JP2011506079A - プロセスストリームから酸性成分を除去するシステム及び方法 - Google Patents

プロセスストリームから酸性成分を除去するシステム及び方法 Download PDF

Info

Publication number
JP2011506079A
JP2011506079A JP2010538084A JP2010538084A JP2011506079A JP 2011506079 A JP2011506079 A JP 2011506079A JP 2010538084 A JP2010538084 A JP 2010538084A JP 2010538084 A JP2010538084 A JP 2010538084A JP 2011506079 A JP2011506079 A JP 2011506079A
Authority
JP
Japan
Prior art keywords
absorbent solution
regenerator
semi
lean
process stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010538084A
Other languages
English (en)
Inventor
ラセシ アール コトダワラ
バラス バブラオ
マイケル ダブリュ ポントブライアンド
ナレシクマル ビー ハンダガマ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of JP2011506079A publication Critical patent/JP2011506079A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

プロセスストーリム(20)から酸性成分の少なくとも一部を吸収し、これによって、除去するためのシステムであって、プロセスストリームを受け入れる吸収器であって、前記プロセスストリームから酸性成分を吸収して、リッチ吸収剤溶液(24)及び前記酸性成分の量が低減されたプロセスストリーム(20a)を生成するために吸収剤を使用する吸収器(22);リッチ吸収剤溶液を再生し、これによって、リーン吸収剤溶液(28)及びセミ−リーン吸収剤溶液(30)を生成する再生器(26);再生器からセミ−リーン吸収剤溶液の少なくとも一部を除去することを容易なものとするために再生器に流動的に結合された溶液出口(50);及び溶液出口に結合された、再生器から除去されるセミ−リーン溶液の量を制御する制御機構(56)を含んでなるシステムが提供される。

Description

本願は、2007年12月13日出願の米国特許仮出願第61/013,376号の優先権を主張するものであり、その記載のすべてを参照することにより本書に含める。
本発明は、プロセスストリームからの酸性成分の除去を増大させるためのシステム及び方法に係る。さらに詳しくは、本発明は、プロセスストリームからの酸性成分の除去を増大させると共に、そうするために必要なエネルギー量を低減させるシステム及び方法に係る。
石炭燃焼炉からの廃棄ストリームのようなプロセスストリームは、しばしば、環境への導入前にプロセスストリームから除去されなければならない各種の成分を含有している。例えば、廃棄ストリームは、しばしば、廃棄ストリームを環境に排出する前に、除去又は低減されなければならない二酸化炭素(CO2)及び硫化水素(H2S)のような酸性成分を含有する。
多くのタイプのプロセスストリームにおいて認められる酸性成分の1例は二酸化炭素である。二酸化炭素(CO2)は多くの用途を有する。例えば、二酸化炭素は、飲料を炭酸化する他ため、魚介、肉類、鶏肉、ビスケット類、果物及び野菜を冷却、冷凍及び包装するために、及び乳製品の品質保証期間を延長するために使用される。他の用途としては、飲料水の処理、農薬としての用途、及び温室における空気添加剤があるが、これらに限定されない。最近では、二酸化炭素は、原油の二次回収(非常に高圧の二酸化炭素が多量に利用される)用の貴重な化学剤として認められている。
二酸化炭素を得る方法の1つは、廃棄ストリーム(例えば、煙道ガスストリーム)のようなプロセスストリーム(二酸化炭素は、有機又は無機化学プロセスの副生物である)を精製することである。一般的には、高濃度の二酸化炭素を含有するプロセスストリームを、多段階で凝縮、精製し、ついで、蒸留して、プロダクトグレードの二酸化炭素を生成する。
上記用途に適する二酸化炭素(「プロダクトグレード二酸化炭素」として知られている)の量を増大させたいとの要望と共に、プロセスガスを環境へ放出するに当たり、環境に放出される二酸化炭素の量を低減したいとの要望により、プロセスガスから除去される二酸化炭素の量を増大させたいとの要求が増幅されている。処理プラントについては、放出されるプロセスガス中に存在する二酸化炭素の量又は濃度を低減させたいと要求が増大しつつある。同時に、処理プラントについては、時間、エネルギー及び費用のような資源を節約したいとの要求も増大している。本発明では、処理プラントに求められる多数の要求の1以上を、処理プラントから回収される二酸化炭素の量を増大させ、同時に、プロセスガスから二酸化炭素を除去するために必要なエネルギー量を低減させることによって緩和できる。
ここに記載する態様によれば、プロセスストリームから酸性成分の少なくとも一部を吸収し、これによって除去するためのシステムであって、該システムは、プロセスストリームを受け入れる吸収器であって、前記プロセスストリームから酸性成分を吸収して、リッチ吸収剤溶液及び前記酸性成分の量が低減されたプロセスストリームを生成するために吸収剤を使用する吸収器;前記リッチ吸収剤溶液を再生し、これによって、リーン吸収剤溶液及びセミ−リーン吸収剤溶液を生成する再生器;前記再生器からセミ−リーン吸収剤溶液の少なくとも一部を除去することを容易なものとするために前記再生器に流動的に結合された溶液出口;及び前記溶液出口に結合された、前記再生器から除去されるセミ−リーン溶液の量を制御する制御機構を含んでなるシステムが提供される。
ここに記載する他の態様によれば、プロセスストリームから除去される酸性成分の量を増大させる方法であって、該方法は、酸性成分を含有するプロセスストリームを吸収剤溶液と接触させ及び前記プロセスストリームから前記酸性成分の少なくとも一部を除去し、これによって、リッチ吸収剤溶液を形成し、ここで、この接触を吸収器において行い;再生器において、前記リッチ吸収剤溶液を再生し、ここで、前記リッチ吸収剤溶液をスチームと接触させることによって前記リッチ吸収剤溶液を再生し、これによって、セミ−リーン吸収剤溶液及びリーン吸収剤溶液形成し;前記再生器からセミ−リーン吸収剤溶液の特定量を除去し、ここで、前記再生器から除去されるセミ−リーン吸収剤溶液の特定量が、前記再生器における吸収剤溶液の総質量基準で約20−約100%であり;及び前記セミ−リーン吸収剤溶液を前記吸収器に導入し、これによって、前記プロセスガスから除去される酸性ガス成分の量を増大させることを含んでなる方法が提供される。
ここに記載する他の態様によれば、プロセスストリームから二酸化炭素を除去する方法であって、該方法は、前記プロセスストリームを吸収剤溶液と接触させて、前記プロセスストリームから二酸化炭素を除去し、これによって、リッチ吸収剤溶液を形成し;再生器において、前記リッチ吸収剤溶液をスチームと接触させることによって、前記リッチ吸収剤溶液を再生することを含んでなり、前記リッチ吸収剤溶液の再生の間に、セミ−リーン吸収剤溶液及びリーン吸収剤溶液を形成すると共に、前記スチームを生成するために使用するリボイラーによって消費されるエネルギーを一定レベルに維持し;及び前記再生器から前記セミ−リーン吸収剤溶液の特定量を除去し、前記再生器から除去されるセミ−リーン吸収剤溶液の特定量が、前記再生器における吸収剤溶液の総質量基準で約20−約100%であることを特徴とする方法が提供される。
上述の及び他の特長は、図面及び詳細な説明によって例示される。
次に、例として示す具体例を示す添付図面を参照する。図において、同様の部材を同じ参照符号で示す。
プロセスストリームから酸性成分を吸収し、これによって、除去するシステムの1具体例を示す概略図である。 プロセスストリームから酸性成分を吸収し、これによって、除去するシステムの他の具体例を示す概略図である。 プロセスストリームから酸性成分を除去する方法を示す。 リボイラーによって消費されるエネルギーの量と、再生器から除去されるセミ−リーン吸収剤溶液の量との間の関係を表わすグラフである。
図1は、プロセスストリーム20から酸性成分の少なくとも一部を吸収し、これによって、除去するシステム10を示す。プロセスストリーム20は、天然ガスストリーム、合成ガスストリーム、精油所ガス又は蒸気ストリーム、油層、又は石炭、天然ガス又は他の燃料のような物質の燃焼によって発生されたストリームのような各種の液ストリーム又はガスストリームである。1つ例としては、化石燃料燃焼式ボイラーの燃焼チャンバーにおける燃料(例えば、石炭)の燃焼によって発生された煙道ガスがある。プロセスストリームのタイプ又は源に応じて、酸性成分はガス状、液状又は粒状である。
プロセスストリーム20は、代表的には、二酸化炭素(これに限定されない)を含むいくつかの酸性成分を含有する。プロセスストリーム20が吸収器22に入ると、プロセスストリームは、酸化イオウ(SOx)及び酸化窒素(NOx)と共に、粒状物質(例えば、フライアッシュ)を除去するように処理される。しかし、方法はシステム毎に異なり、従って、このような処理は、プロセスストリーム20が吸収器22を通過した後に又は通過することなく行われる。
1具体例では、システム10は吸収器22を包含する。吸収器22は、プロセスストリーム20を受け入れるように設定されている。一般的には、図1に示すように、プロセスストリーム20は、吸収器の下方部分における入口を介して吸収器22に入り、吸収器内を移動する。しかし、プロセスストリーム20は、プロセスストリームからの酸性成分の吸収を許す各種の位置で吸収器22に入ることもできる。
吸収器22を通過した後、プロセスストリーム20は、酸性成分の量が低減されたプロセスストリームとして放出される(図1では、ストリーム20aとして表わされる)。ストリーム20aは、環境(例えば、大気)に放出されるか、又は更なる処理(図示していない)のために送給される。図1に表わされるように、ストリーム20aは、吸収器22の頂部から放出される。しかし、ストリーム20aは、吸収器の各種の位置において吸収器22から放出される。
吸収器22は、プロセスストリーム20からのガス状成分の吸収及び除去を容易なものとする吸収剤溶液(図示していない)を使用する。吸収剤溶液は、一般的に化学溶媒及び水を含んでなり、化学溶媒としては、窒素系溶媒、及び特に1級、2級及び3級のアルカノールアミン;1級及び2級アミン;立体障害アミン;重度の立体障害をもつ2級アミノエーテルアルコールが含まれる。一般的に使用される化学溶媒の例としては、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、ジイソプロパノールアミン(DIPA)、N-メチルエタノールアミン、トリエタノールアミン(TEA)、N-メチルジエタノールアミン(MDEA)、ピペラジン、N-メチルピペラジン(MP)、N-ヒドロキシエチルピペラジン(HEP)、2-アミノ-2-メチル-1-プロパノール(AMP)、2-(2-アミノエトキシ)エタノール(ジエチレングリコールアミン又はDEGAとも呼ばれる)、2-(2-tert-ブチルアミノプロポキシ)エタノール、2-(2-tert-ブチルアミノエトキシ)エタノール(TBEE)、2-(2-tert-アミルアミノエトキシ)エタノール、2-(2-イソプロピルアミノプロポキシ)エタノール、2-(2-(1-メチル-1-エチルプロピルアミノ)エトキ)シエタノール等がある(これらに限定されない)。上記溶媒は、単独で又は組み合わせて、他の助溶媒、添加剤(例えば、消泡剤、緩衝剤、金属塩等、又は腐食防止剤)と共に又は使用することなく、使用される。腐食防止剤の例としては、チオモルホリン、ジチアン及びチオキサン(チオモルホリン、ジチアン及びチオキサンの炭素は、独立して、H、C1-8アルキル、C7-12アルカリル、C6-10アリール及び/又はC3-10シクロアルキル置換基を有する)からなる群から選ばれる複素環化合物;チオ尿素‐アミン‐ホルムアルデヒドポリマー及び銅(II)塩と組み合わせて使用されるポリマー;+4又は5価のバナジウムを含有するアニオン;及び他の公知の腐食防止剤がある(これらに限定されない)。
一般的には、吸収器22に存在する吸収剤溶液は、「リーン」吸収剤溶液及び/又は「セミ−リーン」吸収剤溶液と呼ばれる。リーン及びセミ−リーン吸収剤溶液は、プロセスストリーム20から酸性成分を吸収できる、すなわち、吸収剤溶液は、必ずしも全てが飽和されてはいない、又はフル吸収能力ではないものである。
プロセスストリーム20からの酸性成分の吸収は、リーン及び/又はセミ−リーン吸収剤溶液とプロセスストリームとの間の接触によって起こる。リーン及び/又はセミ−リーン吸収剤溶液とプロセスストリームとの間の接触は、吸収器22において、各種の様式で行われる。1例では、プロセスストリーム20は吸収器22の底部に入り、吸収器の全長を上方に移動し、一方、リーン及び/又はセミ−リーン吸収剤溶液は、プロセスストリームが入った位置よりも上方の位置で吸収器に入り、プロセスストリームと向流方向で流下する。
プロセスストリーム20とリーン及び/又はセミ−リーン吸収剤溶液との間の接触によって、リーン及び/又はセミ−リーン吸収剤溶液からは、リッチ吸収剤溶液が生成され、及びプロセスストリームからは、酸性成分の量が低減されたプロセスストリーム20aが生成される。1例では、リッチ吸収剤溶液24は吸収器22の下方部分に落下し、ここで、更なる処理のために除去され、一方、酸性成分の量が低減されたプロセスストリームは、吸収器の全長を上方に移動し、吸収器の頂部からストリーム20aとして放出される。ストリーム20aは吸収器22から放出された後、更なる処理プロセスに供されるか、又は環境への放出のために煙突(図示していない)に送給される。
システム10は再生器26も含んでなる。再生器26は、リッチ吸収剤溶液を再生し、これによって、酸性成分ストリーム32と共に、リーン吸収剤溶液28及びセミ−リーン吸収剤溶液30を生成する。
リッチ吸収剤溶液24は、吸収器22から、再生器26に入る前に、一連の処理を受けてもよい。一連の処理は、フラッシュ乾燥吸収器、コントローラー、リサイクラー及び分割機を含むものである(図示していない)。あるいは、リッチ吸収剤溶液24の吸収器22から再生器26への移動は、流量調節弁(図示していない)によって容易ものとされる。別法では、吸収器22は再生器26に直接接続され、従って、リッチ吸収剤溶液24は、吸収器から直接再生器に移動される。
図1に示すように、リッチ吸収剤溶液24は、ミキサー44に入る前に、少なくとも1つの熱交換器42を通過される。リッチ吸収剤溶液24は、図1に示すように、複数の段階又は処理を受けてもよく、あるいは、リッチ吸収剤溶液は、図1に示すよりも少ない段階又は処理を受けてもよい。
図1に示すように、リッチ吸収剤溶液24は、再生器の上方部分のいずれかの位置で再生器26に入る。しかし、リッチ吸収剤溶液24は、リッチ吸収剤溶液の再生を容易なものとすることができる各種の位置でも再生器26に導入される。
再生器26に入った後、リッチ吸収剤溶液24は、リボイラー48によって生成されたスチーム46の対向流と接触される。スチーム46はリッチ吸収剤溶液24を再生し、これによって、酸性成分ストリーム32と共に、リーン吸収剤溶液28及びセミ−リーン吸収剤溶液30を生成する。リーン吸収剤溶液28及びセミ−リーン吸収剤溶液30のいずれか又は両方の少なくとも一部は、プロセスストリーム20からの酸性成分の更なる吸収及び除去のために吸収器22に移動される。
スチーム46を発生させるためにリボイラーによって利用されるエネルギーの量(又はレベル)は、再生されるリッチ吸収剤溶液24の量に応じて変動する。あるいは、リボイラー48によって利用されるエネルギーの量は、再生されるリッチ吸収剤溶液24の量とは関係なく設定されるか、又は一定レベルに維持される。リボイラー48によって使用されるエネルギーの量を一定レベルに維持することによって、システム10全体として消費される及びリボイラーによって消費されるエネルギーがより少ない量となる。リボイラー48によって利用されるエネルギーのレベルは変動するか又は、いずれにしても、0.3 106英熱単位/時間(MMbtu/hr)(約315 106ジュール/時間)−0.8MMbtu/hr(約844 106ジュール/時間)の間で維持される。1例では、リボイラー48によって利用されるエネルギーのレベルは、約0.7MMbtu/hr(約740 106ジュール/時間)に維持される。リボイラー48が維持されるエネルギーのレベルは、システム毎に変動する。
一般に、リッチ吸収剤溶液24の一部のみが再生される場合、すなわち、リッチ吸収剤溶液が、必ずしも完全に再生されない場合には、再生器26では、セミ−リーン吸収剤溶液30が生成される。セミ−リーン吸収剤溶液30の少なくとも一部は、再生器に流動的に結合された溶液出口50によって、再生器26から除去される。ここで使用するように、用語「流動的に結合された」とは、2つ以上の装置が、その間での液又はガスの移動が容易なものとなるように、直接的に又は間接的に、相互に結合又は取り付けられていることを意味する。
溶液出口50は、単に、再生器26における開口であってもよく、あるいは再生器からのセミ−リーン吸収剤溶液の少なくとも一部の除去を許容する各種のサイドドローであってもよい。溶液出口50は、再生器26のいずれの部位に位置していてもよい。図1に示されているように、溶液出口50は、再生器26の中間部Aに位置できる。しかし、溶液出口50は、再生器26からのセミ−リーン吸収剤溶液の少なくとも一部の除去を容易なものとする各種の部位にも位置できる。
1具体例では、図2(同じ符号は、図1を参照して記載したものと同じ部材を示す)に示すように、溶液出口50は、再生器26の第1再生区域52及び打2再生区域54の間に位置している。第1再生区域52は、リッチ吸収剤溶液24の少なくとも一部を再生して、セミ−リーン吸収剤溶液30を形成する。セミ−リーン吸収剤溶液の少なくとも一部を再生器26から除去するか、あるいは第2再生区域54においてさらに処理し、ここで、セミ−リーン吸収剤溶液を再生して、リーン吸収剤溶液28を形成する。
再生器26から分割される、すなわち、除去されるセミ−リーン吸収剤溶液の量が変更されるため、吸収器22においてプロセスガスから吸収される酸性成分の量は増大させることが認められた。さらに、リボイラー48によって利用されるエネルギーを一定レベルに維持することによって、セミ−リーン吸収剤溶液30の量が変化するため、より多くの酸性成分が、吸収器においてプロセスストリーム20から除去されることになることが認められた。従って、図1又は2に示すいずれかの具体例では、システム10は、溶液出口50に結合された制御機構56を含む。
制御機構56は、再生器26から分割される(以降、「除去される」という)セミ−リーン吸収剤溶液の量を制御するように設定されている。制御機構56は、ユーザーが再生器26から除去されるセミ−リーン吸収剤溶液の量を制御することができるような各種の機構である。制御機構56の例としては、弁、ポンプ等(トランスデューサー、コントロールパネル、コンピューター等と結合される)がある。
制御機構56は、ユーザーが、再生器26から除去されるセミ−リーン吸収剤溶液の量を制御及び調節できるものである。再生器26から除去されるセミ−リーン吸収剤溶液の量は、システム毎に及びユーザー毎に変動する。一般的には、再生器26から除去されるセミ−リーン吸収剤溶液の量は、プロセスストリーム20に存在する酸性成分の量と共に、システム10の用途、ユーザー又はシステム10の必要性に左右される。システム10のいくつかの用途では、再生器26から除去されるセミ−リーン吸収剤溶液の量は一定量に維持され、他の用途では、再生器から除去されるセミ−リーン吸収剤溶液の量は、システム又はユーザーの必要性に応じて変動し又は影響を受ける。
1具体例では、再生器26から除去されるセミ−リーン吸収剤溶液30の量は、再生器における吸収剤溶液の総質量(吸収剤溶液の総質量には、リッチ吸収剤溶液、セミ−リーン吸収剤溶液及びリーン吸収剤溶液が含まれる)基準で約20−約100%である。他の例では、再生器26から除去されるセミ−リーン吸収剤溶液30の量は、再生器における吸収剤溶液の総質量基準で約25−約90%である。他の例では、再生器26から除去されるセミ−リーン吸収剤溶液30の量は、再生器における吸収剤溶液の総質量基準で約30−約85%である。他の例では、再生器26から除去されるセミ−リーン吸収剤溶液30の量は、再生器における吸収剤溶液の総質量基準で約35−約80%である。さらに他の例では、再生器26から除去されるセミ−リーン吸収剤溶液30の量は、再生器における吸収剤溶液の総質量基準で約40−約80%である。
さらに他の例では、再生器26から除去されるセミ−リーン吸収剤溶液30の量は、再生器における吸収剤溶液の総質量基準で約45−約80%である。さらに他の例では、再生器26から除去されるセミ−リーン吸収剤溶液30の量は、再生器における吸収剤溶液の総質量基準で約50−約80%である。さらに他の例では、再生器26から除去されるセミ−リーン吸収剤溶液30の量は、再生器における吸収剤溶液の総質量基準で約55−約80%である。さらに他の例では、再生器26から除去されるセミ−リーン吸収剤溶液30の量は、再生器における吸収剤溶液の総質量基準で約60−約80%である。
さらに他の例では、再生器26から除去されるセミ−リーン吸収剤溶液30の量は、再生器における吸収剤溶液の総質量基準で約65−約80%である。さらに他の例では、再生器26から除去されるセミ−リーン吸収剤溶液30の量は、再生器における吸収剤溶液の総質量基準で約70−約80%である。さらに他の例では、再生器26から除去されるセミ−リーン吸収剤溶液30の量は、再生器における吸収剤溶液の総質量基準で約70−約75%である。他の例では、再生器26から除去されるセミ−リーン吸収剤溶液30の量は、再生器における吸収剤溶液の総質量基準で70%である。
セミ−リーン吸収剤溶液30は、少なくとも1つの熱交換器42及びポンプ58を包含する一連の処理を介して吸収器22に移動される。セミ−リーン吸収剤溶液30の制御機構56から吸収器22への移動を行うため、いくつかの部材を利用できる。セミ−リーン吸収剤溶液30は、各種の部位又は位置で吸収器22に導入される。図1及び2に示すように、セミ−リーン吸収剤溶液は、吸収器22の下方部分において導入される。
リーン吸収剤溶液28は、他の制御装置及び/又はモニターと共に、少なくとも1つの熱交換器42、ポンプ60を包含する一連の処理を介して再生器26に移動される。リーン吸収剤溶液28の再生器26から吸収器22への移動を行うため、いくつかの部材を利用できる。
リーン吸収剤溶液28は、各種の部位又は位置で吸収器22に導入される。図1及び2に示すように、リーン吸収剤溶液28は、吸収器22の上方部分において導入される。
プロセスストリーム20から酸性成分を除去するためにシステム10を使用する方法100が図3に示されている。工程120では、吸収器22において、リーン吸収剤溶液及び/又はセミ−リーン吸収剤溶液のような吸収剤溶液と、プロセスストリーム20との間の接触が行われる。工程140では、プロセスストリーム中に存在する二酸化炭素のような酸性成分を、リーン吸収剤溶液及び/又はセミ−リーン吸収剤溶液によって、プロセスストリームから吸収し、これによって、プロセスストリームから前記酸性成分の少なくとも一部を除去する。工程160では、リーン吸収剤溶液及び/又はセミ−リーン吸収剤溶液が、プロセスストリーム20から酸性成分を吸収した後、リッチ吸収剤溶液24を形成する。
工程180では、再生器26において、リッチ吸収剤溶液をスチーム46と接触させることによって、リッチ吸収剤溶液を再生し、これによって、リーン吸収剤溶液及び/又はセミ−リーン吸収剤溶液を形成する。
再生器26から特定量のセミ−リーン吸収剤溶液30が除去され、方法100の工程200における吸収器22に導入される。セミ−リーン吸収剤溶液の除去及び同溶液の吸収器22への移動及び導入によって、プロセスガス20から除去される酸性ガス成分の除去が行われる。
吸収器22におけるセミ−リーン吸収剤溶液30の利用及びリボイラー48によって利用されるエネルギーのレベルを維持することによって、プロセスストリーム20から除去される二酸化炭素の量又は濃度が増大される。リボイラー48のエネルギーレベルの維持によって、システム10におけるエネルギーの消費量が低減される。
以下に、システム及び方法の非限定的な実施例を例示する。他に表示しない限り、再生器26から量は、再生器における吸収剤溶液の総流量基準での百分率(%)で示され、リボイラー48によって利用されるエネルギーをMMbtu/hr(ここで、MMbtuは、100万Btu(英熱単位)であり、hrは1時間である)で示している。
実施例1A:リボイラーエネルギーの変化
吸収器及び再生器を使用する二酸化炭素除去システムを、再生器からセミ−リーン吸収剤溶液の少なくとも一部を除去するために、再生器が溶液出口を含むように変更した。溶液出口を、再生器から除去されるセミ−リーン吸収剤溶液の量を制御する制御機構、例えば、制御弁に結合した。
制御弁を、再生器から除去されるセミ−リーン吸収剤溶液の量(分割流量(%)として示す)を増減できる。が一定となるように設定した。この場合、一定量は、再生器における吸収剤溶液の総流量基準で70%である。
再生器から除去されるセミ−リーン吸収剤溶液の量を一定量に維持する間に、リボイラーによって利用されるエネルギーの量は、0.3MMbut/hr(約315 106ジュール/時間)から0.8MMbtu/hr(約844 106ジュール/時間)に増大した。図4に示すように、再生器から除去されるセミ−リーン吸収剤溶液の量が70%に維持される場合、リボイラーによって利用されるエネルギーの量が増大するにつれて、吸収器においてプロセスストリームから除去される二酸化炭素の量が、約87%から約94%に増大した。
実施例1B:再生器から除去されるセミ−リーン吸収剤溶液の量の変化
吸収器及び再生器を使用する二酸化炭素除去システムを、再生器からセミ−リーン吸収剤溶液の少なくとも一部を除去するために、再生器が溶液出口を含むように変更した。溶液出口を、再生器から除去されるセミ−リーン吸収剤溶液の量を制御する制御機構、例えば、制御弁に結合した。制御弁は、再生器から除去されるセミ−リーン吸収剤溶液の量(分割流量(%)として示す)を増減できる。
再生器用のスチームを生成するために使用するリボイラーによって利用されるエネルギーの量を一定量に設定した。この場合、リボイラーによって利用されるエネルギーの量を一定量は0.8MMbtu/hr(約844 106ジュール/時間)である。
リボイラーによって利用されるエネルギーの量を一定量に維持する間に、再生器から除去されるセミ−リーン吸収剤溶液の量は0%から70%に増大した。図4に示すように、リボイラーによって利用されるエネルギーの量を08.MMbtu/hr(約80ジュール/時間)維持する場合、再生器から除去されるセミ−リーン吸収剤溶液の量が増大するにつれて、吸収器においてプロセスストリームから除去される二酸化炭素の量が、約75%から約94%に増大した。
他の指示しない限り、ここに記載する全ての範囲は、上限及び下限及び全ての中間点において包括的かつ合体できるものである。用語「第1」、「第2」等は、順序、量、又重要性を表わすものではなく、むしろ、1つの要素を他の要素から区別するために使用している。「約」を伴う全ての数値は、他に指示しない限り、正確な数値の包括的なものである。
本発明を各種の例示的具体例を参照して記述したが、本発明の精神を逸脱することなく、多くの変形が加えられること及びその要素を均等物によって置換できることは、当業者によって理解されるであろう。さらに、その必須の範囲を逸脱することなく、本発明の教示に特別な状況又は物質を適合するように多くの変更をなすことができる。従って、本発明は、本発明を実施するための最良の形態として開示した特別の具体例に限定されず、本発明は、特許請求の範囲内に属する全ての具体例を包含するものである。

Claims (23)

  1. プロセスストリームから酸性成分の少なくとも一部を吸収し、これによって、除去するためのシステムであって、該システムは、
    プロセスストリームを受け入れる吸収器であって、前記プロセスストリームから酸性成分を吸収して、リッチ吸収剤溶液及び前記酸性成分の量が低減されたプロセスストリームを生成するために吸収剤を使用する吸収器;
    前記リッチ吸収剤溶液を再生し、これによって、リーン吸収剤溶液及びセミ−リーン吸収剤溶液を生成する再生器;
    前記再生器からセミ−リーン吸収剤溶液の少なくとも一部を除去することを容易なものとするために前記再生器に流動的に結合された溶液出口;及び
    前記溶液出口に結合された、前記再生器から除去されるセミ−リーン溶液の量を制御する制御機構
    を含んでなる、システム。
  2. さらに、再生器においてリッチ吸収剤溶液を再生するためにスチームを生成するように設定されたリボイラーを含んでなる、請求項1記載のシステム。
  3. スチームを生成するためにリボイラーによって使用されるエネルギーを一定レベルに維持する、請求項2記載のシステム。
  4. 酸性成分が二酸化炭素である、請求項1記載のシステム。
  5. 吸収剤溶液が、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、ジイソプロパノールアミン(DIPA)、N-メチルエタノールアミン、トリエタノールアミン(TEA)、N-メチルジエタノールアミン(MDEA)、ピペラジン、N-メチルピペラジン(MP)、N-ヒドロキシエチルピペラジン(HEP)、2-アミノ-2-メチル-1-プロパノール(AMP)、2-(2-アミノエトキシ)エタノール、2-(2-tert-ブチルアミノプロポキシ)エタノール、2-(2-tert-ブチルアミノエトキシ)エタノール(TBEE)、2-(2-tert-アミルアミノエトキシ)エタノール、2-(2-イソプロピルアミノプロポキシ)エタノール、2-(2-(1-メチル-1-エチルプロピルアミノ)エトキ)シエタノールからなる群から選ばれる化学溶媒を含んでなるものである、請求項1記載のシステム。
  6. 吸収剤溶液がモノエタノールアミンを含んでなるものである、請求項3記載のシステム。
  7. 再生器から除去されるセミ−リーン吸収剤溶液の量が、前記再生器における吸収剤溶液の総質量基準で20−100%である、請求項1記載のシステム。
  8. 再生器から除去されるセミ−リーン吸収剤溶液の量が、前記再生器における吸収剤溶液の総質量基準で25−90%である、請求項7記載のシステム。
  9. 再生器から除去されるセミ−リーン吸収剤溶液の量が、前記再生器における吸収剤溶液の総質量基準で70%である、請求項8記載のシステム。
  10. 再生器が少なくとも第1再生区域及び第2再生区域を含んでなり、第1再生区域は、リッチ吸収剤溶液の少なくとも一部を再生して、セミ−リーン吸収剤溶液を形成するよう設定されており、第2再生区域は、リッチ吸収剤溶液の少なくとも一部を再生して、リーン吸収剤溶液を形成するよう設定されており、及び前記セミ−リーン吸収剤溶液の少なくとも一部の除去を容易なものとするため、前記第1再生区域及び前記第2再生区域の間に溶液出口が位置する、請求項1記載のシステム。
  11. プロセスストリームが、化石燃料燃焼式ボイラーの燃焼チャンバーにおいて発生された煙道ガスである、請求項1記載のシステム。
  12. プロセスストリームから除去される酸性成分の量を増大させる方法であって、該方法は、
    酸性成分を含有するプロセスストリームを吸収剤溶液と接触させ及び前記プロセスストリームから前記酸性成分の少なくとも一部を除去し、これによって、リッチ吸収剤溶液を形成し、ここで、この接触を吸収器において行い;
    再生器において、前記リッチ吸収剤溶液を再生し、ここで、前記リッチ吸収剤溶液をスチームと接触させることによって前記リッチ吸収剤溶液を再生し、これによって、セミ−リーン吸収剤溶液及びリーン吸収剤溶液形成し;
    前記再生器からセミ−リーン吸収剤溶液の特定量を除去し、ここで、前記再生器から除去されるセミ−リーン吸収剤溶液の特定量が、前記再生器における吸収剤溶液の総質量基準で約20−約100%であり;及び
    前記セミ−リーン吸収剤溶液を前記吸収器に導入し、これによって、前記プロセスガスから除去される酸性ガス成分の量を増大させることを含んでなる、方法。
  13. 酸性成分が二酸化炭素である、請求項12記載の方法。
  14. 吸収剤溶液が、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、ジイソプロパノールアミン(DIPA)、N-メチルエタノールアミン、トリエタノールアミン(TEA)、N-メチルジエタノールアミン(MDEA)、ピペラジン、N-メチルピペラジン(MP)、N-ヒドロキシエチルピペラジン(HEP)、2-アミノ-2-メチル-1-プロパノール(AMP)、2-(2-アミノエトキシ)エタノール、2-(2-tert-ブチルアミノプロポキシ)エタノール、2-(2-tert-ブチルアミノエトキシ)エタノール(TBEE)、2-(2-tert-アミルアミノエトキシ)エタノール、2-(2-イソプロピルアミノプロポキシ)エタノール、2-(2-(1-メチル-1-エチルプロピルアミノ)エトキ)シエタノールからなる群から選ばれる化学溶媒を含んでなるものである、請求項12記載の方法。
  15. 吸収剤溶液がモノエタノールアミンを含んでなるものである、請求項14記載の方法。
  16. 再生器から除去されるセミ−リーン吸収剤溶液の量が、前記再生器における吸収剤溶液の総質量基準で20−100%である、請求項12記載の方法。
  17. 再生器から除去されるセミ−リーン吸収剤溶液の量が、前記再生器における吸収剤溶液の総質量基準で25−90%である、請求項16記載の方法。
  18. 再生器から除去されるセミ−リーン吸収剤溶液の量が、前記再生器における吸収剤溶液の総質量基準で70%である、請求項17記載の方法。
  19. スチームが、一定のエネルギーレベルで利用されるリボイラーによって生成される、請求項12記載の方法。
  20. 再生器が少なくとも第1再生区域及び第2再生区域を含んでなり、第1再生区域は、リッチ吸収剤溶液の少なくとも一部を再生して、セミ−リーン吸収剤溶液を形成するよう設定されており、第2再生区域は、リッチ吸収剤溶液の少なくとも一部を再生して、リーン吸収剤溶液を形成するよう設定されており、及び前記セミ−リーン吸収剤溶液の少なくとも一部の除去を容易なものとするため、前記第1再生区域及び前記第2再生区域の間に溶媒出口を配置する、請求項12記載の方法。
  21. プロセスストリームが、化石燃料燃焼式ボイラーの燃焼チャンバーにおいて発生された煙道ガスである、請求項12記載の方法。
  22. プロセスストリームから二酸化炭素を除去する方法であって、該方法は、前記プロセスストリームを吸収剤溶液と接触させて、前記プロセスストリームから二酸化炭素を除去し、これによって、リッチ吸収剤溶液を形成し;再生器において、前記リッチ吸収剤溶液をスチームと接触させることによって、前記リッチ吸収剤溶液を再生することを含んでなり、前記リッチ吸収剤溶液の再生の間に、セミ−リーン吸収剤溶液及びリーン吸収剤溶液を形成すると共に、前記スチームを生成するために使用するリボイラーによって消費されるエネルギーを一定レベルに維持し;及び前記再生器から前記セミ−リーン吸収剤溶液の特定量を除去し、ここで、前記再生器から除去されるセミ−リーン吸収剤溶液の特定量が、前記再生器における吸収剤溶液の総質量基準で約20−約100%であることを特徴とする、方法。
  23. プロセスストリームが、化石燃料燃焼式ボイラーの燃焼チャンバーにおいて発生された煙道ガスである、請求項22記載の方法。
JP2010538084A 2007-12-13 2008-12-09 プロセスストリームから酸性成分を除去するシステム及び方法 Pending JP2011506079A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US1337607P 2007-12-13 2007-12-13
US12/269,352 US20090151564A1 (en) 2007-12-13 2008-11-12 System and method for removal of an acidic component from a process stream
PCT/US2008/086000 WO2009076326A1 (en) 2007-12-13 2008-12-09 System and method for removal of an acidic component from a process stream

Publications (1)

Publication Number Publication Date
JP2011506079A true JP2011506079A (ja) 2011-03-03

Family

ID=40751539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010538084A Pending JP2011506079A (ja) 2007-12-13 2008-12-09 プロセスストリームから酸性成分を除去するシステム及び方法

Country Status (12)

Country Link
US (1) US20090151564A1 (ja)
EP (1) EP2219761A1 (ja)
JP (1) JP2011506079A (ja)
KR (2) KR20130036073A (ja)
CN (1) CN101896248A (ja)
AU (1) AU2008335280B9 (ja)
CA (1) CA2708309C (ja)
IL (1) IL205743A0 (ja)
MX (1) MX2010005209A (ja)
RU (1) RU2483785C2 (ja)
WO (1) WO2009076326A1 (ja)
ZA (1) ZA201003417B (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5383338B2 (ja) 2009-06-17 2014-01-08 三菱重工業株式会社 Co2回収装置及びco2回収方法
CN102971508B (zh) * 2010-07-02 2016-06-01 埃克森美孚上游研究公司 Co2分离系统和分离co2的方法
CN102266708B (zh) * 2011-07-15 2015-10-14 攀钢集团攀枝花钢钒有限公司 一种烟气脱硫吸收工艺
EP2711067B2 (en) 2012-09-25 2020-11-04 Alfa Laval Corporate AB Combined cleaning system and method for reduction of sox and nox in exhaust gases from a combustion engine
MY190418A (en) * 2014-08-25 2022-04-21 Basf Se Removal of carbon dioxide from a fluid flow, using a tert butylamine and an activator
CN106422667B (zh) * 2015-08-04 2019-07-30 北京思践通科技发展有限公司 从气体中一步脱除酸性组分和水的方法
US9890183B2 (en) 2015-12-08 2018-02-13 General Electric Company Aminosilicone solvent recovery methods and systems
EP4282511A1 (en) * 2023-04-04 2023-11-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for removing carbon dioxide from flue gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4820100B1 (ja) * 1969-03-11 1973-06-19
US6139605A (en) * 1997-02-11 2000-10-31 Imperial Chemical Industries Plc Gas absorption
JP2005254212A (ja) * 2004-03-15 2005-09-22 Mitsubishi Heavy Ind Ltd Co2回収装置及び方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1971798A (en) * 1932-01-30 1934-08-28 Koppers Co Delaware Purification and separation of gaseous mixtures
US4271132A (en) * 1966-02-01 1981-06-02 Eickmeyer Allen Garland Method and compositions for removing acid gases from gaseous mixtures
SU507970A1 (ru) * 1973-06-22 1984-07-07 Предприятие П/Я Р-6603 Способ очистки газов от кислых компонентов
NL7514993A (nl) * 1974-12-24 1976-06-28 Hecke Francis Van Werkwijze voor het regenereren van waterige wasoplossingen, gebruikt voor het verwijderen van zure gassen uit gasmengsels.
US4198378A (en) * 1976-11-12 1980-04-15 Giuseppe Giammarco Process for removing CO2, H2 S and other gaseous impurities from gaseous mixtures
US4106916A (en) * 1977-08-10 1978-08-15 Phillips Petroleum Company Automatic control of an absorption/stripping process
SU1567252A1 (ru) * 1988-07-20 1990-05-30 Харьковский институт инженеров коммунального строительства Способ очистки коксового газа от кислых компонентов
US5145658A (en) * 1990-11-28 1992-09-08 Eickmeyer & Associates, Inc. Reclaiming of heat of reaction energy from an alkaline scrubbing solution used in acid gas removal processes and apparatus therefor
JP2882950B2 (ja) * 1992-09-16 1999-04-19 関西電力株式会社 燃焼排ガス中の二酸化炭素を除去する方法
US5435977A (en) * 1993-12-15 1995-07-25 Eickmeyer & Associates, Inc. Acid gas removal system employing regenerator with internal flash section
WO2000030738A1 (en) * 1998-11-23 2000-06-02 Fluor Corporation Split flow process and apparatus
US6800120B1 (en) * 1998-11-23 2004-10-05 Fluor Corporation Split-flow process and apparatus
FR2814533B1 (fr) * 2000-09-27 2002-10-31 Alstom Power Nv Procede pour reduire simultanement les emissions de co2 de so2 dans une installation de combustion
WO2004005818A2 (en) * 2002-07-03 2004-01-15 Fluor Corporation Improved split flow process and apparatus
EA008970B1 (ru) * 2003-07-22 2007-10-26 Дау Глобал Текнолоджиз Инк. Регенерация текучих сред для обработки, содержащих кислый газ
UA93541C2 (ru) * 2006-02-14 2011-02-25 Басф Ce Способ удаления кислых газов из потока текучей среды и способ переоборудования установки для удаления кислых газов из потока текучей среды

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4820100B1 (ja) * 1969-03-11 1973-06-19
US6139605A (en) * 1997-02-11 2000-10-31 Imperial Chemical Industries Plc Gas absorption
JP2005254212A (ja) * 2004-03-15 2005-09-22 Mitsubishi Heavy Ind Ltd Co2回収装置及び方法

Also Published As

Publication number Publication date
AU2008335280B9 (en) 2011-10-27
RU2483785C2 (ru) 2013-06-10
KR20130036073A (ko) 2013-04-09
IL205743A0 (en) 2010-11-30
MX2010005209A (es) 2010-09-07
EP2219761A1 (en) 2010-08-25
US20090151564A1 (en) 2009-06-18
CA2708309A1 (en) 2009-06-18
CN101896248A (zh) 2010-11-24
ZA201003417B (en) 2011-08-31
KR20100092507A (ko) 2010-08-20
AU2008335280B2 (en) 2011-10-20
WO2009076326A1 (en) 2009-06-18
RU2010128891A (ru) 2012-01-20
CA2708309C (en) 2013-01-29
AU2008335280A1 (en) 2009-06-18

Similar Documents

Publication Publication Date Title
RU2481881C2 (ru) Система и способ регенерации раствора абсорбента
JP5143910B2 (ja) 吸収剤溶液の再生システム及び方法
JP2011506079A (ja) プロセスストリームから酸性成分を除去するシステム及び方法
RU2417824C2 (ru) Переоборудование установок для удаления кислых газов
US9216380B1 (en) Ammonia stripper for a carbon capture system for reduction of energy consumption
JP2011506080A (ja) 吸収剤溶液の再生システム及び方法
CA2840382C (en) Low pressure steam pre-heaters for gas purification systems and processes of use
AU2018282250A1 (en) Chemical compounds for the removal of carbon dioxide from gases
US9987587B2 (en) Method and device for the treatment of a gas stream, in particular for the treatment of a natural gas stream
JP2016112497A (ja) 二酸化炭素の回収装置および回収方法
AU2011254096B2 (en) System and method for regenerating an absorbent solution
CZ28872U1 (cs) Technologický systém pro záchyt CO2 ze spalin na bázi pevného sorbentu

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111019

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130404

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130607

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130925

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131001