JP2011508829A - Fabric construction with improved high-speed impact performance - Google Patents

Fabric construction with improved high-speed impact performance Download PDF

Info

Publication number
JP2011508829A
JP2011508829A JP2010540684A JP2010540684A JP2011508829A JP 2011508829 A JP2011508829 A JP 2011508829A JP 2010540684 A JP2010540684 A JP 2010540684A JP 2010540684 A JP2010540684 A JP 2010540684A JP 2011508829 A JP2011508829 A JP 2011508829A
Authority
JP
Japan
Prior art keywords
fabric
degrees
angle
layers
yarns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010540684A
Other languages
Japanese (ja)
Other versions
JP2011508829A5 (en
Inventor
ロナルド ジー ジュニア エグレス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of JP2011508829A publication Critical patent/JP2011508829A/en
Publication of JP2011508829A5 publication Critical patent/JP2011508829A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/04Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a layer being specifically extensible by reason of its structure or arrangement, e.g. by reason of the chemical nature of the fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0035Protective fabrics
    • D03D1/0052Antiballistic fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/002With diagonal warps or wefts
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/267Glass
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/58Cuttability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • B32B2571/02Protective equipment defensive, e.g. armour plates, anti-ballistic clothing
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/08Ceramic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/22Cellulose-derived artificial fibres made from cellulose solutions
    • D10B2201/24Viscose
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/06Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified

Abstract

衝撃発射体耐性または耐穿刺性の物品の製造用の糸による布帛であって、布帛は、布帛の平面内に平行配向された糸の第1複数体を有し、それは布帛の平面内において第1複数体の方向/配向とは異なる方向/配向を有する、布帛の平面内で平行配向された糸の第2複数体と織り交ぜられており、第1複数体の任意の繊維糸と第2複数体の繊維糸が交差して90度未満の測定角度を有する一対の鋭角の対頂角を形成している、布帛。  A fabric of yarn for the manufacture of an impact projectile resistant or puncture resistant article, the fabric having a first plurality of yarns oriented in parallel in the plane of the fabric, the first in the plane of the fabric. Interwoven with a second plurality of yarns oriented in parallel in the plane of the fabric, having a direction / orientation different from the direction / orientation of the plurality, wherein any fiber yarn of the first plurality and the second A fabric in which a plurality of fiber yarns intersect to form a pair of acute vertical angles having a measurement angle of less than 90 degrees.

Description

本発明は、布帛構築体およびそれから作り上げられる柔軟な防護服に関する。   The present invention relates to a fabric construction and a flexible protective garment made therefrom.

保護用防護服(衝撃および刺傷タイプの脅威に対して保護となるものなど)は、長い間、大いに興味をそそる分野となっている。防護服の製造における1つの課題は、着用者の機敏さの妨げとならないように防護服の重量(または面密度)を最小限に抑えつつ、着用者が現場で曝されることのある特定の脅威から十分保護することである。   Protective protective clothing (such as those that protect against shock and stab-type threats) have long been a very interesting area. One challenge in the production of protective clothing is that certain wearables may be exposed in the field while minimizing the weight (or surface density) of the protective clothing so as not to interfere with the wearer's agility. It should be well protected from threats.

衝撃発射体の脅威(変形しうる弾丸および変形しない榴散弾など)に対する任意の装甲材料の保護能力を特徴付けるためには、材料の面密度および大きさならびに発射体の性質(質量、硬さ、形状など)に関して、何らかの衝撃速度限界の測定を行う必要がある。1つの一般的な衝撃限界性能基準は、衝撃V50、つまり防護服が発射体の50%を阻みうる速度である。防護服のV50を求めるための特定の試験手順および計算手順は、国立司法研究所(NIJ)のStandard−0101.04 Ballistic Resistance of Personal Body Armor(2000年9月)に略述されている。発射体の貫通を阻止する防護服の能力以上に、警察官、警備要員、および看守が着用する隠し防護服(concealable body armors)での高速衝撃(ballistic impact)に関連した鈍的外傷を最小限に抑える必要は、NIJ Standard−0101.04で説明されている更なる安全要求事項になっている。この規格は、粘土証拠物(clay witness)シミュレーション材料の上に置かれた防護服の高速衝撃に関連した背面形跡(backface signature)の測定による鈍的外傷の許容レベルに関する、試験手順および性能要件を略述している。NIJ Standard−0101.04では、許容できる背面変形量は、粘土証拠物(Roma Plastilina粘土、粘土証拠物の深さが5.5インチ(140mm))の44mm以下と定義されている。   To characterize the ability of any armor material to protect against impact projectile threats (such as deformable bullets and non-deformable shrapnel), the surface density and size of the material and the nature of the projectile (mass, hardness, shape) Etc.), it is necessary to measure some impact speed limit. One common impact limit performance criterion is impact V50, the speed at which protective clothing can block 50% of projectiles. Specific test and calculation procedures for determining V50 for protective clothing are outlined in the National Institute for Justice (NIJ) Standard-0101.04 Ballistic Resistance of Personal Body Armor (September 2000). Minimize blunt trauma associated with ballistic impact in concealable body armors worn by police officers, guards, and guards, beyond the ability of protective clothing to prevent projectile penetration There is a further safety requirement described in NIJ Standard-0101.04. This standard specifies test procedures and performance requirements for the acceptable level of blunt trauma by measuring backface signatures associated with high-speed impact of protective clothing placed on clay witness simulation materials. Briefly. In NIJ Standard-0101.04, the allowable back deformation amount is defined as 44 mm or less of clay evidence (Roma Plastina clay, depth of clay evidence 5.5 inches (140 mm)).

NIJ Standard−0101.04では、様々なタイプの発射体および衝撃エネルギーレベルに固有の衝撃要件を規定している。柔軟防護服に関する3つの一般的なNIJ脅威レベルとして、脅威レベルII、IIA、およびIIIAがある。脅威レベルIIは、高速度の357マグナム弾(10.2g(158gr))および9mmの弾丸(8.0g(124gr))(衝撃速度がそれぞれ約1400ft/s(427m/s)未満および1175ft/s(358m/s)未満)と関係している。レベルIIAは、公称質量(nominal mass)が11.7g(180gr)である低速度の40S&W口径のフルメタルジャケット弾(full metal jacket bullets)、および9mmの8.0g(124gr)の弾丸(衝撃速度がそれぞれ約1025ft/s(312m/s)未満および約1090ft/s(332m/s)未満である)と関係している。脅威レベルIIIAは、15.6g(240gr)の44マグナム弾および短機関銃の9mm(124gr)の弾丸(衝撃速度が約1400ft/s未満である)と関係している。   NIJ Standard-0101.04 specifies impact requirements specific to various types of projectiles and impact energy levels. Three common NIJ threat levels for flexible protective clothing are threat levels II, IIA, and IIIA. Threat level II is high speed 357 Magnum bullet (10.2 g (158 gr)) and 9 mm bullet (8.0 g (124 gr)) (impact velocity less than about 1400 ft / s (427 m / s) and 1175 ft / s, respectively) (Less than 358 m / s)). Level IIA is a low-speed 40 S & W caliber full metal jacket bullet with a nominal mass of 11.7 g (180 gr), and a 9 mm 8.0 g (124 gr) bullet (impact velocity) Less than about 1025 ft / s (312 m / s) and less than about 1090 ft / s (332 m / s), respectively). Threat level IIIA is associated with 15.6 g (240 gr) of 44 Magnum bullets and submachine gun 9 mm (124 gr) bullets (impact velocity is less than about 1400 ft / s).

上述の衝撃性能要件は、幾つかの市販の耐衝撃材料のいずれかまたは前記材料の組合わせを用いて満たすことができるが、その一方で、柔軟防護服の製造の課題は、受け入れ可能な安全限界で貫通を防止するため、また背面変形を最小限に抑えるために必要な衝撃層を選択および配置すると共に、快適性を向上させるために防護服の重量、大きさおよび剛さを最小限に抑えることである。   While the above impact performance requirements can be met using any of several commercially available impact resistant materials or combinations of such materials, the challenge of manufacturing a flexible protective garment is an acceptable safety Select and place the impact layer needed to prevent penetration at the limit and minimize back deformation, and minimize the weight, size and stiffness of the protective clothing to improve comfort It is to suppress.

市販の耐衝撃材料としては、様々な織られた衝撃繊維糸の布帛、衝撃布帛補強複合材、衝撃繊維の一方向ラミネートおよび不織布がある。こうした様々な構造体のうち、高強度の繊維糸から製作される織られた布帛は、柔軟防護服の製作での使用において最も長い歴史がある。機織りは、長い間、高強度の繊維糸から耐衝撃性布帛プライを均一に作り出すための比較的安価な方法とされており、これは、接着樹脂によって化学的に固定する(その場合、更なる重量および剛さが衣料品にもたらされうる)のではなく、糸を機械的に相互に絡み合わせるか、または「インターレース」して糸を所定の位置に保持することに依拠するものである。耐衝撃性布帛で製作された柔軟防護服は、非常に多くの場合、使用時にいっそうぴったり合い、柔軟であるので、一方向繊維ラミネートまたは樹脂含浸布帛などの堅い背面制御層(backface control layers)を含んでいるハイブリッド防護服(hybrid armors)よりも優れた快適性をもたらす。加えて、織られた高強度の繊維糸で全体が作り出された耐衝撃性衣服は、何年間か使用され摩耗した後でも耐衝撃性を維持することが明らかになってきた。すべてが織られたものである耐衝撃性ベストに代わるものが市販されている。そのような物品は、高強度の繊維、マトリックス樹脂およびフィルムを組み合わせて作られるので、多くの場合、製造コストが高くなる。加えて、衝撃繊維の物理的性質とは異なる、温度および歪みに左右される物理的性質(例えば、熱膨張係数、モジュラスなど)を有する構成材料のせいで、こうした複合層は、選択した材料の最も弱い点によって決まる耐用期間を有することが多い。   Commercially available impact resistant materials include various woven impact fiber yarn fabrics, impact fabric reinforced composites, unidirectional laminates of impact fibers and nonwovens. Of these various structures, woven fabrics made from high strength fiber yarns have the longest history of use in the production of flexible protective clothing. Weaving has long been a relatively inexpensive method for uniformly creating impact-resistant fabric plies from high-strength fiber yarns, which are chemically fixed by an adhesive resin (in which case, further Rather than relying on the yarn to be intertwined or "interlaced" to hold the yarn in place, rather than weight and stiffness can be provided to the garment. Flexible protective garments made of impact resistant fabrics are very often more closely fitted and flexible in use, and therefore have a hard back control layer such as a unidirectional fiber laminate or a resin impregnated fabric. It provides better comfort than the hybrid armors it contains. In addition, impact resistant garments made entirely of woven high-strength fiber yarns have been shown to remain impact resistant even after being used and worn for years. An alternative to an impact-resistant vest that is all woven is available on the market. Such articles are often made with a combination of high-strength fibers, matrix resin, and film, which often increases manufacturing costs. In addition, because of the structural materials that have temperature and strain dependent physical properties (eg, thermal expansion coefficient, modulus, etc.) that are different from the physical properties of the impact fiber, such composite layers are made of selected materials. Often has a useful life determined by the weakest points.

典型的な織られた二軸の耐衝撃性布帛(布帛平面内に2つの糸配向を有する、織り交ぜられ織り合わさった糸からなる布帛)は、自動織機で作り出される。こうした機織り操作により、織り交ぜられるよこ繊維糸が、たて方向(つまり、流れ方向)のそうした糸に対して90度ずれている織られた布帛が作り出される。布帛の性質は、4つの基本変数(糸デニール、糸カウント、織目および織物仕上げ)に大きく左右される。平織り、サテン織り、綾織、バスケット織、およびからみ織を含め、布帛には幾つかのスタイルがある。上記の布帛のみを使用して最小衝撃性能要件を満たすことは、衝撃防護服の製造業者にとって挑戦となる。多数の低カバーファクター(疎織(loosely woven))の耐衝撃性繊維糸布帛は、所望の面密度において申し分のないV50性能をもたらす(それから製作されたベストは、NIJ Standard−0101.04に略述されている限界値より間違いなく上の速度でも発射体がベスト材料を貫通するのを何度も防ぐことを示すことができる)が、十分な背面変形抵抗はもたらされない。その逆に、同じベスト面密度の高カバーファクター(いっそう密に織られた)の耐衝撃性繊維糸布帛を使用した場合、背面変形性能は向上するが、V50性能がかなり低下することが多く、時には背面形跡測定に必要なNIJ Standard−0101.04の速度に達しないこともある。すべてがp−アラミド繊維糸(Kevlar(登録商標)またはTwaron(登録商標)という商品名で販売されているものなど)であって、NIJ Standard−0101.04の44マグナム弾衝撃危険に関するレベルIIIAの背面要件を満たすことのできる、面密度が1 lb/ft2未満の織られた布帛ベストは、現在市販されていない。 A typical woven biaxial impact resistant fabric (a fabric consisting of interwoven and interwoven yarns with two yarn orientations in the fabric plane) is produced on an automatic loom. Such a weaving operation creates a woven fabric in which the interwoven weft fiber yarns are offset by 90 degrees with respect to such yarns in the warp direction (ie, flow direction). The nature of the fabric is highly dependent on four basic variables (yarn denier, yarn count, weave and fabric finish). There are several styles of fabric including plain weave, satin weave, twill weave, basket weave and leash weave. Meeting the minimum impact performance requirements using only the fabric described above is a challenge for impact garment manufacturers. A number of low-cover-factor (loosely woven) impact-resistant fiber yarn fabrics provide impeccable V50 performance at the desired areal density (the best made from it is abbreviated to NIJ Standard-0101.04) It can be shown that the projectile is prevented from penetrating the vest material many times even at speeds that are definitely above the limit stated), but does not provide sufficient back deformation resistance. Conversely, when using a high-cover factor (more densely woven) impact-resistant fiber yarn fabric with the same best areal density, the back surface deformation performance is improved, but the V50 performance is often significantly reduced, Sometimes the speed of NIJ Standard-0101.04 required for back trace measurement is not reached. All are p-aramid fiber yarns (such as those sold under the trade name Kevlar® or Twaron®), which are of Level IIIA for 44 Magnum bullet impact hazards of NIJ Standard-0101.04 Woven fabric vests with an areal density of less than 1 lb / ft 2 that can meet the back requirements are currently not commercially available.

柔軟防護服の背面形跡を減少させる一般的な一方法は、衝撃時の変形を防ぐために、高強度繊維の硬質プライまたは布帛補強樹脂複合プライを含めるというものである。これには、織られた衝撃布帛に高分子フィルムを結合させるかまたはポリマーコーティングを施すか、あるいは低い溶融温度のポリマーフィルムまたは感圧接着剤を用いて2つの織られた衝撃布帛層を結合させて、衝撃防護服構造体に(背面形跡を向上させるために)追加することができる耐衝撃プライを得るというものも含まれ、これは、国際公開第00/08411号パンフレット、米国特許第5,677,029号明細書、および米国特許出願公開第2003/0109188号明細書に記載されているとおりである。樹脂またはエラストマー含浸の衝撃繊維布帛は、衝撃背面形跡を向上させるために衝撃ベスト構造体に追加する別のタイプの複合プライである。こうした層を追加すると、防護服材料の背面形跡性能が向上することが明らかになっているが、V50性能に対して悪影響を及ぼしうることが多い。さらに、樹脂により、衝撃ベスト組合せ体の重量および剛さが増大する。   One common method of reducing the back trace of a flexible protective garment is to include a hard ply of high strength fibers or a fabric reinforced resin composite ply to prevent deformation upon impact. This can be accomplished by bonding a polymer film to the woven impact fabric or applying a polymer coating, or bonding two woven impact fabric layers using a low melt temperature polymer film or pressure sensitive adhesive. Including an impact resistant ply that can be added to an impact protection garment structure (to improve the back trace), which is disclosed in WO 00/08411, US Pat. 677,029, and US Patent Application Publication No. 2003/0109188. Resin or elastomer impregnated impact fiber fabrics are another type of composite ply that is added to the impact vest structure to improve impact back trace. The addition of such layers has been shown to improve the back trace performance of protective clothing material, but can often have a negative impact on V50 performance. In addition, the resin increases the weight and stiffness of the impact vest combination.

ポリマーマトリックス中の平行に配向した高強度繊維の第1複数体(first plurality)が、ポリマーマトリックス中の平行に配向した高強度繊維の第2複数体(second plurality)に接着結合したものからなり、第2複数体の繊維の配向が第1複数体の配向に対して多くの場合90度ずれている一方向繊維ラミネートは、安全なV50性能を維持しながら良好に背面外傷を制御できる一般的な耐衝撃材料になってきている。こうした一方向繊維ラミネートの作製方法は、一般的に、米国特許第4,916,000号明細書;米国特許第4,748,064号明細書;米国特許第4,737,401号明細書;米国特許第4,681,792号明細書;米国特許第4,650,710号明細書;米国特許第4,623,574号明細書;米国特許第4,563,392号明細書;米国特許第4,543,286号明細書;米国特許第4,501,854号明細書;米国特許第4,457,985号明細書、および米国特許第4,403,012号明細書に記載されている。こうした一方向ラミネートは、Honeywell International,Inc.からSpectra Shield(登録商標) Plus FlexおよびGold Flex(商標)という商品名で、またDSMからDyneema(登録商標)UDという商品名で市販されている。こうした一方向繊維ラミネートは単独で使用して衝撃防護をもたらすことができるが、米国特許第6,119,575号明細書に示されているように、こうした材料を織られた衝撃繊維糸布帛と組み合わせて使用すると、性能を低下させずに面密度をさらに減少させられることが、明らかになっている。   A first plurality of parallel oriented high strength fibers in a polymer matrix are adhesively bonded to a second plurality of parallel oriented high strength fibers in a polymer matrix; A unidirectional fiber laminate in which the orientation of the second plurality of fibers is often offset by 90 degrees relative to the orientation of the first plurality is a common that can control back trauma well while maintaining safe V50 performance It has become an impact resistant material. Methods for making such unidirectional fiber laminates are generally described in US Pat. No. 4,916,000; US Pat. No. 4,748,064; US Pat. No. 4,737,401; U.S. Pat. No. 4,681,792; U.S. Pat. No. 4,650,710; U.S. Pat. No. 4,623,574; U.S. Pat. No. 4,563,392; Described in US Pat. No. 4,543,286; US Pat. No. 4,501,854; US Pat. No. 4,457,985, and US Pat. No. 4,403,012. Yes. Such unidirectional laminates are available from Honeywell International, Inc. From Spectra Shield® Plus Flex and Gold Flex ™, and from DSM under the trade name Dyneema® UD. While such unidirectional fiber laminates can be used alone to provide impact protection, as shown in US Pat. No. 6,119,575, such materials are woven into impact fiber yarn fabrics. It has been shown that when used in combination, the surface density can be further reduced without degrading performance.

ベストにおいて一方向繊維または布帛と樹脂との複合層を使用することに関係した性能の向上は、米国特許第6,119,575号明細書で論じられているように、複数プライ構造体中でのその位置に大きく依存しうる。文書に記録されている多数の例では、こうしたより堅い複合層を従来の衝撃布帛の背後に配置すると、背面形跡およびV50性能が最適になる。この「片面配置(sidedness)」のせいで、こうしたハイブリッド衝撃ベスト構造体は、不注意で裏返しに着用されるか、または戦術ベスト(tactical vest)に誤った仕方で挿入されうるので、発射体脅威からの保護は最適とは言えないものとなる。したがって、一体構造の(まったく同様の耐衝撃材料プライからなる)、または前後で同等の耐衝撃性のある防護服構造体には価値がある。   The performance improvement associated with using a composite layer of unidirectional fibers or fabric and resin in the vest is seen in US Pat. No. 6,119,575, as discussed in US Pat. No. 6,119,575. Can depend greatly on its position. In many instances documented, such a stiffer composite layer is placed behind a conventional impact fabric to optimize the back trace and V50 performance. Because of this “sidedness”, such a hybrid impact vest structure can be inadvertently worn inside out or inserted wrongly into a tactical vest, thus projectile threat Protection from sub-optimal is not optimal. Thus, a monolithic structure (consisting of exactly the same impact-resistant material plies) or equivalent impact resistance in the front and back is valuable.

高速衝撃に関連した鈍的外傷を減少させることのできる、すべてが織られた布帛である軽量の防護服が必要とされている。本明細書に記載される本発明の二軸(布帛平面内において2つの別個の配向を有する織り合わさった繊維糸を含んでなる)布帛構築体および柔軟防護服構造体が登場する以前には、文書に記録されたもので、NIJ Standard−0101.04の44口径の変形可能発射体に関する背面要件(1430±30ft/s(436±9m/s)の発射体速度で44mm未満の背面形跡)を満たし、約1 lb/ft2未満の面密度を有する、すべてが織られたp−アラミド布帛の衝撃防護服は存在していなかった。 There is a need for a lightweight protective garment that is an all-woven fabric that can reduce blunt trauma associated with high speed impact. Prior to the advent of the biaxial (invented) interwoven fiber yarns and flexible protective garment structures of the present invention described herein, comprising interwoven fiber yarns having two distinct orientations in the fabric plane, As documented, the rear requirements for a 44 caliber deformable projectile of NIJ Standard-0101.04 (back signature of less than 44 mm at a projectile speed of 1430 ± 30 ft / s (436 ± 9 m / s)) There was no all-woven p-aramid fabric impact protective garment that filled and had an areal density of less than about 1 lb / ft 2 .

一実施態様によれば、本発明は、衝撃発射体耐性物品または耐穿刺性物品の製造用の糸から織られる二軸布帛(biaxial fabric)であって、前記二軸布帛が、布帛平面内に平行配向された糸の第1複数体を含み、第1複数体が、布帛平面内において第1複数体の方向/配向とは異なる方向/配向を有する、布帛平面内で平行配向された糸の第2複数体と織り交ぜられており、第1複数体の任意の繊維糸と第2複数体の繊維糸が交差して90度未満の測定角度(angular measurement)を有する一対の鋭角の対頂角を形成する、衝撃発射体耐性物品または耐穿刺性物品の製造用の糸から織られる二軸布帛に関する。   According to one embodiment, the present invention is a biaxial fabric woven from yarns for producing impact projectile resistant articles or puncture resistant articles, wherein the biaxial fabric is in a fabric plane. A first plurality of parallel oriented yarns, wherein the first plurality has a direction / orientation different from the direction / orientation of the first plurality in the fabric plane, A pair of acute angles that are interwoven with the second plurality and have a measurement angle of less than 90 degrees between any fiber yarn of the first plurality and the second plurality of fiber yarns; The invention relates to a biaxial fabric woven from yarns for forming impact projectile resistant articles or puncture resistant articles.

別の実施態様では、本発明は、芳香族ポリアミド、ポリオレフィン、ポリアレニアゾール(polyareneazole)、ポリエステル、レーヨン、液晶高分子、ガラス繊維、炭素繊維、セラミック、ポリアクリロニトリルおよびポリビニルアルコールを含む群から、単独でまたは組み合わせて選択される糸を含む複数の実質的に非付着性の不織または織られた布帛層から組み合わせて作られる衝撃発射体耐性または耐穿刺性の多層物品であって、その組合せ体内の少なくとも1つの層が、二軸布帛であって、布帛平面内に平行配向された第1複数糸を含み、第1複数糸が、布帛平面において第1複数体の方向/配向とは異なる方向/配向を有する布帛平面内で平行配向された糸の第2複数体と織り交ぜられており、第1複数体の任意の繊維糸と第2複数体の繊維糸が交差して90度未満の測定角度の一対の鋭角の対頂角を形成する二軸布帛である、多層物品に関する。   In another embodiment, the present invention is a compound selected from the group comprising aromatic polyamide, polyolefin, polyareneazole, polyester, rayon, liquid crystal polymer, glass fiber, carbon fiber, ceramic, polyacrylonitrile and polyvinyl alcohol. An impact projectile resistant or puncture resistant multilayer article made from a combination of a plurality of substantially non-adherent nonwoven or woven fabric layers comprising yarns selected in or in combination, At least one layer of a biaxial fabric comprising a first plurality of yarns oriented in parallel in the fabric plane, wherein the first plurality of yarns is in a direction different from the direction / orientation of the first plurality of bodies in the fabric plane. / Interwoven with a second plurality of yarns oriented in parallel in a fabric plane having an orientation, wherein any of the first plurality Fiber yarn of 維糸 a second plurality body is a biaxial fabric to form a pair of acute vertical angles measured angle of less than 90 degrees to intersect relates to a multilayer article.

先行技術の織られた布帛の例である。1 is an example of a prior art woven fabric. 本発明の耐衝撃性布帛構造体の一実施態様を拡大した画像である。It is the image which expanded one embodiment of the impact-resistant fabric structure of this invention. 従来の織られた布帛のロールからバイアス配向(bias−oriented)の布帛細片を作る場合を示したものである。Fig. 2 illustrates the production of a bias-oriented fabric strip from a roll of conventional woven fabric. 3Aに示したロールから切り取った布帛を菱形格子状化(trellising)器具に固定したものを示す。Figure 3 shows a fabric cut from the roll shown in 3A fixed to a rhombus trellising instrument. 菱形格子状化器具に固定して伸張した布帛を示す。Fig. 3 shows a fabric fixed and stretched on a rhombus latticed instrument.

本明細書用の用語集
鋭角 − 大きさが90度未満の角度
Glossary of terms for this specification Acute angle-angle less than 90 degrees in magnitude

織られた布帛 − 一方向に配向した繊維糸の1つの複数体が、その第1複数体の方向とは異なる方向に配向した糸の第2複数体と織り交ぜられているものを含んでなる布帛。流れ方向に整列された平行糸の第1複数体を、たて糸と呼ぶ。たて糸に対して90度で配向した織り交ぜられた糸を、よこ糸または横糸と呼ぶ。   Woven fabric-comprising a plurality of unidirectionally oriented fiber yarns interwoven with a second plurality of yarns oriented in a direction different from the direction of the first plurality Fabric. The first plurality of parallel yarns aligned in the flow direction is called warp yarn. Interwoven yarns oriented at 90 degrees to the warp yarn are called weft yarns or weft yarns.

バイアス織またはバイアス配向の布帛 − 布帛のXY平面内(ここで、Xは流れ方向(長さ)であり、Yは横方向(幅)である)に配向されたときに、布帛平面内のXおよびY軸とは異なる方向に配向された織り合わさった糸を含む、織られるかまたは編まれた二次元の布帛。   Bias woven or biased fabric-X in the fabric plane when oriented in the XY plane of the fabric, where X is the flow direction (length) and Y is the transverse direction (width) And a woven or knitted two-dimensional fabric comprising interwoven yarns oriented in a direction different from the Y axis.

バイアス配向方向(Bias orientation) − 布帛平面内の一方向に配向した複数の糸が、その最初のものとは異なる配向を有する糸の第2複数体と織り交ぜられているものを含んでなる二軸布帛では、第1複数体の糸の繊維と第2複数体の糸の繊維との間に形成される任意の角を二等分する任意の射線に平行している方向のこと。   Bias orientation-two comprising a plurality of yarns oriented in one direction in the fabric plane interwoven with a second plurality of yarns having a different orientation than the first. In a shaft fabric, a direction parallel to an arbitrary ray that bisects an arbitrary angle formed between a fiber of a first plurality of yarns and a fiber of a second plurality of yarns.

一方向繊維層 − 共通の繊維方向に沿って実質的に平行に配列された繊維を有する層。   Unidirectional fiber layer—a layer having fibers arranged substantially parallel along a common fiber direction.

複合布帛プライ − 1つの織られた布帛層と少なくとも1つの第2層(別の布帛層、一方向繊維層、高分子フィルム、布帛構成体に含浸させた高分子樹脂などであってよい)とを組み合わせたもの。1つの織られた布帛層を、縫い付け、溶融接着剤、感圧接着剤、圧縮成形、コーティングなどによって第2層と結合させることができる。   Composite fabric ply-one woven fabric layer and at least one second layer (which may be another fabric layer, a unidirectional fiber layer, a polymer film, a polymer resin impregnated in a fabric construct, etc.) A combination of One woven fabric layer can be bonded to the second layer by sewing, melt adhesive, pressure sensitive adhesive, compression molding, coating, and the like.

補角 − 2つの角度は、それらの測定角度の合計が180度に等しい場合に補角と呼ばれる。補角の一方は、他方を補足するものであると言われる。   Complementary angle—Two angles are called complementary angles when the sum of their measured angles is equal to 180 degrees. One of the complementary angles is said to supplement the other.

対頂角 − 以下の図のような、交差する任意の2本の線(射線)では、角度Aおよび角度Bを対頂角と呼ぶ。対頂角は、同じ測定角度を有する。角度Cおよび角度Dも対頂角   Vertical angle-In any two intersecting lines (rays) as in the following figure, angle A and angle B are called vertical angles. The vertical angle has the same measurement angle. Angle C and angle D are also vertical angles

Figure 2011508829
Figure 2011508829

格子角(Trellis angle) − 二軸布帛において、布帛平面内で配向が異なる任意の2本の糸の間に形成される鋭角であって、どちらのバイアス方向においても、編まれた二軸構成体で観察されるか、または二軸織物構造体の面内の延長によって実現されるもの。   Trellis angle-biaxial fabric, an acute angle formed between any two yarns with different orientations in the fabric plane, knitted biaxial construction in either bias direction Observed in or realized by in-plane extension of a biaxial woven structure.

格子方向(Trellis direction) − 鋭角の対頂角を二等分する線と平行している方向。   Trellis direction-a direction parallel to a line that bisects the acute vertical angle.

カバーファクター − 丸い糸形状を想定した場合に、糸がカバーする布帛の表面積の割合。   Cover factor-the proportion of the surface area of the fabric covered by the yarn, assuming a round yarn shape.

V50 − V50衝撃限度試験は、もともとは頑丈な装甲を評価するために米軍によって開発された統計的検定である。V50試験では、弾丸が試験用物体を貫通する確率が50パーセントである速度を実験的に突き止める。   The V50-V50 impact limit test is a statistical test originally developed by the US military to evaluate rugged armor. In the V50 test, the velocity at which the probability that a bullet penetrates the test object is 50 percent is determined experimentally.

背面形跡(BFS) − 貫通しない発射体の衝撃によって作り出される、裏材料に生じるへこみの深さ。背面形跡は、裏材料固定具の前端部によって画定される平面から測定する。国立司法研究所(National Institute of Justice)(NIJ) Standard−0101.04の個人用防護服の耐衝撃性(Ballistic Resistance of Personal Body Armor)によれば、その値が限界値44mmを超えることは許されない。   Back Trace (BFS)-Depth of indentation in the backing created by impact of a projectile that does not penetrate. The back signature is measured from the plane defined by the front end of the backing fixture. According to the National Institute of Justice (NIJ) Standard-0101.04 personal protective clothing's impact resistance (Ballistic Resistance of Personal Body Armor), it is allowed to exceed the limit of 44 mm. Not.

本発明は、様々な実施態様において、新規の種類の耐衝撃性布帛構築体、並びに衝撃層およびそれから作られる多層防護服構造体(従来の織られた衝撃布帛よりも衝撃背面変形の向上したもの)を対象としている。本発明の一実施態様は、従来の衝撃布帛では決して実現されなかった大幅な背面形跡の向上を防護服にもたらすことができる衝撃布帛構築体を作り出すことを含む。本発明の第2の実施態様は、防護服組合せ体用の衝撃布帛構築体からバランスの取れた衝撃層を作り出すことである。本発明の第3の実施態様は、本発明の衝撃布帛構築体を組み込んだ特殊な多層ベスト構造体を製作することである。   The present invention, in various embodiments, is a novel class of impact resistant fabric construction, and impact layers and multilayer protective garment structures made therefrom (improvement of impact back surface deformation over conventional woven impact fabrics). ). One embodiment of the present invention involves creating an impact fabric construction that can provide a protective garment with significant back trace improvements that were never realized with conventional impact fabrics. A second embodiment of the present invention is to create a balanced impact layer from an impact fabric construction for a protective clothing combination. A third embodiment of the present invention is to produce a special multilayer vest structure incorporating the impact fabric construction of the present invention.

本発明の第1の実施態様は、織られた布帛10の先行技術の例を示す図1を最初に参照して説明することができる。この図は、マルチフィラメント糸を含んでなる平織構造体の例を拡大して示しており、布帛平面内で方向が平行している糸の第1セット1(Xで示されている)の交差が、布帛平面内で平行していて第1セットのそれから90度ずれている糸の第2セット2(線Yで示されている)と織り交ぜられている。第1セットの糸と第2セットの糸との交差によって角度A〜Dが形成され、それぞれの大きさは90度である。線Lは、角度AおよびBを二等分するものとして示されている。   A first embodiment of the present invention can be described with initial reference to FIG. 1, which shows a prior art example of a woven fabric 10. This figure shows an enlarged example of a plain weave structure comprising multifilament yarns, the intersection of a first set 1 (indicated by X) of yarns whose directions are parallel in the fabric plane. Are interlaced with a second set 2 (shown by line Y) of yarns that are parallel in the fabric plane and offset 90 degrees from that of the first set. Angles A to D are formed by the intersection of the first set of yarns and the second set of yarns, each having a size of 90 degrees. Line L is shown as bisecting angles A and B.

本発明の第1の実施態様は、布帛平面内に平行配向された糸の第1複数体を含む織られた布帛構築体であって、第1複数体が、布帛平面内において第1複数体の方向/配向とは異なる方向/配向を有する、布帛平面内で平行配向された糸の第2複数体と織り交ぜられており、第1複数体の任意の繊維糸と第2複数体の繊維糸が交差して、90度未満の測定角度を有する一対の鋭角の対頂角と、必然的に90度より大きい測定値を有する一対の鈍角の対頂角(前述の鋭角の角度を補うもの)とを形成する、織られた布帛構築体である。本発明の衝撃布帛の配列10’を図2に示すが、これは、布帛平面内に配向された平行な糸の第1複数体1’(線X’で示されている)が、第1複数体とは異なる配向を有する、布帛平面内における平行な糸の第2複数体2’(線Y’で示されている)と織り交ぜられているものを含んでなり、第1複数体1’の任意の繊維糸と第2複数体2’の任意の繊維糸との交差により布帛平面内に一対の対頂角が形成され、鋭角の対頂角A’およびB’の測定角度は値が等しくかつ90°未満であり、鈍角の対頂角C’およびD’の測定角度は値が等しくかつ90°より大きい。本発明の布帛は、図3A〜3Cを参照しながら以下に説明するように、元の布帛を格子方向に伸張することによって実現できる。本開示の目的においては、本出願人は、こうした布帛の配向または格子延長方向を、図2に示すように、角度A'およびB'を横切って鋭角の対頂角を二等分する線L’に平行な方向として表すことにする。   A first embodiment of the present invention is a woven fabric construction comprising a first plurality of yarns oriented in parallel in a fabric plane, wherein the first plurality is in the fabric plane. And interwoven with a second plurality of yarns oriented in parallel in the plane of the fabric and having a direction / orientation different from the direction / orientation of the first plurality of fibers and the second plurality of fibers The yarns intersect to form a pair of acute vertical angles having a measurement angle of less than 90 degrees and a pair of obtuse vertical angles having a measurement value greater than 90 degrees (complementing the aforementioned acute angle). A woven fabric construction. An array 10 'of impact fabrics of the present invention is shown in FIG. 2, wherein a first plurality of parallel threads 1' (shown by line X ') oriented in the fabric plane are A first plurality 1 comprising a second plurality 2 '(shown by line Y') of parallel yarns in a fabric plane having an orientation different from that of the plurality; A pair of vertical angles are formed in the fabric plane by the intersection of the arbitrary fiber yarns of 'and the arbitrary fiber yarns of the second plurality 2', and the measured angles of the acute vertical angles A 'and B' are equal and 90 The measured angles of the obtuse vertical angles C ′ and D ′ are equal and greater than 90 °. The fabric of the present invention can be realized by stretching the original fabric in the lattice direction, as will be described below with reference to FIGS. For purposes of this disclosure, Applicants have determined that the orientation or lattice extension direction of such fabrics is a line L ′ that bisects the acute vertical angle across angles A ′ and B ′, as shown in FIG. It will be expressed as a parallel direction.

本発明の範囲は、図1に示されている平織り布帛でのインターレースと類似している、図2に示されているような1つおきに糸が1つ1つ重なる交互構造で織り合わさった糸からなる構造体に限定されない。それどころか、本発明の範囲は、布帛平面内の一方向の糸が、考えられる任意の特定の繰り返しパターンで、第2方向に配向した2本以上の隣接糸の上または下を交互に横切ることができる構築体を含み、それには、例えば、サテン織(3ハーネスサテン織、4ハーネスサテン織(クローフート(crow’s foot))、5ハーネスサテン織、および8ハーネスサテン織などを含むが、これらに限定されない)、バスケット織、およびあや織構成体のバイアス方向の伸張によって構成することができる布帛構築体があるが、これらに限定されない。   The scope of the present invention is similar to the interlacing in the plain weave fabric shown in FIG. 1, interwoven in an alternating structure with every other thread as shown in FIG. The structure is not limited to a thread structure. On the contrary, the scope of the present invention is that a unidirectional yarn in the fabric plane alternately traverses above or below two or more adjacent yarns oriented in the second direction in any particular repeating pattern conceivable. Including, for example, satin weave (3 harness satin weave, 4 harness satin weave (crow's foot), 5 harness satin weave, 8 harness satin weave, etc. Non-limiting), but not limited to, fabric constructions that can be constructed by stretching in the bias direction of basket weave and twill construction.

本開示で説明した耐衝撃性構築体を構成するのに用いる繊維糸は、引張強度が約8g/デニールより大きいか、より好ましくは約12g/デニールより大きいであろう。本発明の一実施態様では、布帛糸中の繊維は、芳香族ポリマー材料で作られるであろう。芳香族ポリマーとしては、芳香族ポリアミド(E.I.du Pont de Nemours and Company(Wilmington,DE)(DuPont)からKevlar(登録商標)という商品名で販売されており、帝人からはTwaron(登録商標)として入手可能なポリ(パラ−フェニレンテレフタルアミド)など)、およびNomex(登録商標)という商品名で販売されているポリ(メタフェニレンイソフタルアミド)、p−フェニレンベンゾビスオキサゾール(東洋紡績から入手可能なPBO)、ポリベンゾキサゾール、ポリベンゾチアゾールがある。他の芳香族ポリマーとしては、芳香族不飽和ポリエステル(ポリエチレンテレフタレートなど)、液晶サーモトロピックポリエステル(クラレから入手可能なVectran(登録商標)という商品名で販売されているものなど)、芳香族ポリイミド、芳香族ポリアミドイミド、芳香族ポリエステルアミドイミド、芳香族ポリエーテルアミドイミドおよび芳香族ポリエステルイミドがある。上に述べた種類の任意の物質のコポリマーも使用できる。   The fiber yarn used to construct the impact resistant construction described in this disclosure will have a tensile strength greater than about 8 g / denier, more preferably greater than about 12 g / denier. In one embodiment of the invention, the fibers in the fabric yarn will be made of an aromatic polymer material. As an aromatic polymer, aromatic polyamide (EI du Pont de Nemours and Company (Wilmington, DE) (DuPont) is sold under the trade name Kevlar (registered trademark), and Twaron (registered trademark) is available from Teijin. ) And other poly (metaphenylene isophthalamide) and p-phenylene benzobisoxazole (available from Toyobo) sold under the trade name Nomex (registered trademark) PBO), polybenzoxazole, and polybenzothiazole. Other aromatic polymers include aromatic unsaturated polyesters (such as polyethylene terephthalate), liquid crystal thermotropic polyesters (such as those sold under the trade name Vectran (registered trademark) available from Kuraray), aromatic polyimides, There are aromatic polyamide imides, aromatic polyester amide imides, aromatic polyether amide imides and aromatic polyester imides. Copolymers of any material of the type described above can also be used.

12g/デニールより大きな強度を有する、こうした織られた構築体を製作するのに使用できるであろう他の衝撃グレードの繊維糸としては、Dyneema(登録商標)という商品名でDSMから市販されており、またSpectra(登録商標)という商品名でHoneywell Internationalから市販されているポリオレフィン(特に注目すべきは、高分子量ポリエチレン)、高分子量ポリプロピレンおよびそれらのコポリマーがある。   Another impact grade fiber yarn that could be used to fabricate such a woven construction having a strength greater than 12 g / denier is commercially available from DSM under the trade name Dynamea®. And polyolefins (particularly high molecular weight polyethylene), high molecular weight polypropylene and copolymers thereof, commercially available from Honeywell International under the trade name Spectra (R).

本開示で示す例示的ケースでは、バイアス配向布帛細片は、流れ(長手)方向に配向したたて糸繊維と、たて糸繊維の方向に対して90度に配向したよこ繊維糸(流れ方向を横断して、布帛ロールの軸に平行している)とを有する布帛ロールから、衝撃布帛を切り取って得た。こうした細片は、図3Aに示すように、バイアス方向に切り取って準備した。次いで、布帛は、図3Bおよび3Cに示す菱形格子状化器具にいったん固定し、伸張して耐衝撃性バイアス布帛構築体を形成した。   In the exemplary case shown in this disclosure, the bias-oriented fabric strip comprises warp fibers oriented in the flow (longitudinal) direction and weft fiber yarns oriented 90 degrees relative to the direction of the warp fibers (cross-flow direction). The impact fabric was cut out from a fabric roll having a width parallel to the axis of the fabric roll. These strips were prepared by cutting in the bias direction as shown in FIG. 3A. The fabric was then secured once to the rhombus gridding device shown in FIGS. 3B and 3C and stretched to form an impact resistant bias fabric construction.

上記の方法は、本明細書に示す実例を作り出すのに適切であったが、こうした構成体を経済的に作り出す方法では、連続長さ(continuous running lengths)およびベストを切り取るのに十分な幅を有する、所望の格子角を作るために伸張したバイアス配向布帛を製造する必要があるであろう。バイアス配向布帛を作り出す方法は、特許文献に開示されている。その例として、米国特許第6,494,235号明細書、米国特許第6,494,238号明細書、米国特許第4,907,323号明細書および国際公開第99/55519号パンフレットがある。バイアス配向の織物構成体は、当業界で知られている編み工程を用いて作り出すこともでき、これにより、連続布帛シートを直接作り出すか、または管の軸に平行な一側面に沿って細長く切ってバイアス配向布帛の平らな連続シートを製造することのできる管状構造体を作り出すかのいずれかを行う。バイアス配向布帛の連続シートを製作する第2の手段は、たて糸繊維が管の軸に平行に配向され、よこ糸繊維が周方向に配向される管状織機(tubular loom)から作り出される管状布帛を、螺旋状に切り取るものであろう。これも米国特許第4,299,878号明細書に記載されている。   While the above method was adequate to produce the examples shown herein, the method of producing such constructs economically is sufficient to cut continuous lengths and vests. It would be necessary to produce a biased orientation fabric that is stretched to produce the desired lattice angle. Methods for creating bias-oriented fabrics are disclosed in the patent literature. Examples include US Pat. No. 6,494,235, US Pat. No. 6,494,238, US Pat. No. 4,907,323 and WO 99/55519. . Bias-oriented fabric constructions can also be created using knitting processes known in the art, thereby creating a continuous fabric sheet directly or slit along one side parallel to the axis of the tube. To produce a tubular structure that can produce a flat continuous sheet of bias-oriented fabric. A second means of producing a continuous sheet of bias-oriented fabric is to spiral a tubular fabric produced from a tubular loom in which the warp fibers are oriented parallel to the axis of the tube and the weft fibers are oriented circumferentially. It will be cut into a shape. This is also described in US Pat. No. 4,299,878.

本発明の第2の実施態様は、衝撃防護服を構成するのに使用できる、独立している格子状布帛構築体または格子状布帛複合プライを作り出すことである。格子状衝撃構築体のそのような安定化層は、衝撃防護服の製造者によって使用される連続ロール状品(continuous rolled good)として提供できる。本発明のこの構築体を有する個別の布帛層は、安定化手段がなければ、非等方性のゆえに本来的に不安定であることを理解しなければならない。すなわち、布帛層は、ほとんど変わらずいっそう均衡の取れた構造に容易に逆戻りする(元に戻る)傾向がある(鋭角の測定角度の増大によって示される)。このため、こうした布帛構築体は、防護服を組み合わせて作る時に望ましくない逆戻りを起こさないように取り扱うのが困難になる。個々の布帛層において格子状にされた状態を維持するのに用いる一方法として、いったん所望の格子角にされたなら、裁縫作業によって縫い付けるという方法がある。どんな方向に縫い付けてもいくらかの安定性を衝撃布帛に与えうるが、「元に戻る」傾向を防ぐ最も効果的な縫い付けは、格子方向の方向に対して垂直な方向に縫い付けることである。所望の鋭角の格子角になるまで伸張した細長いバイアス配向の布帛を横切るように一定間隔でこのようなやり方で縫い付けると、安定化した単一の布帛シートが得られる。あるいはまた、ポリマー層(格子布帛の「元に戻る」傾向に対抗するための十分な程度の寸法安定性/逆戻り抵抗性(reversion resistance)を有する)を、格子状布帛層に接着して、構造を維持しやすくすることができる。そのようなポリマー層は、(加熱プラテン圧縮または加熱カレンダー加工によって)布帛に溶融結合された薄膜の形態か、または伸張状態を保ちつつ、布帛の片面または両面に施してから乾燥させるポリマーコーティング(溶剤をベースにしたものか、またはエマルジョン/ラテックス)の形態であってもよい。そのようなポリマー層は、布帛の表面全体を覆うという点で連続あってよいか、または衝撃層への重量および剛さの影響を最小限に抑えるために布帛構築体の表面全体にわたって不連続であってよい。樹脂の不連続コーティングには、布帛上の樹脂の穴あきパターン(open patterns)または線または不連続スポットが含まれる。これは、布帛表面に溶着させることができる穴あきパターンの形に切り取られた溶融接着フィルムを用いて達成できる。あるいはまた、溶剤をベースとするポリマーコーティングまたはポリマーエマルジョン/ラテックスは、グラビア印刷法などを用いて、前述の不連続なやり方で格子状布帛に転写することができる。   A second embodiment of the present invention is to create an independent grid fabric construction or grid fabric composite ply that can be used to construct impact protection garments. Such a stabilization layer of a grid-like impact structure can be provided as a continuous roll good used by the manufacturer of impact protection garments. It should be understood that individual fabric layers having this construction of the present invention are inherently unstable due to anisotropy without a stabilizing means. That is, the fabric layer tends to revert (return) to a more balanced structure that is almost unchanged (indicated by an increase in acute measurement angle). This makes it difficult to handle such fabric constructions so as not to cause undesirable reversal when making protective clothing in combination. One method used to maintain the latticed state in the individual fabric layers is to sew by a sewing operation once the desired lattice angle is achieved. Sewing in any direction can give the impact fabric some stability, but the most effective stitching to prevent the “return” tendency is to sew in a direction perpendicular to the grid direction. is there. Stitching in this manner at regular intervals across an elongated biased fabric stretched to the desired acute grid angle results in a single stabilized fabric sheet. Alternatively, a polymer layer (having a sufficient degree of dimensional stability / reverse resistance) to counter the grid fabric's “undo” tendency is adhered to the grid fabric layer to form a structure. Can be easily maintained. Such a polymer layer may be in the form of a thin film that is melt bonded to the fabric (by heat platen compression or heat calendering) or applied to one or both sides of the fabric while remaining stretched (solvent) Or an emulsion / latex). Such a polymer layer may be continuous in that it covers the entire surface of the fabric, or it may be discontinuous over the entire surface of the fabric construction to minimize the impact of weight and stiffness on the impact layer. It may be. Discontinuous coatings of resin include resin perforated patterns or lines or discontinuous spots on the fabric. This can be accomplished using a melt adhesive film cut into a perforated pattern that can be welded to the fabric surface. Alternatively, the solvent-based polymer coating or polymer emulsion / latex can be transferred to the grid fabric in the aforementioned discontinuous manner, such as using a gravure printing method.

上述の個別の本発明の格子状にされた布帛層及び/または複合プライは、衝撃防護服全体を構成するのに使用できるか、または他の耐衝撃材料と組み合わせて衝撃防護服に使用することができる。縫い付けるか、または接着されたポリマーのフィルムまたはコーティングで安定化された構成体は、防護服内に様々な配列で積み重ねることができる。   The above-described individual inventive latticed fabric layers and / or composite plies can be used to construct the entire impact protection garment or used in an impact protection garment in combination with other impact resistant materials. Can do. Structures stabilized with a sewn or adhered polymer film or coating can be stacked in various arrangements within the protective garment.

バランスの取れた複合布帛プライは、格子状布帛構築体の2つを一体化し、一方の布帛の鋭角方向または格子方向(2本の織り交ぜられた糸によって形成される鋭角の対頂角を二等分する線と平行になっているものと定義される)が、第2格子状布帛構築体の鋭角方向に対して90度の角度で配向するように組み合わせることによって作り出すこともできる。得られた布帛の2つの層は、裁縫作業で縫い付けて結合するか、感圧接着剤で接着するか、層間にポリマーフィルムまたは熱可塑性エラストマーフィルムを置いて溶融接着によって付着させて一緒にするか、接着を促進するため融点より上まで加熱しつつプレスまたはカレンダー加工操作で層を圧縮して一緒にすることができるであろう。2つの材料層を一体化して一緒にするのに、熱硬化性の樹脂またはエラストマーも使用できる。ポリマーコーティングで安定化される単一布帛層構築体の場合と同様に、こうした2つの布帛のサンドイッチ構造ラミネートの剛さおよび重量を少なくする手段として、不連続コーティングが最も好ましい。   A balanced composite fabric ply integrates two of the lattice fabric constructs and divides the acute angle or lattice direction of one fabric (the acute angle of the vertical angle formed by two interlaced yarns into two equal parts. Can be created by combining them so that they are oriented at an angle of 90 degrees with respect to the acute angle direction of the second grid-like fabric construction. The two layers of the resulting fabric are sewn together in a sewing operation, bonded with a pressure sensitive adhesive, or a polymer film or thermoplastic elastomer film placed between the layers and adhered together by melt bonding to bring them together Alternatively, the layers could be compressed together by pressing or calendering operations while heating above the melting point to promote adhesion. Thermosetting resins or elastomers can also be used to integrate the two material layers together. As with single fabric layer constructions that are stabilized with a polymer coating, a discontinuous coating is most preferred as a means of reducing the stiffness and weight of such a two fabric sandwich laminate.

比較例1
15インチ×15インチ(38×38cm)の正方形の衝撃試験パネルを、JPS Industries Inc,Anderson,SCから入手できる25層のスタイル726の生機布帛(greige fabric)から作った。これは、840デニールのKevlar(登録商標)129繊維糸から作製される平織布帛であり、糸カウント(yarn count)がたて糸で26本/インチ、よこ糸が26本/インチであり、測定抜き取り糸(measured extracted yarn)の強度がたて糸で27g/デニール、よこ糸で26g/デニールであり、面密度が6.04oz/yd2(205g/m2)である。個々の正方形布帛層は、たて糸およびよこ糸方向に沿って切り取って作り出した(正方形の辺に平行になっているたて糸およびよこ糸の繊維糸を有する)。布帛層は、たて糸およびよこ糸の繊維がスタック中のすべての布帛層で同じ方向に配向するように配置した。布帛層は、エッジから1/2インチ(1.27cm)の、パネルの周辺部付近を縫い合わせた。また2インチ×2インチ(5.1×5.1cm)のキルトパターンをパネルの厚さ越しに縫い付けて、層を機械的に結合した。背面形跡高速衝撃試験(ballistic backface signature impact testing)は、NIJ Standard 0101−04に略述された手順に従って、粘土証拠物(Roma plastilina粘土)に押しつけるように置かれた標的に対して、1430±30ft/sの速度の44マグナム弾を用いて実施した。この試験パネルについて、44マグナム弾での衝撃V50を求めた。粘土証拠物に対する1430±30ft/sでの44マグナム弾衝撃試験の背面形跡およびV50の結果を表1に示す。
Comparative Example 1
A 15 inch × 15 inch (38 × 38 cm) square impact test panel was made from a 25 layer style 726 grate fabric available from JPS Industries Inc, Anderson, SC. This is a plain weave fabric made from 840 denier Kevlar® 129 fiber yarns with a yarn count of 26 warps / inch for warp yarns, 26 wefts / inch for weft yarns, The strength of the measured extracted yarn) is 27 g / denier for the warp yarn, 26 g / denier for the weft yarn, and the surface density is 6.04 oz / yd 2 (205 g / m 2 ). Individual square fabric layers were created by cutting along the warp and weft direction (with warp and weft fiber yarns parallel to the sides of the square). The fabric layers were arranged so that the warp and weft fibers were oriented in the same direction on all fabric layers in the stack. The fabric layer was stitched around the periphery of the panel, 1/2 inch (1.27 cm) from the edge. A 2 inch x 2 inch (5.1 x 5.1 cm) quilt pattern was also sewn through the thickness of the panel to mechanically bond the layers. The ballistic backface impact testing is 1430 ± 30 ft against a target placed against clay evidence (Roma plasilina clay) according to the procedure outlined in NIJ Standard 0101-04. This was carried out using 44 magnum shells at a speed of / s. For this test panel, the impact V50 with 44 Magnum bullets was determined. Table 1 shows the back trace and V50 results of a 44 Magnum impact test at 1430 ± 30 ft / s against clay evidence.

比較例2
15インチ×15インチ(38×38cm)の正方形の衝撃試験パネルを、JPS Industries Inc.によって840デニールのKevlar(登録商標)129繊維糸から作製された36層の平織布帛から作った。その平織布帛は、糸カウントがたて糸で18本/インチ、よこ糸で18本/インチであり、測定抜き出し糸の強度がたて糸で27g/デニール、よこ糸で26g/デニールであり、面密度が4.04oz/yd2(137g/m2)であった。正方形の辺に平行になっているたて糸およびよこ糸を有している個々の布帛層を、布帛ロールから切り取った。布帛層は、たて糸およびよこ糸の繊維糸がスタック中のすべての布帛層で同じ方向に配向するように配置した。布帛層は、エッジから1/2インチ(1.27cm)の、パネルの周辺部付近を縫い合わせた。また2インチ×2インチ(5.1×5.1cm)のキルトパターンをパネルの厚さ越しに縫い付けて、層を機械的に結合した。粘土証拠物に対する1430±30ft/sでの44マグナム弾衝撃試験の背面形跡およびV50の結果を表1に示す。
Comparative Example 2
A 15 inch × 15 inch (38 × 38 cm) square impact test panel was purchased from JPS Industries Inc. Made from a 36 layer plain woven fabric made from 840 denier Kevlar® 129 fiber yarn. The plain weave fabric has a warp count of 18 / inch for warp yarn, 18 / inch for weft yarn, the strength of the measured extracted yarn is 27 g / denier for warp yarn, 26 g / denier for weft yarn, and the surface density is 4.04 oz. / Yd 2 (137 g / m 2 ). Individual fabric layers having warp and weft parallel to the sides of the square were cut from the fabric roll. The fabric layers were arranged so that the warp and weft fiber yarns were oriented in the same direction in all fabric layers in the stack. The fabric layer was stitched around the periphery of the panel, 1/2 inch (1.27 cm) from the edge. A 2 inch x 2 inch (5.1 x 5.1 cm) quilt pattern was also sewn through the thickness of the panel to mechanically bond the layers. Table 1 shows the back trace and V50 results of a 44 Magnum impact test at 1430 ± 30 ft / s against clay evidence.

比較例3
15インチ×15インチ(38×38cm)の正方形の衝撃試験パネルを、比較例1に記載した性質を有する37層のスタイル726の生機布帛から作った。1つおきの層で布帛配向が互い違いになっている標的であって、19枚の正方形の布帛は、正方形の辺がたて糸およびよこ糸の繊維糸の方向(0−90)と平行に配向されており、18層は、前の布帛の方向から45度ずらして配向されている(−45、+45)標的を作製した。布帛層は、エッジから1/2インチ(1.27cm)の、パネルの周辺部付近を縫い合わせた。また2インチ×2インチ(5.1×5.1cm)のキルトパターンをパネルの厚さ越しに縫い付けて、層を機械的に結合した。粘土証拠物に対する1430±30ft/sでの44マグナム弾衝撃試験の背面形跡およびV50の結果を表1に示す。
Comparative Example 3
A 15 inch × 15 inch (38 × 38 cm) square impact test panel was made from 37 layers of style 726 green fabric having the properties described in Comparative Example 1. A target with staggered fabric orientation in every other layer, with 19 square fabrics with square sides oriented parallel to the warp and weft fiber yarn direction (0-90) The 18 layers produced targets that were oriented 45 ° off the previous fabric direction (−45, +45). The fabric layer was stitched around the periphery of the panel, 1/2 inch (1.27 cm) from the edge. A 2 inch x 2 inch (5.1 x 5.1 cm) quilt pattern was also sewn through the thickness of the panel to mechanically bond the layers. Table 1 shows the back trace and V50 results of a 44 Magnum impact test at 1430 ± 30 ft / s against clay evidence.

比較例4
15インチ×15インチ(38cm×38cm)の正方形の衝撃試験パネルを、Kevlar(登録商標)KM2(600デニールの繊維糸)の53層の平織から作った。その平織は、糸カウントがたて糸で17本/インチ、よこ糸で17本/インチであり、抜き出し糸の強度がたて糸で25g/デニール、よこ糸で22g/デニールであり、面密度が2.64oz/yd2(89.5g/m2)であった。個々の正方形布帛層は、たて糸およびよこ糸方向に沿って切り取って作り出した(正方形の辺に平行になっているたて糸およびよこ糸の繊維糸を有する)。布帛層は、たて糸およびよこ糸の繊維がスタック中のすべての布帛層で同じ方向に配向するように配置した。布帛層は、エッジから1/2インチ(1.27cm)の、パネルの周辺部付近を縫い合わせた。また2インチ×2インチ(5.1×5.1cm)のキルトパターンをパネルの厚さ越しに縫い付けて、層を機械的に結合した。粘土証拠物に対する1430±30ft/sでの44マグナム弾衝撃試験の背面形跡およびV50の結果を表2に示す。
Comparative Example 4
A 15 inch x 15 inch (38 cm x 38 cm) square impact test panel was made from a 53 layer plain weave of Kevlar® KM2 (600 denier fiber yarn). The plain weave has a warp yarn count of 17 / inch for the warp yarn, 17 yarns / inch for the weft yarn, a strength of the extracted yarn of 25 g / denier for the warp yarn, 22 g / denier for the weft yarn, and an areal density of 2.64 oz / yd. 2 (89.5 g / m 2 ). Individual square fabric layers were created by cutting along the warp and weft direction (with warp and weft fiber yarns parallel to the sides of the square). The fabric layers were arranged so that the warp and weft fibers were oriented in the same direction on all fabric layers in the stack. The fabric layer was stitched around the periphery of the panel, 1/2 inch (1.27 cm) from the edge. A 2 inch x 2 inch (5.1 x 5.1 cm) quilt pattern was also sewn through the thickness of the panel to mechanically bond the layers. Table 2 shows the back trace and V50 results of a 44 Magnum impact test at 1430 ± 30 ft / s against clay evidence.

比較例5
15インチ×15インチ(38cm×38cm)の正方形の衝撃試験パネルを、Kevlar(登録商標)KM2(600デニールの繊維糸)の26層の平織から作った。その平織は、糸カウントがたて糸で34本/インチ、よこ糸で34本/インチであり、抜き出し糸の強度がたて糸で21g/デニール、よこ糸で23g/デニールであり、面密度が5.50oz/yd2(186g/m2)であった。個々の正方形布帛層は、たて糸およびよこ糸方向に沿って切り取って作り出した(正方形の辺に平行になっているたて糸およびよこ糸の繊維糸を有する)。布帛層は、たて糸およびよこ糸の繊維がスタック中のすべての布帛層で同じ方向に配向するように配置した。布帛層は、エッジから1/2インチ(1.27cm)の、パネルの周辺部付近を縫い合わせた。また2インチ×2インチ(5.1×5.1cm)のキルトパターンをパネルの厚さ越しに縫い付けて、層を機械的に結合した。粘土証拠物に対する1430±30ft/sでの44マグナム弾衝撃試験の背面形跡およびV50の結果を表2に示す。
Comparative Example 5
A 15 inch × 15 inch (38 cm × 38 cm) square impact test panel was made from a 26 layer plain weave of Kevlar® KM2 (600 denier fiber yarn). The plain weave has a warp count of 34 / inch for warp, 34 / inch for weft, the strength of the extracted yarn is 21 g / denier for warp, 23 g / denier for weft, and the surface density is 5.50 oz / yd. 2 (186 g / m 2 ). Individual square fabric layers were created by cutting along the warp and weft direction (with warp and weft fiber yarns parallel to the sides of the square). The fabric layers were arranged so that the warp and weft fibers were oriented in the same direction on all fabric layers in the stack. The fabric layer was stitched around the periphery of the panel, 1/2 inch (1.27 cm) from the edge. A 2 inch x 2 inch (5.1 x 5.1 cm) quilt pattern was also sewn through the thickness of the panel to mechanically bond the layers. Table 2 shows the back trace and V50 results of a 44 Magnum impact test at 1430 ± 30 ft / s against clay evidence.

比較例6
15インチ×15インチ(38×38cm)の正方形の衝撃試験パネルを、JPS Industries Incによって840デニールのKevlar(登録商標)129繊維糸から作製された、33層の4ハーネスサテン織(クローフート)の布帛から作った。この布帛は、糸カウントがたて糸で20本/インチ、よこ糸が20本/インチであり、たて糸の強度が27g/デニール、よこ糸の強度が25g/デニールであり、面密度が4.43oz/yd2(150g/m2)であった。正方形の辺に平行になっているたて糸およびよこ糸を有している個々の布帛層を、布帛ロールから切り取った。布帛層は、たて糸およびよこ糸の繊維がスタック中のすべての布帛層で同じ方向に配向するように配置した。布帛層は、エッジから1/2インチ(1.27cm)の、パネルの周辺部付近を縫い合わせた。また2インチ×2インチ(5.1×5.1cm)のキルトパターンをパネルの厚さ越しに縫い付けて、層を機械的に結合した。粘土証拠物に対する1430±30ft/sでの44マグナム弾衝撃試験の背面形跡およびV50の結果を表3に示す。
Comparative Example 6
A 15-inch x 15-inch (38 x 38 cm) square impact test panel made from 840 denier Kevlar® 129 fiber yarn by JPS Industries Inc., 33 layers of 4 harness satin woven (Cloft) fabric Made from. This fabric has a warp count of 20 / inch warp yarns, 20 weft yarns / inch, a warp strength of 27 g / denier, a weft strength of 25 g / denier, and an areal density of 4.43 oz / yd 2. (150 g / m 2 ). Individual fabric layers having warp and weft parallel to the sides of the square were cut from the fabric roll. The fabric layers were arranged so that the warp and weft fibers were oriented in the same direction on all fabric layers in the stack. The fabric layer was stitched around the periphery of the panel, 1/2 inch (1.27 cm) from the edge. A 2 inch x 2 inch (5.1 x 5.1 cm) quilt pattern was also sewn through the thickness of the panel to mechanically bond the layers. Table 3 shows the back trace and V50 results of 44 Magnum impact test at 1430 ± 30 ft / s for clay evidence.

比較例7
15インチ×15インチ(38×38cm)の正方形の衝撃試験パネルを、比較例1で記載したスタイル726生機布帛の層を2つ結合することによって製作した12の複合材から作った。第2層は、第1層に対して45度ずらした。不織ポリマー布帛接着剤(Pellon(登録商標)Consumer Products Group,LLC of Tucker(Georgia)から入手可能なPellon(登録商標)Wonder−Under(登録商標)805可融性不織布芯地ウェブ)を用いて、約130℃の温度において、層を結合して一緒にし、ハンドアイロン(hand iron)で押しつけて接着剤を溶融させて布帛層間の結合を行わせた。12の複合層を積み重ね、周辺部付近を縫い、2インチ×2インチ(5.1×5.1cm)のキルト縫いで縫い付けて、試験パネルを作り出した。粘土証拠物に対する1430±30ft/sでの44マグナム弾衝撃試験の背面形跡およびV50の結果を表4に示す。
Comparative Example 7
A 15 inch × 15 inch (38 × 38 cm) square impact test panel was made from 12 composites made by bonding two layers of style 726 green fabric described in Comparative Example 1. The second layer was shifted 45 degrees with respect to the first layer. Using a non-woven polymer fabric adhesive (Pellon® Wonder-Under® 805 fusible nonwoven core web available from Pellon® Consumer Products Group, LLC of Tucker, Georgia) At a temperature of about 130 ° C., the layers were bonded together and pressed with a hand iron to melt the adhesive and bond the fabric layers. Twelve composite layers were stacked, stitched near the periphery, and sewn with a 2 inch x 2 inch (5.1 x 5.1 cm) quilt stitch to create a test panel. Table 4 shows the back trace and V50 results of a 44 Magnum impact test at 1430 ± 30 ft / s against clay evidence.

比較例8
15インチ×15インチ(38×38cm)の正方形の衝撃試験パネルを、比較例1で記載した性質を有するスタイル726生機布帛を12層と、比較例7で記載した726生機布帛の2層複合材のうちの6つとから作った。パネルは、12の非結合層が前に(最初に弾丸の衝撃が加わる)、6つの複合材が後ろに(粘土証拠物に最も近い)くるようにして、組み合わせて作った。得られたスタックは、周辺部付近を縫い、2インチ×2インチ(5.1×5.1cm)のキルト縫いで縫い付けて、試験パネルを作り出した。粘土証拠物に対する1430±30ft/sでの44マグナム弾衝撃試験の背面形跡およびV50の結果を表4に示す。
Comparative Example 8
A 15-inch × 15-inch (38 × 38 cm) square impact test panel, 12 layers of Style 726 production fabric having the properties described in Comparative Example 1, and a two-layer composite of 726 production fabric described in Comparative Example 7 Made from six of them. The panels were made in combination with 12 unbonded layers in front (first bullet impact applied) and 6 composites in the back (closest to clay evidence). The resulting stack was sewn near the perimeter and sewn with a 2 inch × 2 inch (5.1 × 5.1 cm) quilt stitch to create a test panel. Table 4 shows the back trace and V50 results of a 44 Magnum impact test at 1430 ± 30 ft / s against clay evidence.

比較例9
15インチ×15インチ(38×38cm)の正方形の衝撃試験パネルを、比較例2で記載したたて糸が18本/インチ、よこ糸が18本/インチである840デニールの生機布帛の層を2つ結合して製作した17の複合材のスタックから作った。第2層は第1層に対して45度ずらした。不織ポリマー布帛接着剤(Pellen(登録商標)805 Wonder−Under(登録商標))を用いて、比較例7と同様の条件下で層を結合して一緒にし、接着剤を溶融させ、布帛層間の結合を行わせた。17の複合層を積み重ね、周辺部付近を縫い、2インチ×2インチ(5.1×5.1cm)のキルト縫いで縫い付けて、試験パネルを作り出した。粘土証拠物に対する1430±30ft/sでの44マグナム弾衝撃試験の背面形跡およびV50の結果を表4に示す。
Comparative Example 9
A 15 inch × 15 inch (38 × 38 cm) square impact test panel is bonded to two layers of 840 denier raw fabric with 18 warps / inch warp and 18 wefts / inch as described in Comparative Example 2. Made from a stack of 17 composites. The second layer was shifted 45 degrees with respect to the first layer. Using a non-woven polymer fabric adhesive (Pellen (R) 805 Wonder-Under (R)), the layers were bonded together under the same conditions as in Comparative Example 7, the adhesive was allowed to melt, and the fabric layers Was made. Seventeen composite layers were stacked, stitched near the perimeter, and sewn with a 2 inch × 2 inch (5.1 × 5.1 cm) quilt stitch to create a test panel. Table 4 shows the back trace and V50 results of a 44 Magnum impact test at 1430 ± 30 ft / s against clay evidence.

比較例10
15インチ×15インチ(38×38cm)の正方形の衝撃試験パネルを、比較例2で記載した840デニールのKevlar(登録商標)129糸の生機布帛(たて糸が18本/インチ、よこ糸が18本/インチ)の層を17枚と、比較例9で記載した2層複合材の布帛プライのうちの9枚とから作った。パネルは、17の非結合層が前に(最初に弾丸の衝撃が加わる)、6つの複合材が後ろに(粘土証拠物に最も近い)くるようにして、組み合わせて作った。得られたスタックは、周辺部付近を縫い、2インチ×2インチ(5.1×5.1cm)のキルト縫いで縫い付けて、試験パネルを作り出した。粘土証拠物に対する1430±30ft/sでの44マグナム弾衝撃試験の、背面形跡およびV50の結果を表4に示す。
Comparative Example 10
A 15 inch × 15 inch (38 × 38 cm) square impact test panel was applied to a 840 denier Kevlar® 129 raw fabric described in Comparative Example 2 (18 warps / inch, 18 wefts / weft) Inch) layers and nine of the two-layer composite fabric plies described in Comparative Example 9. The panels were made in combination with 17 unbonded layers in front (first bullet impact applied) and 6 composites in the back (closest to clay evidence). The resulting stack was sewn near the perimeter and sewn with a 2 inch × 2 inch (5.1 × 5.1 cm) quilt stitch to create a test panel. Table 4 shows the back trace and V50 results of a 44 Magnum impact test at 1430 ± 30 ft / s against clay evidence.

比較例11
15インチ×15インチ(38×38cm)の正方形の衝撃試験パネルを、Beijing Tongyizhong Specialty Fiber Technology & Development Company Ltd.(Beijing,China)によって作られた超高分子量ポリエチレン糸からJPS Industries Inc.が織ったCS811仕上げの平織布帛タイプS−17114Gの30層から作った。この800デニール糸補強材は、たて糸およびよこ糸が24本/インチ(94本/10cm)の糸カウントを有しており、面密度が4.86oz/yd2(165g/m2)であった。個々の正方形布帛層は、たて糸およびよこ方向に沿って切り取って作り出した(正方形の辺に平行になっているたて糸およびよこ糸繊維を有する)。布帛層は、たて糸およびよこ糸の繊維がスタック中のすべての布帛層で同じ方向に配向するように配置した。布帛層は、エッジから1/2インチ(1.27cm)の、パネルの周辺部付近を縫い合わせた。また2インチ×2インチ(5.1×5.1cm)のキルトパターンをパネルの厚さ越しに縫い付けて、層を機械的に結合した。背面形跡高速衝撃試験は、NIJによって略述されている手順に従って、粘土証拠物(Roma plastilina 粘土)に押しつけるように配置された標的に対して、1430±30ft/sの速度で44マグナム弾を用いて実施した。この試験パネルでの44マグナム弾の衝撃V50を求めた。背面形跡およびV50の結果を表5に示す。
Comparative Example 11
A 15 inch × 15 inch (38 × 38 cm) square impact test panel was obtained from Beijing Tonyizhong Specialty Fiber Technology & Development Company Ltd. (Ultra-high molecular weight polyethylene yarn made by (Beijing, China) from JPS Industries Inc. Made of 30 layers of plain woven fabric type S-17114G with woven CS811. The 800 denier yarn reinforcement had a warp and weft yarn count of 24 / inch (94/10 cm) and an areal density of 4.86 oz / yd 2 (165 g / m 2 ). Individual square fabric layers were created by cutting along the warp and weft directions (with warp and weft fibers parallel to the sides of the square). The fabric layers were arranged so that the warp and weft fibers were oriented in the same direction on all fabric layers in the stack. The fabric layer was stitched around the periphery of the panel, 1/2 inch (1.27 cm) from the edge. A 2 inch x 2 inch (5.1 x 5.1 cm) quilt pattern was also sewn through the thickness of the panel to mechanically bond the layers. The back trace high speed impact test uses 44 magnum ammunition at a speed of 1430 ± 30 ft / s against a target placed against the clay evidence (Roma plastina clay) according to the procedure outlined by NIJ. Carried out. The impact V50 of 44 Magnum bullets on this test panel was determined. The back trace and V50 results are shown in Table 5.

実施例1
斜め模様の細片を、比較例2で記載した840デニールのKevlar(登録商標)129糸の生機布帛(たて糸が18本/インチ、よこ糸が18本/インチ)の63インチ(160cm)幅のロールから切り取った。斜め模様の切断片は、図3Aに示すようにこの平織布帛のバイアス方向に沿って配向していて、幅が28インチ(71cm)のバイアス配向布帛細片が作り出された。布帛を、図3Bに示すように菱形格子状化フレームに固定し、伸張して45度の鋭角の格子角になるようにした。格子状布帛を、等しい断片に切断して交差配置させた(すべての層で格子方向がその前の層に対して90度ずれるように、層が互い違いになるように積み重ねた)。構築時に個々の布帛層の格子角を一定に保つ正方形のピンニングフレーム(pinning frame)を用いて、スタックを構築した。布帛層のこの互い違いの交差配置を繰り返して、格子状にされた26の布帛層を有するスタックを作った。布帛層のスタックは、布帛層をピンニングフレームで所定の位置に保持しながら、周辺部の付近で縫い合わせ、また2インチ×2インチ(5.1×5.1cm)のキルトパターンをパネルの厚さ越しに縫い付けて層を機械的に結合した。その後、パネルをトリムして、15インチ×15インチ(38×38cm)の端構造を有するようにした。粘土証拠物に対する1430±30ft/sの44マグナム弾の、背面形跡およびV50の結果を表1に示す。本発明の布帛構築体から製作されたこれらのパネルは、比較例1〜3よりも背面形跡が減少することを実証した。またこの新規の構造体を有するこれらのパネルでは、V50性能も損なわれておらず、比較例1〜3と値が同等のままであった。
Example 1
A strip of diagonal pattern is a 63 inch (160 cm) wide roll of 840 denier Kevlar® 129 raw fabric (18 warps / inch, 18 wefts / inch) as described in Comparative Example 2. Cut out from. The diagonally cut pieces were oriented along the bias direction of this plain weave fabric as shown in FIG. 3A, creating a 28 inch (71 cm) wide, bias-oriented fabric strip. The fabric was fixed to a rhombus latticed frame as shown in FIG. 3B and stretched to an acute lattice angle of 45 degrees. The grid-like fabric was cut into equal pieces and crossed (stacked so that the layers were staggered so that the grid direction was 90 degrees away from the previous layer in all layers). The stack was constructed using a square pinning frame that kept the lattice angle of the individual fabric layers constant during construction. This alternating cross placement of fabric layers was repeated to make a stack with 26 fabric layers gridded. The stack of fabric layers is sewn near the periphery while holding the fabric layers in place with a pinning frame, and a 2 inch x 2 inch (5.1 x 5.1 cm) quilt pattern is applied to the panel thickness. The layers were mechanically joined by sewing over. The panel was then trimmed to have an end structure of 15 inches x 15 inches (38 x 38 cm). Table 1 shows the back trace and V50 results of 1430 ± 30 ft / s 44 Magnum bullets for clay evidence. These panels made from the fabric construction of the present invention demonstrated reduced back traces compared to Comparative Examples 1-3. Moreover, in these panels which have this novel structure, V50 performance was not spoiled and the value was comparable with Comparative Examples 1-3.

実施例2
斜め模様の細片を、比較例2で記載した600デニールのKevlar(登録商標)KM2糸の生機布帛(たて糸が17本/インチ、よこ糸が17本/インチ)の63インチ(160cm)幅のロールから切り取った。斜め模様の切断片は、図3Aに示すようにこの平織布帛のバイアス方向に沿って配向していて、バイアス配向布帛細片が作り出された。布帛を、図3Bに示すように菱形格子状化フレームに固定し、伸張して30度の鋭角の格子角になるようにした。格子状布帛を、等しい断片に切断して交差配置させた(すべての層で格子方向がその前の層に対して90度ずれるように、層が互い違いになるように積み重ねた)。構築時に個々の布帛層の格子角を一定に保つ正方形のピンニングフレームを用いて、スタックを構築した。布帛層のこの互い違いの交差配置を繰り返して、格子状にされた27の布帛層を有するスタックを作った。布帛層のスタックは、布帛層をピンニングフレームで所定の位置に保持したまま、周辺部の付近で縫い合わせ、また2インチ×2インチ(5.1×5.1cm)のキルトパターンをパネルの厚さ越しに縫い付けて層を機械的に結合した。その後、パネルをトリムして、15インチ×15インチ(38×38cm)の端構造を有するようにした。粘土証拠物に対する1430±30ft/sの44マグナム弾の、背面形跡およびV50の結果を表1に示す。この格子状布帛構造体は、17本/インチのたて糸および17本/インチのよこ糸の基布で製作された標的(比較例5)および同じ600デニール糸の平織り布帛の標的(個別に布帛層の面密度は同じである)(比較例6)の両方よりもV50性能が向上していた。本発明の構造体に対して実施された最初の背面測定でも、比較例5および6の両方よりも向上していることが実証されたが、この最初の背面試験後のこの構造体の一体性は低下した。それによって、第2背面形跡測定で観察された変形抵抗が増大した可能性がある。
Example 2
A strip of diagonal patterns is a 63-inch (160 cm) wide roll of 600 denier Kevlar® KM2 raw fabric (17 warps / inch, 17 wefts / inch) as described in Comparative Example 2. Cut out from. The diagonally cut pieces were oriented along the bias direction of this plain weave fabric as shown in FIG. 3A, creating a bias oriented fabric strip. The fabric was fixed to a rhombus latticed frame as shown in FIG. 3B and stretched to an acute lattice angle of 30 degrees. The grid-like fabric was cut into equal pieces and crossed (stacked so that the layers were staggered so that the grid direction was 90 degrees away from the previous layer in all layers). The stack was constructed using a square pinning frame that kept the lattice angle of the individual fabric layers constant during construction. This alternating cross placement of fabric layers was repeated to make a stack with 27 fabric layers gridded. The stack of fabric layers is sewn near the periphery while the fabric layers are held in place by a pinning frame, and a 2 inch x 2 inch (5.1 x 5.1 cm) quilt pattern is applied to the panel thickness. The layers were mechanically joined by sewing over. The panel was then trimmed to have an end structure of 15 inches x 15 inches (38 x 38 cm). Table 1 shows the back trace and V50 results of 1430 ± 30 ft / s 44 Magnum bullets for clay evidence. This lattice fabric structure consists of a target made of 17 / inch warp and 17 / inch weft base fabric (Comparative Example 5) and a target of the same 600 denier plain weave fabric (individually the fabric layers). The surface density was the same), and the V50 performance was improved over both (Comparative Example 6). The first backside measurement performed on the structure of the present invention also demonstrated an improvement over both Comparative Examples 5 and 6, but the integrity of this structure after this first backside test. Fell. This may have increased the deformation resistance observed in the second back trace measurement.

実施例3
20×20本/インチの、840デニールのKevlar(登録商標)129糸のクローフート織りの布帛(比較例6で記載したもの)を用いて作り出された格子状布帛構築体を含んでなる多層パネルを、上記の実験的実施例1で記載した手順を用いて作り出した。出来上がった試験パネルは23層を含んでなり、それぞれは45度の格子角を有しており、実験的実施例1で行われたように、層は0度と90度の互い違いの配向で積み重ねたものであった。パネルは、周辺部付近を縫い付け、また2インチ×2インチ(5.1×5.1cm)キルトパターンで縫い付けた。粘土証拠物に対する1430±30ft/sの44マグナム弾の、背面形跡およびV50の結果を表3に示す。
Example 3
A multilayer panel comprising a lattice fabric construction made using 20 × 20 / inch Kevlar® 129 clawed woven fabric (as described in Comparative Example 6) of 840 denier. Was made using the procedure described in Experimental Example 1 above. The resulting test panel comprises 23 layers, each having a 45 degree lattice angle, and as done in Experimental Example 1, the layers are stacked in staggered orientations of 0 and 90 degrees. It was. The panel was sewn around the periphery, and was sewn in a 2 inch × 2 inch (5.1 × 5.1 cm) quilt pattern. Table 3 shows the back trace and V50 results of 1430 ± 30 ft / s 44 Magnum bullets for clay evidence.

この実施例では、比較例6における基布から製作された標的と比べて、V50の大幅な減少もなく背面が向上した。   In this example, the back surface improved without a significant decrease in V50 compared to the target made from the base fabric in Comparative Example 6.

実施例4
15インチ×15インチ(38×38cm)の正方形の衝撃試験パネルを、実施例1で記載したようにして作製された本発明の格子状布帛構築体の2層を結合することにより製作された12の複合材の布帛層から作った。第2布帛層は、格子方向が第1層に対して90度ずれていた。不織ポリマー布帛接着剤(Pellen(登録商標)805)を用いて、比較例7と同様の条件下で層を結合して一緒にし、布帛層間の結合を行わせた。12の複合層を積み重ね、周辺部付近を縫い付け、2インチ×2インチ(5.1×5.1cm)のキルト縫いで縫い付けて、試験パネルを作り出した。表4に示すように、この構造体は比較例7〜10で記載した比較の複合布帛プライパネルよりも大きなV50を示すとともに、1430±30ft/sの44マグナム弾で5回の背面試験を実施した後でさえ、一貫して申し分のない背面形跡を示した。
Example 4
A 15 inch × 15 inch (38 × 38 cm) square impact test panel was made by bonding two layers of the grid-like fabric construction of the present invention made as described in Example 1 12. Made from a composite fabric layer. The lattice direction of the second fabric layer was shifted by 90 degrees with respect to the first layer. A nonwoven polymer fabric adhesive (Pellen® 805) was used to bond the layers together under the same conditions as in Comparative Example 7 to effect bonding between the fabric layers. Twelve composite layers were stacked, sewn near the periphery, and sewn with a 2 inch x 2 inch (5.1 x 5.1 cm) quilt to create a test panel. As shown in Table 4, this structure exhibited a V50 greater than the comparative composite fabric ply panel described in Comparative Examples 7-10 and was subjected to 5 back tests with 44 Magnum bullets at 1430 ± 30 ft / s. Even after doing so, it showed a consistent back trace.

実施例5
15インチ×15インチ(38×38cm)の正方形の衝撃試験パネルを、比較例2で記載した840デニールのKevlar(登録商標)129繊維糸の生機布帛の18層と、実験的実施例4で記載したようにしてこの同じ布帛から作製した6つの格子状布帛複合プライとから作った。パネルは、18の布帛層が前に(最初に弾丸の衝撃が加わる)、6つの複合層が後ろに(粘土証拠物に最も近い)くるようにして、組み合わせて作った。得られたスタックは、周辺部付近を縫い付け、また2インチ×2インチ(5.1×5.1cm)のキルト縫いで縫い付けて、試験パネルを作り出した。粘土証拠物に対する1430±30ft/sの44マグナム弾の、背面形跡およびV50の結果を表4に示す。
Example 5
A 15 inch × 15 inch (38 × 38 cm) square impact test panel is described in Experimental Example 4 with 18 layers of raw fabric of 840 denier Kevlar® 129 fiber yarn described in Comparative Example 2. Thus, it was made from six lattice fabric composite plies made from this same fabric. The panels were made in combination with 18 fabric layers in front (first bullet impact applied) and 6 composite layers in the back (closest to clay evidence). The resulting stack was sewn around the periphery and sewn with a 2 inch x 2 inch (5.1 x 5.1 cm) quilt to create a test panel. Table 4 shows the back trace and V50 results of 1430 ± 30 ft / s 44 Magnum bullets for clay evidence.

実験的実施例6
斜め模様の細片を、比較例11のスタイルS−17114GのCS811のポリエチレン布帛のロールから切り取った。斜め模様の切断片は、図3Aに示すようにこの平織布帛のバイアス方向に沿って配向していて、バイアス配向布帛細片が作り出された。布帛を、図3Bに示すように菱形格子状化フレームで固定し、伸張して50度の鋭角の格子角になるようにした。格子状布帛を、等しい断片に切断して交差配置させた(すべての層で格子方向がその前の層に対して90度ずれるように、層が互い違いになるように積み重ねた)。構築時に個々の布帛層の格子角を一定に保つ正方形のピンニングフレームを用いて、スタックを構築した。布帛層のこの互い違いの交差配置を繰り返して、格子状にされた22の布帛層を有するスタックを作った。布帛層のスタックは、布帛層をピンニングフレームで所定の位置に保持したまま、周辺部付近で縫い合わせ、また2インチ×2インチ(5.1×5.1cm)のキルトパターンをパネルの厚さ越しに縫い付けて層を機械的に結合した。その後、パネルをトリムして、15インチ×15インチ(38×38cm)の端構造を有するようにした。粘土証拠物に対する1430±30ft/sの44マグナム弾の、背面形跡およびV50の結果を表5に示す。この格子布帛構造体は、従来の0/90の平織構造布帛と比べて背面形跡が27%減少した。
Experimental Example 6
The diagonal strips were cut from a roll of CS811 polyethylene fabric of style S-17114G of Comparative Example 11. The diagonally cut pieces were oriented along the bias direction of this plain weave fabric as shown in FIG. 3A, creating a bias oriented fabric strip. The fabric was fixed with a rhombus latticed frame as shown in FIG. 3B and stretched to an acute lattice angle of 50 degrees. The grid-like fabric was cut into equal pieces and crossed (stacked so that the layers were staggered so that the grid direction was 90 degrees away from the previous layer in all layers). The stack was constructed using a square pinning frame that kept the lattice angle of the individual fabric layers constant during construction. This staggered crossing of fabric layers was repeated to make a stack with 22 fabric layers gridded. The stack of fabric layers is sewn near the periphery while the fabric layers are held in place by a pinning frame, and a 2 inch x 2 inch (5.1 x 5.1 cm) quilt pattern is passed over the panel thickness. The layers were mechanically bonded together. The panel was then trimmed to have an end structure of 15 inches x 15 inches (38 x 38 cm). Table 5 shows the back trace and V50 results of 1430 ± 30 ft / s 44 Magnum bullets for clay evidence. This lattice fabric structure had a 27% reduction in back traces compared to a conventional 0/90 plain weave fabric.

表1

Figure 2011508829
Table 1
Figure 2011508829

表2

Figure 2011508829
Table 2
Figure 2011508829

表3

Figure 2011508829
Table 3
Figure 2011508829

表4

Figure 2011508829
* 標的の端から2.5インチの衝撃を意味する。
** 「貫通」は、弾丸が標的をまっすぐ貫通したことを意味する。 Table 4
Figure 2011508829
* Means 2.5 inches of impact from the end of the target.
** “Penetration” means that the bullet has penetrated the target straight.

表5

Figure 2011508829
Table 5
Figure 2011508829

Claims (25)

衝撃発射体耐性物品の製造用の糸から織られる布帛であって、前記布帛が、前記布帛の平面内に平行配向された糸の第1複数体を含み、第1複数体が、前記布帛の平面内において前記第1複数体の方向/配向とは異なる方向/配向を有する、前記布帛の平面内で平行配向された糸の第2複数体と織り交ぜられており、前記第1複数体の任意の繊維糸と前記第2複数体の繊維糸が交差して90度未満の測定角度を有する一対の鋭角の対頂角を形成する、布帛。   A fabric woven from yarns for producing impact projectile resistant articles, wherein the fabric includes a first plurality of yarns oriented in parallel in a plane of the fabric, the first plurality of Interwoven with a second plurality of yarns oriented in parallel in the plane of the fabric having a direction / orientation different from the direction / orientation of the first plurality in the plane, A fabric in which an arbitrary fiber yarn intersects with the second plurality of fiber yarns to form a pair of acute vertical angles having a measurement angle of less than 90 degrees. 前記布帛が、芳香族ポリアミド(ポリ(p−フェニレンテレフタルアミド)、ポリ(メタフェニレンイソフタルアミド)、p−フェニレンベンゾビスオキサゾール、ポリベンゾキサゾール、ポリベンゾチアゾールを含む)、芳香族の不飽和ポリエステル(ポリエチレンテレフタレートなど)、芳香族ポリイミド、芳香族ポリアミドイミド、芳香族ポリエステルアミドイミド、芳香族ポリエーテルアミドイミドおよび芳香族ポリエステルイミドまたは上述の種類の物質のいずれかのコポリマーを含有する繊維糸を含んでなる、請求項1に記載の布帛。   The fabric includes aromatic polyamide (including poly (p-phenylene terephthalamide), poly (metaphenylene isophthalamide), p-phenylene benzobisoxazole, polybenzoxazole, polybenzothiazole), aromatic unsaturated polyester (Including polyethylene terephthalate, etc.), aromatic polyimides, aromatic polyamideimides, aromatic polyester amide imides, aromatic polyether amide imides and aromatic polyester imides or fiber yarns containing copolymers of any of the aforementioned types of materials The fabric according to claim 1, comprising: 前記布帛が、超高分子量ポリエチレンを含有する繊維糸を含んでなる、請求項1に記載の布帛。   The fabric according to claim 1, wherein the fabric comprises fiber yarns containing ultra high molecular weight polyethylene. 前記鋭角の対頂角の角度が80から89度の間である、請求項1に記載の布帛。   The fabric of claim 1, wherein the acute angle of the vertical angle is between 80 and 89 degrees. 前記鋭角の対頂角の角度が70から80度の間である、請求項1に記載の布帛。   The fabric according to claim 1, wherein the acute angle of the vertical angle is between 70 and 80 degrees. 前記鋭角の対頂角の角度が60から70度の間である、請求項1に記載の布帛。   The fabric according to claim 1, wherein the acute angle of the vertical angle is between 60 and 70 degrees. 前記鋭角の対頂角の角度が50から60度の間である、請求項1に記載の布帛。   The fabric of claim 1, wherein the acute angle of the vertical angle is between 50 and 60 degrees. 前記鋭角の対頂角の角度が40から50度の間である、請求項1に記載の布帛。   The fabric according to claim 1, wherein the acute angle of the vertical angle is between 40 and 50 degrees. 前記鋭角の対頂角の角度が30から40度の間である、請求項1に記載の布帛。   The fabric according to claim 1, wherein the acute angle of the vertical angle is between 30 and 40 degrees. 前記鋭角の対頂角の角度が20から30度の間である、請求項1に記載の布帛。   The fabric according to claim 1, wherein the acute angle of the vertical angle is between 20 and 30 degrees. 前記鋭角の対頂角の角度が10から20度の間である、請求項1に記載の布帛。   The fabric according to claim 1, wherein the acute angle of the vertical angle is between 10 and 20 degrees. 前記鋭角の対頂角の角度が10度未満である、請求項1に記載の布帛。   The fabric according to claim 1, wherein the acute angle of the vertical angle is less than 10 degrees. 複数の実質的に非付着性の不織の布帛層、織られた布帛層、または複合布帛プライから組み合わせて作られる衝撃発射体耐性または耐穿刺性の多層物品であって、前記組合せ体における前記層の少なくとも1つが、前記布帛の平面内に平行配向された糸の第1複数体を有する繊維糸から作られた二軸布帛であり、第1複数体が、前記布帛の平面内において前記第1複数体の方向/配向とは異なる方向/配向を有する、前記布帛の平面内で平行配向された糸の第2複数体と織り交ぜられており、前記第1複数体の任意の繊維糸が前記第2複数体の繊維糸と交差して90度未満の測定角度を有する一対の鋭角の対頂角を形成する、多層物品。   An impact projectile resistant or puncture resistant multilayer article made from a combination of a plurality of substantially non-adhesive nonwoven fabric layers, woven fabric layers, or composite fabric plies, wherein At least one of the layers is a biaxial fabric made from fiber yarns having a first plurality of yarns oriented in parallel in the plane of the fabric, the first plurality in the plane of the fabric. Interwoven with a second plurality of yarns oriented in parallel in the plane of the fabric having a direction / orientation different from the direction / orientation of the plurality, wherein any fiber yarn of the first plurality is A multilayer article that forms a pair of acute vertical angles having a measurement angle of less than 90 degrees across the second plurality of fiber yarns. 前記二軸布帛層の少なくとも1つにおいて前記鋭角の対頂角の角度が80から89度の間である、請求項13に記載の物品。   14. The article of claim 13, wherein the acute angle of the vertical angle is between 80 and 89 degrees in at least one of the biaxial fabric layers. 前記二軸布帛層の少なくとも1つにおいて前記鋭角の対頂角の角度が70から80度の間である、請求項13に記載の物品。   14. The article of claim 13, wherein the acute angle of the vertical angle is between 70 and 80 degrees in at least one of the biaxial fabric layers. 前記二軸布帛層の少なくとも1つにおいて前記鋭角の対頂角の角度が60から70度の間である、請求項13に記載の物品。   14. The article of claim 13, wherein the acute angle of the vertical angle is between 60 and 70 degrees in at least one of the biaxial fabric layers. 前記二軸布帛層の少なくとも1つにおいて前記鋭角の対頂角の角度が50から60度の間である、請求項13に記載の物品。   The article of claim 13, wherein the acute vertical angle of the at least one of the biaxial fabric layers is between 50 and 60 degrees. 前記二軸布帛層の少なくとも1つにおいて前記鋭角の対頂角の角度が40から50度の間である、請求項13に記載の物品。   14. The article of claim 13, wherein the acute angle of the vertical angle is between 40 and 50 degrees in at least one of the biaxial fabric layers. 前記二軸布帛層の少なくとも1つにおいて前記鋭角の対頂角の角度が30から40度の間である、請求項13に記載の物品。   14. The article of claim 13, wherein the acute angle of the apex angle is between 30 and 40 degrees in at least one of the biaxial fabric layers. 前記二軸布帛層の少なくとも1つにおいて前記鋭角の対頂角の角度が20から30度の間である、請求項13に記載の物品。   14. The article of claim 13, wherein the acute angle of the vertical angle is between 20 and 30 degrees in at least one of the biaxial fabric layers. 前記二軸布帛層の少なくとも1つにおいて前記鋭角の対頂角の角度が10から20度の間である、請求項13に記載の物品。   14. The article of claim 13, wherein the acute angle of the apex angle is between 10 and 20 degrees in at least one of the biaxial fabric layers. 前記二軸布帛層の少なくとも1つにおいて前記鋭角の対頂角の角度が10度未満である、請求項13に記載の物品。   14. The article of claim 13, wherein the acute angle of the vertical angle is less than 10 degrees in at least one of the biaxial fabric layers. 前記二軸布帛層の少なくとも2つが、1つの層内の前記糸配向と別の層内の糸配向とがずれるように配向されている、請求項13に記載の物品。   The article of claim 13, wherein at least two of the biaxial fabric layers are oriented such that the yarn orientation in one layer deviates from the yarn orientation in another layer. 前記二軸布帛層の少なくとも2つが、1つの層内の前記糸配向と別の層内の前記糸配向とが同じになるように配向されている、請求項13に記載の物品。   14. The article of claim 13, wherein at least two of the biaxial fabric layers are oriented such that the yarn orientation in one layer and the yarn orientation in another layer are the same. 衝撃発射体耐性物品の製造用の糸から織られる少なくとも1つの布帛(と他の1つの布帛層)を含む複合布帛プライであって、前記布帛が、前記布帛の平面内に平行配向された糸の第1複数体を含み、第1複数体が、前記布帛の平面内において前記第1複数体の方向/配向とは異なる方向/配向を有する、前記布帛の平面内で平行配向された糸の第2複数体と織り交ぜられており、前記第1複数体の任意の繊維糸と前記第2複数体の繊維糸が交差して90度未満の測定角度を有する一対の鋭角の対頂角を形成する、複合布帛プライ。   A composite fabric ply comprising at least one fabric (and another fabric layer) woven from yarns for producing impact projectile resistant articles, wherein the fabrics are parallel oriented in a plane of the fabric Of the yarns oriented in parallel in the plane of the fabric, wherein the first plurality has a direction / orientation different from the direction / orientation of the first plurality in the plane of the fabric. Interwoven with the second plurality of bodies, the arbitrary fiber yarns of the first plurality of bodies and the fiber yarns of the second plurality of bodies intersect to form a pair of acute vertical angles having a measurement angle of less than 90 degrees. , Composite fabric ply.
JP2010540684A 2007-12-28 2008-10-22 Fabric construction with improved high-speed impact performance Pending JP2011508829A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/005,890 US20100275764A1 (en) 2007-12-28 2007-12-28 Fabric architectures for improved ballistic impact performance
PCT/US2008/080675 WO2009088551A2 (en) 2007-12-28 2008-10-22 Fabric architectures for improved ballistic impact performance

Publications (2)

Publication Number Publication Date
JP2011508829A true JP2011508829A (en) 2011-03-17
JP2011508829A5 JP2011508829A5 (en) 2011-12-01

Family

ID=40756929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010540684A Pending JP2011508829A (en) 2007-12-28 2008-10-22 Fabric construction with improved high-speed impact performance

Country Status (7)

Country Link
US (1) US20100275764A1 (en)
EP (1) EP2238282A2 (en)
JP (1) JP2011508829A (en)
CN (1) CN101960062A (en)
BR (1) BRPI0819487A2 (en)
CA (1) CA2710526A1 (en)
WO (1) WO2009088551A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002022A (en) * 2011-06-20 2013-01-07 Photo Craft Co Ltd Glass woven fabric, and incombustible sheet including the same
JP5704222B1 (en) * 2013-11-27 2015-04-22 株式会社豊田自動織機 Fiber reinforced composite material

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2907475B1 (en) * 2006-10-18 2008-12-05 Messier Dowty Sa Sa 3D COMPOSITE FABRIC
FR2907800B1 (en) * 2006-10-27 2009-03-20 Airbus France Sas THREE DIMENSIONAL SURFACING WEAVING
US20100154621A1 (en) * 2008-11-11 2010-06-24 University Of Delaware Ballistic Resistant Fabric Armor
WO2011038510A1 (en) * 2009-10-02 2011-04-07 Barrday Inc. Woven multi-layer fabrics and methods of fabricating same
US20110185463A1 (en) * 2010-01-29 2011-08-04 Safariland, Llc Soft Body Armor Including Reinforcing Strips
US9138961B2 (en) * 2011-10-19 2015-09-22 Honeywell International Inc. High performance laminated tapes and related products for ballistic applications
FR2991228B1 (en) 2012-05-29 2015-03-06 Airbus Operations Sas METHOD AND DEVICE FOR MAKING A SELF-RAIDI COMPOSITE PANEL
ITFI20120261A1 (en) * 2012-11-28 2014-05-29 Manifattura Pri Ma Tex S R L FABRIC FOR PROTECTIVE CLOTHING.
GB2529080A (en) * 2013-03-13 2016-02-10 Warwick Mills Inc Protective mid-cover textiles
US9243354B2 (en) 2013-03-15 2016-01-26 Honeywell International Inc. Stab and ballistic resistant articles
US10443160B2 (en) 2013-03-15 2019-10-15 Honeywell International Inc. Breathable light weight unidirectional laminates
US9243355B2 (en) 2013-03-15 2016-01-26 Honeywell International Inc. Ballistic resistant thermoplastic sheet, process of making and its applications
US20150308791A1 (en) * 2014-04-23 2015-10-29 Joseph Andrew Navarra Ballistic barriers and enclosures and methods for providing ballistic barriers and enclosures
US11300386B2 (en) * 2015-12-31 2022-04-12 Dupont Safety & Construction, Inc. Ballistic materials incorporating spunlaced nonwovens
US11028900B2 (en) 2017-12-13 2021-06-08 Gates Corporation Banded friction power transmission belt
US10704645B2 (en) 2017-12-13 2020-07-07 Gates Corporation Bias tooth fabric and toothed power transmission belt
US11408101B2 (en) * 2018-01-14 2022-08-09 Bluebonnet Crafters, Llc Continuous strand weaving hexagon pin looms and methods of use
US11512931B2 (en) * 2019-03-14 2022-11-29 Blast Control Systems, LLC Systems and methods for blast control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196738A (en) * 1987-02-09 1988-08-15 桑村繊維株式会社 Bias fabric and bias weaving apparatus
JPH0195297A (en) * 1987-10-05 1989-04-13 Asahi Chem Ind Co Ltd Projectile-resistant woven fabric for fragmentation protective body armor
JPH0482938A (en) * 1990-07-18 1992-03-16 Asahi Chem Ind Co Ltd Sheet-formed material product
JP2000303232A (en) * 1999-04-26 2000-10-31 Toyobo Co Ltd Lightweight protective clothing
JP2002535157A (en) * 1999-01-18 2002-10-22 トワロン プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Penetration resistant material including woven fabric with high linear density ratio of two sets of yarns

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2519590A (en) * 1949-12-27 1950-08-22 Gates Rubber Co Power transmission belt cover
US3784427A (en) * 1970-06-03 1974-01-08 Burlington Industries Inc Method of making and treating bias cut fabric
US4055697A (en) * 1975-05-19 1977-10-25 Fiberite Corporation Woven material with filling threads at angles other than right angles
US4238530A (en) * 1979-07-24 1980-12-09 Dayco Corporation Method for producing stress-relieved fabric
US4299878A (en) * 1979-12-31 1981-11-10 Textile Products Incorporated Bias cut, continuous fabric of ceramic or synthetic fibers
US4543286A (en) * 1982-03-19 1985-09-24 Allied Corporation Composite containing coated extended chain polyolefin fibers
US4457985A (en) * 1982-03-19 1984-07-03 Allied Corporation Ballistic-resistant article
US4563392A (en) * 1982-03-19 1986-01-07 Allied Corporation Coated extended chain polyolefin fiber
US4403012A (en) * 1982-03-19 1983-09-06 Allied Corporation Ballistic-resistant article
US4438173A (en) * 1983-07-21 1984-03-20 Barber-Colman Company Triaxial fabric
US4523574A (en) * 1983-08-11 1985-06-18 Weber-Stephen Products Co. Support structure for grill cover
US4501854A (en) * 1983-11-14 1985-02-26 Ppg Industries, Inc. Aminoplast curable compositions containing disulfonic acid esters as latent acid catalysts
US4748064A (en) * 1985-01-14 1988-05-31 Allied Corporation Ballistic-resistant composite article
US4650710A (en) * 1985-02-25 1987-03-17 Allied Corporation Ballistic-resistant fabric article
US4737401A (en) * 1985-03-11 1988-04-12 Allied Corporation Ballistic-resistant fine weave fabric article
US4681792A (en) * 1985-12-09 1987-07-21 Allied Corporation Multi-layered flexible fiber-containing articles
JP2700222B2 (en) * 1987-09-01 1998-01-19 株式会社リコー Thermal recording material
US4907323A (en) * 1988-03-15 1990-03-13 Hexcel Corporation Method and apparatus for making biased fabric
US5677029A (en) * 1990-11-19 1997-10-14 Alliedsignal Inc. Ballistic resistant fabric articles
US5466503A (en) * 1992-05-07 1995-11-14 Milliken Research Corporation Energy absorption of a high tenacity fabric during a ballistic event
US5943694A (en) * 1997-07-14 1999-08-31 E. I. Du Pont De Nemours And Company Specially shaped multilayer armor
DE19803656C2 (en) * 1998-01-30 2000-02-17 Milliken Europ Nv Band-shaped textile product and method for producing a body reinforced with the textile product
US6119575A (en) * 1998-02-17 2000-09-19 American Body Armor Body armor
NO984294D0 (en) * 1998-09-16 1998-09-16 Lars Petter Andresen Protection Garments
US20040221712A1 (en) * 1999-03-20 2004-11-11 Stewart Ricky William Ballistic-resistant laminate assemblies and panels
FR2791365B1 (en) * 1999-03-22 2001-06-22 Hexcel Fabrics BIASED FABRIC, MANUFACTURING METHOD AND WEAVING MACHINE FOR CONTINUOUSLY MANUFACTURING SUCH A FABRIC
DE10011653A1 (en) * 2000-03-10 2001-09-13 Khs Masch & Anlagenbau Ag Foaming device for expelling residual air from filled containers, especially bottles containing fizzy drinks, uses protective gas region to guide foaming medium into container
AU2001287394A1 (en) * 2000-08-17 2002-02-25 Barrday Inc. Penetration resistant fabric
US6825137B2 (en) * 2001-12-19 2004-11-30 Telair International Incorporated Lightweight ballistic resistant rigid structural panel
AU2003207838B2 (en) * 2002-02-08 2008-03-13 Teijin Aramid Gmbh Stab resistant and anti-ballistic material and method of making the same
EP1597305B1 (en) * 2003-02-26 2012-10-10 Omlidon Technologies LLC Polymer gel-processing techniques and high modulus products
FR2864112B1 (en) * 2003-12-18 2008-09-26 Chomarat Composites WOVEN TEXTILE, BASED ON GLASS THREADS, FOR FORMING REINFORCEMENTS FOR MOLDED PIECES
US7296394B2 (en) * 2005-02-11 2007-11-20 Gore Enterprise Holdings, Inc. Fluoropolymer fiber composite bundle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196738A (en) * 1987-02-09 1988-08-15 桑村繊維株式会社 Bias fabric and bias weaving apparatus
JPH0195297A (en) * 1987-10-05 1989-04-13 Asahi Chem Ind Co Ltd Projectile-resistant woven fabric for fragmentation protective body armor
JPH0482938A (en) * 1990-07-18 1992-03-16 Asahi Chem Ind Co Ltd Sheet-formed material product
JP2002535157A (en) * 1999-01-18 2002-10-22 トワロン プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Penetration resistant material including woven fabric with high linear density ratio of two sets of yarns
JP2000303232A (en) * 1999-04-26 2000-10-31 Toyobo Co Ltd Lightweight protective clothing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002022A (en) * 2011-06-20 2013-01-07 Photo Craft Co Ltd Glass woven fabric, and incombustible sheet including the same
JP5704222B1 (en) * 2013-11-27 2015-04-22 株式会社豊田自動織機 Fiber reinforced composite material
WO2015079854A1 (en) * 2013-11-27 2015-06-04 株式会社 豊田自動織機 Fiber-reinforced composite material

Also Published As

Publication number Publication date
CN101960062A (en) 2011-01-26
EP2238282A2 (en) 2010-10-13
US20100275764A1 (en) 2010-11-04
CA2710526A1 (en) 2009-07-16
BRPI0819487A2 (en) 2016-08-23
WO2009088551A3 (en) 2009-09-11
WO2009088551A2 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP2011508829A (en) Fabric construction with improved high-speed impact performance
CA2845004C (en) Triaxial braid fabric architectures for improved soft body armor ballistic impact performance
JP5355426B2 (en) Cross-ply composite bulletproof equipment
EP1384041B1 (en) Quasi-unidirectional fabric for ballistic applications
JP6427165B2 (en) Reduced trauma without reducing bulletproof performance
US7820565B2 (en) Densely woven quasi-unidirectional fabric for ballistic applications
US10081159B2 (en) Materials gradient within armor for balancing the ballistic performance
AU2002257421A1 (en) Quasi-unidirectional fabric for ballistic applications
CA2635118A1 (en) Restrained breast plates, vehicle armored plates and helmets
CA2748780C (en) Fabric assembly suitable for resisting ballistic objects and method of manufacture
US20120160086A1 (en) Fabric assembly suitable for resisting ballistic objects and method of manufacture
US20130071642A1 (en) Fabric assembly suitable for resisting ballistic objects and method of manufacture
US20130068088A1 (en) Fabric assembly suitable for resisting ballistic objects and method of manufacture
WO2023191902A2 (en) Ballistic resistant material made of mechanically entangled woven fabrics without nonwoven fibers and method of making thereof
JP2011522201A (en) Ballistic resistant protective clothing articles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130208

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140310