3に於ける下面)に存在する1対の平面部25、25に対し、非円形係合させた状態で、軸方向の摺動を可能に接触させている。
In the case of this example, as shown in FIGS. 1 and 2, the inner peripheral surfaces of the rack bushes 18a and 18a are simply cylindrical surfaces. The inner peripheral surfaces of the rack bushes 18a and 18a are brought into contact with only the R chamfered portions 26 and 26 of the outer peripheral surface of the rack shaft 17a so as to be able to slide in the axial direction.
In the case of this example, as shown in FIG. 3, the pressing member 22a constituting the pressing means 10a has a pair of flat pressing surfaces 27, 27 on the tip surface. Then, in a state in which both the pressing surfaces 27, 27 are non-circularly engaged with a pair of flat portions 25, 25 existing on the back surface (the lower surface in FIGS. 1 to 3) of the rack shaft 7a, Axial sliding is possible.

又、本例の場合、前記ラック軸7aは、図4に示す様な工程順で製造する。この図4に示した本例の工程順と、前述の図17に示した従来の工程順とを比べれば分かる様に、本例のラック軸7aは、従来のラック軸7(図13〜16参照)とほぼ同様の工程順で製造する。但し、本例の場合、最初の工程(S1)で用意する素材は、図5の(A)に示す様な断面形状を有する引抜材28である。この引抜材28の外周面の断面形状は、前記ラック軸7aの外周面のうち前記ラック歯17aから外れた部分の断面形状と、外径寸法を含めて実質的に同一である。即ち、前記引抜材28の外周面には、前記ラック軸7aの外周面のうち、前記ラック歯17aから外れた部分と同様、その断面形状の各直線部に対応する部分に、それぞれ平面部25、25が配置されており、同じく各円弧部に対応する部分に、それぞれR面取り部26、26が配置されている。この様な引抜材28は、この引抜材28の断面形状と同じ断面形状のダイス穴を有するダイスを用いて、前記ラック軸7aを構成する金属材料(例えば、断面形状が円形のコイル材)に引抜加工を施す事により、容易に得られる。   In the case of this example, the rack shaft 7a is manufactured in the order of steps as shown in FIG. As can be seen by comparing the process sequence of this example shown in FIG. 4 with the conventional process sequence shown in FIG. 17 described above, the rack shaft 7a of this example is the conventional rack shaft 7 (FIGS. 13 to 16). (See reference). However, in the case of this example, the material prepared in the first step (S1) is a drawn material 28 having a cross-sectional shape as shown in FIG. The cross-sectional shape of the outer peripheral surface of the drawn material 28 is substantially the same as the cross-sectional shape of the portion of the outer peripheral surface of the rack shaft 7a that is detached from the rack teeth 17a, including the outer diameter. That is, on the outer peripheral surface of the drawing material 28, the flat portion 25 is respectively provided on the outer peripheral surface of the rack shaft 7 a corresponding to each linear portion of the cross-sectional shape, similar to the portion removed from the rack teeth 17 a. 25, and R chamfered portions 26, 26 are respectively disposed at portions corresponding to the respective arc portions. Such a drawing material 28 is made of a metal material (for example, a coil material having a circular cross-sectional shape) constituting the rack shaft 7a by using a die having a die hole having the same cross-sectional shape as that of the drawing material 28. It can be easily obtained by drawing.

上述の様に、本例の場合には、素材である引抜材28の外周面の断面形状が、前記ラック軸7aの外周面のうち、前記ラック歯17aから外れた部分の断面形状と、外径寸法を含めて実質的に同一である。この為、続く焼鈍の工程(S2)を経た後、外径研削(図17参照)の工程(S3)を経る事なく、切断の工程(S4)に移行する。この切断の工程(S4)では、前記引抜材28を所定の長さに切断して成る、中間素材29を得る。そして、続く両端加工の工程(S5)を経た後、歯加工の工程(S6)に移行する。この歯加工の工程(S6)では、前記中間素材29の前面の軸方向一部分に、前記ラック歯17aを形成する。これにより、このラック歯17aを形成した軸方向位置に於いて、図5の(B)に示す様な断面形状を有する、第二中間素材30を得る。但し、本例の場合、上述の様にラック歯17aを形成する作業は、前記中間素材29の外周面のうち、このラック歯17aを形成すべき部分から外れた部分を、当該部分に非円形係合させた図示しない治具により押さえた状態(例えば、前記中間素材29の外周面のうち、前記ラック歯17aを形成すべき部分から外れた部分であって、且つ、前記各平面部25、25のうちの少なくとも2つの平面部を、前記治具により押さえた状態)で行う。尚、前記S6でのラック歯17aの加工方法は、従来から知られている各種の加工方法を採用する事ができ、例えば、このラック歯17aを全長に亙って一度に加工する、総型ブローチによる加工方法を採用する事もできる。   As described above, in the case of this example, the cross-sectional shape of the outer peripheral surface of the drawing material 28, which is a material, is the same as the cross-sectional shape of the portion of the outer peripheral surface of the rack shaft 7a that is out of the rack teeth 17a. It is substantially the same including the diameter dimension. Therefore, after the subsequent annealing step (S2), the process proceeds to the cutting step (S4) without passing through the outer diameter grinding (see FIG. 17) step (S3). In this cutting step (S4), an intermediate material 29 is obtained, which is formed by cutting the drawing material 28 into a predetermined length. Then, after the subsequent both-end machining step (S5), the process proceeds to the tooth machining step (S6). In the tooth machining step (S6), the rack teeth 17a are formed on a part of the front surface of the intermediate material 29 in the axial direction. As a result, the second intermediate material 30 having a cross-sectional shape as shown in FIG. 5B is obtained at the axial position where the rack teeth 17a are formed. However, in the case of this example, the operation of forming the rack teeth 17a as described above is performed by removing a portion of the outer peripheral surface of the intermediate material 29 that is out of the portion where the rack teeth 17a are to be formed into a non-circular portion. A state of being pressed by an engaged jig (not shown) (for example, a portion of the outer peripheral surface of the intermediate material 29 that is out of the portion where the rack teeth 17a are to be formed, and each of the planar portions 25, 25 in a state where at least two flat portions of 25 are pressed by the jig. In addition, the processing method of the rack teeth 17a in S6 can employ various conventionally known processing methods. For example, a total type in which the rack teeth 17a are processed over the entire length at once. A processing method using a broach can also be employed.

そして、本例の場合には、続く熱処理の工程(S7)を経た後、曲り直しの工程(S8)に移行する。この曲り直しの工程(S8)では、先ず、前記第二中間素材30の曲がりを測定する。具体的には、従来から知られている、断面形状が円形である丸棒の曲がり測定を行う場合と同様、図6に示す様に、前記第二中間素材30の軸方向両端部(軸方向に関して前記ラック歯17aから外れた部分)を、1対のVブロック31、31の上面に載せた状態で、この第二中間素材30を回転させる。そして、この回転に伴って生じる、この第二中間素材30の軸方向中間部(軸方向に関して前記ラック歯17aから外れた部分)の振れを、マイクロメータやレーザ距離測定器等の測定器32により測定する。そして、この測定結果に基づいて、この第二中間素材30の曲がりを求める。但し、この場合、前記1対のVブロック31、31の上面による、前記第二中間素材30の軸方向両端部の支持、並びに、前記測定器32による、この第二中間素材30の軸方向中間部の振れの測定は、何れも、この第二中間素材30の外周面のうち、前記各R面取り部26、26に於いて行う。   In the case of this example, after the subsequent heat treatment step (S7), the process proceeds to the rebending step (S8). In this re-bending step (S8), first, the bending of the second intermediate material 30 is measured. Specifically, as shown in FIG. 6, both ends of the second intermediate material 30 in the axial direction (axial direction) are used, as in the case of measuring the bending of a round bar having a circular cross-sectional shape, which is conventionally known. In this state, the second intermediate material 30 is rotated in a state in which the portion separated from the rack teeth 17a is placed on the upper surfaces of the pair of V blocks 31 and 31. Then, the shake of the second intermediate material 30 in the axial direction (the portion that is out of the rack teeth 17a with respect to the axial direction) generated by the rotation is measured by a measuring instrument 32 such as a micrometer or a laser distance measuring instrument. taking measurement. Based on the measurement result, the bending of the second intermediate material 30 is obtained. However, in this case, the axially opposite ends of the second intermediate material 30 are supported by the upper surfaces of the pair of V blocks 31, 31, and the second intermediate material 30 is axially intermediate by the measuring device 32. The measurement of the deflection of each part is performed at each of the R chamfered portions 26 and 26 in the outer peripheral surface of the second intermediate material 30.

この点に就いて、より具体的な説明を行う為に、図7に示す様に、前記各R面取り部26、26の周方向の存在箇所を、それぞれPA、PB、PC、PD、PE、PF、PG、PHで表す事にする。本例の場合、前記第二中間素材30の曲がりを測定する際には、前記各R面取り部26、26のうち、円周方向に隣り合う2箇所のR面取り部を、前記1対のVブロック31、31の上面により支持する。そして、この状態で、当該2箇所のR面取り部に対して径方向反対側に存在する別の2箇所のR面取り部の径方向位置を、前記測定器32により測定する。そして、この様な測定作業を、前記第二中間素材30の回転角度位置を変えながら、下記の表1に示す様な、複数の支持箇所と測定箇所との組み合わせに就いて行う。そして、この測定結果に基づいて、前記第二中間素材30の軸方向中間部の振れの方向及び大きさを求める。更には、この振れの方向及び大きさに基づいて、前記第二中間素材30の曲がりの方向(=振れの方向)及び大きさ(=振れの大きさ/2)を求める。

Figure 2012001070
上述の様にして第二中間素材30の曲がりを測定したならば、次いで、この第二中間素材30の曲り直しの作業を行う。この曲り直しの作業は、この第二中間素材30に対して、上述の様に測定した曲がりを解消できる方向及び大きさの力を加える事によって行う。 In order to give a more specific explanation on this point, as shown in FIG. 7, the circumferential locations of the R chamfered portions 26, 26 are defined as P A , P B , P C , P, respectively. These are represented by D , P E , P F , P G , and P H. In the case of this example, when measuring the bending of the second intermediate material 30, of the R chamfered portions 26, 26, two R chamfered portions adjacent in the circumferential direction are defined as the pair of V chamfered portions. It is supported by the upper surfaces of the blocks 31 and 31. Then, in this state, the measuring device 32 measures the radial positions of the other two R chamfered portions existing on the opposite side in the radial direction with respect to the two R chamfered portions. Then, such a measurement operation is performed for a combination of a plurality of support locations and measurement locations as shown in Table 1 below while changing the rotation angle position of the second intermediate material 30. And based on this measurement result, the direction and magnitude | size of the deflection | deviation of the axial direction intermediate part of said 2nd intermediate material 30 are calculated | required. Further, based on the direction and magnitude of the deflection, the bending direction (= direction of deflection) and magnitude (= size of deflection / 2) of the second intermediate material 30 are obtained.
Figure 2012001070
If the bending of the second intermediate material 30 is measured as described above, the second intermediate material 30 is then bent again. This re-bending operation is performed by applying a force having a direction and a magnitude capable of eliminating the bending measured as described above to the second intermediate material 30.

本例の場合には、上述した曲り直しの工程(S8)が完了した時点で、前記ラック軸7aが完成する。即ち、本例の場合には、上述した曲り直しの工程(S8)を経た後、表面仕上げの工程(S9、図17参照)を経る事なく、最後の洗浄の工程(S10)を経て、前記ラック軸7aの製造作業を完了する。従って、本例の場合、完成後のラック軸7aの外周面のうち、前記ラック歯17aから外れた部分は、前記引抜材28の外周面である、引抜面のままになっている。   In the case of this example, the rack shaft 7a is completed when the above-described re-bending step (S8) is completed. That is, in the case of this example, after the re-bending step (S8) described above, the final cleaning step (S10) without passing through the surface finishing step (S9, see FIG. 17) The manufacturing operation of the rack shaft 7a is completed. Therefore, in the case of the present example, the portion of the outer peripheral surface of the completed rack shaft 7a that is detached from the rack teeth 17a remains the drawing surface that is the outer peripheral surface of the drawing material 28.

上述した様な本例のラック軸とその製造方法及びラックピニオン式ステアリングギヤユニットの場合には、前記ラック軸7aのラック歯17aを、精度良く形成する事ができる。即ち、本例の場合、このラック軸7aの中間素材29の外周面の断面形状は、非円形になっている。又、この中間素材29の前面に前記ラック歯17aを形成する作業は、この中間素材29の外周面のうち、このラック歯17aを形成すべき部分から外れた部分を、当該部分に非円形係合させた治具により、押さえた状態で行う。この為、前記ラック歯17aを形成する際の、前記中間素材29の回転防止効果を十分に高める事ができる。従って、前記ラック歯17aを精度良く形成する事ができる。   In the case of the rack shaft, the manufacturing method thereof, and the rack and pinion type steering gear unit of this example as described above, the rack teeth 17a of the rack shaft 7a can be formed with high accuracy. That is, in the case of this example, the cross-sectional shape of the outer peripheral surface of the intermediate material 29 of the rack shaft 7a is non-circular. In addition, the operation of forming the rack teeth 17a on the front surface of the intermediate material 29 is performed by removing a portion of the outer peripheral surface of the intermediate material 29 that is out of the portion where the rack teeth 17a are to be formed. The test is performed with the jig held together. For this reason, the effect of preventing the rotation of the intermediate material 29 when forming the rack teeth 17a can be sufficiently enhanced. Therefore, the rack teeth 17a can be formed with high accuracy.

又、本例の場合、前記ラック軸7aを製造する際には、素材である引抜材28を得た段階で、完成後のラック軸7aの外周面のうち、前記ラック歯17aから外れた部分に必要な断面形状を得られる。この為、製造すべきラック軸7a毎に、当該部分に必要な断面形状を得る為の加工を施す必要がなくなる。従って、その分だけ加工工数を少なくする事ができ、製造コストの低減を図れる。   Further, in the case of this example, when the rack shaft 7a is manufactured, a portion of the outer peripheral surface of the rack shaft 7a that has been completed is separated from the rack teeth 17a when the drawn material 28 is obtained. The necessary cross-sectional shape can be obtained. For this reason, it is not necessary to perform processing for obtaining a necessary cross-sectional shape for the rack shaft 7a to be manufactured. Therefore, the number of processing steps can be reduced by that amount, and the manufacturing cost can be reduced.

又、本例の場合には、前記ラック軸7aを製造する際に行う、曲り直しの工程(S8)で、前記第二中間素材30の曲り直し作業を精度良く行う事ができる。即ち、本例の場合、この第二中間素材30の外周面の円周方向等間隔の8箇所には、R面取り部26、26が存在する。これら各R面取り部26、26は、曲率中心が前記第二中間素材30の中心軸で総て一致しており、且つ、曲率半径も総て等しくなっている。この為、前述した様に、従来から知られている、断面形状が円形である丸棒の曲がり測定を行う場合と同様の方法で、前記第二中間素材30の曲がりを、前記各R面取り部26、26を利用して、精度良く測定する事ができる。この為、この様に測定した前記第二中間素材30の曲がりに基づいて、この第二中間素材30の曲り直し作業を精度良く行う事ができる。従って、完成後のラック軸7aの曲がりを、高レベルで小さくする事ができる。   In the case of this example, the second intermediate material 30 can be accurately bent again in the re-bending step (S8) performed when the rack shaft 7a is manufactured. That is, in the case of this example, there are R chamfered portions 26, 26 at eight circumferentially equidistant positions on the outer peripheral surface of the second intermediate material 30. Each of these R chamfered portions 26, 26 has the same center of curvature at the central axis of the second intermediate material 30, and all have the same radius of curvature. For this reason, as described above, the bending of the second intermediate material 30 is performed on each of the R chamfered portions in the same manner as in the conventional measurement of bending of a round bar having a circular cross-sectional shape. 26, 26 can be used for accurate measurement. For this reason, based on the bending of the second intermediate material 30 measured in this manner, the second intermediate material 30 can be bent again with high accuracy. Therefore, the bend of the rack shaft 7a after completion can be reduced at a high level.

又、本例の場合、前記ラック軸7aの外周面のうち、前記ラック歯17aから外れた部分の断面形状が、軸方向の全長に亙り、同一の非円形形状になっている。そして、この様なラック軸7aの背面に存在する1対の平面部25、25に、前記押圧部材22aの先端面である1対の平坦な押圧面27、27を、それぞれ非円形係合させた状態で、軸方向の摺動を可能に接触させている。この為、これら両平面部25、25と両押圧面27、27との非円形係合に基づいて、使用時に於ける、前記ラック軸7aの回転防止効果を高める事ができる。従って、前記ラック歯17aとピニオン歯14(図13、16参照)との噛み合い状態を適正な状態に維持し易くできる。   In the case of this example, the cross-sectional shape of the portion of the outer peripheral surface of the rack shaft 7a that is disengaged from the rack teeth 17a is the same non-circular shape over the entire length in the axial direction. Then, a pair of flat pressing surfaces 27, 27, which are the front end surfaces of the pressing member 22a, are non-circularly engaged with a pair of flat portions 25, 25 existing on the back surface of the rack shaft 7a. In this state, they are in contact with each other so that they can slide in the axial direction. For this reason, based on the non-circular engagement between the flat portions 25, 25 and the pressing surfaces 27, 27, the effect of preventing the rotation of the rack shaft 7a during use can be enhanced. Therefore, the meshing state of the rack teeth 17a and the pinion teeth 14 (see FIGS. 13 and 16) can be easily maintained in an appropriate state.

又、本例の場合、前記ラック軸7aの外周面のうち、前記ラック歯17aから外れた部分の加工方向である、前記素材となる引抜材28の引抜方向と、当該部分に対する前記ラックブッシュ18a、18aの内周面及び前記押圧部材22aの押圧面27、27の摺動方向とが、それぞれ前記ラック軸7aの軸方向になっていて、互いに一致している。この為、前記ラック歯の外周面の表面粗さのうち、前記ラックブッシュ18a、18aの内周面及び前記押圧面27、27との摺動方向に関する表面粗さを小さくして、これら各面同士の摺接部に於ける軸方向の摺動抵抗を小さくできる。更に、本例の場合には、上述した様に、前記ラック軸7aの曲がりが、高レベルで小さくなっている。この為、前記各面同士の摺接部に於ける軸方向の摺動抵抗を、安定させる事ができる。従って、ステアリングホイール1(図12参照)の操作感を向上させる事ができると共に、前記各摺接部の摩耗量を減らして、これら各摺接部の耐久性を高められる。   In the case of this example, the drawing direction of the drawing material 28 serving as the material, which is the processing direction of the outer peripheral surface of the rack shaft 7a, which is removed from the rack teeth 17a, and the rack bush 18a with respect to the portion. , 18a and the sliding directions of the pressing surfaces 27, 27 of the pressing member 22a are respectively in the axial direction of the rack shaft 7a and coincide with each other. For this reason, out of the surface roughness of the outer peripheral surface of the rack tooth, the surface roughness in the sliding direction with the inner peripheral surface of the rack bush 18a, 18a and the pressing surface 27, 27 is reduced, and each of these surfaces The sliding resistance in the axial direction at the sliding contact portion can be reduced. Further, in the case of this example, as described above, the bending of the rack shaft 7a is small at a high level. For this reason, the sliding resistance in the axial direction at the sliding contact portion between the surfaces can be stabilized. Therefore, the operational feeling of the steering wheel 1 (see FIG. 12) can be improved, and the wear amount of each sliding contact portion can be reduced, and the durability of each sliding contact portion can be enhanced.

尚、本発明を実施する場合、前記第二中間素材30の曲がりを測定する際に採用する、軸方向に関する、この第二中間素材30の支持位置及び振れの測定位置は、それぞれ前述の図6に示した位置に代えて、例えば図8に示す位置とする事もできる。
又、前記第二中間素材30の曲がりを測定する際に、軸方向に関する、この第二中間素材30の支持位置と振れの測定位置とのうちの、少なくとも一方の位置が、前記ラック歯17aの軸方向位置と一致する場合には、例えば、次の様にして、当該振れの測定を行う事ができる。即ち、図9を参照しつつ説明すると、この様な場合には、前記表1に示した様な、複数の支持箇所と測定箇所との組み合わせに代えて、下記の表2に示す様な、複数の支持箇所と測定箇所との組み合わせに就いて、これら各測定箇所の径方向位置を測定する。これと共に、下記の表3に示す様な、複数の支持箇所と測定箇所との組み合わせに就いて、これら各測定箇所の径方向位置を測定する。この様にすれば、必要となる、総ての測定箇所PB、PC、PD、PE、PF、PG、PHの径方向位置を測定できる。この為、この測定結果に基づいて、対象となる軸方向位置に於ける、前記第二中間素材30aの振れを正確に求める事ができる。

Figure 2012001070
Figure 2012001070
When the present invention is carried out, the support position of the second intermediate material 30 and the measurement position of the deflection with respect to the axial direction, which are employed when measuring the bending of the second intermediate material 30, are respectively shown in FIG. For example, the position shown in FIG. 8 may be used instead of the position shown in FIG.
Further, when measuring the bending of the second intermediate material 30, at least one position of the support position of the second intermediate material 30 and the measurement position of the deflection in the axial direction is determined by the rack teeth 17 a. When it coincides with the position in the axial direction, for example, the shake can be measured as follows. That is, with reference to FIG. 9, in such a case, instead of a combination of a plurality of support locations and measurement locations as shown in Table 1 above, as shown in Table 2 below, About the combination of a some support location and a measurement location, the radial direction position of each of these measurement locations is measured. Along with this, as shown in Table 3 below, the combination of a plurality of support locations and measurement locations is measured, and the radial positions of these measurement locations are measured. In this way, it is possible to measure the necessary radial positions of all the measurement points P B , P C , P D , P E , P F , P G , and P H. For this reason, based on the measurement result, the shake of the second intermediate material 30a at the target axial position can be accurately obtained.
Figure 2012001070
Figure 2012001070

[実施の形態の第2例]
図10は、請求項1〜4に対応する、本発明の実施の形態の第2例を示している。本例の場合には、ラックブッシュ18bの外周面のうち、円周方向に関して、ラック軸7aの外周面に存在する各R面取り部26と同位相の部分に、それぞれハウジング9の第一収容体11の内周面と接触しない、逃げ凹部33を設けている。これにより、前記ラックブッシュ18bのうち、円周方向に関して、前記各R面取り部26と同位相の部分を、径方向に関する弾性変形が可能な、ばね板部34としている。そして、これら各ばね板部34が発揮する径方向の適度なばね力に基づいて、これら各ばね板部34の内周面を、前記各R面取り部26に対して弾性的に摺接させている。
[Second Example of Embodiment]
FIG. 10 shows a second example of an embodiment of the present invention corresponding to claims 1 to 4. In the case of this example, in the outer circumferential surface of the rack bush 18b, the first container of the housing 9 is placed in the same phase as each R chamfer 26 on the outer circumferential surface of the rack shaft 7a in the circumferential direction. 11 is provided with an escape recess 33 that does not come into contact with the inner peripheral surface. As a result, a portion of the rack bush 18b that is in phase with the R chamfered portion 26 in the circumferential direction is a spring plate portion 34 that can be elastically deformed in the radial direction. Then, based on an appropriate radial spring force exerted by each of the spring plate portions 34, the inner peripheral surface of each of the spring plate portions 34 is elastically slidably brought into sliding contact with the respective R chamfered portions 26. Yes.

この様な構成を有する本例の場合には、前記各ばね板部34の弾力に基づいて、前記ラック軸7aの径方向のがたつきを抑えられる。又、前記各R面取り部26と前記各ばね板部34の内周面との摺接部の面圧を低く抑えられる為、これら各摺接部に於ける軸方向の摺動抵抗を低く抑えられる。その他の構成及び作用は、上述した実施の形態の第1例の場合と同様である。   In the case of this example having such a configuration, the radial shakiness of the rack shaft 7a can be suppressed based on the elasticity of each of the spring plate portions 34. Further, since the surface pressure of the sliding contact portion between each R chamfered portion 26 and the inner peripheral surface of each spring plate portion 34 can be kept low, the axial sliding resistance at each sliding contact portion is kept low. It is done. Other configurations and operations are the same as those in the first example of the embodiment described above.

又、本発明を実施する場合に、図11の(A)に示す様に、ラック軸7aの外周面に存在する各R面取り部26に複数の凹部35、35を、それぞれ軸方向の全長に亙って形成したり、同図の(B)に示す様に、ラック軸7aの外周面に存在する各R面取り部26に複数の凸部36、36を、それぞれ軸方向の全長に亙って形成したりする事もできる。これらの構成を採用すれば、前記ラック軸7aの外周面とラックブッシュ18a(18b)の内周面との摺接面積が少なくなると共に、これら両周面同士の間に潤滑油を保持可能な隙間が形成される。この為、これら両周面同士の摺接部に於ける軸方向の摺動抵抗を、より小さくできる。
又、前記各凹部35、35や前記各凸部36、36は、素材となる引抜材の製造と同時に(引抜加工によって)形成する事ができる。
尚、上述した様な、ラック軸の外周面とラックブッシュの内周面との摺動抵抗の低減を図る為の凹部や凸部は、このラック軸の外周面に設ける代わりに、このラックブッシュの内周面に設ける事もできる。
Further, when the present invention is carried out, as shown in FIG. 11A, a plurality of concave portions 35, 35 are formed in each of the R chamfered portions 26 existing on the outer peripheral surface of the rack shaft 7a so as to have a total axial length. As shown in FIG. 5B, a plurality of convex portions 36, 36 are provided on each R chamfer 26 on the outer peripheral surface of the rack shaft 7a over the entire length in the axial direction. Can also be formed. By adopting these configurations, the sliding contact area between the outer peripheral surface of the rack shaft 7a and the inner peripheral surface of the rack bush 18a (18b) is reduced, and the lubricating oil can be held between the two peripheral surfaces. A gap is formed. For this reason, the sliding resistance in the axial direction at the sliding contact portion between these two peripheral surfaces can be further reduced.
In addition, the concave portions 35 and 35 and the convex portions 36 and 36 can be formed simultaneously with the manufacture of a drawing material as a material (by drawing).
As described above, the concave portion and the convex portion for reducing the sliding resistance between the outer peripheral surface of the rack shaft and the inner peripheral surface of the rack bush are not provided on the outer peripheral surface of the rack shaft. It can also be provided on the inner circumferential surface.

又、本発明を実施する場合、ラック軸の素材となる引抜材の外周面の断面形状に関しては、各頂点がこの引抜材の中心軸を中心とする曲率半径の等しい円弧になった略多角形状になっていれば良く、その他の条件は特に問わない。例えば、前記多角形に関しては、必ずしも正多角形である必要はない。又、前記各円弧部の周方向幅(これら各円弧部の曲率半径)は、任意の大きさに設定する事ができる。   Further, in the case of carrying out the present invention, regarding the cross-sectional shape of the outer peripheral surface of the drawn material that is the material of the rack shaft, each apex is a substantially polygonal shape that is an arc having the same radius of curvature around the central axis of the drawn material. Other conditions are not particularly limited. For example, the polygon need not be a regular polygon. The circumferential width of each arc portion (the radius of curvature of each arc portion) can be set to an arbitrary size.

1 ステアリングホイール
2 ステアリングシャフト
3 自在継手
4 中間シャフト
5 ステアリングギヤユニット
6 ピニオン軸
7、7a ラック軸
8 タイロッド
9 ハウジング
10、10a 押圧手段
11 第一収容体
12 第二収容体
13 第三収容体
14 ピニオン歯
15 転がり軸受
16 転がり軸受
17、17a ラック歯
18、18a、18b ラックブッシュ
19 係合凹部
20 ガイド凸部
21 係合凸部
22、22a 押圧部材
23 ばね
24 ボールジョイント
25 平面部
26 R面取り部
27 押圧面
28 引抜材
29 中間素材
30 第二中間素材
31 Vブロック
32 測定器
33 逃げ凹部
34 ばね板部
35 凹部
36 凸部
DESCRIPTION OF SYMBOLS 1 Steering wheel 2 Steering shaft 3 Universal joint 4 Intermediate shaft 5 Steering gear unit 6 Pinion shaft 7, 7a Rack shaft 8 Tie rod 9 Housing 10, 10a Pressing means 11 First container 12 Second container 13 Third container 14 Pinion Teeth 15 Rolling bearing 16 Rolling bearing 17, 17a Rack teeth 18, 18a, 18b Rack bushing 19 Engaging recess 20 Guide projection 21 Engaging projection 22, 22a Press member 23 Spring 24 Ball joint 25 Plane portion 26 R chamfer 27 Pressing surface 28 Drawing material 29 Intermediate material 30 Second intermediate material 31 V block 32 Measuring instrument 33 Escape recessed part 34 Spring plate part 35 Recessed part 36 Convex part

Claims (5)

前面の軸方向一部分にラック歯を有する金属製のラック軸に於いて、引抜材を所定の長さに切断して成る中間素材の前面の軸方向一部分に、前記ラック歯を形成する事によって造られており、且つ、前記引抜材の外周面の断面形状が、各頂点がこの引抜材の中心軸を中心とする曲率半径の等しい円弧になった略多角形状である事を特徴とするラック軸。   In a metal rack shaft having rack teeth on a part of the front surface in the axial direction, the rack teeth are formed on a part of the front surface of the intermediate material formed by cutting the drawn material into a predetermined length. The rack shaft is characterized in that the cross-sectional shape of the outer peripheral surface of the drawn material is a substantially polygonal shape in which each vertex is an arc having the same radius of curvature with the central axis of the drawn material as the center. . 請求項1に記載したラック軸の製造方法であって、金属材料に引抜加工を施す事により、その外周面の断面形状が、各頂点がその中心軸を中心とする曲率半径の等しい円弧になった略多角形状である引抜材を得る工程と、この引抜材を所定の長さに切断して成る中間素材を得る工程と、この中間素材の外周面のうち、前記ラック歯を形成すべき部分から外れた部分を、当該部分に非円形係合させた治具により押さえた状態で、前記中間素材の前面の軸方向一部分に前記ラック歯を形成する工程とを備える事を特徴とするラック軸の製造方法。   The rack shaft manufacturing method according to claim 1, wherein by performing a drawing process on a metal material, a cross-sectional shape of an outer peripheral surface thereof becomes an arc having an equal curvature radius with each vertex centered on the central axis. A step of obtaining a drawing material having a substantially polygonal shape, a step of obtaining an intermediate material obtained by cutting the drawing material into a predetermined length, and a portion of the outer peripheral surface of the intermediate material on which the rack teeth are to be formed. And a step of forming the rack teeth on a part of the front surface of the intermediate material in the axial direction in a state in which the part removed from the part is pressed by a jig non-circularly engaged with the part. Manufacturing method. ハウジングと、ラックブッシュと、ラック軸と、ピニオン軸と、押圧手段とを備え、
このうちのハウジングは、車体に固定されるものであり、
前記ラックブッシュは、筒状に造られたもので、前記ハウジングの内側に固定されており、
前記ラック軸は、前面の軸方向一部分にラック歯を有するもので、外周面を、前記ラックブッシュの内周面により軸方向の摺動を可能に支持された状態で、前記ハウジングの内側に配置されており、
前記ピニオン軸は、外周面の軸方向一部分にピニオン歯を有するもので、このピニオン歯を前記ラック歯に噛合させた状態で、前記ハウジングの内側に回転可能に支持されており、
前記押圧手段は、押圧部材を有するもので、前記ラック軸の背面のうち、このラック軸を挟んで前記ピニオン軸と反対側の部分を前記押圧部材により弾性的に押圧した状態で、前記ハウジングの内側に配置されている、
ラックピニオン式ステアリングギヤユニットに於いて、
前記ラック軸が請求項1に記載したラック軸である事を特徴とするラックピニオン式ステアリングギヤユニット。
A housing, a rack bush, a rack shaft, a pinion shaft, and a pressing means;
Of these, the housing is fixed to the vehicle body,
The rack bush is made in a cylindrical shape, and is fixed to the inside of the housing,
The rack shaft has rack teeth in a part of the front surface in the axial direction, and the outer peripheral surface is arranged inside the housing in a state in which the outer peripheral surface is supported by the inner peripheral surface of the rack bush so as to be slidable in the axial direction. Has been
The pinion shaft has pinion teeth in a part of the outer peripheral surface in the axial direction, and is rotatably supported inside the housing with the pinion teeth meshed with the rack teeth.
The pressing means includes a pressing member, and a portion of the rear surface of the rack shaft that is opposite to the pinion shaft across the rack shaft is elastically pressed by the pressing member. Arranged inside,
In rack and pinion type steering gear unit,
A rack and pinion type steering gear unit, wherein the rack shaft is a rack shaft according to claim 1.
前記ラックブッシュの内周面と前記押圧部材の先端部に設けた押圧面とのうちの少なくとも一方の面が、前記ラック軸の外周面に対して、非円形係合した状態で摺接している、請求項3に記載したラックピニオン式ステアリングギヤユニット。   At least one of the inner peripheral surface of the rack bush and the pressing surface provided at the tip of the pressing member is in sliding contact with the outer peripheral surface of the rack shaft in a non-circular engagement state. The rack and pinion type steering gear unit according to claim 3. 互いに摺接する前記ラックブッシュの内周面と前記ラック軸の外周面とのうちの何れか一方の周面に、1乃至複数の凸部又は凹部が、軸方向に連続する状態で形成されている、請求項4に記載したラックピニオン式ステアリングギヤユニット。   One or a plurality of convex portions or concave portions are formed in an axially continuous state on any one of the inner peripheral surface of the rack bush and the outer peripheral surface of the rack shaft that are in sliding contact with each other. The rack and pinion type steering gear unit according to claim 4.
JP2010136944A 2010-06-16 2010-06-16 Rack shaft, manufacturing method thereof, and rack and pinion type steering gear unit Expired - Fee Related JP5402843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010136944A JP5402843B2 (en) 2010-06-16 2010-06-16 Rack shaft, manufacturing method thereof, and rack and pinion type steering gear unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010136944A JP5402843B2 (en) 2010-06-16 2010-06-16 Rack shaft, manufacturing method thereof, and rack and pinion type steering gear unit

Publications (2)

Publication Number Publication Date
JP2012001070A true JP2012001070A (en) 2012-01-05
JP5402843B2 JP5402843B2 (en) 2014-01-29

Family

ID=45533557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010136944A Expired - Fee Related JP5402843B2 (en) 2010-06-16 2010-06-16 Rack shaft, manufacturing method thereof, and rack and pinion type steering gear unit

Country Status (1)

Country Link
JP (1) JP5402843B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000925A (en) * 2012-06-20 2014-01-09 Showa Corp Steering device
WO2014196582A1 (en) 2013-06-05 2014-12-11 日本精工株式会社 Guide bush, and rack-and-pinion-type steering gear unit
JP2018504226A (en) * 2015-02-04 2018-02-15 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. Locking mechanism of washing machine inner tub and washing machine
CN114004036A (en) * 2021-12-29 2022-02-01 天津德科智控股份有限公司 Gear rack reverse design method for steering gear

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898271U (en) * 1981-12-25 1983-07-04 リズム自動車部品製造株式会社 Rack bar rotation prevention structure
JPS6152564U (en) * 1984-09-12 1986-04-09
JPS6187774U (en) * 1984-11-15 1986-06-09
JPH1085884A (en) * 1996-09-12 1998-04-07 Showa:Kk Rack shaft stock clamping device of rack shaft manufacturing device
JP2000238650A (en) * 1999-02-19 2000-09-05 Koyo Seiko Co Ltd Rack shaft and manufacture thereof
JP2005153791A (en) * 2003-11-27 2005-06-16 Koyo Seiko Co Ltd Rack and pinion type steering apparatus and method for manufacturing rack rod

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898271U (en) * 1981-12-25 1983-07-04 リズム自動車部品製造株式会社 Rack bar rotation prevention structure
JPS6152564U (en) * 1984-09-12 1986-04-09
JPS6187774U (en) * 1984-11-15 1986-06-09
JPH1085884A (en) * 1996-09-12 1998-04-07 Showa:Kk Rack shaft stock clamping device of rack shaft manufacturing device
JP2000238650A (en) * 1999-02-19 2000-09-05 Koyo Seiko Co Ltd Rack shaft and manufacture thereof
JP2005153791A (en) * 2003-11-27 2005-06-16 Koyo Seiko Co Ltd Rack and pinion type steering apparatus and method for manufacturing rack rod

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000925A (en) * 2012-06-20 2014-01-09 Showa Corp Steering device
WO2014196582A1 (en) 2013-06-05 2014-12-11 日本精工株式会社 Guide bush, and rack-and-pinion-type steering gear unit
US9663137B2 (en) 2013-06-05 2017-05-30 Nsk Ltd. Guide bush and rack-and-pinion steering gear unit
JP2018504226A (en) * 2015-02-04 2018-02-15 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. Locking mechanism of washing machine inner tub and washing machine
CN109881438A (en) * 2015-02-04 2019-06-14 青岛海尔洗衣机有限公司 A kind of lockable mechanism and washing machine of washing machine inner tub
US10704181B2 (en) 2015-02-04 2020-07-07 Qingdao Haier Washing Machine Co., Ltd. Locking mechanism for inner tub of washing machine, and washing machine
CN114004036A (en) * 2021-12-29 2022-02-01 天津德科智控股份有限公司 Gear rack reverse design method for steering gear
CN114004036B (en) * 2021-12-29 2022-03-18 天津德科智控股份有限公司 Gear rack reverse design method for steering gear

Also Published As

Publication number Publication date
JP5402843B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5454371B2 (en) Rack and pinion type steering gear unit and manufacturing method thereof
JP6408819B2 (en) Method for producing hollow rack bar
JP5060953B2 (en) Screw device manufacturing method and screw device
JP5402843B2 (en) Rack shaft, manufacturing method thereof, and rack and pinion type steering gear unit
EP3315225B1 (en) Rack shaft and method for producing same
KR101355142B1 (en) Sliding member, semi-cylindrical sliding bearing using the same, and method of manufacturing the semi-cylindrical sliding bearing
JP5062135B2 (en) Telescopic rotation transmission shaft
US20140080611A1 (en) Cross universal joint and manufacturing method thereof
KR20160031965A (en) Hub unit manufacturing apparatus
JP2013035034A (en) Method of manufacturing spline shaft
JP5857770B2 (en) Worm wheel manufacturing method and worm wheel manufacturing apparatus
JP2008213756A (en) Vehicle steering device and method for manufacturing rack for vehicle steering device
KR20180018352A (en) Gear assembly and manufacturing method thereof
JP4554586B2 (en) Inner meshing planetary gear unit
JP2018197599A (en) Gear mechanism
EP3115635A1 (en) Manufacturing method of rotating element, connecting structure between rotating element and rotating shaft, and steering apparatus
JP6287181B2 (en) Fixing method of inner ring for rolling bearing
JP6259210B2 (en) Koma type ball screw
JP2008002673A (en) Ball roller rolling element
KR101559672B1 (en) Rack and Pinion Type Steering Apparatus for Vehicle
JP2017008966A (en) Manufacturing method of universal joint
JP2019105296A (en) Adjusting method of ball screw device and manufacturing method
JP2016222184A (en) Steering device
JP4883340B2 (en) Worm manufacturing method and rolling die
JP5906117B2 (en) Dimple forming burnishing tool and workpiece machining method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees