JP2011509833A - Rolling process method for creating reverse temperature field of highly plastic magnesium alloy sheet - Google Patents

Rolling process method for creating reverse temperature field of highly plastic magnesium alloy sheet Download PDF

Info

Publication number
JP2011509833A
JP2011509833A JP2010543356A JP2010543356A JP2011509833A JP 2011509833 A JP2011509833 A JP 2011509833A JP 2010543356 A JP2010543356 A JP 2010543356A JP 2010543356 A JP2010543356 A JP 2010543356A JP 2011509833 A JP2011509833 A JP 2011509833A
Authority
JP
Japan
Prior art keywords
rolling
temperature field
magnesium alloy
temperature
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010543356A
Other languages
Japanese (ja)
Other versions
JP2011509833A5 (en
Inventor
王爾徳
楊徳山
劉祖岩
于洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haerbin Institute Of Technology
Original Assignee
Haerbin Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haerbin Institute Of Technology filed Critical Haerbin Institute Of Technology
Publication of JP2011509833A publication Critical patent/JP2011509833A/en
Publication of JP2011509833A5 publication Critical patent/JP2011509833A5/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

可塑性の高いマグネシウム合金板材の逆方向温度場を作るための圧延プロセス方法である。マグネシウムとマグネシウム合金の可塑性が悪いし、塑性加工が難しいため、ずっとマグネシウム産業発展の主な技術ボトルネックとなっている。可塑性の高いマグネシウム合金板材の逆方向温度場を作るための圧延プロセス方法として、加熱鋼板圧延機の圧延ローラーは、逆方向温度場で圧延して、本書に言う加熱より圧延ローラーの温度と圧延板材の初期温度場とは該当することである。本書に言う逆方向温度場は被圧延板材の半製品の表面温度が半製品の中央部の温度より高く、圧延・変形過程における熱量が外部から内部に伝える。本発明の方法は可塑性の高いマグネシウム合金板材を造ることに用いる。  This is a rolling process method for creating a reverse temperature field of a highly plastic magnesium alloy sheet. Magnesium and magnesium alloys are poorly plastic and difficult to machine, making them a major technical bottleneck for the development of the magnesium industry. As a rolling process method for creating a reverse temperature field of a highly plastic magnesium alloy sheet, the rolling roller of a heated steel plate rolling machine is rolled in the reverse temperature field, and the temperature of the rolling roller and the rolled sheet material are compared to the heating described in this document. The initial temperature field of is applicable. The reverse temperature field referred to in this book is that the surface temperature of the semi-finished product of the plate material to be rolled is higher than the temperature at the center of the semi-finished product, and the amount of heat in the rolling and deformation process is transferred from the outside to the inside. The method of the present invention is used to produce a highly plastic magnesium alloy sheet.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は被圧延鋼板の半製品が逆方向温度場の状態で、マグネシウムとマグネシウム合金板材を圧延する方法に関っている。   The present invention relates to a method of rolling magnesium and a magnesium alloy sheet in a state where a semi-finished product of a rolled steel sheet is in a reverse temperature field.

〔背景技術〕
マグネシウムとマグネシウム合金は21世紀で最も将来性のある軽量構造金属材だと誉められており、省エネ化、再生資源、電磁遮蔽性能に優れた環境にやさしい材料で、航空・宇宙、兵器、自動車、オートバイ、自転車、列車、メトロ電車、3C 製品、電子通信、家電製品、スポーツ器材、医療器材、医療用介入材料、建物、海底ケーブルなどの領域で実用価値の将来性が高い。
[Background Technology]
Magnesium and magnesium alloys are praised as the most promising lightweight structural metal materials in the 21st century, and are environmentally friendly materials with excellent energy saving, recyclable resources, electromagnetic shielding performance, aerospace, space, weapons, automobiles, High potential for practical value in fields such as motorcycles, bicycles, trains, metro trains, 3C products, electronic communications, home appliances, sports equipment, medical equipment, medical intervention materials, buildings, and submarine cables.

マグネシウムとマグネシウム合金の可塑性が悪いし、塑性加工が難しいため、ずっとマグネシウム産業発展の主な技術ボトルネックとなっている。いかなる金属材料の応用では、鋳造技術をベースにする生産製品の市場はただ10〜15%を占めることに対し、塑性加工製品は80%以上の市場占有率を占有している。マグネシウムとマグネシウム合金の塑性加工の難しさはずっと世界の共通認識である。マグネシウムとマグネシウム合金は一次塑性加工が難しいだけではなく、二次塑性加工は一次よりも難しい。一次塑性加工技術の主要内容は次の通り:
押出技術:押出棒材、管材、型材。
Magnesium and magnesium alloys are poorly plastic and difficult to machine, making them a major technical bottleneck for the development of the magnesium industry. For any metallic material application, the market for production products based on casting technology only occupies 10-15%, whereas plastic processed products occupy more than 80% market share. The difficulty of plastic working of magnesium and magnesium alloys has been a common perception in the world. Magnesium and magnesium alloys are not only difficult to perform primary plastic processing, but secondary plastic processing is more difficult than primary. The main contents of primary plastic working technology are as follows:
Extrusion technology: extruded bar, tube, mold.

引抜技術:引抜糸材、線材、管材。   Drawing technology: drawn yarn material, wire material, pipe material.

圧延技術:圧延板材、線材、棒材、型材。   Rolling technology: rolled plate, wire, rod, mold.

鍛造技術:マグネシウム合金インゴットによる成形部品。   Forging technology: Molded parts made of magnesium alloy ingots.

一次塑性加工技術のうち、マグネシウムとマグネシウム合金板の圧延技術は最も難しい。マグネシウム合金薄板(0.3〜2 mm 厚さ)の製材率が30〜40%と低く、圧延スピードが遅く、圧延の工程が多くて、途中に何回もの加熱が必要であるため、マグネシウム合金板材の製造コストは高くて、価格は非常に高価である。板材が一次塑性加工製品の60%を占めており、マグネシウム合金板材圧延技術はマグネシウムとマグネシウム合金の産業発展を妨げる主要技術なのである。   Among primary plastic working techniques, the rolling technique of magnesium and magnesium alloy sheets is the most difficult. Magnesium alloy sheet (0.3-2 mm thickness) sawing rate is as low as 30-40%, rolling speed is slow, there are many rolling processes, and many heating steps are required. The manufacturing cost is high and the price is very expensive. Sheet material accounts for 60% of primary plastic processed products, and magnesium alloy sheet rolling technology is the main technology that hinders the industrial development of magnesium and magnesium alloys.

一次塑性加工で圧延製造されたマグネシウム板材の可塑性が悪いため、二次塑性加工が必要となる。例えば、熱押出の成形部品の場合、軟鋼板とアルミニウム板のように、室温における冷却押抜と冷却押出による成形部品が出来ないので、生産性は低い。加熱成形部品表面品質が悪いし、コストが高くて、非常に高価である。加温押出や加熱押出では、ひび発生が易いことから、その生産過程の困難さに繋がる。   Since the plasticity of the magnesium plate produced by rolling by primary plastic working is poor, secondary plastic working is required. For example, in the case of a hot-extrusion molded part, unlike a mild steel sheet and an aluminum sheet, a molded part cannot be formed by cooling extrusion and cooling extrusion at room temperature, so the productivity is low. The surface quality of thermoformed parts is poor, the cost is high, and it is very expensive. In warm extrusion or heat extrusion, cracks are easily generated, leading to difficulty in the production process.

マグネシウムとマグネシウム合金の可塑性、仕上げ率、生産性を高めて、コストダウンを図るのは、世界諸国の科学技術者の長期的な取り組みの目標となるが、現在では、ブレークスルーを遂げていない。   Increasing the plasticity, finish rate, and productivity of magnesium and magnesium alloys to reduce costs is the goal of long-term efforts by scientists and engineers around the world, but has not yet achieved breakthroughs.

可塑性加工技術、特に板材圧延技術で解決されない板材の応用と普及は、型材、糸材、管材などの応用に制約要因となっている。これによって、マグネシウムとマグネシウム合金の産業は、アルミニウムとアルミニウム合金産業のように急成長を遂げるものではない。   The application and spread of plate materials that cannot be solved by plastic processing technology, particularly plate material rolling technology, is a limiting factor in the application of mold materials, yarn materials, pipe materials and the like. As a result, the magnesium and magnesium alloy industry is not as fast as the aluminum and aluminum alloy industry.

マグネシウムの結晶構造は6つのベタ組みに属して、室温環境における可塑性の悪さが“生まれつき弱い”で、結晶構成を変わる取り組みは不可能だ。6つのベタ組みの構成を変わると、もうマグネシウムとマグネシウム合金とならないのだ。マグネシウムとマグネシウム合金の純度を高めることは、防食性能と可塑性を改善することができるが、高価のコストを必要とするので、量産に適しない。現在、全世界はどのようにマグネシウム合金の結晶粒子を細分化するかを目標に集めている状態である。細分化された結晶粒子はマグネシウムとマグネシウム合金の可塑性を大幅に改善できるからである。このように、ようやくマグネシウム合金の2次塑性加工成形部品に役立つ。   Magnesium's crystal structure belongs to six solid sets, and the poor plasticity at room temperature is “naturally weak”, so it is impossible to change the crystal structure. If you change the composition of the six solid sets, it will no longer be magnesium and magnesium alloy. Increasing the purity of magnesium and a magnesium alloy can improve the anticorrosion performance and plasticity, but is not suitable for mass production because it requires expensive costs. Currently, the whole world is in a state of gathering with the goal of how to subdivide the crystal grains of magnesium alloy. This is because the finely divided crystal particles can greatly improve the plasticity of magnesium and a magnesium alloy. In this way, finally, it is useful for secondary plastic working parts of magnesium alloy.

研究によると、マグネシウム合金の可塑性を大幅に向上させるには、結晶粒子を10um に細分化することが必要だが、これは必要条件である。10um までの細分化だけではなく、必ず結晶粒子の大きさの均一化を保つことは十分な条件である。   According to research, it is necessary to subdivide the crystal grains into 10 um in order to greatly improve the plasticity of magnesium alloys, which is a necessary condition. It is a sufficient condition not only to subdivide to 10 um but also to keep the crystal grains uniform in size.

このような技術は、マグネシウムとマグネシウム合金の可塑性を効果的に高めることができる。   Such a technique can effectively increase the plasticity of magnesium and a magnesium alloy.

従来のマグネシウム合金熱間圧延とコールド・ローリング技術に基づいて、マグネシウム合金板材の結晶粒子を10um 以下に細分化し、結晶粒子の大きさの均一化を保つことは非常に困難で、量産に絶対に適しない。   Based on conventional magnesium alloy hot rolling and cold rolling technology, it is very difficult to subdivide the crystal grain of magnesium alloy sheet to 10 um or less and keep the crystal grain size uniform, and it is absolutely necessary for mass production Not suitable.

現在、国内外のマグネシウム合金結晶粒子を細分化する新技術と方法は次の通り:
快速粉末凝固セット押出再熱間圧延技術、同一の直径経路による押出方法(ECAE)等が挙げられている。これらの技術はマグネシウム合金の結晶粒子の寸法を亜ミクロンに細分化するなら、これらの方法は可塑性を大幅に向上させることができるが、生産性の低下、高コストを原因として、量産に適せず、板材の生産に対応できない。
Currently, new technologies and methods for subdividing domestic and foreign magnesium alloy crystal particles are as follows:
Fast powder solidification set extrusion re-hot rolling technology, extrusion method (ECAE) by the same diameter path, etc. are mentioned. These techniques can greatly improve the plasticity if the size of the magnesium alloy crystal particles is subdivided into submicrons, but they are suitable for mass production due to lower productivity and higher cost. Therefore, it cannot respond to the production of plate materials.

現在、国内外の最も人気を呼んでいるマグネシウム合金板材のダブルローラープロセスでは、結晶粒子を10um 以下に細分化することができるが、鋳造構造に帰するので、さらに熱間圧延とコールド・ローリングの実施が必要である。ダブルローラー板材をそのままに使用しようとすれば、純マグネシウムと強さの低いマグネシウム合金のみに適し、また板材の可塑性の指標は不安定で、質は最も制御しにくいことから、同技術を用いる量産が出来ない。個々の先進国では、液体マグネシウム合金のダブルローラー鋳造技術がただ半製品の製造のみに適し、後続の熱間圧延工程に作業量を削減し、生産性アップに繋がるので、コストダウンが可能であるが、板材の可塑性を大幅に向上させる必要があり、今のところ実行可能性がなく、さらに検討しなければならないことをもう認識している。   Currently, the double-roller process for magnesium alloy sheet, which is popular in Japan and overseas, can subdivide crystal grains into 10 um or less, but because of the cast structure, it can be used for hot rolling and cold rolling. Implementation is necessary. If the double roller plate material is used as it is, it is suitable only for pure magnesium and low strength magnesium alloy, and the plasticity index of the plate material is unstable and the quality is the most difficult to control. I can't. In individual developed countries, liquid magnesium alloy double-roller casting technology is only suitable for semi-finished products, reducing the amount of work in the subsequent hot rolling process and increasing productivity, thus reducing costs. However, it is already recognized that the plasticity of the board needs to be significantly improved, is not feasible at the moment and must be considered further.

従って、ダブルローラー鋳造技術を用いて生産を小規模に行ったのは、ただオーストラリア国家科学技術と工業研究センターだけあり、その他の各国、例えば米国、ドイツ、中国などは依然として試験段階にとどまっている現状である。   Therefore, only the Australian National Science and Technology and Industrial Research Center has produced small-scale production using double roller casting technology, and other countries such as the United States, Germany, and China are still in the testing stage. Currently.

本発明の以外、現在、マグネシウムとマグネシウム合金板材圧延技術で本質的なブレークスルーを遂げておらず、マグネシウムとマグネシウム合金板材の市場価格は依然として非常に高価で、応用と普及をなかなか実現することができない。   Other than the present invention, at present, there has not been an essential breakthrough in the rolling technology of magnesium and magnesium alloy sheet, the market price of magnesium and magnesium alloy sheet is still very expensive, and it can be easily applied and popularized. Can not.

〔発明の概要〕
〔発明が解決しようとする課題〕
本発明は1種の逆方向温度場圧延技術を用いて、マグネシウムとマグネシウム合金板材における出来率低下、生産性の低下、高コスト、高価など一連の課題を解決するとともに、マグネシウム合金板材の可塑性の悪さという課題を解決することを目的とする。
[Summary of the Invention]
[Problems to be Solved by the Invention]
The present invention solves a series of problems such as reduction in yield, reduction in productivity, high cost, high cost in magnesium and magnesium alloy sheet material using one kind of reverse temperature field rolling technology, and the plasticity of magnesium alloy sheet material. The purpose is to solve the problem of badness.

マグネシウム合金板材の2次塑性加工、即ち板材の押抜成形と押出成形を室温環境下に行えるために、基礎を築く。   A foundation will be laid for secondary plastic processing of magnesium alloy sheets, that is, extrusion and extrusion of sheets in a room temperature environment.

〔課題を解決するための手段〕
上記の目的を達成するには、次の技術案を用いる必要がある:
可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法である。加熱鋼板圧延機の圧延ローラーは逆方向温度場外で圧延して、本書に言う加熱より、圧延ローラーの温度と非圧延板材の初期温度場とは該当することである。本書に言う可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法、逆方向温度場は被圧延板材の圧延開始時点における半製品の表面温度が半製品の中央部より高い温度を指し、圧延変形過程において、熱量が外部から内部へ伝えることである。本書に言う可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法では、本書に言う圧延過程において、半製品表面温度が450〜250 ℃,中央部の温度が20〜150 ℃を範囲にし、毎回の下向け圧延量が相対値の20%〜70%、圧延スピードが5〜10メートル/分を範囲にすることである。本書に言う可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法では、本書に言う圧延過程において、半製品の表面温度が450 ℃ 、400 ℃ 、300 ℃にあり、中央部の温度が20 ℃にあることである。
[Means for solving the problems]
To achieve the above objectives, the following technical solution should be used:
This is a rolling process method for creating a reverse temperature field of a highly plastic magnesium alloy sheet. The rolling roller of the heated steel plate rolling machine is rolled out of the reverse temperature field, and the temperature of the rolling roller and the initial temperature field of the non-rolled sheet material correspond to the heating described in this document. The rolling process method for creating the reverse temperature field of the highly plastic magnesium alloy sheet material referred to in this book. The reverse temperature field indicates that the surface temperature of the semi-finished product at the start of rolling of the rolled sheet material is higher than the center of the semi-finished product In other words, the amount of heat is transferred from the outside to the inside during the rolling deformation process. In the rolling process method for creating a reverse temperature field of a highly plastic magnesium alloy sheet as described in this document, the surface temperature of the semi-finished product is 450-250 ° C and the temperature in the center is 20-150 ° C during the rolling process described in this document. The amount of rolling downward is 20% to 70% of the relative value and the rolling speed is 5 to 10 meters / minute. In the rolling process method for creating the reverse temperature field of the highly plastic magnesium alloy sheet material described in this document, the surface temperature of the semi-finished product is 450 ℃, 400 ℃, 300 ℃ in the rolling process described in this document, The temperature is at 20 ° C.

本書に言う可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法では、本書に言う圧延過程において、半製品の表面温度も450℃を選ぶことが可能で、中央部の温度が100 ℃であることである。   In the rolling process method for creating the reverse temperature field of the highly plastic magnesium alloy sheet material described in this document, the surface temperature of the semi-finished product can be selected as 450 ° C during the rolling process described in this document, and the temperature at the center is 100 ° C.

本書に言う可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法では、もとの半製品を構成部分にするインゴットに対する何回目もの圧延を行う時、第1 〜2回目下向け圧延量は、相対変形量の20 〜30 % ,第3 〜6 回目は30〜40 % ,第6 〜10 回目は40〜50% ,第10 回目以上は50〜70%であること。   In the rolling process method for creating a reverse temperature field of a highly plastic magnesium alloy sheet as stated in this book, when rolling the ingot that makes the original semi-finished product a number of times, the first to the second round The amount of rolling shall be 20-30% of the relative deformation, 30-40% for the 3rd to 6th times, 40-50% for the 6th to 10th times, and 50-70% for the 10th time and above.

本書に言う可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法では、もとの半製品を構成部分にするインゴットに対する何回目もの圧延を行うとき、第1 〜2 回目下向け圧延量は、相対変形量の20 〜30 % ,第3 〜5 回目は30〜40 % ,それ以後圧延する時、最終板材の厚さによって、毎回の下向け圧延量が相対変形量の30〜60 %を範囲にすることである。   In the rolling process method for creating a reverse temperature field of a highly plastic magnesium alloy sheet as described in this book, when rolling the ingot with the original semi-finished product as a component, the first to the second round The rolling amount is 20-30% of the relative deformation amount, the third to fifth times are 30-40%, and when rolling after that, depending on the thickness of the final plate, the downward rolling amount of each time is 30-30% of the relative deformation amount. 60% is the range.

〔発明の効果〕
1 、国内外の現行マグネシウム合金板材の熱間圧延技術では、初期温度が420 ℃ 〜50 ℃ ,最終温度が約300 ℃ 、毎回の下向け圧延量が20%程度。肉厚120mm のインゴットをl 〜2mm 板材に圧延するには、加熱回数3 〜5 回を必要とする。必要な圧延作業回数は26〜28回、出来率は30〜40 %。本発明におけるマグネシウムとマグネシウム合金板材圧延技術は、既存の国内外の圧延技術と異なり、逆方向温度場圧延技術を採用しているのだ。厚さ120mm からl mm に圧延する薄板では、半製品で加熱回数が一回、初期温度が420℃ ,毎回の下向け圧延量を30〜60 %と高めることが出来るとともに、必要な総回数は13〜14回程度、加熱の回数は2 〜4回削減が可能で、総回数は一般圧延技術の1/2程度を実現することが出来る。さらに、材料の利用率は60- 70 %。このようなだけではなく、本発明で提案されているマグネシウム合金板材の結晶粒子は小さくて、しかも平均しているので、板材の結晶粒子の寸法を10um以下に抑え、普通の場合、2〜6um 範囲内に細分化し、大幅に板材の可塑性を向上することが出来ることから、板材の延長率は、横や縦に関らず21%以上と安定に達成することが出来るとともに、大多数は25〜28%に上り、ひいては34%にも達することができる。その上、板材の縦方向と横方向における性能の食い違いはとても小さくて、10-15 %と小範囲に抑えることが可能である。
〔The invention's effect〕
1. The current hot rolling technology for magnesium alloy sheet materials in Japan and overseas has an initial temperature of 420 ° C to 50 ° C, a final temperature of about 300 ° C, and a downward rolling amount of about 20% each time. In order to roll an ingot with a wall thickness of 120 mm to a l-2 mm plate, it is necessary to heat 3-5 times. The required number of rolling operations is 26 to 28, and the yield is 30 to 40%. Unlike the existing domestic and overseas rolling technology, the magnesium and magnesium alloy sheet rolling technology in the present invention adopts the reverse temperature field rolling technology. For thin sheets rolled from 120 mm to l mm in thickness, the number of times of heating is one time for a semi-finished product, the initial temperature is 420 ° C., and the amount of downward rolling can be increased to 30-60% each time. About 13 to 14 times, the number of times of heating can be reduced 2 to 4 times, and the total number of times can be about 1/2 of the general rolling technology. Furthermore, the utilization rate of materials is 60-70%. In addition to this, since the crystal particles of the magnesium alloy plate material proposed in the present invention are small and averaged, the size of the crystal particles of the plate material is suppressed to 10 μm or less, and in normal cases, 2 to 6 μm. Since it can be subdivided within the range and the plasticity of the plate material can be greatly improved, the extension rate of the plate material can be stably achieved at 21% or more regardless of the horizontal or vertical, and the majority is 25 It can reach ˜28% and eventually 34%. In addition, the discrepancy between the longitudinal and lateral performances of the plate is very small and can be kept to a small range of 10-15%.

2 、本発明は、マグネシウム合金板材の製造コスト上の課題を解決したことで、アルミニウム合金板材の製造コストに達成するか近似することを可能にするとともに、板材の可塑性の悪さという課題を解決しており、板材の可塑性指標を防錆アルミ合金のレベルに達成させて、軟鋼板材の可塑性の指標のレベルに接近することを実現していた。本発明は本質から、マグネシウムとマグネシウム合金の可塑性加工技術の課題を解決していることである。   2.The present invention solves the problem of the manufacturing cost of the magnesium alloy sheet, thereby enabling to achieve or approximate the manufacturing cost of the aluminum alloy sheet, and solving the problem of poor plasticity of the sheet. Therefore, the plasticity index of the plate material was achieved at the level of the rust-proof aluminum alloy, and the plastic index of the mild steel plate material was approached. In essence, the present invention solves the problem of plastic processing technology of magnesium and magnesium alloy.

3 、本発明は人々の持っているマグネシウム合金の可塑性の悪さ、塑性加工の困難さがあるという従来の考え方を変わっており、マグネシウム合金の室温での冷却塑性加工が出来ないペナルティエリアをブレークスルーしている。すでにマグネシウムとマグネシウム合金の可塑性の加工技術分野で、重大なブレークスルーを収めたと言える。それによって、マグネシウムとマグネシウム合金の応用と普及のために、新しい技術の道を創始した。   3. The present invention has changed the conventional idea that the magnesium alloy has poor plasticity and difficulty in plastic working, and breaks through the penalty area where magnesium alloy can not be cooled plastically processed at room temperature. is doing. It can be said that there has already been a significant breakthrough in the plastic processing technology field of magnesium and magnesium alloys. As a result, a new technological path was created for the application and diffusion of magnesium and magnesium alloys.

4 、本発明の逆方向温度場圧延は被圧延板材の半製品の表面温度が半製品の中央部の温度より高いことから生じた温度場を逆方向温度場圧延と言って、普通の全ての圧延過程における温度場の温度の格差とちょうど反対している。普通の全ての圧延技術では、熱間圧延か、それとも室温下の冷間圧延かに関らず、半製品の中央部の温度は表面温度より高く、熱量は半製品から外部と圧延ローラーに向かって放熱することで、つまり板材の中央部の温度が板材の表面温度より高い正方向の温度場を形成する。   4.In the reverse temperature field rolling of the present invention, the temperature field resulting from the fact that the surface temperature of the semi-finished product of the plate material to be rolled is higher than the temperature at the center of the semi-finished product is called reverse temperature field rolling. It is just opposite to the temperature gap of the temperature field in the rolling process. In all common rolling techniques, whether hot rolling or cold rolling at room temperature, the temperature of the center of the semi-finished product is higher than the surface temperature, and the amount of heat goes from the semi-finished product to the outside and the rolling roller. Heat dissipation, that is, a temperature field in the positive direction in which the temperature at the center of the plate is higher than the surface temperature of the plate is formed.

マグネシウムとマグネシウム合金室の室温可塑性が悪いため、容易に塑性加工が出来ない。本発明はマグネシウムとマグネシウム合金の塑性加工技術の可塑性の直しに着手して、すべての従来の塑性加工技術方法におけるマグネシウムとマグネシウム合金の塑性加工への不適応という全ての課題を解決しており、現在全ての塑性加工の過程が正方向の温度場に属し、いわゆる正方向の温度場は、すべての塑性加工の変形体内部の温度が皆表面温度より高いので、過程を変形する中で、可塑性変形の発生熱量は鋳型の方向に向かって放熱することで、このような変形体の中央部の温度が変形体の表面温度より高い温度の格差を形成しているので、本発明でそれを正方向の温度場と定義し、本発明では、ちょうど正方向の温度場に反対し、変形体に表面が中央部の温度より高い格差を実現することから、従来の塑性加工のプロセスにおける正方向の温度場とちょうど反対したので、本発明では“逆方向温度場の塑性加工”だと定義される。逆方向温度場の圧延技術は逆方向温度場の塑性加工中の逆方向温度場塑性加工方法の1つである。   Since the room temperature plasticity of the magnesium and magnesium alloy chambers is poor, plastic processing cannot be easily performed. The present invention has begun to repair plasticity of plastic processing technology of magnesium and magnesium alloy, and solves all the problems of non-adaptation to plastic processing of magnesium and magnesium alloy in all conventional plastic processing technology methods, Currently, all plastic working processes belong to the positive temperature field, and the so-called positive temperature field is plasticity in the deformation process because the temperature inside the deformed body of all plastic working is higher than the surface temperature. The amount of heat generated in the deformation is dissipated in the direction of the mold, so that the temperature difference in the center of the deformable body is higher than the surface temperature of the deformable body. In the present invention, since the surface of the deformed body has a higher disparity than the temperature at the center, it is opposite to the temperature field in the positive direction. Just as was opposite to the positive direction of the temperature field, the present invention is defined that it is "plastic working of the reverse temperature field". The reverse temperature field rolling technique is one of the reverse temperature field plastic working methods during the reverse temperature field plastic working.

逆方向の温度塑性加工という新技術方法は、技術原理から従来の塑性加工での正方向温度場の過程に対して提案されることから、逆方向温度場は従来の正方向の温度場に対する裏切りだ。人為的に変えた従来の塑性加工の温度場では、熱間圧延の塑性加工であっても、冷間圧延の可塑性加工であっても、全ての方法に基づく変形中の変形体の温度場の規則が確立されており、鋳型の方向に放熱、熱伝導を行う過程だと言える。そのため、逆方向の温度塑性加工での変形過程は、皆変形体の表面から変形体の内部に熱伝導を行う過程であり、本発明はマグネシウムとマグネシウム合金に対し提案されるものの、原理からすべての金属材料塑性加工の過程に適用して、技術理論の面から普遍の意義を有している。そのため本発明のマグネシウムとマグネシウム合金の逆方向温度場圧延プロセス方法は、堅固な技術理論の基礎を持っている。   Since a new technical method called reverse temperature plastic working is proposed for the process of forward temperature field in conventional plastic working from the technical principle, reverse temperature field is a betrayal to conventional forward temperature field. It is. In the temperature field of conventional plastic processing that has been artificially changed, whether it is hot rolling plastic processing or cold rolling plastic processing, the temperature field of the deforming body under deformation based on all methods Rules have been established, and it can be said that this is a process of heat dissipation and heat conduction in the direction of the mold. Therefore, the deformation process in the thermoplastic working in the reverse direction is a process in which heat is transferred from the surface of the deformed body to the inside of the deformed body, and the present invention is proposed for magnesium and magnesium alloys, It has a universal significance in terms of technical theory, applied to the process of plastic processing of metallic materials. Therefore, the reverse temperature field rolling process method of magnesium and magnesium alloy of the present invention has a solid technical theory basis.

技術上から、本方法がマグネシウムとマグネシウム合金の塑性加工に対応することで、マグネシウムとマグネシウム合金板材の圧延作業が最も困難なため、この課題を徹底的に解決するため、本発明はマグネシウムとマグネシウム合金板材に対する圧延プロセス方法に対応して提出される。   From the technical point of view, since this method corresponds to the plastic working of magnesium and magnesium alloy, the rolling work of magnesium and magnesium alloy sheet is the most difficult. It is submitted corresponding to the rolling process method for the alloy sheet.

〔発明を実施するための形態〕
〔実施例〕
〔実施例1〕
可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法である。加熱鋼板圧延機の圧延ローラーは逆方向温度場外で圧延して、本書に言う加熱より、圧延ローラーの温度と非圧延板材の初期温度場とは該当すること。
[Mode for Carrying Out the Invention]
〔Example〕
[Example 1]
This is a rolling process method for creating a reverse temperature field of a highly plastic magnesium alloy sheet. The rolling roller of a heated steel plate rolling machine is rolled out of the reverse temperature field, and the temperature of the rolling roller and the initial temperature field of the non-rolled sheet material correspond to the heating mentioned in this document.

本書に言う逆方向温度場は圧延開始時点における半製品の初期温度場、被圧延板材の圧延開始時点における半製品の表面温度が半製品の中央部より高い温度を指し、圧延変形過程において、熱量が外部から内部へ伝えることである。   The reverse temperature field referred to in this document refers to the initial temperature field of the semi-finished product at the start of rolling, the temperature at which the surface temperature of the semi-finished product is higher than the center of the semi-finished product, and the amount of heat in the rolling deformation process. Is to communicate from outside to inside.

〔実施例2〕
実施例I の圧延方法のうち、半製品表面温度が450〜250 ℃ ,中央部の温度が20〜150 ℃ を範囲にし、毎回の下向け圧延量が相対値の20%〜70 %、圧延スピードが5〜10メートル/分を範囲にすることである。
[Example 2]
In the rolling method of Example I, the surface temperature of the semi-finished product is 450 to 250 ° C., the temperature of the central part is in the range of 20 to 150 ° C., and the downward rolling amount is 20% to 70% of the relative value every time, the rolling speed Is in the range of 5-10 meters / minute.

〔実施例3〕
実施例1 の圧延方法のうち、半製品の表面温度が450 ℃ ,中央部の温度が100 ℃。
Example 3
In the rolling method of Example 1, the surface temperature of the semi-finished product is 450 ° C, and the temperature in the center is 100 ° C.

〔実施例4〕
本書に言う可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法では、もとの半製品を構成部分にするインゴットに対する何回目もの圧延を行う時、第1 〜2回目下向け圧延量は、相対変形量の20 〜30 % ,第3 〜6 回目は30〜40 % , 第6 〜10 回目は40〜50% ,第10 回目以上は50〜60%であることである。
Example 4
In the rolling process method for creating the reverse temperature field of the highly plastic magnesium alloy sheet material described in this book, when rolling the ingot that makes the original semi-finished product a number of times, the first or second time The rolling amount is 20 to 30% of the relative deformation amount, 30 to 40% for the 3rd to 6th times, 40 to 50% for the 6th to 10th times, and 50 to 60% for the 10th time or more.

〔実施例5〕
上記の実施例1 、2 、3 に言う可塑性の高いマグネシウムとマグネシウム合金板圧延方法のうち、もとの半製品を構成部分にするインゴットに対する何回目もの圧延を行う時、第1 〜2回目下向け圧延量は、相対変形量の20 〜30 % ,第3 〜5 回目は30〜40 % 。その後、圧延作業を行うとき、最終の板材の厚さに基づいて、毎回の下向け圧延量は、相対変形量の30 〜60 %の選択が可能である。
Example 5
Of the high plasticity magnesium and magnesium alloy sheet rolling methods described in Examples 1, 2 and 3 above, when rolling the ingot with the original semi-finished product as a constituent part many times, the first and second times The rolling amount is 20-30% of the relative deformation, and the third to fifth rounds are 30-40%. Thereafter, when performing the rolling operation, the downward rolling amount of each time can be selected from 30 to 60% of the relative deformation amount based on the thickness of the final plate material.

〔実施例6〕
1 、原材料:厚さ100mm の偏平インゴットを採用。幅は鋼板圧延機のローラーの長さによって決定し、本実施例では、幅は400mm ,長さは600mm とする。
Example 6
1. Raw material: 100mm thick flat ingot is adopted. The width is determined by the length of the roller of the steel plate rolling machine. In this embodiment, the width is 400 mm and the length is 600 mm.

合金はAZ31マグネシウム合金(成分は米国の規格に準拠する)。   The alloy is AZ31 magnesium alloy (components conform to US standards).

2 、原材料のインゴットに対する加熱:加熱インゴット表面と作業開始時点における表面と中央部の温度は400 ℃ 〜20 ℃程度
3 、圧延スピード:5〜10m/min 。
2. Heating of the raw material ingot: The temperature of the heated ingot surface and the surface and the central part at the start of work is about 400 ℃ ~ 20 ℃
3, rolling speed: 5-10m / min.

4 、潤滑剤:ケイ素油、植物油の吹付け塗装ベースの圧延ローラーおよび半製品の表面を採用する。   4, Lubricant: Adopt the surface of rolling roller and semi-finished product based on spray coating of silicon oil, vegetable oil.

5 、毎回の下向け圧延量及び圧延回数合計:
毎回の下向け圧延量を相対変形量の30〜60%基準に制御し、厚さ100mmから1 mmに圧延、圧延作業の総回数は13〜14回。
5, the amount of downward rolling and the total number of rolling times:
The amount of downward rolling each time is controlled to 30 to 60% of the relative deformation, and the thickness is rolled from 100 mm to 1 mm. The total number of rolling operations is 13 to 14 times.

6 、圧延後、縁の切断と頭部・トレーラー板への処理。   6. After rolling, cutting edge and processing to head / trailer plate.

7 、材料の利用率:65〜66%。   7, material utilization: 65-66%.

8 、圧延後、厚さlmm薄板の力学性能:
板材の縦方向の性能:
屈服強度:l56Mpa ,抗張力26lMpa ,延長率26%。
8, after rolling, mechanical performance of lmm thin plate:
Longitudinal performance of the board:
Bending strength: l56Mpa, tensile strength 26lMpa, extension rate 26%.

板材の横方向の性能:
屈服強度:165MPa ,抗張力255MPa ,延長率24%。
Lateral performance of the board:
Bending strength: 165 MPa, tensile strength 255 MPa, elongation rate 24%.

〔実施例7〕
1 、原材料:zK61マグネシウム合金(成分は米国の規格に準拠する)のインゴット。
Example 7
1, raw material: zK61 magnesium alloy (components conform to US standards) ingot.

インゴットの寸法:厚さ20mm X400mm (幅)X400mm(長さ)。   Ingot dimensions: Thickness 20mm X400mm (width) X400mm (length).

2 、インゴットの半製品に対する加熱:加熱のインゴットの表面、作業開始時点における表面と中央部の温度は400 ℃ 〜20 ℃程度450 ℃ 〜100 ℃。   2, the heating of the ingot semi-finished product: the surface of the heating ingot, the temperature of the surface and the central part at the start of work is about 400 ℃ ~ 20 ℃ 450 ℃ ~ 100 ℃.

3 、圧延スピード:5 〜10m / min 。   3, rolling speed: 5-10m / min.

4 、潤滑剤;ケイ素油、植物油の吹付け塗装ベースの圧延ローラーおよび半製品の表面を採用する。   4 、 Lubricant: Adopt the surface of rolling roller and semi-finished product based on spray coating of silicon oil and vegetable oil.

5 、毎回の下向け圧延量及び圧延回数合計:
厚さ20mmのインゴットを厚さ0.5mm〜0.4mm に圧延;
第1 回目の下向け圧延量は20% .
第2回目の下向け圧延量は30% ;
第3〜6回目の下向け圧延量は40% ;
第7〜8 回目の下向け圧延量は50% ;
総回数は8回。
5, the amount of downward rolling and the total number of rolling times:
Rolling an ingot with a thickness of 20mm to a thickness of 0.5mm to 0.4mm;
The first rolling downward amount is 20%.
2nd downward rolling amount is 30%;
The third to sixth rounds of downward rolling are 40%;
The seventh to eighth rounds of downward rolling are 50%;
The total number of times is 8.

6 、圧延後、縁の切断と頭部・トレーラー板への処理。   6. After rolling, cutting edge and processing to head / trailer plate.

7 、材料の利用率:65〜66%。   7, material utilization: 65-66%.

8 、圧延後、厚さ1mm薄板の力学性能:
板材の縦方向の性能:
屈服強度:230Mpa ,抗張力340Mpa ,延長率34%。
8 、 Mechanical performance of 1mm thick sheet after rolling:
Longitudinal performance of the board:
Bending strength: 230Mpa, tensile strength 340Mpa, extension rate 34%.

板材の横方向の性能:
屈服強度:250MPa ,抗張力336MPa ,延長率28 % .
本発明の実施例1と実施例2におけるコア技術仕様は半製品の初期逆方向温度場コントロールと毎回の下向け圧延量のコントロールである。
Lateral performance of the board:
Bending strength: 250 MPa, tensile strength 336 MPa, elongation rate 28%.
The core technical specifications in Example 1 and Example 2 of the present invention are the initial reverse temperature field control of the semi-finished product and the control of the downward rolling amount each time.

逆方向温度場コントロールは半製品の表面と中央部の温度の差、即ち温度の格差をさす。これは、初期圧延時の温度場、即ち初期温度場を制御するさえ結構である。圧延変形の過程において、熱伝導と可塑性変形に生じる熱エネルギーを受け、板材の表面と中央部の温度を次第に一致させるため。そのため、温度場は変化しているので、薄板の瞬間温度の変形は温度の格差をなくして、厚板に対し、温度の一致を達成するには、時間がかかる。実施例では、一種の実施方式のパラメーターだけが提案されており、実は、板厚に応じて、毎回の下向け圧延量及び合金成分によって、初期逆方向温度場の温度の格差を調整することができる。たとえば、温度の格差範囲:半製品の表面温度は250 ℃〜450 ℃ を範囲に調整が可能で、中央部の温度が20℃ 〜150 ℃を範囲に調整が可能である。   The reverse temperature field control refers to the temperature difference between the surface and the center of the semi-finished product, that is, the temperature difference. This can even control the temperature field during initial rolling, i.e., the initial temperature field. In order to gradually match the temperature of the surface and the center of the plate by receiving heat energy generated in heat conduction and plastic deformation during the rolling deformation process. For this reason, since the temperature field is changing, it takes time to achieve the coincidence of temperature with respect to the thick plate by eliminating the temperature difference when the instantaneous temperature of the thin plate is deformed. In the examples, only one kind of parameters of the implementation method is proposed, and in fact, the temperature difference in the initial reverse temperature field can be adjusted by the downward rolling amount and the alloy composition each time depending on the plate thickness. it can. For example, the temperature disparity range: the surface temperature of the semi-finished product can be adjusted in the range of 250 ° C. to 450 ° C., and the temperature of the central part can be adjusted in the range of 20 ° C. to 150 ° C.

毎回の下向け圧延量の選択に際して、インゴットの合金成分とインゴット構成に応じて決定するものとする。普通の場合、圧延初期における下向け圧延量は少し小さく設定が可能で、回数の増加に伴い、下向け圧延量の追加を次第に行えることから、下向け圧延量を20〜70%範囲に選ぶことができる。   In selecting the downward rolling amount each time, it is determined according to the alloy composition of the ingot and the ingot configuration. In normal cases, the downward rolling amount at the beginning of rolling can be set a little smaller, and as the number of times increases, the downward rolling amount can be gradually added, so the downward rolling amount should be selected in the range of 20 to 70%. Can do.

Claims (7)

可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法である。加熱鋼板圧延機の圧延ローラーは逆方向温度場外で圧延して、本書に言う加熱より、圧延ローラーの温度と非圧延板材の初期温度場とは該当することを特徴とする。   This is a rolling process method for creating a reverse temperature field of a highly plastic magnesium alloy sheet. The rolling roller of the heated steel plate rolling machine is rolled outside the reverse temperature field, and the temperature of the rolling roller and the initial temperature field of the non-rolled sheet material correspond to the heating described in this document. 特許請求項1に述べたように、可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法では、本書に言う逆方向温度場は圧延開始時点における半製品の初期温度場、被圧延板材の圧延開始時点における半製品の表面温度が半製品の中央部より高い温度を指し、圧延変形過程において、熱量が外部から内部へ伝えることを特徴とする。   As described in claim 1, in the rolling process method for producing a reverse temperature field of a highly plastic magnesium alloy sheet, the reverse temperature field referred to in this document is the initial temperature field of the semi-finished product at the start of rolling, The surface temperature of the semi-finished product at the start of rolling of the rolled plate material indicates a temperature higher than the central portion of the semi-finished product, and heat is transferred from the outside to the inside in the rolling deformation process. 特許請求項1や2に述べたように、本書に言う可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法では、本書に言う圧延過程において、半製品表面温度が450〜250 ℃ ,中央部の温度が20〜150 ℃ を範囲にし、毎回の下向け圧延量が相対値の20%〜70 %、圧延スピードが5〜10メートル/分を範囲にすることを特徴とする。   As described in claims 1 and 2, in the rolling process method for producing a reverse temperature field of a highly plastic magnesium alloy sheet material described in this document, the surface temperature of the semi-finished product is 450 to 250 in the rolling process described in this document. The temperature of the central part is in the range of 20 to 150 ° C., the downward rolling amount is 20% to 70% of the relative value every time, and the rolling speed is in the range of 5 to 10 meters / minute. 特許請求項1や2に述べたように、本書に言う可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法では、本書に言う圧延過程において、半製品の表面温度が450 ℃ 、400 ℃ 、300 ℃にあり、中央部の温度が室温にあることを特徴とする。   As described in claims 1 and 2, in the rolling process method for creating a reverse temperature field of a highly plastic magnesium alloy sheet material described in this document, the surface temperature of the semi-finished product is 450 ° C. during the rolling process described in this document. 400 ° C. and 300 ° C., and the central temperature is room temperature. 特許請求項1や2に述べたように、本書に言う可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法では、本書に言う圧延過程において、半製品の表面温度も450℃を選ぶことが可能で,中央部の温度が100 ℃であることを特徴とする。   As described in claims 1 and 2, in the rolling process method for creating a reverse temperature field of a highly plastic magnesium alloy sheet material described in this document, the surface temperature of the semi-finished product is 450 ° C. during the rolling process described in this document. The temperature at the center is 100 ° C. 特許請求項3や4に述べたように、本書に言う可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法では、もとの半製品を構成部分にするインゴットに対する何回目もの圧延を行う時、第1 〜2回目下向け圧延量は、相対変形量の20 〜30 % ,第3 〜6 回目は30〜40 % , 第6 〜10 回目は40〜50% ,第10 回目以上は50〜60%であることを特徴とする。   As described in claims 3 and 4, the rolling process method for creating a reverse temperature field of a highly plastic magnesium alloy sheet as described in this document is the number of times for an ingot that is composed of the original semi-finished product. When rolling, the amount of rolling for the first and second rounds is 20 to 30% of the relative deformation, the third to sixth rounds are 30 to 40%, the sixth to tenth rounds are 40 to 50%, the tenth round The above is characterized by 50 to 60%. 特許請求項3、4や5に述べたように 本書に言う可塑性の高いマグネシウム合金板材の逆方向温度場を作る為の圧延プロセス方法では、もとの半製品を構成部分にするインゴットに対する何回目もの圧延を行うとき、第1 〜2 回目下向け圧延量は、相対変形量の20 〜30 % ,第3 〜5 回目は30〜40 % ,それ以後圧延する時、最終板材の厚さによって、毎回の下向け圧延量が相対変形量の30〜60 %を範囲にすることを特徴とする。   As described in claims 3, 4 and 5, in the rolling process method for creating a reverse temperature field of a highly plastic magnesium alloy sheet as described in this document, the number of times for the ingot which makes the original semi-finished product a constituent part. When rolling one or two times, the rolling amount for the first and second rounds is 20 to 30% of the relative deformation, the third to fifth rounds is 30 to 40%, and when rolling after that, depending on the thickness of the final plate, The amount of downward rolling each time is in the range of 30 to 60% of the relative deformation amount.
JP2010543356A 2008-01-23 2008-01-23 Rolling process method for creating reverse temperature field of highly plastic magnesium alloy sheet Pending JP2011509833A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/070172 WO2009094857A1 (en) 2008-01-23 2008-01-23 Reverse temperature field rolling method for mg alloy sheet

Publications (2)

Publication Number Publication Date
JP2011509833A true JP2011509833A (en) 2011-03-31
JP2011509833A5 JP2011509833A5 (en) 2013-05-09

Family

ID=40912243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010543356A Pending JP2011509833A (en) 2008-01-23 2008-01-23 Rolling process method for creating reverse temperature field of highly plastic magnesium alloy sheet

Country Status (3)

Country Link
US (1) US20100180656A1 (en)
JP (1) JP2011509833A (en)
WO (1) WO2009094857A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5264140B2 (en) * 2007-10-16 2013-08-14 Ihiメタルテック株式会社 Magnesium alloy hot rolling equipment
CN102189119B (en) * 2011-04-13 2013-02-27 南京钢铁股份有限公司 Process for controlling shape of hot-rolled flat-rolled high-grade pipeline steel plate by using single-rack steckel mill
US9216445B2 (en) * 2011-08-03 2015-12-22 Ut-Battelle, Llc Method of forming magnesium alloy sheets
CN106862272B (en) * 2015-12-14 2020-01-31 宝山钢铁股份有限公司 Preparation method of high-strength high-ductility magnesium alloy plates
CN107030112A (en) * 2017-03-07 2017-08-11 重庆市科学技术研究院 A kind of milling method of magnesium alloy ultrathin plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198153A2 (en) * 1985-02-08 1986-10-22 Asea Brown Boveri Aktiengesellschaft Proces for heating billets and ingots
JP2004060048A (en) * 2002-06-05 2004-02-26 Sumitomo Denko Steel Wire Kk Magnesium alloy sheet and method for producing the same
JP2006016656A (en) * 2004-06-30 2006-01-19 Sumitomo Electric Ind Ltd Magnesium alloy sheet and its production method
JP2007044751A (en) * 2005-08-11 2007-02-22 Sumitomo Metal Ind Ltd Magnesium plate, and its manufacturing method
CN1310711C (en) * 2005-04-19 2007-04-18 哈尔滨工业大学 Reverse temperature field extrusion process for producing microcrystal magnesium alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2029728A (en) * 1934-02-12 1936-02-04 Dow Chemical Co Rolling magnesium alloys
US2060071A (en) * 1934-05-21 1936-11-10 Dow Chemical Co Rolling magnesium alloy
AU2003900971A0 (en) * 2003-02-28 2003-03-13 Commonwealth Scientific And Industrial Research Organisation Magnesium alloy sheet and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198153A2 (en) * 1985-02-08 1986-10-22 Asea Brown Boveri Aktiengesellschaft Proces for heating billets and ingots
JP2004060048A (en) * 2002-06-05 2004-02-26 Sumitomo Denko Steel Wire Kk Magnesium alloy sheet and method for producing the same
JP2006016656A (en) * 2004-06-30 2006-01-19 Sumitomo Electric Ind Ltd Magnesium alloy sheet and its production method
CN1310711C (en) * 2005-04-19 2007-04-18 哈尔滨工业大学 Reverse temperature field extrusion process for producing microcrystal magnesium alloy
JP2007044751A (en) * 2005-08-11 2007-02-22 Sumitomo Metal Ind Ltd Magnesium plate, and its manufacturing method

Also Published As

Publication number Publication date
WO2009094857A1 (en) 2009-08-06
US20100180656A1 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
CN103008377B (en) A kind of novel magnesium alloy plate extruding formation process
CN103103424B (en) Method for manufacturing aviation aluminum alloy profiles by double aging
CN102240676A (en) Rolling device for preparing high-toughness high-formability magnesium alloy sheet strip coil
CN102463272A (en) Short-flow preparation method of minor-caliber nickel-based alloy thin-wall tubes
CN103769817B (en) A kind of forming technology of major diameter high-strength heat-resistant magnesium alloy thick walled cylinder parts
CN1310711C (en) Reverse temperature field extrusion process for producing microcrystal magnesium alloy
CN106653154A (en) High-strength aluminum-clad steel wire and production method thereof
CN103526144A (en) TC17 titanium alloy large-scale bar free forging method
JP2011509833A (en) Rolling process method for creating reverse temperature field of highly plastic magnesium alloy sheet
CN103484735A (en) Production method for optimized 6063 aluminum alloy
JP2011509833A5 (en)
CN111330986A (en) Efficient integrated processing method for preparing high-strength high-toughness magnesium alloy sheet with controllable double-peak structure
CN106890917A (en) Super large ratio of height to diameter steel billet upset forging process and equipment
CN103273274B (en) Forming method for magnesium alloy boards
CN102304685B (en) Preparation method of fine grain magnesium alloy
CN101623716A (en) Preparation method of metal tube
CN102965604A (en) Method for preparing AZ31B magnesium alloy sheets
CN202162205U (en) Rolling device for producing magnesium alloy thin plate roll with high toughness and excellent formability
CN103981414B (en) A kind of panel computer and mobile phone magnesium alloy profiles and extrusion process thereof
CN108405651B (en) A kind of semisolid continuous extrusion production copper alloy wire method
CN105568071A (en) High-strength high-elongation aluminum foil for air-conditioner and manufacturing method of such aluminum foil
CN105839036B (en) A kind of heat treatment method of almag
CN107931337B (en) Differential temperature rolling method of AlZnMgCu aluminum alloy thick plate
CN103866212A (en) Preparation technology of discontinuously reinforced aluminum matrix composite (DRA) thin-wall tubing
CN106363115A (en) Novel ultrahigh taper ring rolling method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A524 Written submission of copy of amendment under section 19 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20130318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730