JP2011523430A - Composite containing kenaf microfiber blended with polypropylene or polylactic acid - Google Patents

Composite containing kenaf microfiber blended with polypropylene or polylactic acid Download PDF

Info

Publication number
JP2011523430A
JP2011523430A JP2011509169A JP2011509169A JP2011523430A JP 2011523430 A JP2011523430 A JP 2011523430A JP 2011509169 A JP2011509169 A JP 2011509169A JP 2011509169 A JP2011509169 A JP 2011509169A JP 2011523430 A JP2011523430 A JP 2011523430A
Authority
JP
Japan
Prior art keywords
polypropylene
kenaf
weight
polylactic acid
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011509169A
Other languages
Japanese (ja)
Inventor
スビヤット
バムバング スビヤント
エウイス ヘルミアティ
デデ ヘリ ユリ ヤント
フィトリア
クルニア ウィジ プラセトヨ
イスマリ ブディマン
イスマディ
ウィングキー クルニアワン
隆嗣 稲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Indonesian Institute Of Sciences Lipi
Original Assignee
Indonesian Institute Of Sciences Lipi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Indonesian Institute Of Sciences Lipi filed Critical Indonesian Institute Of Sciences Lipi
Publication of JP2011523430A publication Critical patent/JP2011523430A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Abstract

本発明は、ケナフ(Hibiscus cannabinus)靭皮微繊維と、ポリプロピレン及び/又はポリ乳酸のポリマーとの混合物を含み、上記微繊維を20〜80重量%含有している複合材料に関する。本発明によれば、ケナフ微繊維とポリプロピレン又はポリ乳酸のマトリックスとを含む、高強度で環境にやさしい自動車構成材のための複合材料を達成できる。
【選択図】なし
The present invention relates to a composite material containing a mixture of kenaf (Hibiscus cannabinus) bast microfibers and a polymer of polypropylene and / or polylactic acid and containing 20 to 80% by weight of the microfibers. ADVANTAGE OF THE INVENTION According to this invention, the composite material for the automotive component which is high intensity | strength and which is easy to contain including the matrix of a kenaf microfiber and a polypropylene or polylactic acid can be achieved.
[Selection figure] None

Description

本発明は自動車構成材に適用するコンポジット材及びこれを生産する方法に関する。特に、本発明は、ケナフ靭皮ミクロ繊維とポリプロピレン(PP)またはポリ乳酸(PLA)とから構成される、高強度及び環境にやさしいコンポジット材に関する。   The present invention relates to a composite material applied to automobile components and a method for producing the same. In particular, the present invention relates to a high-strength and environmentally friendly composite material composed of kenaf bast microfiber and polypropylene (PP) or polylactic acid (PLA).

クリーンな開発計画による環境品質の改良は、世界中の大部分の国中の優先的な問題である。例えば、自動車産業において、ガラス繊維、炭素及びアラミド繊維のような環境を汚染する材料を利用することが徐々に削減され、「緑色の車(Green Car)」を作るために、代わりに天然繊維が利用される。例えば、欧州連合の使用済み自動車計画では、2015年に、すべての新車が95%のリサイクル可能な材料を有するべきであると要求している(Marsh 2003)。したがって、天然繊維で補強される複合体は、重要な役割を演じ、この世紀における革命的な材料となる可能性がある(Marsh 2003)。合成繊維と比較して天然繊維を使用する幾つかの効果としては、更新可能であること、生物分解性があること、リサイクル可能であること、環境及び健康に非毒性であること、より軽い密度であること、より良好な機械的特性を示すこと、器具に対して非研磨性であること、及び低い価格であることが挙げられる(Zimmermann et al. 2004, Oksman et al. 2003, Wambua et al. 2003, Mohanty et al. 2002, Leao et al. 1998)。天然繊維を利用することで、40%まで自動車重量を低減し、グラスファイバ(30GJ/トン)と比較して天然繊維製造に要するエネルギーを低減できる(4GJ/トン)。また、グラスファイバの製造により毒性ガス(例えばCO、窒素酸化物、SO及びダスト)が放出される(Marsh 2003)。天然繊維複合体の利用によって多くの利点が得られるが、幾つかの欠点も認識される。天然繊維は親水性という性質をもち、疎水性である高分子マトリックスと組み合わせても、相溶性が低い。天然繊維は、繊維脆化を回避するため約200℃程度といった低温での処理が必要となる(Nakagaito et al. 2005)。この欠点を克服するため、基質中にカップリング剤を添加したり、改良された処理方法を適用したりする。 Improving environmental quality through a clean development plan is a priority issue in most countries around the world. For example, in the automotive industry, the use of environmentally polluting materials such as glass fiber, carbon and aramid fibers has been gradually reduced, and instead of using natural fibers to create a “Green Car”. Used. For example, the European Union end-of-life vehicle program requires that all new cars should have 95% recyclable materials in 2015 (Marsh 2003). Therefore, composites reinforced with natural fibers play an important role and could be a revolutionary material in this century (Marsh 2003). Some effects of using natural fibers compared to synthetic fibers are: renewable, biodegradable, recyclable, non-toxic to the environment and health, lighter density , Better mechanical properties, non-abrasive to the instrument, and low cost (Zimmermann et al. 2004, Oksman et al. 2003, Wambua et al 2003, Mohanty et al. 2002, Leao et al. 1998). By using natural fibers, the vehicle weight can be reduced to 40%, and the energy required for natural fiber production can be reduced (4 GJ / ton) compared to glass fiber (30 GJ / ton). In addition, the production of glass fibers releases toxic gases (eg CO 2 , nitrogen oxides, SO x and dust) (Marsh 2003). Although the use of natural fiber composites provides many advantages, several disadvantages are also recognized. Natural fibers have a hydrophilic property and have low compatibility even when combined with a hydrophobic polymer matrix. Natural fibers need to be treated at a low temperature of about 200 ° C. to avoid fiber embrittlement (Nakagaito et al. 2005). In order to overcome this drawback, a coupling agent is added to the substrate or an improved processing method is applied.

十分な可能性がある天然繊維の一種としてケナフ(Hibiscus cannabinus)がある。ケナフは、高さが4〜5mに達し、茎計が4〜5cmとなる一年草であり、成長速度が速い。ケナフは一年中植えることができ、そして、いかなる高所でも育つ、収穫時間は約120日間である。乾燥重量基準に、本幹上の靭皮繊維含有量は21%から36%の範囲である。ケナフ靭皮繊維の寸法は、長さ2〜3mmおよび幅15〜25マイクロメートルである。   One kind of natural fiber that has sufficient potential is kenaf (Hibiscus cannabinus). Kenaf is an annual grass with a height of 4 to 5 m and a stem total of 4 to 5 cm, and has a high growth rate. Kenaf can be planted all year round and grows at any height, harvest time is about 120 days. Based on dry weight, the bast fiber content on the trunk is in the range of 21% to 36%. The dimensions of kenaf bast fibers are 2-3 mm long and 15-25 micrometers wide.

ケナフ靭皮繊維を化学内容は、以下の通りである:
セルロース(44〜62%)、ヘミセルロース(14〜20%)、リグニン(6〜9%)及びペクチン(4〜5%)。
The chemical content of kenaf bast fiber is as follows:
Cellulose (44-62%), hemicellulose (14-20%), lignin (6-9%) and pectin (4-5%).

ケナフ靭皮繊維を密度は1.47g/cmであるが、引張り強度は479〜1600MPaであり、ヤング率は18.2GPaである。工業に使用される原料としてケナフには十分な可能性がある。これは、収量が1haにつき約1.5〜5トン(乾燥繊維換算)であるからである。ケナフは、速い光合成速度を有することを意味する1日7〜8cmの速さで生育し、大量の二酸化炭素を吸収できる。それ故、地球温暖化を低減するために植えることができる。 The density of the kenaf bast fiber is 1.47 g / cm 3 , but the tensile strength is 479 to 1600 MPa, and the Young's modulus is 18.2 GPa. Kenaf has sufficient potential as a raw material used in industry. This is because the yield is about 1.5 to 5 tons (in terms of dry fiber) per ha. Kenaf grows at a rate of 7-8 cm per day, meaning it has a fast photosynthetic rate, and can absorb large amounts of carbon dioxide. Therefore it can be planted to reduce global warming.

繊維サイズは、自動車構成材のための複合体を製造する際に非常に重要な因子となる。複合体の強度を向上させるため、ミクロ原線維セルロース(MFC)のような、より小さな繊維サイズが必要とされる。米国特許20060147695は、100マイクロメートル〜20mmのケナフ繊維とポリ乳酸の高分子マトリックスとを含む、ケナフ繊維強化複合体を電気および電子設備製品に使用することを記載している。   Fiber size is a very important factor in producing composites for automotive components. In order to improve the strength of the composite, smaller fiber sizes, such as microfibrillar cellulose (MFC), are required. U.S. Patent No. 20060147695 describes the use of kenaf fiber reinforced composites for electrical and electronic equipment products comprising kenaf fibers of 100 micrometers to 20 mm and a polymeric matrix of polylactic acid.

米国特許第5973035号は、樹脂(例えば熱可塑性樹脂)と、少なくとも約2重量%(より好ましくは、少なくとも約5重量%)の織地化されたセルロース系繊維又はリグノセルロース系繊維とを含む複合体に特徴を有する発明を記述している。また、この発明は、ポリエチレンと少なくとも約50重量%の織地化されたセルロース系繊維又はリグノセルロース系繊維とを含む複合体に特徴を有する。当該複合体は、少なくとも約3,000psiの曲げ強度又は少なくとも約3,000psiを引張り強度を有している。複合体を製造する方法は、セルロース系繊維又はリグノセルロース系繊維をせん断して、織地化されたセルロース系繊維又はリグノセルロース系繊維を形成する工程と、せん断された繊維に樹脂を組み合わせる工程とを含んでいる。この方法において、回転ナイフ・カッターで繊維をせん断することが好ましい。せん断することにより、内部の繊維が実質的に曝されることになる。せん断した後、織地化されたセルロース系繊維又はリグノセルロース系繊維の少なくとも約50%(より好ましくは、少なくとも約70%)は、長さ/直径(L/D)比率が少なくとも5、より好ましくは少なくとも25又は少なくとも50となる。   US Pat. No. 5,973,035 discloses a composite comprising a resin (eg, a thermoplastic resin) and at least about 2% by weight (more preferably at least about 5% by weight) of woven cellulosic or lignocellulosic fibers. The invention having the characteristics is described. The invention is also characterized by a composite comprising polyethylene and at least about 50% by weight of woven cellulosic or lignocellulosic fibers. The composite has a flexural strength of at least about 3,000 psi or a tensile strength of at least about 3,000 psi. A method for producing a composite includes a step of shearing cellulosic fibers or lignocellulosic fibers to form a woven cellulose fiber or lignocellulosic fibers, and a step of combining a resin with the sheared fibers. Contains. In this method, it is preferable to shear the fiber with a rotary knife / cutter. By shearing, the internal fibers are substantially exposed. After shearing, at least about 50% (more preferably at least about 70%) of the woven cellulosic or lignocellulosic fibers have a length / diameter (L / D) ratio of at least 5, more preferably At least 25 or at least 50.

米国特許第4559376号は、セルロース原料又はリグノセルロース原料とプラスチックに基づく複合体の製造方法を記述する。この方法によれば、セルロース原料又はリグノセルロース原料は、複合化工程又は処理工程に先立って若しくはその最中に、加水分解前処理又は他の化学的分解処理に供される。これにより、セルロース原料又はリグノセルロース原料の粉砕及びプラスチックへの改善された分散を達成することができる。熱可塑性複合体は、加水分解前処理されたセルロース原料又はリグノセルロース原料を最大40重量%含有する。マスターバッチ濃縮物は、加水分解前処理されたセルロース原料又はリグノセルロース原料を最大70重量%含有するように製造される。   U.S. Pat. No. 4,559,376 describes a method for producing a composite based on a cellulose or lignocellulose raw material and a plastic. According to this method, the cellulose raw material or lignocellulose raw material is subjected to a hydrolysis pretreatment or other chemical decomposition treatment prior to or during the compounding step or treatment step. Thereby, the grinding | pulverization of a cellulose raw material or a lignocellulose raw material and the improved dispersion | distribution to a plastic can be achieved. The thermoplastic composite contains a cellulose raw material or lignocellulose raw material that has been pre-hydrolyzed, up to 40% by weight. The masterbatch concentrate is produced to contain up to 70% by weight of a cellulose raw material or lignocellulose raw material that has been pre-hydrolyzed.

米国特許第6939903号は、以下の工程:a)反応性オルガノシランを有する天然繊維の大きさを設定する工程;b)ポリオレフィン系樹脂と大きさを設定された天然繊維を混合する工程;c)前記大きさを設定された天然繊維及びポリオレフィン系樹脂の混合物に官能化ポリオレフィン・カップリング剤を添加して、複合体材料を提供する工程を含む、複合体材料を準備する方法を記述している。   US Pat. No. 6,939,903 discloses the following steps: a) setting the size of a natural fiber having a reactive organosilane; b) mixing a polyolefin-based resin with a set size of natural fiber; c) Describes a method of preparing a composite material, including the step of providing a composite material by adding a functionalized polyolefin coupling agent to the sized natural fiber and polyolefin resin mixture. .

米国特許第5973035号US Pat. No. 5,973,035 米国特許第4559376号U.S. Pat. No. 4,559,376 米国特許第6939903号US Pat. No. 6,939,903

本発明は、ケナフ微繊維及びポリプロピレン又はポリ乳酸マトリックスを含み、高強度で環境にやさしい、自動車構成材のための複合材料を取得することを目的としている。当該目的は、請求の範囲に述べられた製品及び方法により達成される。   The object of the present invention is to obtain a composite material for automotive components which contains kenaf fine fibers and polypropylene or polylactic acid matrix and is high in strength and environmentally friendly. The object is achieved by the products and methods described in the claims.

本発明は、ケナフ微繊維とポリプロピレン(PP)及び/又はポリ乳酸(PLA)のポリマーとの混合物を含む、自動車構成材のための複合体製品に関する。   The present invention relates to a composite product for automotive components comprising a mixture of kenaf fine fibers and a polymer of polypropylene (PP) and / or polylactic acid (PLA).

ケナフ繊維は、まず第1に、パルプに加工され、そして、石のグラインダを使用してフィブリル化した。ケナフ繊維は、10〜50μmの直径サイズを有して、好ましくは、ポリマーに混合される。   The kenaf fibers were first processed into pulp and fibrillated using a stone grinder. The kenaf fiber has a diameter size of 10-50 μm and is preferably mixed with the polymer.

ケナフ微繊維およびポリプロピレン(PP)の複合体は、例えば170〜190℃、50〜70rpmで10〜30分間、ミキサー(Labo plastomill)内で、顆粒のポリプロピレン(PP)と乾性パルプを混合することにより作られる。ケナフ微繊維の量は、40〜80重量%(複合体重量)とした。混合中、カップリング剤として無水マレイン酸ポリプロピレン(MAPP)を、例えば3〜12.5重量%(複合体重量)添加することが好ましい。原料混合物は、Labo plastomillから取り除かれ、テフロン製シートを有するプレート上に載置し、マット状とした。そして、その後、熱間圧縮加工に供した。熱間圧縮加工は、例えば170〜190℃で、例えば1MPaの圧力で30〜60秒間で実行される。熱間圧縮加工の後、プレートは直ちに、例えば1MPaの圧力で3〜7分間の冷間圧縮におかれる。その後、当該プレートよりボードが取り出される。   The composite of kenaf fine fiber and polypropylene (PP) is obtained by mixing granular polypropylene (PP) and dry pulp in a mixer (Labo plasticmill) for 10 to 30 minutes at 170 to 190 ° C. and 50 to 70 rpm, for example. Made. The amount of kenaf fine fiber was 40 to 80% by weight (composite weight). During mixing, it is preferable to add, for example, 3 to 12.5% by weight (complex weight) of maleic anhydride polypropylene (MAPP) as a coupling agent. The raw material mixture was removed from the Labo plastomill and placed on a plate having a Teflon sheet to form a mat. Then, it was subjected to hot compression processing. Hot compression processing is performed at 170 to 190 ° C., for example, at a pressure of 1 MPa for 30 to 60 seconds, for example. After hot pressing, the plate is immediately subjected to cold pressing for 3-7 minutes, for example at a pressure of 1 MPa. Thereafter, the board is removed from the plate.

ケナフ微繊維とポリ乳酸(PLA)との複合体ボードは以下のようになされる。まず第1に、PLAをジクロロメタン中に溶解し、室温で撹拌する。ウェットパルプを溶解したPLAに投入し、ホモジナイズされるまで撹拌する。混合中、可塑剤としてトリアセチンを例えば3〜9重量%(複合体重量)で添加することが好ましい。ケナフ微繊維の量は、30〜60重量%(複合体重量)とすることが好ましい。混合物は、オーブンの中で、例えば60〜105℃、12〜36時間で乾燥される。乾燥した混合物は、例えば160〜180℃、50〜70rpmで10〜30分間、ミキサー(Labo plastomill)内で更に処理される。混合物は、取り除かれ、テフロン製シートを有するプレート上に載置し、マット状とした。そして、その後、熱間圧縮加工に供した。熱間圧縮加工は、例えば170〜190℃で、例えば1MPaの圧力で30〜60秒間で実行される。熱間圧縮加工の後、プレートは直ちに、例えば1MPaの圧力で3〜7分間の冷間圧縮におかれる。その後、当該プレートよりボードが取り出される。   A composite board of kenaf fine fibers and polylactic acid (PLA) is made as follows. First, PLA is dissolved in dichloromethane and stirred at room temperature. The wet pulp is put into the dissolved PLA and stirred until homogenized. During mixing, it is preferable to add 3-9% by weight (complex weight) of triacetin as a plasticizer. The amount of kenaf fine fiber is preferably 30 to 60% by weight (composite weight). The mixture is dried in an oven, for example at 60-105 ° C. for 12-36 hours. The dried mixture is further processed in a mixer (Labo plastmill), for example at 160-180 ° C., 50-70 rpm for 10-30 minutes. The mixture was removed and placed on a plate with a Teflon sheet to form a mat. Then, it was subjected to hot compression processing. Hot compression processing is performed at 170 to 190 ° C., for example, at a pressure of 1 MPa for 30 to 60 seconds, for example. After hot pressing, the plate is immediately subjected to cold pressing for 3-7 minutes, for example at a pressure of 1 MPa. Thereafter, the board is removed from the plate.

下記の図を使用して本発明を詳述した。   The invention has been described in detail using the following figures.

図1は、本発明に係る、ポリプロピレン(PP)とケナフ微繊維の複合体に関する調製法プロセスのフローチャートを示す。FIG. 1 shows a flow chart of a preparation process for a composite of polypropylene (PP) and kenaf fine fibers according to the present invention. 図2は、本発明に係る、ポリ乳酸(PLA)とケナフ微繊維の複合体に関する調製法プロセスのフローチャートを示す。FIG. 2 shows a flowchart of the preparation process for a composite of polylactic acid (PLA) and kenaf microfibers according to the present invention.

まず第1に、ケナフ繊維をパルプに加工し、そして、石のグラインダを使用してフィブリル化することで、好ましくは10〜50μmのサイズを有するようにし、ポリマーに混合された。   First, the kenaf fibers were processed into pulp and fibrillated using a stone grinder, preferably having a size of 10-50 μm and mixed with the polymer.

図1に従って、ケナフ微繊維およびポリプロピレン(PP)の複合体は、例えば170〜190℃、50〜70rpmで10〜30分間、ミキサー(Labo plastomill)内で、顆粒のポリプロピレン(PP)と乾性パルプを混合することにより作られた。ケナフ微繊維の量は、40、50、60、70及び80重量%(複合体重量)とした。混合中、カップリング剤として無水マレイン酸ポリプロピレン(MAPP)を、3、5、7.5、10及び12.5重量%(複合体重量)となるように添加した。原料混合物は、Labo plastomillから取り除かれ、テフロン製シートを有するプレート上に載置し、マット状とした。そして、その後、熱間圧縮加工に供した。熱間圧縮加工は、170〜190℃で、1MPaの圧力で30〜60秒間で実行した。熱間圧縮加工の後、プレートは直ちに、1MPaの圧力で3〜7分間の冷間圧縮におかれた。その後、当該プレートよりボードが取り出された。   According to FIG. 1, a composite of kenaf fine fiber and polypropylene (PP) is obtained by mixing granular polypropylene (PP) and dry pulp in a mixer (Labo plastic mill) for 10 to 30 minutes at 170 to 190 ° C. and 50 to 70 rpm, for example. Made by mixing. The amount of kenaf fine fiber was 40, 50, 60, 70 and 80% by weight (composite weight). During the mixing, maleic anhydride polypropylene (MAPP) was added as a coupling agent to 3, 5, 7.5, 10, and 12.5% by weight (complex weight). The raw material mixture was removed from the Labo plastomill and placed on a plate having a Teflon sheet to form a mat. Then, it was subjected to hot compression processing. The hot compression process was performed at 170 to 190 ° C. and a pressure of 1 MPa for 30 to 60 seconds. After hot pressing, the plate was immediately placed in cold compression for 3-7 minutes at a pressure of 1 MPa. Thereafter, the board was removed from the plate.

図2に従って、ケナフ微繊維とポリ乳酸(PLA)との複合体ボードは以下のようになされる。まず第1に、PLAをジクロロメタン中に溶解し、室温で撹拌した。ウェットパルプと可塑剤としてのトリアセチンとを、溶解したPLAに投入し、ホモジナイズされるまで撹拌した。ケナフ微繊維の量は、30、40、50及び60重量%(複合体重量)とした。添加されたトリアセチンの量は、3、5、7及び9重量%(複合体重量)とした。混合物は、オーブンの中で60〜105℃、12〜36時間で乾燥された。乾燥した混合物は、160〜180℃、50〜70rpmで10〜30分間、ミキサー(Labo plastomill)内で更に処理された。混合物は、取り除かれ、テフロン製シートを有するプレート上に載置し、マット状とした。そして、その後、熱間圧縮加工に供した。熱間圧縮加工は、170〜190℃、1MPaの圧力で30〜60秒間で実行された。熱間圧縮加工の後、プレートは直ちに、1MPaの圧力で3〜7分間の冷間圧縮におかれた。その後、当該プレートよりボードが取り出された。   According to FIG. 2, the composite board of kenaf fine fiber and polylactic acid (PLA) is made as follows. First, PLA was dissolved in dichloromethane and stirred at room temperature. Wet pulp and triacetin as a plasticizer were added to the dissolved PLA and stirred until homogenized. The amount of kenaf fine fiber was 30, 40, 50 and 60% by weight (composite weight). The amount of triacetin added was 3, 5, 7, and 9% by weight (complex weight). The mixture was dried in an oven at 60-105 ° C. for 12-36 hours. The dried mixture was further processed in a mixer (Labo blastmill) at 160-180 ° C., 50-70 rpm for 10-30 minutes. The mixture was removed and placed on a plate with a Teflon sheet to form a mat. Then, it was subjected to hot compression processing. The hot compression processing was performed at 170 to 190 ° C. and 1 MPa for 30 to 60 seconds. After hot pressing, the plate was immediately placed in cold compression for 3-7 minutes at a pressure of 1 MPa. Thereafter, the board was removed from the plate.

得られたボードを50x150mmの供試片に加工した。供試片の両端を100mmの幅長を有するように自由に支持した。上記幅長の中心に50mm/分で荷重をかけ、たわみ量を測定した。そして、それぞれの供試片につき、荷重-たわみ曲線が得られた。供試片が破壊される荷重の値を最大曲げ荷重(50mm幅における)と定義した。曲げ弾性勾配は、荷重-たわみ曲線の荷重初期での線形領域における歪み量及び曲げ荷重から計算される、1cmのたわみでの曲げ荷重として定義される。試験結果を表1〜4に示した。   The obtained board was processed into a 50 × 150 mm test piece. Both ends of the test piece were freely supported so as to have a width of 100 mm. A load was applied to the center of the width length at 50 mm / min, and the amount of deflection was measured. A load-deflection curve was obtained for each specimen. The value of the load at which the specimen was broken was defined as the maximum bending load (at 50 mm width). The bending elastic gradient is defined as a bending load at a deflection of 1 cm, which is calculated from a strain amount and a bending load in the linear region at the initial stage of the load-deflection curve. The test results are shown in Tables 1-4.

Figure 2011523430
Figure 2011523430
Figure 2011523430
Figure 2011523430
Figure 2011523430
Figure 2011523430
Figure 2011523430
Figure 2011523430

上記の結果に基づいて、ケナフ微繊維及びPPの複合体は、5%のMAPPを添加した50:50の比率を有するものが好ましいといえる。一方、ケナフ微繊維及びPLAの複合体は、7%のトリアセチンを添加した50:50の比率を有するものが好ましいといえる。   Based on the above results, it can be said that the composite of kenaf fine fiber and PP preferably has a ratio of 50:50 to which 5% MAPP is added. On the other hand, it can be said that the composite of kenaf fine fibers and PLA preferably has a ratio of 50:50 to which 7% of triacetin is added.

Claims (13)

ケナフ(Hibiscus cannabinus)靭皮微繊維と、ポリプロピレン及び/又はポリ乳酸のポリマーとの混合物を含み、上記微繊維を20〜80重量%含有している複合材料。   A composite material containing a mixture of kenaf (Hibiscus cannabinus) bast microfibers and a polymer of polypropylene and / or polylactic acid and containing 20 to 80% by weight of the microfibers. 上記微繊維の径が10〜50μmであることを特徴とする請求項1記載の複合材料。   The composite material according to claim 1, wherein the fine fiber has a diameter of 10 to 50 μm. 上記ポリマーがポリプロピレンを有する場合、上記混合物は無水マレイン酸ポリプロピレン(MAPP)を更に含有することを特徴とする請求項1記載の複合材料。   2. The composite material according to claim 1, wherein when the polymer comprises polypropylene, the mixture further comprises maleic anhydride polypropylene (MAPP). 上記無水マレイン酸ポリプロピレン(MAPP)の含有量が3〜12.5重量%であることを特徴とする請求項3記載の複合材料。   4. The composite material according to claim 3, wherein the content of maleic anhydride polypropylene (MAPP) is 3 to 12.5% by weight. 上記ポリマーがポリ乳酸を有する場合、上記混合物はトリアセチンを更に含有することを特徴とする請求項1記載の複合材料。   The composite material according to claim 1, wherein, when the polymer has polylactic acid, the mixture further contains triacetin. 上記トリアセチンの含有量が3〜9重量%であることを特徴とする請求項5記載の複合材料。   6. The composite material according to claim 5, wherein the content of triacetin is 3 to 9% by weight. 密度が0.8〜1.4g/cmの範囲であることを特徴とする請求項1記載の複合材料。 The composite material according to claim 1, wherein the density is in a range of 0.8 to 1.4 g / cm 3 . ケナフ(Hibiscus cannabinus)靭皮微繊維と、ポリプロピレン及び/又はポリ乳酸のポリマーとを含む複合材料の製造方法であって、
a)上記靭皮微繊維と上記ポリプロピレン及び/又はポリ乳酸のポリマーとを、当該微繊維が20〜80重量%の量で混合する工程と、
b)ステップa)の結果として得られる産物を熱間圧縮する工程と、
c)ステップb)の結果として得られる産物を冷間圧縮する工程と
を含む製造方法。
A method for producing a composite material comprising kenaf (Hibiscus cannabinus) bast microfibers and a polymer of polypropylene and / or polylactic acid,
a) a step of mixing the bast fine fiber and the polypropylene and / or polylactic acid polymer in an amount of 20 to 80% by weight of the fine fiber;
b) hot compressing the product obtained as a result of step a);
c) cold compressing the product obtained as a result of step b).
上記微繊維の径が10〜50μmであることを特徴とする請求項8記載の製造方法。   9. The production method according to claim 8, wherein the fine fiber has a diameter of 10 to 50 [mu] m. 上記ポリマーがポリプロピレンを有する場合、上記混合物は無水マレイン酸ポリプロピレン(MAPP)を更に含有することを特徴とする請求項8記載の製造方法。   9. The method according to claim 8, wherein when the polymer has polypropylene, the mixture further contains maleic anhydride polypropylene (MAPP). 上記無水マレイン酸ポリプロピレン(MAPP)の含有量が3〜12.5重量%であることを特徴とする請求項10記載の製造方法。   The method according to claim 10, wherein the content of the maleic anhydride polypropylene (MAPP) is 3 to 12.5% by weight. 上記ポリマーがポリ乳酸を有する場合、上記混合物はトリアセチンを更に含有することを特徴とする請求項8記載の製造方法。   9. The method according to claim 8, wherein when the polymer has polylactic acid, the mixture further contains triacetin. 上記トリアセチンの含有量が3〜9重量%であることを特徴とする請求項12記載の製造方法。   The method according to claim 12, wherein the content of triacetin is 3 to 9% by weight.
JP2011509169A 2008-05-16 2009-05-18 Composite containing kenaf microfiber blended with polypropylene or polylactic acid Pending JP2011523430A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IDP00200800265 2008-05-16
ID20080265 2008-05-16
PCT/JP2009/059479 WO2009139508A1 (en) 2008-05-16 2009-05-18 Composites of kenaf micro fiber with polypropylene or polylactic acid

Publications (1)

Publication Number Publication Date
JP2011523430A true JP2011523430A (en) 2011-08-11

Family

ID=40847009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011509169A Pending JP2011523430A (en) 2008-05-16 2009-05-18 Composite containing kenaf microfiber blended with polypropylene or polylactic acid

Country Status (3)

Country Link
JP (1) JP2011523430A (en)
CN (1) CN102099404A (en)
WO (1) WO2009139508A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106750962A (en) * 2016-12-28 2017-05-31 无限极(中国)有限公司 A kind of compound dregs of a decoction fibrous material and its preparation method and application
WO2020071434A1 (en) * 2018-10-03 2020-04-09 古河電気工業株式会社 Resin molding and resin composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101624592B1 (en) 2011-06-23 2016-05-27 브리티시 아메리칸 토바코 (인베스트먼츠) 리미티드 Filter material comprising polylactide fibres
GB201112402D0 (en) 2011-07-19 2011-08-31 British American Tobacco Co Cellulose acetate compositions
CZ306879B6 (en) * 2012-10-25 2017-08-23 Technická Univerzita V Liberci, Katedra Strojírenské Technologie, Oddělení Tváření Kovů A Zpracování Plastů A biocomposite with a PLA matrix and banana fibres
CN105143542B (en) 2013-03-15 2018-09-21 Gpcp知识产权控股有限责任公司 The supatex fabric for the short bast fiber individually changed and the product being produced from it
KR101575458B1 (en) 2014-03-07 2015-12-07 현대자동차주식회사 Polyolefin-natural fiber composites for extrusion molding
WO2016026920A1 (en) * 2014-08-21 2016-02-25 Styrolution Group Gmbh Polylactic acid composites with natural fibers
TWI525103B (en) 2014-12-29 2016-03-11 財團法人工業技術研究院 Modified cellulose and composite material using the same
CN114907644A (en) * 2021-02-10 2022-08-16 北京联合金玉商业管理有限公司 Environment-friendly plastic composition and plastic product thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130796A (en) * 2002-09-18 2004-04-30 Araco Corp Fibrous board and its manufacturing method
JP2005060556A (en) * 2003-08-14 2005-03-10 Unitika Ltd Resin composition and molded product comprising the same
JP2005161727A (en) * 2003-12-03 2005-06-23 Toyota Boshoku Corp Method for producing fiber molding
JP2005176754A (en) * 2003-12-22 2005-07-07 Kanebo Ltd Grass-proofing sheet
JP2005262559A (en) * 2004-03-17 2005-09-29 Toyota Boshoku Corp Method for producing woody molding
JP2006002052A (en) * 2004-06-18 2006-01-05 Mitsubishi Chemicals Corp Composite resin composition and molding of the same
JP2006328138A (en) * 2005-05-24 2006-12-07 Matsushita Electric Works Ltd Method for producing molded product of plant fiber-resin composite and the molded product of the plant fiber-resin composite
JP2007211192A (en) * 2006-02-13 2007-08-23 Sekisui Seikei Ltd Polyester-based resin
JP2007321080A (en) * 2006-06-01 2007-12-13 Daicel Polymer Ltd Automotive structural part
JP2010241986A (en) * 2009-04-07 2010-10-28 Toyota Boshoku Corp Method of producing thermoplastic resin composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708706B2 (en) * 2002-01-16 2011-06-22 イーストマン ケミカル カンパニー Novel carbohydrate esters and polyol esters as plasticizers for polymers, compositions and products containing such plasticizers and methods for their use
JP2005105245A (en) * 2003-01-10 2005-04-21 Nec Corp Kenaf fiber-reinforced resin composition
CN100363432C (en) * 2003-01-10 2008-01-23 日本电气株式会社 Kenaf-fiber-reinforced resin composition
CN100404594C (en) * 2003-07-30 2008-07-23 三菱树脂株式会社 Injection molded article, production method thereof and pellets used for injection molded article
JP3862697B2 (en) * 2003-12-26 2006-12-27 株式会社ジャムコ Thermosetting composite material molding equipment
US8304490B2 (en) * 2004-07-22 2012-11-06 Teijin Limited Polylactic acid and manufacturing process thereof
US20060128870A1 (en) * 2004-12-10 2006-06-15 Marx Ryan E Filled polymer composites
EP1937459A4 (en) * 2005-10-21 2009-12-09 Univ Clemson Composite polymeric materials from renewable resources

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130796A (en) * 2002-09-18 2004-04-30 Araco Corp Fibrous board and its manufacturing method
JP2005060556A (en) * 2003-08-14 2005-03-10 Unitika Ltd Resin composition and molded product comprising the same
JP2005161727A (en) * 2003-12-03 2005-06-23 Toyota Boshoku Corp Method for producing fiber molding
JP2005176754A (en) * 2003-12-22 2005-07-07 Kanebo Ltd Grass-proofing sheet
JP2005262559A (en) * 2004-03-17 2005-09-29 Toyota Boshoku Corp Method for producing woody molding
JP2006002052A (en) * 2004-06-18 2006-01-05 Mitsubishi Chemicals Corp Composite resin composition and molding of the same
JP2006328138A (en) * 2005-05-24 2006-12-07 Matsushita Electric Works Ltd Method for producing molded product of plant fiber-resin composite and the molded product of the plant fiber-resin composite
JP2007211192A (en) * 2006-02-13 2007-08-23 Sekisui Seikei Ltd Polyester-based resin
JP2007321080A (en) * 2006-06-01 2007-12-13 Daicel Polymer Ltd Automotive structural part
JP2010241986A (en) * 2009-04-07 2010-10-28 Toyota Boshoku Corp Method of producing thermoplastic resin composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106750962A (en) * 2016-12-28 2017-05-31 无限极(中国)有限公司 A kind of compound dregs of a decoction fibrous material and its preparation method and application
CN106750962B (en) * 2016-12-28 2021-01-05 无限极(中国)有限公司 Composite medicine residue fiber material and preparation method and application thereof
WO2020071434A1 (en) * 2018-10-03 2020-04-09 古河電気工業株式会社 Resin molding and resin composition
JPWO2020071434A1 (en) * 2018-10-03 2021-09-02 古河電気工業株式会社 Resin molded product and resin composition
JP7354134B2 (en) 2018-10-03 2023-10-02 古河電気工業株式会社 Resin molded bodies and resin compositions
US11905399B2 (en) 2018-10-03 2024-02-20 Furukawa Electric Co., Ltd. Resin formed body and resin composition

Also Published As

Publication number Publication date
WO2009139508A1 (en) 2009-11-19
CN102099404A (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP2011523430A (en) Composite containing kenaf microfiber blended with polypropylene or polylactic acid
Sullins et al. Hemp fiber reinforced polypropylene composites: The effects of material treatments
Faruk et al. Biocomposites reinforced with natural fibers: 2000–2010
Yusoff et al. Mechanical properties of short random oil palm fibre reinforced epoxy composites
Mohanty et al. Engineered natural fiber reinforced polypropylene composites: influence of surface modifications and novel powder impregnation processing
Ismail et al. Mechanical properties of rice straw fiber-reinforced polymer composites
Sari et al. Synthesis and properties of pandanwangi fiber reinforced polyethylene composites: Evaluation of dicumyl peroxide (DCP) effect
US6767634B2 (en) Fibrillated bast fibers as reinforcement for polymeric composites
Pan et al. Preparation and properties of wheat straw fiber-polypropylene composites. Part II. Investigation of surface treatments on the thermo-mechanical and rheological properties of the composites
Srebrenkoska et al. Biocomposites based on polylactic acid and their thermal behavior after recycing
Bhoopathi et al. Studies on mechanical strengths of hemp-glass fibre reinforced epoxy composites
Biswas et al. Bamboo fibre-reinforced self-compatibilizing functionalized polypropylene composites by Palsule process
Kumar et al. Recent developments of lignocellulosic natural fiber reinforced hybrid thermosetting composites for high-end structural applications: A review
Tran et al. Influence of biowaste additive and treated short woven flax fibers on the flame retardancy and mechanical properties of PP composites
Ray et al. Mechanical, thermal and microstructural studies of Bauhinia Vahlii fiber reinforced polypropylene composite
Subyakto et al. Injection molded of bio-micro-composites from natural fibers and polylactic acid
Guedes et al. Thermoplastics polymers reinforced with natural fibers
Marcovich et al. Resin–sisal and wood flour composites made from unsaturated polyester thermosets
Li et al. Mechanical properties and VOC emission of hemp fibre reinforced polypropylene composites: natural freezing-mechanical treatment and interface modification
Kumar et al. Performance of Zea mays fiber reinforced epoxy composites
Munde et al. Bamboo fibers, their composites and applications
Lubis et al. Mechanical properties of oil palm frond wood filled thermoplastic polyurethane
Ahmed Study of physical and mechanical properties of oil palm empty fruit bunch fiber reinforced polypropylene composites
Harmaen et al. Effect of Silica Aerogel on Polypropylene Reinforced with Kenaf Core Fiber for Interior Automotive Components
Valles-Rosales et al. Wood chile peppers stalks-plastic composite production

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119