JP2012000556A - Anaerobic treatment method and anaerobic treatment apparatus - Google Patents

Anaerobic treatment method and anaerobic treatment apparatus Download PDF

Info

Publication number
JP2012000556A
JP2012000556A JP2010136744A JP2010136744A JP2012000556A JP 2012000556 A JP2012000556 A JP 2012000556A JP 2010136744 A JP2010136744 A JP 2010136744A JP 2010136744 A JP2010136744 A JP 2010136744A JP 2012000556 A JP2012000556 A JP 2012000556A
Authority
JP
Japan
Prior art keywords
reaction tank
treated water
water
treated
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010136744A
Other languages
Japanese (ja)
Inventor
Ichiro Umeda
一郎 梅田
Hiroshi Ogiya
浩 扇谷
Toshihiro Kiyokawa
智弘 清川
Takaaki Tokutomi
孝明 徳富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Mitsubishi Paper Mills Ltd
Original Assignee
Kurita Water Industries Ltd
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Mitsubishi Paper Mills Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2010136744A priority Critical patent/JP2012000556A/en
Publication of JP2012000556A publication Critical patent/JP2012000556A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the dissolution and outflow of granules in a reaction vessel, when introducing evaporated condensate water discharged from a pulp manufacturing process to the reaction vessel holding granule sludge and executing anaerobic treatment.SOLUTION: Absorbance of visible light with the wavelength in the range of 380-780 nm is measured for treated water from the reaction vessel, and at least one of the introducing flow rate of water to be treated to the reaction vessel, the addition amount of nutrients and the addition amount of a polymeric flocculant is controlled on the basis of the measured value. By measuring the absorbance of the visible light with the wavelength in the range of 380-780 nm for the treated water from the reaction vessel, the amount of suspended solids (SS) contained in the treated water is quickly detected, and by executing required control according to the change of the SS concentration, the dissolution and outflow of the granule sludge are prevented.

Description

本発明は、グラニュール汚泥が保持されたメタン発酵反応槽に、パルプ製造工程で排出された蒸発凝縮水を導入して嫌気性処理を行う方法及び装置に関する。   The present invention relates to a method and an apparatus for performing anaerobic treatment by introducing evaporative condensed water discharged in a pulp manufacturing process into a methane fermentation reaction tank in which granule sludge is retained.

有機物含有水の嫌気性処理方法として、高負荷処理が可能なUASB(Upflow Anaerobic Sludge Blanket)法、及びUASB法よりさらに高負荷処理が可能なEGSB(Expanded Granular Sludge Bed)法が知られている。   As an anaerobic treatment method of organic substance-containing water, a UASB (Upflow Anaerobic Sludge Blanket) method capable of a high load treatment and an EGSB (Expanded Granular Sludge Bed) method capable of a higher load treatment than the UASB method are known.

これらUASB法、EGSB法では、嫌気性微生物が粒状化したグラニュール汚泥を用いており、反応槽内で嫌気性微生物を含む汚泥をグラニュール状に維持、増殖させる。グラニュール汚泥を用いる生物処理法は、担体に微生物を保持させる固定床や流動床と比較して、高い汚泥保持濃度が得られるため、高負荷運転が可能である。また、グラニュール汚泥は、微生物濃度が高く、沈降性に優れるため、処理水と汚泥との固液分離も容易である。さらに、すでに稼働中の反応槽内のグラニュール汚泥を余剰汚泥として抜き出して、新設する反応槽内に投入すれば、新設した反応槽を短期間で立ち上げて安定した処理を行えるなどの利点をも有するため、最も効率的な嫌気性処理方法として認識されている。   In these UASB method and EGSB method, granular sludge in which anaerobic microorganisms are granulated is used, and sludge containing anaerobic microorganisms is maintained and propagated in a granular state in a reaction tank. Since the biological treatment method using granular sludge can obtain a higher sludge retention concentration than a fixed bed or a fluidized bed in which microorganisms are held on a carrier, high-load operation is possible. In addition, granule sludge has a high microbial concentration and is excellent in sedimentation, so that solid-liquid separation between treated water and sludge is easy. Furthermore, if the granular sludge in the reaction tank that is already in operation is extracted as excess sludge and put into the new reaction tank, the newly installed reaction tank can be started up in a short period of time and can perform stable treatment. It is also recognized as the most efficient anaerobic treatment method.

グラニュール汚泥を用いるUASB法等において、有機物含有水を安定的かつ良好に処理する最大のポイントは、反応槽内においてグラニュール汚泥を維持、増殖させることである。反応槽内にグラニュール汚泥を維持、増殖させることができないと、処理性能は徐々に低下し、やがて処理不能に陥ることもある。   In the UASB method using granular sludge, etc., the greatest point for stably and satisfactorily treating organic substance-containing water is to maintain and propagate the granular sludge in the reaction vessel. If the granule sludge cannot be maintained and propagated in the reaction tank, the treatment performance gradually decreases and may eventually become untreatable.

グラニュール汚泥は、酢酸資化性のMethanosaeta属の微生物が骨格となって形成され、水素資化性メタン菌、酢酸生成細菌、酸生成細菌等が共存する一種の生態系を構成している。これらの微生物の中でも酸生成細菌は、糖質、脂質、タンパク等を分解し、粘質物を産出することから細菌同士の結合力を強める働きをする。よって、糖基質の培養液を用いれば、最も強度の強いグラニュール汚泥が形成される。   Granule sludge is formed as a framework of acetic acid-assimilating microorganisms of the genus Methanosaeta, and constitutes a kind of ecosystem in which hydrogen-utilizing methane bacteria, acetic acid-producing bacteria, acid-producing bacteria, etc. coexist. Among these microorganisms, acid-producing bacteria break down sugars, lipids, proteins, etc., and produce mucilage, so that the binding force between the bacteria is strengthened. Therefore, the strongest granular sludge is formed by using a culture solution of a sugar substrate.

ところで、紙を製造する製紙工程は、パルプ化工程、紙化工程、塗工加工工程、及び仕上工程に大別できる。例えば、パルプ化工程では主として木材を原料とし、これを機械的方法、化学的方法、又はその両方で処理して繊維を抽出しパルプ原料を得る。紙化工程では、パルプ化工程で製造されたパルプ原料をリファイナーと呼ばれる機械で叩解し、薬品等を加えて抄紙する。塗工加工工程では、塗料を抄紙して乾燥させた紙原体に塗布し、艶出し等の仕上げを行い、これを仕上工程で断裁して製品が得られる。   By the way, the papermaking process for producing paper can be roughly divided into a pulping process, a papermaking process, a coating process, and a finishing process. For example, in the pulping process, wood is mainly used as a raw material, which is processed by a mechanical method, a chemical method, or both to extract fibers to obtain a pulp raw material. In the paper making process, the pulp raw material produced in the pulping process is beaten with a machine called a refiner, and chemicals are added to make paper. In the coating process, the paint is applied to a paper base that has been made and dried, and finishes such as glazing are performed, and this is cut in the finishing process to obtain a product.

こうした製紙工程では、様々な性状の廃液が排出される。
例えば、パルプ化工程で製造されるパルプとしては、原料を化学的に処理して繊維を抽出する化学パルプが一般的であり、特に、クラフト法により製造された化学パルプ(クラフトパルプ)が製造されることが多い。クラフトパルプは、アルカリと硫化ナトリウムとを含む薬液中で木材を砕片化したチップを加熱(蒸解)して得られる。この蒸解により得られた液体(蒸解液)は、蒸留されてアルカリ分が回収される。蒸解液の蒸留に伴い、蒸発凝縮水(エバポレータ・コンデンセート又はエバポレータドレン)と呼ばれる廃液が発生する。
In such a papermaking process, waste liquids having various properties are discharged.
For example, as a pulp manufactured in the pulping process, a chemical pulp in which raw materials are chemically processed to extract fibers is generally used. In particular, a chemical pulp manufactured by a kraft method (craft pulp) is manufactured. Often. Kraft pulp is obtained by heating (cooking) chips obtained by pulverizing wood in a chemical solution containing alkali and sodium sulfide. The liquid (distilled liquid) obtained by this cooking is distilled to recover the alkali content. Along with distillation of the cooking liquor, a waste liquid called evaporative condensed water (evaporator condensate or evaporator drain) is generated.

パルプ製造工程における蒸発凝縮水の発生量はクラフトパルプの生産量の5〜7倍程度にも達する。また、この蒸発凝縮水の有機物濃度は3,000〜10,000mg/Lで、通常の有機物含有水と異なり、メタノールを主成分(全CODCrの70質量%以上)とする有機物含有水であり、Methanosarcina属、Methanobacterium属が主たる微生物として増殖する。 The amount of evaporative condensed water generated in the pulp manufacturing process reaches about 5 to 7 times the amount of kraft pulp produced. Moreover, the organic substance density | concentration of this evaporation condensate water is 3,000-10,000 mg / L, and it is organic substance containing water which has methanol as a main component (70 mass% or more of all COD Cr ) unlike normal organic substance containing water. Methanosarcina genus and Methanobacterium genus grow as main microorganisms.

しかし、Methanosarcina属、Methanobacterium属メタン菌はグラニュール汚泥を形成しにくいことから、これらの微生物を主とする蒸発凝縮水の嫌気性処理では、汚泥中での粘生物の産出が少なくなるため、グラニュール汚泥の増殖は芳しくなく、強度も不十分となる。このため、このようなパルプ製造工程から排出された蒸発凝縮水を、グラニュール汚泥を保持する反応槽の被処理液として長期間継続して運転すると、グラニュール汚泥は解体しやすくなり、微細化した汚泥が反応槽から流出してしまい、処理効率が低下すると共に、著しい場合には処理不能となる。   However, since Methanosarcina and Methanobacterium methane bacteria are difficult to form granule sludge, the anaerobic treatment of evaporative condensed water mainly consisting of these microorganisms reduces the production of slime organisms in the sludge. The sludge does not grow well and its strength is insufficient. For this reason, if the evaporative condensed water discharged from such a pulp manufacturing process is continuously operated as a liquid to be treated in a reaction tank holding granule sludge for a long period of time, the granule sludge becomes easy to dismantle and become finer. The sludge that has been discharged flows out of the reaction tank, and the processing efficiency is lowered.

従来、蒸発凝縮水の嫌気性処理におけるグラニュール汚泥の解体を防止する方法として、反応槽に硝酸又は亜硝酸を添加する方法(特許文献1)、反応槽に製紙工程から排出された澱粉を含む澱粉含有廃液を添加する方法(特許文献2)、反応槽に糖質を添加する方法(特許文献3)が提案されている。   Conventionally, as a method of preventing the disintegration of granular sludge in the anaerobic treatment of evaporative condensed water, a method of adding nitric acid or nitrous acid to a reaction tank (Patent Document 1), the reaction tank contains starch discharged from the papermaking process A method of adding starch-containing waste liquid (Patent Document 2) and a method of adding carbohydrate to a reaction tank (Patent Document 3) have been proposed.

また、蒸発凝縮水の高負荷嫌気性処理方法として、蒸発凝縮水に含まれる硫黄成分を除去後、高分子炭水化物と混合したものを被処理水としてメタン発酵槽で嫌気性処理を行う方法や、蒸発凝縮水のpHを低くしてメタン発酵を阻害する阻害物質を凝固させて除去した後、メタン発酵槽で嫌気性処理を行う方法が提案されている(例えば、特許文献4、5参照)。   In addition, as a high load anaerobic treatment method of evaporative condensed water, after removing sulfur components contained in evaporative condensed water, a method of performing anaerobic treatment in a methane fermentation tank using water mixed with polymer carbohydrate as treated water, There has been proposed a method of performing anaerobic treatment in a methane fermentation tank after coagulating and removing an inhibitory substance that inhibits methane fermentation by lowering the pH of evaporated condensed water (see, for example, Patent Documents 4 and 5).

特開2008−279383号公報JP 2008-279383 A 特開2008−279384号公報JP 2008-279384 A 特開2008−279385号公報JP 2008-279385 A 特許第3174364号公報Japanese Patent No. 3174364 特開昭61−197096号公報Japanese Patent Laid-Open No. 61-97096

特許文献4,5に記載される方法は、嫌気性処理に先立ち、蒸発凝縮水の処理を必要とし、処理工程が煩雑となるという欠点がある   Prior to the anaerobic treatment, the methods described in Patent Documents 4 and 5 require the treatment of the evaporative condensed water and have the disadvantage that the treatment process becomes complicated.

特許文献1〜3に記載される方法は、蒸発凝縮水に添加剤を添加するのみで簡便にグラニュール汚泥の解体、流出を防止することができるが、グラニュール汚泥の解体傾向に係わらず、常に添加剤を所定の添加量で添加することになるため、添加剤の添加を過剰に行っている場合もある。   The methods described in Patent Documents 1 to 3 can simply prevent the disintegration and outflow of granule sludge simply by adding an additive to evaporative condensed water, but regardless of the dismantling tendency of the granule sludge, Since the additive is always added in a predetermined amount, the additive may be excessively added.

反応槽内のグラニュール汚泥の解体の兆候を即時的に把握し、グラニュール汚泥解体の傾向がある場合にのみ、これらの添加剤を添加するようにすれば、このような無駄を省くことができるが、従来においては、グラニュール汚泥解体の兆候を即時的に把握する技術は提案されていなかった。   If these additives are added only when there is a tendency to dismantle the granular sludge in the reaction tank immediately and there is a tendency to disassemble the granular sludge, this waste can be saved. However, in the past, no technology has been proposed to immediately grasp the signs of granule sludge demolition.

本発明は、グラニュール汚泥が保持された反応槽に、パルプ製造工程で排出された蒸発凝縮水を導入して嫌気性処理するに当たり、グラニュール汚泥の解体の兆候を即時的に検知して、グラニュール汚泥の解体を防止するための対策を講じることにより、反応槽内のグラニュール汚泥の解体及び反応槽からの流出を未然に防ぎ、高負荷高速処理を長期に亘り安定に行う方法及び装置を提供することを目的とする。   In the present invention, when anaerobic treatment is performed by introducing the evaporated condensed water discharged in the pulp manufacturing process into the reaction tank in which the granular sludge is retained, the signs of the demolition of the granular sludge are immediately detected, By taking measures to prevent the dismantling of the granular sludge, the method and apparatus for preventing the disassembly of the granular sludge in the reaction tank and the outflow from the reaction tank in advance and stably performing high-load high-speed treatment for a long period of time. The purpose is to provide.

本発明者らは、上記課題を解決すべく鋭意検討した結果、反応槽からの処理水について、波長380〜780nmの範囲の可視光の吸光度を測定することにより、処理水に含まれる懸濁物質(SS)量を迅速に検知することができ、このSS濃度の変化に応じて、必要な制御を行うことにより、グラニュール汚泥の解体、流出を防止することができることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have measured the absorbance of visible light in the wavelength range of 380 to 780 nm for the treated water from the reaction tank, thereby suspending the suspended matter contained in the treated water. It has been found that the amount of (SS) can be detected quickly, and the granule sludge can be prevented from being dismantled and outflowed by performing necessary control according to the change in the SS concentration.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] グラニュール汚泥が保持された反応槽に、パルプ製造工程で排出された蒸発凝縮水を含む被処理水を導入して嫌気性処理を行う方法において、該反応槽からの処理水について、波長380〜780nmの範囲の可視光の吸光度を測定し、該吸光度の測定値に基いて、以下の(1)〜(3)のいずれか1以上を制御することを特徴とする嫌気性処理方法。
(1) 該反応槽への被処理水の導入流量
(2) 該反応槽への栄養剤の添加量
(3) 該反応槽への高分子凝集剤の添加量
[1] In a method for introducing an treated water containing evaporative condensed water discharged in a pulp manufacturing process to an anaerobic treatment in a reaction tank in which granule sludge is held, about the treated water from the reaction tank, An anaerobic treatment method comprising measuring the absorbance of visible light in the wavelength range of 380 to 780 nm and controlling one or more of the following (1) to (3) based on the measured value of the absorbance: .
(1) Introduction flow rate of water to be treated into the reaction tank (2) Amount of nutrient added to the reaction tank (3) Amount of polymer flocculant added to the reaction tank

[2] [1]において、前記栄養剤が、硝酸、亜硝酸、糖質、塗工廃液、カルシウム化合物、及び鉄塩からなる群より選ばれる1以上を含むことを特徴とする嫌気性処理方法。 [2] The anaerobic treatment method according to [1], wherein the nutrient contains one or more selected from the group consisting of nitric acid, nitrous acid, sugar, coating waste liquid, calcium compound, and iron salt. .

[3] グラニュール汚泥が保持された反応槽と、該反応槽にパルプ製造工程から排出された蒸発凝縮水を含む被処理水を導入する手段と、該反応槽から処理水を取り出す手段と、該処理水の波長380〜780nmの範囲の可視光の吸光度を測定する手段と、該吸光度の測定値に基いて、以下の(1)〜(3)のいずれか1以上を制御する手段とを備えることを特徴とする嫌気性処理装置。
(1) 該反応槽への被処理水の導入流量
(2) 該反応槽への栄養剤の添加量
(3) 該反応槽への高分子凝集剤の添加量
[3] A reaction tank in which granular sludge is retained, means for introducing treated water containing evaporated condensed water discharged from the pulp manufacturing process into the reaction tank, means for taking out treated water from the reaction tank, Means for measuring the absorbance of visible light in the wavelength range of 380 to 780 nm of the treated water, and means for controlling one or more of the following (1) to (3) based on the measured value of the absorbance: An anaerobic treatment apparatus characterized by comprising.
(1) Introduction flow rate of water to be treated into the reaction tank (2) Amount of nutrient added to the reaction tank (3) Amount of polymer flocculant added to the reaction tank

[4] [3]において、前記栄養剤が、硝酸、亜硝酸、糖質、塗工廃液、カルシウム化合物、及び鉄塩からなる群より選ばれる1以上を含むことを特徴とする嫌気性処理装置。 [4] The anaerobic treatment apparatus according to [3], wherein the nutrient contains one or more selected from the group consisting of nitric acid, nitrous acid, sugar, coating waste liquid, calcium compound, and iron salt. .

本発明によれば、グラニュールを形成しにくいパルプ製造工程から排出された蒸発凝縮水の嫌気性処理に当たり、形成したグラニュール汚泥の解体の兆候を即時的に検知して、グラニュール汚泥の解体防止のための的確な制御を行うことにより、反応槽内でのグラニュール汚泥の解体、反応槽からの汚泥流出を確実に防止して、高負荷高速処理を長期に亘り安定に行うことができる。   According to the present invention, in the anaerobic treatment of the evaporative condensed water discharged from the pulp manufacturing process in which granules are difficult to form, the signs of the disintegration of the formed granule sludge are detected immediately, and the disassembly of the granule sludge is performed. By performing precise control for prevention, it is possible to reliably prevent granule sludge from being disassembled in the reaction tank and sludge outflow from the reaction tank, and to perform high-load high-speed treatment stably over a long period of time. .

本発明の嫌気性処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the anaerobic processing apparatus of this invention. 本発明の嫌気性処理装置の他の実施の形態を示す系統図である。It is a systematic diagram which shows other embodiment of the anaerobic processing apparatus of this invention. 実施例1〜3及び比較例1における反応槽内グラニュール汚泥の平均粒径の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the average particle diameter of the granular sludge in a reaction tank in Examples 1-3 and the comparative example 1. FIG. 実施例1〜3及び比較例1における反応槽内グラニュール汚泥層の汚泥界面高さの経時変化を示すグラフである。It is a graph which shows the time-dependent change of the sludge interface height of the granular sludge layer in the reaction tank in Examples 1-3 and Comparative Example 1.

以下に図面を参照して本発明の嫌気性処理方法及び嫌気性処理装置の実施の形態を詳細に説明する。   Embodiments of an anaerobic treatment method and an anaerobic treatment apparatus of the present invention will be described below in detail with reference to the drawings.

図1,図2は本発明の嫌気性処理装置の実施の形態を示す系統図である。   1 and 2 are system diagrams showing an embodiment of the anaerobic treatment apparatus of the present invention.

図1,図2において、1は反応槽であり、反応槽1内には、グラニュール汚泥2が充填されている。また、反応槽1の上部には、気固液分離装置(GSS)3が設けられている。GSS3の頂部は、反応槽1内の液面から突出し、このGSS3の内側に処理水取出配管13が連絡している。処理水取出配管13は処理水槽5に連絡され、処理水槽5は調整槽6と下部が連通しており、調整槽6はさらにpH調整槽7と下部が連通している。被処理水導入配管11は、調整槽6に連絡されている。pH調整槽7は、調整水導入配管8で反応槽1下部に接続されている。被処理水は、調整槽6内で、連通する処理水槽5の処理水により希釈調整され、さらにpH調整剤C(酸またはアルカリ)が添加されるpH調整槽7でpH調整され、調整水導入配管8に設けられたポンプPにより反応槽1に導入され上向流で反応槽1内を流れる。反応槽1の上部には、ガス排出配管12が接続されている。   1 and 2, reference numeral 1 denotes a reaction tank, and the reaction tank 1 is filled with granular sludge 2. A gas-solid-liquid separator (GSS) 3 is provided at the upper part of the reaction tank 1. The top of the GSS 3 protrudes from the liquid level in the reaction tank 1, and the treated water extraction pipe 13 communicates with the inside of the GSS 3. The treated water extraction pipe 13 is connected to the treated water tank 5, and the treated water tank 5 communicates with the adjustment tank 6 and the lower part, and the adjusted tank 6 further communicates with the pH adjustment tank 7 and the lower part. The treated water introduction pipe 11 is in communication with the adjustment tank 6. The pH adjustment tank 7 is connected to the lower part of the reaction tank 1 by a adjustment water introduction pipe 8. The water to be treated is diluted and adjusted in the adjustment tank 6 with the treated water in the communicating treatment water tank 5, and the pH is adjusted in the pH adjustment tank 7 to which the pH adjuster C (acid or alkali) is added. It is introduced into the reaction tank 1 by a pump P provided in the pipe 8 and flows in the reaction tank 1 in an upward flow. A gas discharge pipe 12 is connected to the upper part of the reaction tank 1.

反応槽1内において、GSS3の内側は気固液分離部分であり、その下部はグラニュール汚泥2が展開する反応部となっている。反応部ではグラニュール汚泥2が展開してスラッジブランケットが形成される。グラニュール汚泥2は、嫌気性微生物を含む微生物が自己造粒して粒状になった汚泥であり、比較的高密度で沈降性に優れる。   In the reaction tank 1, the inside of the GSS 3 is a gas-solid separation part, and the lower part is a reaction part where the granular sludge 2 is developed. In the reaction part, the granule sludge 2 develops to form a sludge blanket. Granule sludge 2 is a sludge that is granulated by self-granulating microorganisms including anaerobic microorganisms, and has a relatively high density and excellent sedimentation.

反応槽1内での被処理水の嫌気性処理により、反応槽1で生成したガス及び増殖した汚泥を含む混合液は、GSS3の内部で気固液分離され、ガスはガス排出配管12から反応槽1外に取り出されてガスホルダ4に貯留される。また、汚泥が分離され清澄化された液分は、処理水取出配管13から処理水槽5に取り出され、処理水排出配管16を経て系外へ排出される。この処理水は、後段に設けた好気性生物処理装置(図示せず)等によりさらに処理してもよい。   Due to the anaerobic treatment of the water to be treated in the reaction tank 1, the mixed liquid containing the gas generated in the reaction tank 1 and the proliferated sludge is gas-solid-liquid separated inside the GSS 3, and the gas reacts from the gas discharge pipe 12. It is taken out of the tank 1 and stored in the gas holder 4. In addition, the liquid that is separated and clarified from the sludge is taken out from the treated water extraction pipe 13 to the treated water tank 5 and discharged out of the system through the treated water discharge pipe 16. This treated water may be further treated by an aerobic biological treatment apparatus (not shown) provided at a later stage.

このように、反応槽1内の上昇流速を調整してグラニュール汚泥2を適度に展開させるために、処理水槽5からの処理水の一部は、循環され、被処理水と共に反応槽1に導入される。   In this way, in order to adjust the ascending flow rate in the reaction tank 1 and appropriately expand the granular sludge 2, part of the treated water from the treated water tank 5 is circulated to the reaction tank 1 together with the treated water. be introduced.

本発明においては、被処理水の濃度調整に主に処理水を使用するが、更に、処理水以外の市水、工水、井水、河川水、その他の処理系統の処理水等の被処理水よりも有機物濃度の低い水を希釈水として使用し、調整槽6に希釈水導入配管15から流量調節バルブ15Vを介してこの希釈水を導入するようにしてもよく、有機物濃度の安定した他の希釈水の併用で、反応槽1への導入水の有機物濃度を安定に調整することができるようになる。特に、処理水の水質が悪化した場合、処理水のみを希釈水として使用すると、処理水の循環量が増大し、反応槽での上昇流速が所定の範囲内となるように希釈水の水量を調節することが困難になることがある。このような場合には、処理水と有機物濃度の安定した他の希釈水とを併用するか、または有機物濃度の安定した他の希釈水のみを使用するのが好ましい。   In the present invention, treated water is mainly used for adjusting the concentration of treated water, and further treated water such as city water, industrial water, well water, river water, and other treated water other than treated water. Water having a lower organic concentration than water may be used as dilution water, and this dilution water may be introduced into the adjustment tank 6 from the dilution water introduction pipe 15 via the flow rate adjustment valve 15V. By using the diluted water together, the organic matter concentration of the water introduced into the reaction tank 1 can be adjusted stably. In particular, when the quality of treated water deteriorates, if only treated water is used as dilution water, the circulation rate of treated water increases and the amount of dilution water is adjusted so that the rising flow rate in the reaction tank is within a predetermined range. It can be difficult to adjust. In such a case, it is preferable to use the treated water in combination with other dilution water having a stable organic substance concentration, or to use only another dilution water having a stable organic substance concentration.

処理水槽5には、処理水の吸光度を測定し、その測定値に基いて制御信号を出力する制御装置9が設けられている。   The treated water tank 5 is provided with a control device 9 that measures the absorbance of treated water and outputs a control signal based on the measured value.

図1の嫌気性処理装置においては、被処理水の導入配管11に、制御装置9に連動して被処理水の導入流量を調整するためのバルブ11Vが設けられており、処理水の吸光度の測定値或いは吸光度の測定値から求められた被処理水の濁度又はSS濃度に基いて調整槽6への被処理水の導入流量が制御されるように構成されている。   In the anaerobic treatment apparatus of FIG. 1, a valve 11 </ b> V for adjusting the introduction flow rate of the treated water is provided in the treated water introduction pipe 11 in conjunction with the control device 9. The introduction flow rate of the water to be treated into the adjustment tank 6 is controlled based on the turbidity or SS concentration of the water to be treated obtained from the measurement value or the measurement value of the absorbance.

図2の嫌気性処理装置は、栄養剤又は高分子凝集剤を貯留する薬剤貯槽10を備え、この薬剤貯槽10内の薬剤を調整水導入配管8に薬注するための薬注配管14に、制御装置9に連動するバルブ14Vが設けられており、処理水の吸光度の測定値或いは吸光度の測定値から求められた被処理水の濁度又はSS濃度に基いて、反応槽1に導入される調整水への栄養剤又は高分子凝集剤の薬注量が制御されるように構成されている。   The anaerobic treatment apparatus of FIG. 2 includes a medicine storage tank 10 that stores a nutrient or a polymer flocculant, and a medicine injection pipe 14 for injecting medicine in the medicine storage tank 10 into the adjustment water introduction pipe 8 A valve 14V linked to the control device 9 is provided, and is introduced into the reaction tank 1 based on the measured value of the absorbance of the treated water or the turbidity or SS concentration of the treated water obtained from the measured value of the absorbance. It is comprised so that the chemical injection quantity of the nutrient or polymer flocculent to adjustment water may be controlled.

このように処理水の吸光度を測定し、この測定値に基いて処理水の濁度、即ちSS濃度を検知し、反応槽内のグラニュール汚泥の解体の兆候を検知することができる。
即ち、前述の如く、メタノールを主体とする蒸発凝縮水を嫌気性処理すると、Methanosarcina属、Methanobacterium属メタン菌が主たる微生物として増殖する。これらのメタン菌はグラニュールを形成しにくいため、長期的に運転を継続すると、徐々にグラニュールの強度が低下し、グラニュールが解体・微細化して反応槽より流出してしまうという問題がある。グラニュールが微細化して反応槽より流出する場合、処理水中のSS濃度が通常よりも大幅に増加する。そこで、SS濃度を監視することで、グラニュール微細化の兆候を把握することができるが、このSS濃度は、処理水の濁度に相関があり、また、処理水の濁度は処理水の波長380〜780nmの範囲の可視光の吸光度に相関があることから、処理水の吸光度を測定することにより、処理水のSS濃度を検知することができる。
In this way, the absorbance of the treated water is measured, and the turbidity of the treated water, that is, the SS concentration, is detected based on the measured value, and the signs of the dismantling of the granular sludge in the reaction tank can be detected.
That is, as described above, when an evaporative condensed water mainly composed of methanol is subjected to anaerobic treatment, Methanosarcina genus and Methanobacterium genus methane bacteria grow as main microorganisms. Since these methane bacteria are difficult to form granules, there is a problem that if the operation is continued for a long period of time, the strength of the granules gradually decreases and the granules are disassembled and refined and flow out of the reaction tank. . When the granule is refined and flows out of the reaction vessel, the SS concentration in the treated water is significantly increased than usual. Therefore, by monitoring the SS concentration, it is possible to grasp the signs of granule refinement, but this SS concentration is correlated with the turbidity of the treated water, and the turbidity of the treated water is Since there is a correlation with the absorbance of visible light in the wavelength range of 380 to 780 nm, the SS concentration of treated water can be detected by measuring the absorbance of treated water.

本発明においては、処理水の吸光度の測定値、或いはこの測定値から求められた処理水の濁度又はSS濃度に基づいて、以下の(1)〜(3)のいずれか1以上を制御することにより、反応槽内のグラニュール汚泥の解体、流出を防止する。
(1) 反応槽への被処理水の導入流量
(2) 反応槽への栄養剤の添加量
(3) 反応槽への高分子凝集剤の添加量
In the present invention, one or more of the following (1) to (3) is controlled based on the measured value of the absorbance of the treated water or the turbidity or SS concentration of the treated water obtained from the measured value. As a result, dismantling and outflow of granular sludge in the reaction tank is prevented.
(1) Flow rate of water to be treated into reaction tank (2) Amount of nutrient added to reaction tank (3) Amount of polymer flocculant added to reaction tank

処理水の吸光度の測定、及びこの測定値に基く処理水濁度又はSS濃度の換算は短時間で行うことができるため、本発明によれば、反応槽内のグラニュール汚泥の解体の兆候を即時的に検知してグラニュール汚泥の解体を防止するための上記(1)〜(3)の制御を迅速に行うことができ、制御遅れによる汚泥流出を未然に防止することができる。   Since the measurement of the absorbance of the treated water and the conversion of the treated water turbidity or SS concentration based on this measured value can be performed in a short time, according to the present invention, there is no indication of the dismantling of the granular sludge in the reaction tank. The controls (1) to (3) described above for detecting immediately and preventing the dismantling of the granular sludge can be performed quickly, and sludge outflow due to control delay can be prevented.

なお、処理水の吸光度の測定には、分光光度計、濁度計、汚泥濃度計などを用いることができる。
処理水の吸光度の測定は、連続的に行ってもよく、間欠的に、例えば1〜24時間に1回の頻度で間欠的に行ってもよい。
処理水の吸光度の測定値から処理水濁度又はSS濃度を求めるには、濁度又はSS濃度既知の検水を調製し、この検水の吸光度と濁度又はSS濃度との関係から予め作製した検量線又は計算式に従って行うことができる。
また、これらの換算を行うことなく、予め処理水の吸光度とグラニュール汚泥の解体の兆候との関係を調べておき、処理水の吸光度の測定値から直接制御を行うようにすることもできる。
In addition, a spectrophotometer, a turbidimeter, a sludge concentration meter etc. can be used for the measurement of the light absorbency of treated water.
The absorbance of the treated water may be measured continuously or intermittently, for example, once every 1 to 24 hours.
To determine the turbidity or SS concentration of the treated water from the measured value of the absorbance of the treated water, prepare a test water with a known turbidity or SS concentration, and prepare it in advance from the relationship between the absorbance of the sample water and the turbidity or SS concentration This can be done according to a calibration curve or calculation formula.
Moreover, without performing these conversions, the relationship between the absorbance of the treated water and the sign of the dismantling of the granular sludge can be examined in advance, and direct control can be performed from the measured value of the absorbance of the treated water.

以下に各制御方法について説明する。   Each control method will be described below.

[反応槽への被処理水の導入流量の制御]
反応槽への被処理水の導入流量の制御を行う場合には、例えば、処理水の吸光度の測定値が増加し、処理水の濁度、即ち、SS濃度が高くなって、グラニュール汚泥の解体の兆候が検知された場合には、反応槽への被処理水の導入流量を低減して、被処理水内の微生物による汚泥の増殖阻害を防止する。
反応槽への被処理水の導入流量を低減し、グラニュール汚泥の解体傾向が改善され、被処理水の吸光度の測定値が低下し、処理水の濁度、即ちSS濃度が低くなったと判断された場合には、再び反応槽への被処理水の導入流量を元の値に戻す。
[Control of flow rate of water to be treated into reaction tank]
When controlling the flow rate of water to be treated into the reaction tank, for example, the measured value of the absorbance of the treated water increases, the turbidity of the treated water, that is, the SS concentration increases, When the sign of dismantling is detected, the flow rate of the treated water into the reaction tank is reduced to prevent sludge growth inhibition by microorganisms in the treated water.
Decreasing the flow rate of treated water into the reaction tank, improving the tendency to disassemble granular sludge, decreasing the measured value of absorbance of treated water, and reducing the turbidity of treated water, that is, SS concentration If it is, the introduction flow rate of the water to be treated into the reaction tank is returned to the original value.

この制御方法としては、例えば、処理水の吸光度の測定値が増加して、処理水のSS濃度が所定値以上、例えば、20%以上増加した場合には、反応槽への被処理水の導入流量を所定の範囲、例えば、5〜10%の範囲で低下させる;処理水の吸光度の測定値(或いは処理水濁度又はSS濃度)に対して被処理水の導入流量を予め設定しておき、この設定値に基いて被処理水の導入流量を制御する;といったような制御方法を採用することができる。   As the control method, for example, when the measured value of the absorbance of the treated water is increased and the SS concentration of the treated water is increased by a predetermined value or more, for example, 20% or more, the treated water is introduced into the reaction tank. Decrease the flow rate within a predetermined range, for example, 5 to 10%; preset the introduction flow rate of the water to be treated with respect to the measured value of the absorbance of the treated water (or treated water turbidity or SS concentration). A control method such as controlling the flow rate of the treated water based on the set value can be employed.

[反応槽への栄養剤の添加量の制御]
反応槽への栄養剤の添加量の制御を行う場合には、例えば、処理水の吸光度の測定値が増加し、処理水の濁度、即ち、SS濃度が高くなって、グラニュール汚泥の解体の兆候が検知された場合には、反応槽に栄養剤を添加する或いは反応槽への栄養剤の添加量を増加させて反応槽内の汚泥の増殖を促進する。
また、栄養剤の添加或いはその添加量の増量で、グラニュール汚泥の解体傾向が改善され、被処理水の吸光度の測定値が低減し、処理水の濁度、即ちSS濃度が低くなったと判断される場合には、栄養剤の添加量を元の値に戻すか或いは栄養剤の添加を停止する。
[Control of the amount of nutrients added to the reaction tank]
When controlling the amount of nutrient added to the reaction tank, for example, the measured value of the absorbance of the treated water is increased, the turbidity of the treated water, that is, the SS concentration is increased, and the granular sludge is disassembled. Is detected, the nutrient is added to the reaction tank or the amount of the nutrient added to the reaction tank is increased to promote the growth of sludge in the reaction tank.
In addition, it was determined that the addition of nutrients or an increase in the amount added improved the tendency of the granular sludge to disassemble, decreased the measured value of the absorbance of the treated water, and lowered the turbidity of the treated water, that is, the SS concentration. If so, the amount of the nutrient added is returned to the original value, or the addition of the nutrient is stopped.

この制御方法は、例えば、処理水の吸光度の測定値が増加して、処理水のSS濃度が所定値以上、例えば、20%以上増加した場合には、栄養剤の添加量を所定の範囲、例えば5〜10%の範囲で増加させる;処理水の吸光度の測定値(或いは処理水濁度又はSS濃度)に対して栄養剤の添加量を予め設定しておき、この設定値に基いて栄養剤の添加量を制御する;といったような制御方法を採用することができる。   In this control method, for example, when the measured value of the absorbance of the treated water is increased and the SS concentration of the treated water is increased by a predetermined value or more, for example, 20% or more, the addition amount of the nutrient is set within a predetermined range, For example, the amount is increased in the range of 5 to 10%; the amount of the nutrient added is set in advance for the measured value of the absorbance of the treated water (or the treated water turbidity or SS concentration), and the nutrition based on this set value It is possible to adopt a control method such as controlling the amount of agent added.

栄養剤としては、硝酸、亜硝酸、糖質、塗工廃液、カルシウム化合物、及び鉄塩からなる群より選ばれる1以上を用いることができ、栄養剤の添加量は、被処理水中のCODCr濃度に対して0.01〜10質量%、特に0.02〜5質量%の範囲内とすることが好ましい。
栄養剤としての硝酸又は亜硝酸としては硝酸溶液等に限らず、被処理水等に添加されると硝酸イオン又は亜硝酸イオンを放出する物質、例えば硝酸塩又は亜硝酸塩等を用いてもよい。
また、栄養剤は、反応槽の前段で被処理水に対して添加することにより被処理水と共に反応槽に導入して添加してもよく、反応槽に直接添加してもよい。また、栄養剤は連続的に添加しても間欠的に添加してもよい。
栄養剤を間欠的に添加する場合、その添加頻度を変えることにより添加量を制御することもできる。
As the nutrient, one or more selected from the group consisting of nitric acid, nitrous acid, saccharides, coating waste liquid, calcium compound, and iron salt can be used, and the amount of nutrient added is COD Cr in the treated water. It is preferable to be within a range of 0.01 to 10% by mass, particularly 0.02 to 5% by mass with respect to the concentration.
Nitric acid or nitrous acid as a nutrient is not limited to a nitric acid solution or the like, and a substance that releases nitrate ions or nitrite ions when added to water to be treated, such as nitrate or nitrite, may be used.
Moreover, a nutrient may be introduce | transduced and added to a reaction tank with to-be-processed water by adding with respect to to-be-processed water in the front | former stage of a reaction tank, and may be added directly to a reaction tank. Moreover, a nutrient may be added continuously or intermittently.
When a nutrient is added intermittently, the addition amount can be controlled by changing the addition frequency.

[反応槽への高分子凝集剤の添加量の制御]
反応槽への高分子凝集剤の添加量の制御を行う場合には、例えば、処理水の吸光度の測定値が増加し、処理水の濁度、即ち、SS濃度が高くなって、グラニュール汚泥の解体の兆候が検知された場合には、反応槽に高分子凝集剤を添加する或いは反応槽への高分子凝集剤の添加量を増加させて反応槽内の汚泥の解体を防止する。
また、高分子凝集剤の添加或いはその添加量の増量で、グラニュール汚泥の解体傾向が改善され、被処理水の吸光度の測定値が低減し、処理水の濁度、即ちSS濃度が低くなったと判断される場合には、高分子凝集剤の添加量を元の値に戻すか或いは高分子凝集剤の添加を停止する。
[Control of amount of polymer flocculant added to reaction vessel]
When controlling the amount of the polymer flocculant added to the reaction tank, for example, the measured value of the absorbance of the treated water is increased, the turbidity of the treated water, that is, the SS concentration is increased, and the granular sludge is increased. When a sign of disassembly is detected, the polymer flocculant is added to the reaction tank or the amount of the polymer flocculant added to the reaction tank is increased to prevent the sludge in the reaction tank from being dismantled.
In addition, the addition of the polymer flocculant or an increase in the amount added improves the tendency of the granular sludge to dismantle, reduces the measured value of the absorbance of the treated water, and lowers the turbidity of the treated water, that is, the SS concentration. If it is determined that the polymer flocculant is added, the addition amount of the polymer flocculant is returned to the original value, or the addition of the polymer flocculant is stopped.

この制御方法は、例えば、処理水の吸光度の測定値が増加して、処理水のSS濃度が所定値以上、例えば、20%以上増加した場合には、高分子凝集剤の添加量を所定の範囲、例えば5〜10%の範囲で増加させる;処理水の吸光度の測定値(或いは処理水濁度又はSS濃度)に対して高分子凝集剤の添加量を予め設定しておき、この設定値に基いて高分子凝集剤の添加量を制御する;といったような制御方法を採用することができる。   In this control method, for example, when the measured value of the absorbance of the treated water is increased and the SS concentration of the treated water is increased by a predetermined value or more, for example, 20% or more, the addition amount of the polymer flocculant is set to a predetermined value. Increase within a range, for example, 5 to 10%; the amount of polymer flocculant added in advance to the measured value of the absorbance of the treated water (or treated water turbidity or SS concentration), and this set value A control method such as controlling the addition amount of the polymer flocculant based on the above can be adopted.

なお、高分子凝集剤としては、反応槽内のグラニュール汚泥表面に付着することでグラニュール汚泥の強度を高めることができるものであれば、添加する凝集剤の種類は限定されず、ノニオン系、カチオン系、アニオン系、両性系など処理系に適したものが使用できる。好ましい高分子凝集剤としては、ノニオン系の凝集剤としてポリアクリルアミド、ポリエチレンオキシド等が例示できる。カチオン系としては、ポリアミノアルキルアクリレート、ポリアミノアルキルメタクリレート、ポリエチレンイミン、ハロゲン化ポリジアリルアンモニウム、キトサン、尿素−ホルマリン樹脂等が挙げられる。アニオン系としては、ポリアクリル酸ナトリウム、ポリアクリルアミド部分加水分解物、部分スルホメチル化ポリアクリルアミド、ポリ(2−アクリルアミド)−2−メチルプロパン硫酸塩等が挙げられ、両性系としてアクリルアミドとアミノアルキルメタクリレートとアクリル酸ナトリウムの共重体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
高分子凝集剤の添加濃度は0.01〜100mg/L、特に0.1〜50mg/L程度の範囲内で制御することが好ましい。
As the polymer flocculant, the kind of flocculant to be added is not limited as long as it can increase the strength of the granular sludge by adhering to the surface of the granular sludge in the reaction tank. Those suitable for treatment systems such as cationic, anionic and amphoteric systems can be used. Preferred examples of the polymer flocculant include polyacrylamide and polyethylene oxide as nonionic flocculants. Examples of the cationic system include polyaminoalkyl acrylate, polyaminoalkyl methacrylate, polyethyleneimine, halogenated polydiallylammonium, chitosan, urea-formalin resin, and the like. Examples of the anionic system include sodium polyacrylate, polyacrylamide partial hydrolyzate, partially sulfomethylated polyacrylamide, poly (2-acrylamide) -2-methylpropane sulfate, and the amphoteric system includes acrylamide and aminoalkyl methacrylate. Examples include sodium acrylate copolymer. These may be used alone or in combination of two or more.
The addition concentration of the polymer flocculant is preferably controlled within a range of about 0.01 to 100 mg / L, particularly about 0.1 to 50 mg / L.

高分子凝集剤は、反応槽の前段で被処理水に対して添加することにより被処理水と共に反応槽に導入して添加してもよく、反応槽に直接添加してもよい。また、高分子凝集剤は連続的に添加しても間欠的に添加してもよい。
高分子凝集剤を間欠的に添加する場合、その添加頻度を変えることにより添加量を制御することができる。
The polymer flocculant may be introduced into the reaction tank together with the water to be treated by adding it to the water to be treated before the reaction tank, or may be added directly to the reaction tank. Further, the polymer flocculant may be added continuously or intermittently.
When the polymer flocculant is added intermittently, the addition amount can be controlled by changing the addition frequency.

なお、本発明においては、前述の(1)〜(3)の制御項目を2以上採用して行ってもよい。
栄養剤と高分子凝集剤とを添加する場合、いずれを先に反応槽に導入される被処理水に添加してもよく、同時に添加してもよい。また、一方を反応槽に導入される被処理水に、他方を反応槽に直接添加してもよく、両方を反応槽に添加してもよい。
In the present invention, two or more control items (1) to (3) described above may be adopted.
When adding a nutrient and a polymer flocculant, either may be added to the water to be treated introduced into the reaction tank first, or may be added simultaneously. One may be added directly to the water to be treated introduced into the reaction vessel, the other may be added directly to the reaction vessel, or both may be added to the reaction vessel.

本発明において、嫌気性処理の条件としては、通常の条件を採用することができ、例えば、反応槽に対する有機物負荷は5〜30kg−CODCr/m/day、特に8〜20kg−CODCr/m/dayが好ましく、反応槽内には酸素を供給せずに嫌気的条件とし、温度は25〜40℃、特に30〜38℃とし、pHは6.0〜8.0とすることが好ましい。
特に、UASB方式で安定した処理を行うためには、反応槽内には平均粒径0.5〜3.0mm、好ましくは0.8〜1.5mm程度のグラニュール汚泥のブランケットを形成することが好ましく、EGSB方式の場合は、反応槽内に、平均粒径0.5〜3.0mm、好ましくは1.0〜1.5mm程度のグラニュール汚泥を安定的に保持することが好ましい。
In the present invention, normal conditions can be adopted as the conditions for the anaerobic treatment. For example, the organic load on the reaction tank is 5 to 30 kg-COD Cr / m 3 / day, particularly 8 to 20 kg-COD Cr / m 3 / day is preferable, oxygen is not supplied into the reaction vessel, anaerobic conditions are set, the temperature is 25 to 40 ° C., particularly 30 to 38 ° C., and the pH is 6.0 to 8.0. preferable.
In particular, in order to perform stable treatment by the UASB method, a blanket of granular sludge having an average particle size of 0.5 to 3.0 mm, preferably about 0.8 to 1.5 mm is formed in the reaction tank. In the case of the EGSB method, it is preferable to stably hold granular sludge having an average particle diameter of 0.5 to 3.0 mm, preferably about 1.0 to 1.5 mm in the reaction vessel.

高さ5〜7m程度の反応槽内に高さ3〜5m程度のスラッジブランケットを展開させるUASB方式では、反応槽内の上昇流速0.3〜1.5m/hr程度で処理を行い、高さ7〜20m程度の反応槽内に、高さ5〜18m程度のスラッジブランケットを展開させるEGSB方式では、反応槽内の上昇流速2〜5m/hr程度の高速処理を行うことが好ましい。   In the UASB method in which a sludge blanket with a height of about 3 to 5 m is deployed in a reaction tank with a height of about 5 to 7 m, the treatment is performed at an ascending flow rate of about 0.3 to 1.5 m / hr in the reaction tank. In the EGSB method in which a sludge blanket having a height of about 5 to 18 m is developed in a reaction tank of about 7 to 20 m, it is preferable to perform high-speed processing at an ascending flow rate of about 2 to 5 m / hr in the reaction tank.

以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

なお、以下の実施例及び比較例で用いた嫌気反応槽は、内径6cm、高さ1.2mで、GSSが設置された部分を除く反応部の容量は3L、GSS部を含めた部分の容量は4Lのものである。この反応槽内には食品工場のUASB式の反応槽から取り出したグラニュール汚泥を1.0L充填して負荷運転を開始した。   In addition, the anaerobic reaction tank used in the following Examples and Comparative Examples has an inner diameter of 6 cm and a height of 1.2 m, the capacity of the reaction part excluding the part where the GSS is installed is 3 L, and the capacity of the part including the GSS part Is 4L. This reaction tank was filled with 1.0 L of granular sludge taken out from a UASB type reaction tank of a food factory, and a load operation was started.

また、処理水の吸光度の測定は、荏原実業株式会社製分光光度計「Spectro::lyser」を用いて行い、波長660nmの光の吸光度を測定した。処理水のSS濃度は、吸光度の測定値から、SS濃度既知の検水の吸光度を用いて予め作製した検量線により求めた。
この処理水の吸光度測定及びSS濃度検出は、12時間に1回の頻度で行った。
Further, the absorbance of the treated water was measured using a spectrophotometer “Spectro :: lyser” manufactured by Sugawara Jitsugyo Co., Ltd., and the absorbance of light having a wavelength of 660 nm was measured. The SS concentration of the treated water was determined from a measured value of absorbance using a calibration curve prepared in advance using the absorbance of the test water with a known SS concentration.
The absorbance measurement and SS concentration detection of this treated water were performed at a frequency of once every 12 hours.

被処理水はパルプ製造工程から排出された蒸発凝縮水であり、その水質は、CODCrとしての有機物濃度が7000mg/Lで、そのうちの、メタノール濃度は3800mg/L(CODCrとしては5700mg/L)であった。
被処理水は反応槽内での上昇流速が3m/hrとなるように処理水循環を行いながら通水し、反応槽内にグラニュール汚泥を展開させてスラッジブランケットを形成させた。反応槽内の温度は30〜35℃に維持し、pH7.0となるようにpH調整を行った。pH調整はpH調整槽にpH調整剤C(酸またはアルカリ)を添加することによって行った。この条件で、以下の実施例1〜3及び比較例1のいずれの場合も、反応槽に対する有機物負荷は10〜15kg−CODCr/m/day、汚泥負荷は0.4〜0.7kg−CODCr/kg−VSS/dayの範囲内とされた。
The water to be treated is evaporated condensed water discharged from the pulp manufacturing process, and the water quality is 7000 mg / L of organic matter as COD Cr , of which the methanol concentration is 3800 mg / L (5700 mg / L as COD Cr). )Met.
The water to be treated was passed while circulating the treated water so that the ascending flow rate in the reaction tank was 3 m / hr, and granular sludge was developed in the reaction tank to form a sludge blanket. The temperature in the reaction vessel was maintained at 30 to 35 ° C., and the pH was adjusted to be pH 7.0. The pH adjustment was performed by adding pH adjuster C (acid or alkali) to the pH adjusting tank. Under these conditions, in any of the following Examples 1 to 3 and Comparative Example 1, the organic matter load on the reaction tank is 10 to 15 kg-COD Cr / m 3 / day, and the sludge load is 0.4 to 0.7 kg- It was set within the range of COD Cr / kg-VSS / day.

<実施例1>
反応槽から取り出された処理水の吸光度の測定値からSS濃度を監視し、SS濃度の変動に合わせて反応槽へ流入する被処理水の流量を制御した。処理負荷は汚泥負荷0.4〜0.7kg−CODCr/kg−VSS/dayの範囲で制御した。
具体的には、処理水SS濃度が80mg/L以下で被処理水流量0.65L/hr、処理水SS濃度が80mg/Lを超え100mg/L以下で被処理水流量0.6L/hr、処理水SS濃度が100mg/Lを超え120mg/L以下で被処理水流量0.55L/hr、処理水SS濃度が120mg/Lを超える場合に被処理水流量0.5L/hrとした。
<Example 1>
The SS concentration was monitored from the measured value of the absorbance of the treated water taken out from the reaction tank, and the flow rate of the treated water flowing into the reaction tank was controlled in accordance with the variation of the SS concentration. The treatment load was controlled in the range of sludge load 0.4 to 0.7 kg-COD Cr / kg-VSS / day.
Specifically, the treated water flow rate is 0.65 L / hr when the treated water SS concentration is 80 mg / L or less, the treated water flow rate is 0.6 L / hr when the treated water SS concentration exceeds 80 mg / L and is 100 mg / L or less, When the treated water SS concentration exceeded 100 mg / L and 120 mg / L or less, the treated water flow rate was 0.55 L / hr, and when the treated water SS concentration exceeded 120 mg / L, the treated water flow rate was 0.5 L / hr.

この結果、グラニュール汚泥が展開されている汚泥界面については、汚泥の流出・減少による高さの急激な低下は認められず、90日間の実験期間中、処理開始時のグラニュール汚泥量以上の量を反応槽内に維持できた。また、反応槽内のグラニュール汚泥の解体・微細化に起因する平均粒径の微細化も起こらなかった。
このときの反応槽内グラニュール汚泥の平均粒径の経時変化、反応槽内汚泥界面高さの経時変化をそれぞれ図3,4に示す。
As a result, at the sludge interface where the granular sludge is deployed, there is no sudden drop in height due to the outflow / reduction of sludge, and during the 90-day experiment period, the sludge interface exceeds the amount of granular sludge at the start of treatment. The amount could be maintained in the reaction vessel. In addition, the average particle size was not reduced due to the dismantling and refinement of the granular sludge in the reaction tank.
FIGS. 3 and 4 show the change over time in the average particle diameter of the granular sludge in the reaction tank and the change over time in the sludge interface height in the reaction tank, respectively.

<実施例2>
反応槽から取り出された処理水の吸光度の測定値からSS濃度を監視し、SS濃度の変動に合わせて、被処理水への硝酸ナトリウム溶液の添加量を変化させた。硝酸ナトリウム水溶液の添加量は、硝酸ナトリウム水溶液と被処理水とを混合した後の硝酸イオンの濃度(以下、単に「硝酸濃度」と称す。)が500mg/L以下となる範囲とした。
具体的には、処理水SS濃度が80mg/L以下で硝酸濃度130mg/L、処理水SS濃度が80mg/Lを超え100mg/L以下で硝酸濃度200mg/L、処理水SS濃度が100mg/Lを超え120mg/L以下で硝酸濃度250mg/L、処理水SS濃度が120mg/Lを超える場合に硝酸濃度300mg/Lとした。
<Example 2>
The SS concentration was monitored from the measured value of the absorbance of the treated water taken out from the reaction tank, and the amount of sodium nitrate solution added to the treated water was changed according to the variation of the SS concentration. The amount of sodium nitrate aqueous solution added was within a range in which the concentration of nitrate ions (hereinafter simply referred to as “nitric acid concentration”) after mixing the sodium nitrate aqueous solution and the water to be treated was 500 mg / L or less.
Specifically, when the treated water SS concentration is 80 mg / L or less, the nitric acid concentration is 130 mg / L, and when the treated water SS concentration exceeds 80 mg / L and is 100 mg / L or less, the nitric acid concentration is 200 mg / L, and the treated water SS concentration is 100 mg / L. The concentration of nitric acid was 250 mg / L and the treated water SS concentration was more than 120 mg / L, and the nitric acid concentration was 300 mg / L.

この結果、グラニュール汚泥が展開されている汚泥界面については、汚泥の流出・減少による高さの低下は認められず、90日間の実験期間中、処理開始時のグラニュール汚泥量以上の量を反応槽内に維持できた。また、反応槽内のグラニュール汚泥の解体・微細化に起因する平均粒径の微細化も起こらなかった。
このときの反応槽内グラニュール汚泥の平均粒径の経時変化、反応槽内汚泥界面高さの経時変化をそれぞれ図3,4に示す。
As a result, at the sludge interface where the granular sludge is deployed, the height of the sludge is not reduced due to the outflow / decrease of the sludge. It could be maintained in the reaction vessel. In addition, the average particle size was not reduced due to the dismantling and refinement of the granular sludge in the reaction tank.
FIGS. 3 and 4 show the change over time in the average particle diameter of the granular sludge in the reaction tank and the change over time in the sludge interface height in the reaction tank, respectively.

<実施例3>
実施例2において、硝酸ナトリウム水溶液に代えて、カチオン系高分子凝集剤(ポリアミノアルキルアクリレート)を用い、処理水のSS濃度の変動に合わせてその添加量を変化させた。高分子凝集剤の添加量は凝集剤と被処理水とを混合した後の凝集剤の濃度(以下、単に「凝集剤濃度」と称す。)が15mg/L以下となる範囲で制御した。
具体的には、処理水SS濃度が80mg/L以下で凝集剤濃度10mg/L、処理水SS濃度が80mg/Lを超え100mg/L以下で凝集剤濃度11mg/L、処理水SS濃度が100mg/Lを超え120mg/L以下で凝集剤濃度12mg/L、処理水SS濃度が120mg/Lを超える場合に凝集剤濃度13mg/Lとした。
<Example 3>
In Example 2, instead of the sodium nitrate aqueous solution, a cationic polymer flocculant (polyaminoalkyl acrylate) was used, and the amount added was changed in accordance with the change in the SS concentration of the treated water. The amount of the polymer flocculant added was controlled in a range where the concentration of the flocculant after mixing the flocculant and the water to be treated (hereinafter simply referred to as “flocculating agent concentration”) was 15 mg / L or less.
Specifically, when the treated water SS concentration is 80 mg / L or less, the flocculant concentration is 10 mg / L, and when the treated water SS concentration exceeds 80 mg / L and is 100 mg / L or less, the flocculant concentration is 11 mg / L and the treated water SS concentration is 100 mg. The coagulant concentration was set to 13 mg / L when the coagulant concentration was 12 mg / L exceeding 120 L / L and the treated water SS concentration exceeded 120 mg / L.

この結果、グラニュール汚泥が展開されている汚泥界面については、汚泥の流出・減少による高さの低下は認められず、90日間の実験期間中、処理開始時のグラニュール汚泥量以上の量を反応槽内に維持できた。また、反応槽内のグラニュール汚泥の解体、微細化に起因する平均粒径の微細化も起こらなかった。
このときの反応槽内グラニュール汚泥の平均粒径の経時変化、反応槽内汚泥界面高さの経時変化をそれぞれ図3,4に示す。
As a result, at the sludge interface where the granular sludge is deployed, the height of the sludge is not reduced due to the outflow / decrease of the sludge. It could be maintained in the reaction vessel. In addition, the average particle size was not reduced due to the dismantling and refinement of the granular sludge in the reaction tank.
FIGS. 3 and 4 show the change over time in the average particle diameter of the granular sludge in the reaction tank and the change over time in the sludge interface height in the reaction tank, respectively.

<比較例1>
嫌気反応槽より取り出される処理水のSS濃度の監視及び監視結果に基づくいずれの制御もしない条件で嫌気性処理を行った。
その結果、嫌気反応槽内のグラニュール汚泥は徐々に減少し、平均粒径も小さくなった。
このときの反応槽内グラニュール汚泥の平均粒径の経時変化、反応槽内汚泥界面高さの経時変化をそれぞれ図3,4に示す。
<Comparative Example 1>
The anaerobic treatment was performed under the condition that neither the control of the SS concentration of the treated water taken out from the anaerobic reaction tank nor the control based on the monitoring result was performed.
As a result, the granular sludge in the anaerobic reaction tank gradually decreased, and the average particle size became smaller.
FIGS. 3 and 4 show the change over time in the average particle diameter of the granular sludge in the reaction tank and the change over time in the sludge interface height in the reaction tank, respectively.

以下の結果から、処理水の吸光度に基く反応槽への被処理水の導入流量、栄養剤の添加量又は高分子凝集剤の添加量の制御で、反応槽内でのグラニュール汚泥の解体、反応槽からの汚泥流出を確実に防止して、高負荷高速処理を長期に亘り安定に行うことができることが分かる。   From the following results, by controlling the flow rate of water to be treated into the reaction tank based on the absorbance of the treated water, the amount of nutrients added, or the amount of polymer flocculant added, the granular sludge dismantled in the reaction tank, It can be seen that sludge outflow from the reaction tank can be reliably prevented and high-load high-speed treatment can be stably performed over a long period of time.

1 反応槽
2 グラニュール汚泥
3 気固液分離装置
4 ガスホルダ
5 処理水槽
6 調整槽
7 pH調整槽
9 制御装置
10 薬剤貯槽
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Granule sludge 3 Gas-solid-liquid separator 4 Gas holder 5 Treated water tank 6 Adjustment tank 7 pH adjustment tank 9 Control apparatus 10 Drug storage tank

Claims (4)

グラニュール汚泥が保持された反応槽に、パルプ製造工程で排出された蒸発凝縮水を含む被処理水を導入して嫌気性処理を行う方法において、該反応槽からの処理水について、波長380〜780nmの範囲の可視光の吸光度を測定し、該吸光度の測定値に基いて、以下の(1)〜(3)のいずれか1以上を制御することを特徴とする嫌気性処理方法。
(1) 該反応槽への被処理水の導入流量
(2) 該反応槽への栄養剤の添加量
(3) 該反応槽への高分子凝集剤の添加量
In a method of performing anaerobic treatment by introducing treated water containing evaporative condensed water discharged in a pulp manufacturing process into a reaction tank in which granule sludge is retained, the treated water from the reaction tank has a wavelength of 380 to 380. An anaerobic treatment method characterized by measuring the absorbance of visible light in the range of 780 nm and controlling one or more of the following (1) to (3) based on the measured value of the absorbance.
(1) Introduction flow rate of water to be treated into the reaction tank (2) Amount of nutrient added to the reaction tank (3) Amount of polymer flocculant added to the reaction tank
請求項1において、前記栄養剤が、硝酸、亜硝酸、糖質、塗工廃液、カルシウム化合物、及び鉄塩からなる群より選ばれる1以上を含むことを特徴とする嫌気性処理方法。   2. The anaerobic treatment method according to claim 1, wherein the nutrient contains one or more selected from the group consisting of nitric acid, nitrous acid, sugar, coating waste liquid, calcium compound, and iron salt. グラニュール汚泥が保持された反応槽と、該反応槽にパルプ製造工程から排出された蒸発凝縮水を含む被処理水を導入する手段と、該反応槽から処理水を取り出す手段と、該処理水の波長380〜780nmの範囲の可視光の吸光度を測定する手段と、該吸光度の測定値に基いて、以下の(1)〜(3)のいずれか1以上を制御する手段とを備えることを特徴とする嫌気性処理装置。
(1) 該反応槽への被処理水の導入流量
(2) 該反応槽への栄養剤の添加量
(3) 該反応槽への高分子凝集剤の添加量
A reaction tank in which granule sludge is retained, means for introducing treated water containing evaporative condensed water discharged from the pulp production process into the reaction tank, means for taking out treated water from the reaction tank, and the treated water Means for measuring the absorbance of visible light in the wavelength range of 380 to 780 nm, and means for controlling one or more of the following (1) to (3) based on the measured value of the absorbance: An anaerobic treatment device characterized.
(1) Introduction flow rate of water to be treated into the reaction tank (2) Amount of nutrient added to the reaction tank (3) Amount of polymer flocculant added to the reaction tank
請求項3において、前記栄養剤が、硝酸、亜硝酸、糖質、塗工廃液、カルシウム化合物、及び鉄塩からなる群より選ばれる1以上を含むことを特徴とする嫌気性処理装置。   4. The anaerobic treatment apparatus according to claim 3, wherein the nutrient contains one or more selected from the group consisting of nitric acid, nitrous acid, sugar, coating waste liquid, calcium compound, and iron salt.
JP2010136744A 2010-06-16 2010-06-16 Anaerobic treatment method and anaerobic treatment apparatus Pending JP2012000556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010136744A JP2012000556A (en) 2010-06-16 2010-06-16 Anaerobic treatment method and anaerobic treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010136744A JP2012000556A (en) 2010-06-16 2010-06-16 Anaerobic treatment method and anaerobic treatment apparatus

Publications (1)

Publication Number Publication Date
JP2012000556A true JP2012000556A (en) 2012-01-05

Family

ID=45533187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010136744A Pending JP2012000556A (en) 2010-06-16 2010-06-16 Anaerobic treatment method and anaerobic treatment apparatus

Country Status (1)

Country Link
JP (1) JP2012000556A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202601A (en) * 2012-03-29 2013-10-07 Osaka Gas Co Ltd Method and device for treating organic waste water
JP2013208601A (en) * 2012-03-30 2013-10-10 Toshiba Corp Water treatment system
JP2013208558A (en) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd Method for treating kraft pulp wastewater
JP2014188486A (en) * 2013-03-28 2014-10-06 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus
JP2015058413A (en) * 2013-09-20 2015-03-30 水ing株式会社 Method and apparatus for organic waste water treatment and method and apparatus for production of chemical fertilizer
JP2015120169A (en) * 2015-03-30 2015-07-02 株式会社東芝 Water treatment system
WO2017183131A1 (en) * 2016-04-20 2017-10-26 三菱重工業株式会社 Filtration equipment, desalination plant comprising filtration equipment, and filtration method
CN107759023A (en) * 2017-11-17 2018-03-06 厦门大方海源环保设备有限公司 The recovery processing technique of condensed water after a kind of sludge incineration
CN109133345A (en) * 2018-10-12 2019-01-04 河北工程大学 A kind of method of quickly culturing anaerobic ammonium oxidation granular sludge
CN115259556A (en) * 2022-07-26 2022-11-01 上海净豚环保科技有限公司 Proliferation and cultivation method of anaerobic granular sludge for papermaking wastewater

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202601A (en) * 2012-03-29 2013-10-07 Osaka Gas Co Ltd Method and device for treating organic waste water
JP2013208601A (en) * 2012-03-30 2013-10-10 Toshiba Corp Water treatment system
JP2013208558A (en) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd Method for treating kraft pulp wastewater
JP2014188486A (en) * 2013-03-28 2014-10-06 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus
JP2015058413A (en) * 2013-09-20 2015-03-30 水ing株式会社 Method and apparatus for organic waste water treatment and method and apparatus for production of chemical fertilizer
JP2015120169A (en) * 2015-03-30 2015-07-02 株式会社東芝 Water treatment system
WO2017183131A1 (en) * 2016-04-20 2017-10-26 三菱重工業株式会社 Filtration equipment, desalination plant comprising filtration equipment, and filtration method
CN107759023A (en) * 2017-11-17 2018-03-06 厦门大方海源环保设备有限公司 The recovery processing technique of condensed water after a kind of sludge incineration
CN109133345A (en) * 2018-10-12 2019-01-04 河北工程大学 A kind of method of quickly culturing anaerobic ammonium oxidation granular sludge
CN115259556A (en) * 2022-07-26 2022-11-01 上海净豚环保科技有限公司 Proliferation and cultivation method of anaerobic granular sludge for papermaking wastewater

Similar Documents

Publication Publication Date Title
JP2012000556A (en) Anaerobic treatment method and anaerobic treatment apparatus
Zahrim et al. Pollutants analysis during conventional palm oil mill effluent (POME) ponding system and decolourisation of anaerobically treated POME via calcium lactate-polyacrylamide
Gao et al. Influence of elevated pH shocks on the performance of a submerged anaerobic membrane bioreactor
Ahmed et al. Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME)
Jiang et al. Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors
Sajjad et al. Development of a novel process to mitigate membrane fouling in a continuous sludge system by seeding aerobic granules at pilot plant
De Nardi et al. Performance evaluation and operating strategies of dissolved-air flotation system treating poultry slaughterhouse wastewater
Tu et al. Performance and fouling characteristics in a membrane sequence batch reactor (MSBR) system coupled with aerobic granular sludge
de Oliveira et al. Biological minimization of excess sludge in a membrane bioreactor: effect of plant configuration on sludge production, nutrient removal efficiency and membrane fouling tendency
Tian et al. Identifying proper agitation interval to prevent floating layers formation of corn stover and improve biogas production in anaerobic digestion
US7972511B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
Vijayalayan et al. Simultaneous nitrification denitrification in a batch granulation membrane airlift bioreactor
JP5261977B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
Fernández et al. Anaerobic treatment of fibreboard manufacturing wastewaters in a pilot scale hybrid USBF reactor
CN102923921B (en) Traditional Chinese medicine wastewater treatment process
CA2995801A1 (en) Use of fly ash in biological process of wastewater treatment systems
CN102351374B (en) Chloropropylene oxide wastewater and papermaking wastewater mixed processing method
AU732808B2 (en) Treatment of water
JP2008086862A (en) Anaerobic treatment method and arrangement
JP2012210584A (en) Method for treating kraft pulp wastewater
Sheldon et al. Treatment of paper mill effluent using an anaerobic/aerobic hybrid side-stream membrane bioreactor
JP6474301B2 (en) Dehydration method, wastewater treatment method, and wastewater treatment device
JP2012000557A (en) Anaerobic treatment method and anaerobic treatment apparatus
CN100467402C (en) Upward flow type composite anaerobic hydrolysis and acidification treater, and method
Liu et al. Comparison of membrane fouling in dead-end microfiltration of denitrifying granular sludge suspension and its supernatant