JP2011505499A - Anticorrosive material - Google Patents

Anticorrosive material Download PDF

Info

Publication number
JP2011505499A
JP2011505499A JP2010536910A JP2010536910A JP2011505499A JP 2011505499 A JP2011505499 A JP 2011505499A JP 2010536910 A JP2010536910 A JP 2010536910A JP 2010536910 A JP2010536910 A JP 2010536910A JP 2011505499 A JP2011505499 A JP 2011505499A
Authority
JP
Japan
Prior art keywords
composition
metal ion
colloidal particles
polyvalent metal
anticorrosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010536910A
Other languages
Japanese (ja)
Other versions
JP2011505499A5 (en
JP5829807B2 (en
Inventor
佳孝 杉本
崎 孫
フルージ,ダニエル・レイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WR Grace and Co Conn
Original Assignee
WR Grace and Co Conn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WR Grace and Co Conn filed Critical WR Grace and Co Conn
Publication of JP2011505499A publication Critical patent/JP2011505499A/en
Publication of JP2011505499A5 publication Critical patent/JP2011505499A5/ja
Application granted granted Critical
Publication of JP5829807B2 publication Critical patent/JP5829807B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/187Mixtures of inorganic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6

Abstract

コロイド状粒子及び多価金属イオンを含む防食材料を開示する。粒子は好ましくはシリカである。金属イオンは、Al、Ga、Ti、Zr、Hf、Zn、Mg、Ca、Nb、Ta、Fe、Cu、Sn、Co、W、又はCeであってよい。この材料を、転換被覆液に加えるか、ポリマーバインダーと混合するか、又はそのまま用いて被膜を形成することができる。
【選択図】図1
An anticorrosive material comprising colloidal particles and multivalent metal ions is disclosed. The particles are preferably silica. The metal ion may be Al, Ga, Ti, Zr, Hf, Zn, Mg, Ca, Nb, Ta, Fe, Cu, Sn, Co, W, or Ce. This material can be added to the conversion coating liquid, mixed with a polymer binder, or used as is to form a coating.
[Selection] Figure 1

Description

本発明は、防食組成物を含む防食材料、組成物、配合物、及び防食組成物の製造方法に関する。   The present invention relates to an anticorrosion material including an anticorrosion composition, a composition, a composition, and a method for producing the anticorrosion composition.

金属処理及び被膜産業においては、良好な耐腐食性を有し、接着性、強度、防食特性、薄いフィルム厚さ等のような他の望ましいフィルム特性を保持しながら毒性の金属を含まない防食組成物及び配合物に関する必要性が存在する。また、当該技術においては、防食組成物及び配合物を製造し使用する方法に関する必要性も存在する。   In the metal processing and coating industry, it has good corrosion resistance and does not contain toxic metals while retaining other desirable film properties such as adhesion, strength, anticorrosion properties, thin film thickness etc. There is a need for products and formulations. There is also a need in the art for methods of making and using anticorrosion compositions and formulations.

本発明は、新規な防食組成物、配合物、及びそれから製造されるフィルムを見出すことによって上記で議論した困難性及び問題点の幾つかに対処する。本組成物は、2種類のナノサイズの金属酸化物粒子を、二価及び三価の金属イオンと組み合わせて含む。   The present invention addresses some of the difficulties and problems discussed above by finding new anticorrosive compositions, formulations, and films made therefrom. The composition includes two types of nano-sized metal oxide particles in combination with divalent and trivalent metal ions.

1つの代表的な態様においては、本発明の防食組成物は、溶媒;コロイド状粒子;及び組成物の全重量を基準として少なくとも約0.001重量%乃至約10重量%以下の量で存在する少なくとも1種類の多価金属イオン;を含む。   In one exemplary embodiment, the anticorrosive composition of the present invention is present in an amount of at least about 0.001 wt% to about 10 wt% or less based on the total weight of the solvent; colloidal particles; and the composition. At least one polyvalent metal ion.

更なる代表的な態様においては、本発明の防食組成物は、溶媒;コロイド状粒子;及び少なくとも1種類の多価金属イオン;を含み、60℃において少なくとも60分間、又は25℃において少なくとも8時間安定状態を保つ。   In a further exemplary embodiment, the anticorrosive composition of the invention comprises a solvent; colloidal particles; and at least one polyvalent metal ion; at 60 ° C. for at least 60 minutes, or 25 ° C. for at least 8 hours. Stay stable.

更なる代表的な態様においては、本発明の防食組成物は、溶媒;コロイド状粒子;及び少なくとも1種類の多価金属イオン;を含み、金属酸化物に対する金属イオンの比が約0.001より大きく約0.1以下である。コロイド状粒子に対する多価金属イオンの比は、少なくとも約0.005、好ましくは少なくとも約0.008、より好ましくは少なくとも約0.01、更により好ましくは少なくとも約0.01乃至約0.1であってよい。   In a further exemplary embodiment, the anticorrosive composition of the present invention comprises a solvent; colloidal particles; and at least one polyvalent metal ion; wherein the ratio of metal ion to metal oxide is from about 0.001. It is about 0.1 or less. The ratio of polyvalent metal ions to colloidal particles is at least about 0.005, preferably at least about 0.008, more preferably at least about 0.01, even more preferably at least about 0.01 to about 0.1. It may be.

本発明は更に、代表的な防食組成物を形成する方法に関する。1つの代表的な方法は、40重量%以下の金属酸化物粒子(ここで、重量%は分散液の全重量を基準とするものである)を水に加え;多価金属塩を分散液に加え;次に組成物を混合する;などの工程で、水中のコロイド状金属酸化物粒子の分散液を形成することを含む。得られる分散液は、望ましくは60℃において少なくとも60分間、又は25℃において少なくとも8時間の間安定な粘度を有する。   The invention further relates to a method of forming a representative anticorrosive composition. One exemplary method is to add up to 40% by weight of metal oxide particles (where% by weight is based on the total weight of the dispersion) to water; a polyvalent metal salt in the dispersion. Adding; then mixing the composition; etc. to form a dispersion of colloidal metal oxide particles in water. The resulting dispersion desirably has a stable viscosity for at least 60 minutes at 60 ° C. or at least 8 hours at 25 ° C.

他の代表的な態様においては、本発明の防食配合物は、バインダー;溶媒;コロイド状粒子;及び少なくとも1種類の多価金属イオン;を含み、金属酸化物に対する金属イオンの比が約0.001より大きく約0.1以下である。コロイド状粒子に対する多価金属イオンの比は、少なくとも約0.005、好ましくは少なくとも約0.008、より好ましくは少なくとも約0.01、更により好ましくは少なくとも約0.01乃至約0.1であってよい。   In another exemplary embodiment, the anticorrosive formulation of the present invention comprises a binder; a solvent; colloidal particles; and at least one polyvalent metal ion; and the ratio of metal ion to metal oxide is about 0. More than 001 and about 0.1 or less. The ratio of polyvalent metal ions to colloidal particles is at least about 0.005, preferably at least about 0.008, more preferably at least about 0.01, even more preferably at least about 0.01 to about 0.1. It may be.

防食配合物を用いる更なる代表的な方法においては、かかる方法は、第1の表面を有する基材を提供し;基材の第1の表面上に配合物を被覆し;そして被覆された基材を乾燥する;工程を含む、被覆基材を形成する方法を含む。得られる被膜により、腐食性環境において特に有用な望ましい防食耐性を有する基材が与えられる。   In a further exemplary method using an anticorrosive formulation, such a method provides a substrate having a first surface; coating the formulation on the first surface of the substrate; and a coated substrate A method of forming a coated substrate comprising the steps of: drying the material; The resulting coating provides a substrate with desirable corrosion resistance that is particularly useful in corrosive environments.

1つの代表的な態様においては、本発明の耐腐食性材料は、基材;並びに、コロイド状粒子、及び少なくとも1種類の多価金属イオンを有し、金属酸化物に対する金属イオンの比が約0.001より大きく約0.1以下である、基材上の防食被膜;を含む。コロイド状粒子に対する多価金属イオンの比は、少なくとも約0.005、好ましくは少なくとも約0.008、より好ましくは少なくとも約0.01、更により好ましくは少なくとも約0.01乃至約0.1であってよい。   In one exemplary embodiment, the corrosion resistant material of the present invention comprises a substrate; and colloidal particles and at least one polyvalent metal ion, wherein the ratio of metal ion to metal oxide is about An anticorrosive coating on the substrate that is greater than 0.001 and not greater than about 0.1. The ratio of polyvalent metal ions to colloidal particles is at least about 0.005, preferably at least about 0.008, more preferably at least about 0.01, even more preferably at least about 0.01 to about 0.1. It may be.

本発明のこれらの及び他の特徴並びに有利性は、開示された態様の以下の詳細な説明及び特許請求の範囲を検討すれば明らかになるであろう。   These and other features and advantages of the present invention will become apparent upon review of the following detailed description of the disclosed embodiments and the claims.

図1は、本発明の防食材料を含む少なくとも1つの層を含む本発明の代表的な物品の断面図である。FIG. 1 is a cross-sectional view of a representative article of the present invention comprising at least one layer comprising the anticorrosive material of the present invention.

本発明の原理の理解を促進するために、以下において本発明の特定の態様を説明し、特定の用語を用いて特定の態様を説明する。しかしながら、特定の用語を用いることによって本発明の範囲を限定する意図はないことが理解されよう。議論される本発明の原理の変更、更なる修正、及びかかる更なる適用は、本発明が属する技術の当業者が通常的に想到するものであると考えられる。   To facilitate an understanding of the principles of the invention, specific embodiments of the invention are described below, and specific terms are used to describe the specific embodiments. However, it will be understood that the use of specific terms is not intended to limit the scope of the invention. Changes in the principles of the invention that are discussed, further modifications, and such further applications are believed to be normally conceived by one of ordinary skill in the art to which the invention belongs.

本発明は、防食被膜、並びに防食被膜を形成するのに好適な配合物及び分散液に関する。本発明は更に、防食材料を製造する方法、並びにかかる材料を使用する方法に関する。代表的な防食材料、被膜、防食材料を形成するための配合物及び分散液、並びに防食材料、被膜、配合物、及び分散液の製造方法の説明を以下に与える。   The present invention relates to anticorrosion coatings and formulations and dispersions suitable for forming anticorrosion coatings. The invention further relates to a method for producing an anticorrosion material, as well as a method for using such a material. Descriptions of typical anticorrosive materials, coatings, formulations and dispersions for forming anticorrosive materials, and methods for producing anticorrosive materials, coatings, formulations and dispersions are given below.

本発明の防食組成物及び配合物は、良好な耐腐食性を有し、接着性、強度、薄いフィルム厚さ、防食特性等のような他の望ましいフィルム特性を未だ保持しながら毒性の金属を含まない。   The anticorrosion compositions and formulations of the present invention have good corrosion resistance and are capable of containing toxic metals while still retaining other desirable film properties such as adhesion, strength, thin film thickness, anticorrosion properties, etc. Not included.

代表的な態様においては、本発明の防食組成物は、溶媒;コロイド状粒子;及び組成物の全重量を基準として少なくとも約0.001重量%乃至約5重量%以下の量で存在する少なくとも1種類の多価金属イオン;を含む。多価金属イオンは、20〜40%の固形分を含む組成物の全重量を基準として約0.1重量%乃至約4重量%以下、好ましくは約0.1重量%乃至約3重量%以下、より好ましくは約0.1重量%乃至約2重量%以下、更により好ましくは約0.1重量乃至約1重量%以下の量で組成物中に存在させることができる。固形分含量によって、組成物中の多価金属イオンの上記記載の量は、固形分含量が増加又は減少するにつれてそれぞれ増加又は減少させることができる。   In an exemplary embodiment, the anticorrosive composition of the present invention comprises at least one solvent, colloidal particles, and at least one present in an amount of at least about 0.001 wt% to no more than about 5 wt%, based on the total weight of the composition. A kind of polyvalent metal ion. The polyvalent metal ion is about 0.1% to about 4% by weight, preferably about 0.1% to about 3% by weight, based on the total weight of the composition containing 20-40% solids. More preferably, it can be present in the composition in an amount of from about 0.1% to about 2% by weight, even more preferably from about 0.1% to about 1% by weight. Depending on the solids content, the above-mentioned amounts of polyvalent metal ions in the composition can be increased or decreased, respectively, as the solids content is increased or decreased.

更なる代表的な態様においては、本発明の防食組成物は、溶媒;コロイド状粒子;及び少なくとも1種類の多価金属イオン;を含み、コロイド状粒子に対する金属イオンの比は約0.001より大きく約0.1以下であってよい。コロイド状粒子に対する多価金属イオンの比は、少なくとも約0.005、好ましくは少なくとも約0.008、より好ましくは少なくとも約0.01、更により好ましくは少なくとも約0.01乃至約0.1であってよい。   In a further exemplary embodiment, the anticorrosive composition of the present invention comprises a solvent; colloidal particles; and at least one polyvalent metal ion; and the ratio of metal ions to colloidal particles is from about 0.001. It may be as large as about 0.1 or less. The ratio of polyvalent metal ions to colloidal particles is at least about 0.005, preferably at least about 0.008, more preferably at least about 0.01, even more preferably at least about 0.01 to about 0.1. It may be.

粒子は、金属の酸化物、硫化物、水酸化物、炭酸塩、ケイ酸塩、リン酸塩等から構成することができるが、好ましくは金属酸化物である。ここで用いる「金属酸化物」とは、金属がカチオンであり酸化物がアニオンである二元酸素化合物として定義される。金属にはメタロイドも包含することができる。金属としては、周期律表上のホウ素からポロニウムへ引かれる対角線の左側の元素が挙げられる。メタロイド又は半金属としては、この線上の元素が挙げられる。金属酸化物の例としては、シリカ、アルミナ、チタニア、ジルコニア等、及びこれらの混合物が挙げられる。粒子は、鎖状、棒状、又は木片状などの種々の異なる対称、非対称、又は不規則形状であってよい。粒子は、アモルファス又は結晶質などの異なる構造を有していてよく、ゲル状、ゾル状、沈殿状、ヒューム状等のような種々の形態であってよい。粒子は、異なる組成、寸法、形状、又は物理構造を有するか、或いは異なる表面処理以外は同じものであってもよい粒子の混合物を包含することができる。好ましくは、金属酸化物粒子は、例えばコロイド状シリカのようにアモルファスである。   The particles can be composed of metal oxides, sulfides, hydroxides, carbonates, silicates, phosphates, etc., preferably metal oxides. As used herein, “metal oxide” is defined as a binary oxygen compound in which the metal is a cation and the oxide is an anion. Metals can also include metalloids. Examples of the metal include an element on the left side of a diagonal line drawn from boron to polonium on the periodic table. Metalloids or metalloids include elements on this line. Examples of metal oxides include silica, alumina, titania, zirconia, and the like, and mixtures thereof. The particles may be in a variety of different symmetric, asymmetric, or irregular shapes, such as chain, rod, or piece of wood. The particles may have different structures such as amorphous or crystalline and may be in various forms such as gel, sol, precipitated, fume and the like. The particles can include a mixture of particles that have different compositions, dimensions, shapes, or physical structures, or may be the same except for different surface treatments. Preferably, the metal oxide particles are amorphous, such as colloidal silica.

「コロイド状粒子」又は「コロイド状ゾル」という用語は、粒子が比較的長時間にわたって分散液から沈降しない分散液又はゾルを由来とする粒子を意味する。かかる粒子は、典型的には1ミクロンより小さい寸法である。約1〜約300ナノメートルの範囲の平均粒径を有するコロイド状ゾル及びその製造方法は、当該技術において周知である。米国特許2,244,325;2,574,902;2,577,484;2,577,485;2,631,134;2,750,345;2,892,797;3,012,972;及び3,440,174(これらの内容は参照として本明細書中に包含する)を参照。5〜100ナノメートルの範囲の平均粒径を有するコロイド状ゾルが本発明のためにより好ましい。コロイド状ゾルは、9〜約2700m/g−SiOの範囲の比表面積(BET窒素吸着によって測定)を有していてよい。 The term “colloidal particles” or “colloidal sol” means particles derived from a dispersion or sol in which the particles do not settle out of the dispersion for a relatively long time. Such particles are typically less than 1 micron in size. Colloidal sols having an average particle size in the range of about 1 to about 300 nanometers and methods for their production are well known in the art. US Patents 2,244,325; 2,574,902; 2,577,484; 2,577,485; 2,631,134; 2,750,345; 2,892,797; 3,012,972; And 3,440,174 (the contents of which are incorporated herein by reference). A colloidal sol having an average particle size in the range of 5 to 100 nanometers is more preferred for the present invention. The colloidal sol may have a specific surface area (measured by BET nitrogen adsorption) ranging from 9 to about 2700 m 2 / g-SiO 2 .

本発明の防食組成物において多くのタイプのコロイド状ゾルを用いることができるが、代表的なコロイド状シリカゾルを以下に説明する。殆どのコロイド状シリカゾルは、シリカ粒子を凝集又はゲル化から安定化させるアルカリを含む。アルカリは通常はアルカリ金属水酸化物であり、アルカリ金属は周期律表の第IA族からのものである(リチウム、ナトリウム、カリウム等の水酸化物)。殆どの商業的に入手できるコロイド状シリカゾルは、少なくとも部分的にコロイド状シリカを製造するのに用いるケイ酸ナトリウムを由来とするナトリウムを含むが、水酸化ナトリウムを加えてゾルをゲル化に対して安定化させることもできる。幾つかのアルカリ性コロイド状シリカゾルは水性アンモニアによって安定化する。かかるアルカリ性コロイド状シリカゾルは本発明には不適である。本発明に好適な殆どの多価金属イオンは、アルカリ性溶液中で不溶の金属水酸化物を形成し、これによって防食配合物の処理が制限される。アルカリ性コロイド状シリカゾルを例えば無機又は有機酸で酸性化することは、得られるアルカリ金属塩がコロイド状シリカゾル及び本発明の防食組成物の安定性を減少させ、更に被膜の防食特性に有害である可能性があるので不利である。   Although many types of colloidal sols can be used in the anticorrosive composition of the present invention, representative colloidal silica sols are described below. Most colloidal silica sols contain an alkali that stabilizes the silica particles from agglomeration or gelation. The alkali is usually an alkali metal hydroxide, and the alkali metal is from Group IA of the periodic table (hydroxides such as lithium, sodium and potassium). Most commercially available colloidal silica sols contain sodium derived from sodium silicate that is used to produce colloidal silica at least in part, but sodium hydroxide is added to gel the sol against gelation. It can also be stabilized. Some alkaline colloidal silica sols are stabilized by aqueous ammonia. Such alkaline colloidal silica sols are not suitable for the present invention. Most polyvalent metal ions suitable for the present invention form insoluble metal hydroxides in alkaline solutions, which limits the processing of the anticorrosive formulation. Acidifying an alkaline colloidal silica sol, for example with an inorganic or organic acid, can reduce the stability of the resulting colloidal silica sol and the anticorrosive composition of the present invention and can be detrimental to the anticorrosive properties of the coating It is disadvantageous because of its nature.

脱イオンしたコロイド状シリカゾルは本発明のために好適である。「脱イオンした」とは、全ての金属イオン、例えばナトリウムのようなアルカリ金属イオンがコロイド状シリカ溶液相から実質的に除去され、ヒドロニウム(HO又はH+)或いは酸イオンで置換されたことを意味する。アルカリ金属イオンを除去する方法は周知であり、好適なイオン交換樹脂によるイオン交換(米国特許2,577,484及び2,577,485)、透析(米国特許2,773,028)、及び電気透析(米国特許3,969,266)が挙げられる。 Deionized colloidal silica sol is suitable for the present invention. “Deionized” means that all metal ions, such as alkali metal ions such as sodium, have been substantially removed from the colloidal silica solution phase and replaced with hydronium (H 3 O or H +) or acid ions. Means. Methods for removing alkali metal ions are well known and include ion exchange with suitable ion exchange resins (US Pat. Nos. 2,577,484 and 2,577,485), dialysis (US Pat. No. 2,773,028), and electrodialysis. (US Pat. No. 3,969,266).

酸性pHにおけるゲル化に対するコロイド状シリカゾルの安定性を付与するためには、米国特許2,892,797(その内容は参照として本明細書中に包含する)に記載されているように粒子をアルミニウムで表面変性し、次に変性したシリカを脱イオンすることもできる。   To impart the stability of colloidal silica sols to gelation at acidic pH, the particles are made of aluminum as described in US Pat. No. 2,892,797, the contents of which are incorporated herein by reference. It is also possible to modify the surface with and then deionize the modified silica.

ここで定義する「多価金属イオン」という用語は、2又は3の価数を有する金属イオンを意味する。多価金属イオンの例としては、Al、Ga、Ti、Zr、Hf、Zn、Mg、Ca、Nb、Ta、Fe、Cu、Sn、Co、W、Ce、Ba、Mn、Mo、Vなどが挙げられるが、これらに限定されない。   The term “polyvalent metal ion” as defined herein means a metal ion having a valence of 2 or 3. Examples of polyvalent metal ions include Al, Ga, Ti, Zr, Hf, Zn, Mg, Ca, Nb, Ta, Fe, Cu, Sn, Co, W, Ce, Ba, Mn, Mo, V, etc. For example, but not limited to.

本発明の代表的な態様においては、防食組成物の固形分含量(又はコロイド状粒子の量)は、組成物の全重量を基準として約1〜約40重量%、好ましくは約1〜約30重量%、より好ましくは約1〜約25重量%、更に好ましくは約1〜約20重量%の範囲である。   In an exemplary embodiment of the invention, the solids content (or the amount of colloidal particles) of the anticorrosive composition is about 1 to about 40% by weight, preferably about 1 to about 30, based on the total weight of the composition. % By weight, more preferably about 1 to about 25% by weight, still more preferably about 1 to about 20% by weight.

更なる代表的な態様においては、本発明の防食組成物は、溶媒;コロイド状粒子;及び少なくとも1種類の多価金属イオン;を含み、60℃において少なくとも60分間、又は60℃において少なくとも120分間安定状態を保つ。組成物は、典型的には60℃において少なくとも約3時間、好ましくは60℃において少なくとも約6時間、より好ましくは60℃において少なくとも約12時間、更により好ましくは60℃において少なくとも24時間安定状態を保つことができる。組成物は、典型的には25℃において少なくとも約24時間、好ましくは25℃において少なくとも約2日間、より好ましくは25℃において少なくとも約4日間、更により好ましくは25℃において少なくとも約8日間安定状態を保つことができる。ここで定義する「安定」という用語は、時間経過後にゲル化しない粒子の分散液を意味する。   In a further exemplary embodiment, the anticorrosive composition of the invention comprises a solvent; colloidal particles; and at least one polyvalent metal ion; at 60 ° C. for at least 60 minutes, or 60 ° C. for at least 120 minutes. Stay stable. The composition typically remains stable at 60 ° C for at least about 3 hours, preferably at 60 ° C for at least about 6 hours, more preferably at 60 ° C for at least about 12 hours, and even more preferably at 60 ° C for at least 24 hours. Can keep. The composition is typically stable at 25 ° C for at least about 24 hours, preferably at 25 ° C for at least about 2 days, more preferably at 25 ° C for at least about 4 days, even more preferably at 25 ° C for at least about 8 days. Can keep. The term “stable” as defined herein means a dispersion of particles that do not gel after a lapse of time.

本発明の防食組成物は、コロイド状粒子を溶媒及び塩の形態の多価金属イオンと混合することによって製造することができる。溶媒は、コロイド状粒子及び多価金属イオン塩と相溶性の任意の溶媒であってよい。水が好ましい溶媒であるが、水と水混和性有機溶媒(例えば、メタノール、エタノール、プロパノール、アセトン等)との混合物を用いることができる。有用な多価金属イオン塩は、多価金属イオン及び多価可溶性アニオンを有するものである。好ましくは、アニオンは金属腐食を促進させない。かかるアニオンの例としては、硝酸塩、亜硝酸塩、乳酸塩、リン酸塩、リン酸水素塩、硫酸塩、モリブデン酸塩、又はこれらの混合物が挙げられるが、これらに限定されない。   The anticorrosive composition of the present invention can be produced by mixing colloidal particles with a solvent and a polyvalent metal ion in the form of a salt. The solvent may be any solvent that is compatible with the colloidal particles and the polyvalent metal ion salt. Water is a preferred solvent, but a mixture of water and a water-miscible organic solvent (eg, methanol, ethanol, propanol, acetone, etc.) can be used. Useful polyvalent metal ion salts are those having a polyvalent metal ion and a polyvalent soluble anion. Preferably, the anion does not promote metal corrosion. Examples of such anions include, but are not limited to, nitrates, nitrites, lactates, phosphates, hydrogen phosphates, sulfates, molybdates, or mixtures thereof.

混合は、実験プロセス又は工業プロセスに共通の通常の混合及びブレンド装置によって行うことができる。高剪断ミキサーを用いることができるが、必須ではない。多価金属イオン塩溶液の濃溶液は接触することによってコロイド状粒子のゲル化を引き起こす可能性があるので、多価金属イオン塩溶液は可能な限り希釈して、目標とするコロイド状粒子に対する金属イオンの比及び防食配合物の全固形分レベルを達成しなければならない。これは典型的には、0.1〜1モル/Lの多価金属イオン、好ましくは0.1〜0.5モル/Lの多価金属イオンを含む溶液によって達成することができる。   Mixing can be done by conventional mixing and blending equipment common to experimental or industrial processes. A high shear mixer can be used but is not required. Since concentrated solutions of polyvalent metal ion salt solutions can cause gelation of colloidal particles upon contact, dilute the polyvalent metal ion salt solution as much as possible to obtain metal for the target colloidal particles. The ratio of ions and the total solids level of the anticorrosion formulation must be achieved. This can typically be achieved by a solution comprising 0.1-1 mol / L of polyvalent metal ions, preferably 0.1-0.5 mol / L of polyvalent metal ions.

防食配合物を用いる更なる代表的な方法においては、この方法は、第1の表面を有する基材を提供し;基材の第1の表面上に配合物を被覆し;そして被覆した基材を乾燥する;工程を含む、被覆基材を形成する方法を含む。得られる被膜によって、特に腐食性環境において有用な望ましい防食耐性を有する基材が提供される。分散液を用いて、金属基材、表面処理金属基材、その上に予備処理層又は他の層を有する金属基材、金属複合体基材、又は耐腐食性を必要とする任意の他の基材、並びにこれらの組み合わせなど(しかしながらこれらに限定されない)の種々の基材の表面を被覆することができる。得られる被覆基材は、化成用途、直接塗布用途など(しかしながらこれらに限定されない)の数多くの用途において用いることができる。   In a further exemplary method using an anticorrosive formulation, the method provides a substrate having a first surface; coating the formulation on the first surface of the substrate; and coated substrate A method of forming a coated substrate comprising the steps of: The resulting coating provides a substrate with desirable anti-corrosion resistance that is particularly useful in corrosive environments. Using dispersions, metal substrates, surface-treated metal substrates, metal substrates with pre-treated layers or other layers thereon, metal composite substrates, or any other that requires corrosion resistance The surface of various substrates, such as but not limited to substrates, as well as combinations thereof, can be coated. The resulting coated substrate can be used in numerous applications such as, but not limited to, chemical conversion applications, direct coating applications, and the like.

他の代表的な態様においては、本発明の防食組成物はバインダーを含む。この態様においては、バインダーを用いて、基材に適用することによって望ましいフィルム特性を与える。   In another exemplary embodiment, the anticorrosion composition of the present invention comprises a binder. In this embodiment, a binder is used to provide desirable film properties by application to a substrate.

防食組成物は、防食被膜を形成する従来の被覆バインダー中に含ませることができる。バインダーは、コロイド状粒子を結合させてフィルムを形成するように作用するだけでなく、被膜と基材との間の界面、又は防食被膜と基材との間の任意の中間層に接着性も与える。   The anticorrosive composition can be included in a conventional coating binder that forms an anticorrosive coating. The binder not only acts to bind the colloidal particles to form a film, but also adheres to the interface between the coating and the substrate, or any intermediate layer between the anticorrosion coating and the substrate. give.

ラテックスのような水溶性又は水混和性のバインダーが本発明において特に好適であり、これは例えば、エポキシ、ポリエステル、ポリプロピレン、ポリエチレン、アクリルシリコーン、ポリウレタン、ポリアミン、アクリルエマルジョン、ポリビニルブチラール等であってよい。他の好適なバインダーとしては、酸化デンプン、エーテル化デンプン、又はホスフェートデンプンのようなデンプン誘導体;カルボキシメチルセルロース又はヒドロキシメチルセルロースのようなセルロース誘導体;カゼイン、ゼラチン、大豆タンパク質、ポリビニルアルコール、又はこれらの誘導体;ポリアクリレート;ビニルアルコール/アクリルアミドコポリマー;セルロースポリマー;デンプンポリマー;イソブチレン/無水マレイン酸コポリマー;ビニルアルコール/アクリル酸コポリマー;ポリエチレンオキシド変性生成物;ジメチルアンモニウムポリジアリレート;及び第4級アンモニウムポリアクリレート;ポリビニルピロリドン、無水マレイン酸樹脂、又はスチレン−ブタジエンコポリマー又はメチルメタクリレート−ブタジエンコポリマーのような共役ジエンタイプのコポリマーラテックス;アクリル酸エステル又はメタクリル酸エステルのポリマー又はコポリマーのようなアクリルポリマーラテックス;エチレン−酢酸ビニルコポリマーのようなビニルタイプのポリマーラテックス;カルボキシル基のような官能基を含むモノマーによる種々のポリマーのような官能基変性ポリマーラテックス;或いはこれらの混合物が挙げられる。メラミン樹脂又は尿素樹脂のような熱硬化性合成樹脂;ポリメチルメタクリレートのようなアクリル酸エステル又はメタクリル酸エステルのポリマー又はコポリマー樹脂;或いはポリウレタン樹脂、不飽和ポリエステル樹脂、塩化ビニル−酢酸ビニルコポリマー、ポリビニルブチラール、又はアルキド樹脂のような合成樹脂タイプのバインダー;或いはこれらの混合物のような水性接着剤も用いることができる。   Water-soluble or water-miscible binders such as latex are particularly suitable in the present invention and may be, for example, epoxy, polyester, polypropylene, polyethylene, acrylic silicone, polyurethane, polyamine, acrylic emulsion, polyvinyl butyral, etc. . Other suitable binders include starch derivatives such as oxidized starch, etherified starch, or phosphate starch; cellulose derivatives such as carboxymethyl cellulose or hydroxymethyl cellulose; casein, gelatin, soy protein, polyvinyl alcohol, or derivatives thereof; Polyacrylate; vinyl alcohol / acrylamide copolymer; cellulose polymer; starch polymer; isobutylene / maleic anhydride copolymer; vinyl alcohol / acrylic acid copolymer; polyethylene oxide modified product; dimethylammonium polydiarylate; and quaternary ammonium polyacrylate; , Maleic anhydride resin, or styrene-butadiene copolymer or methyl methacrylate Conjugated diene type copolymer latex such as diene copolymer; Acrylic polymer latex such as acrylate or methacrylate polymer or copolymer; Vinyl type polymer latex such as ethylene-vinyl acetate copolymer; Functionality such as carboxyl group Functional group modified polymer latices such as various polymers with monomers containing groups; or mixtures thereof. Thermosetting synthetic resin such as melamine resin or urea resin; polymer or copolymer resin of acrylic ester or methacrylic ester such as polymethyl methacrylate; or polyurethane resin, unsaturated polyester resin, vinyl chloride-vinyl acetate copolymer, polyvinyl Synthetic resin type binders such as butyral or alkyd resins; or aqueous adhesives such as mixtures thereof can also be used.

バインダーは、通常のブレンダー及びミキサーを用いて防食組成物と配合することができる。成分は環境条件において配合及び混合することができる。
本発明の代表的な態様においては、防食組成物の固形分含量(又はコロイド状粒子及びバインダーの量)は、組成物の全重量を基準として約1〜約50重量%、好ましくは約1〜約30重量%、より好ましくは約1〜約25重量%、更に好ましくは約1〜約20重量%の範囲である。コロイド状粒子及びバインダーの固形分は、少なくとも1:1、より好ましくは6:4〜4:1(重量基準)の比で被膜配合物中に存在していてよい。この比は9.9:1のような高さであってよい。
A binder can be mix | blended with an anticorrosion composition using a normal blender and a mixer. Ingredients can be formulated and mixed at ambient conditions.
In an exemplary embodiment of the present invention, the solids content (or the amount of colloidal particles and binder) of the anticorrosive composition is about 1 to about 50% by weight, preferably about 1 to about 50%, based on the total weight of the composition. It is in the range of about 30% by weight, more preferably about 1 to about 25% by weight, still more preferably about 1 to about 20% by weight. The solids content of the colloidal particles and binder may be present in the coating formulation in a ratio of at least 1: 1, more preferably 6: 4 to 4: 1 (by weight). This ratio may be as high as 9.9: 1.

また、本発明の被覆組成物中に更なる成分を含ませることも望ましい可能性がある。本発明の被膜には、以下のもの:分散剤、増粘剤、流動性向上剤、脱泡剤、発泡抑制剤、離型剤、発泡剤、浸透剤、着色染料、着色顔料、蛍光増白剤、紫外線吸収剤、酸化防止剤、保存剤、防水剤等の1以上を含ませることができる。   It may also be desirable to include additional components in the coating composition of the present invention. The coating of the present invention includes the following: dispersant, thickener, fluidity improver, defoamer, foam inhibitor, mold release agent, foaming agent, penetrant, colored dye, colored pigment, fluorescent whitening One or more of an agent, an ultraviolet absorber, an antioxidant, a preservative, a waterproofing agent and the like can be included.

1つの代表的な態様においては、本発明の耐腐食性材料は、基材;並びに、コロイド状粒子、及び少なくとも1種類の多価金属イオンを有し、金属酸化物に対する金属イオンの重量比が約0.001より大きく約0.1以下である、基材上の防食被膜;を含む。コロイド状粒子に対する多価金属イオンの比は、少なくとも約0.005、好ましくは少なくとも約0.008、より好ましくは少なくとも約0.01、更により好ましくは少なくとも約0.01乃至約0.1であってよい。代表的な被覆基材を図1に示す。   In one exemplary embodiment, the corrosion resistant material of the present invention comprises a substrate; and colloidal particles and at least one polyvalent metal ion, wherein the weight ratio of metal ion to metal oxide is An anticorrosive coating on the substrate that is greater than about 0.001 and not greater than about 0.1. The ratio of polyvalent metal ions to colloidal particles is at least about 0.005, preferably at least about 0.008, more preferably at least about 0.01, even more preferably at least about 0.01 to about 0.1. It may be. A typical coated substrate is shown in FIG.

図1に示すように、代表的な被覆基材1は、薄い予備処理層2、プライマリー層3、頂部被膜層4を含む。全ての層に本発明の防食組成物を含ませることができるが、典型的には頂部被膜層4にはこの組成物を含ませない。好ましくは、予備処理層2には本発明の防食組成物を含ませる。薄い予備処理層2を形成するために好適なバインダー材料としては、ポリアクリレート;ビニルアルコール/アクリルアミドコポリマー;セルロースポリマー;デンプンポリマー;イソブチレン/無水マレイン酸コポリマー;ビニルアルコール/アクリル酸コポリマー;ポリエチレンオキシド変性生成物;ジメチルアンモニウムポリジアリレート;及び第4級アンモニウムポリアクリレート;などのような水吸収性材料を挙げることができるが、これらに限定されない。場合によって用いるプライマリー層3を形成するために好適な材料としては、ポリエチレン、ポリプロピレン、ポリエステル、及び他のポリマー材料を挙げることができるが、これらに限定されない。基材1は、任意の金属又はメタロイドのような時間が経つと腐食する種々の材料で構成することができる。   As shown in FIG. 1, a typical coated substrate 1 includes a thin pretreatment layer 2, a primary layer 3, and a top coating layer 4. All layers can contain the anticorrosive composition of the present invention, but typically the top coating layer 4 does not contain this composition. Preferably, the pretreatment layer 2 contains the anticorrosive composition of the present invention. Suitable binder materials for forming the thin pretreatment layer 2 include polyacrylates; vinyl alcohol / acrylamide copolymers; cellulose polymers; starch polymers; isobutylene / maleic anhydride copolymers; vinyl alcohol / acrylic acid copolymers; Water-absorbing materials such as, but not limited to: dimethylammonium polydiarylate; and quaternary ammonium polyacrylates. Suitable materials for forming the optionally used primary layer 3 can include, but are not limited to, polyethylene, polypropylene, polyester, and other polymer materials. The substrate 1 can be composed of various materials that corrode over time, such as any metal or metalloid.

本発明の更なる代表的な態様においては、防食組成物は、処理又は被覆された防食材料を製造する方法において用いることができる。1つの代表的な方法においては、この材料を製造する方法は、第1の表面を有する基材を提供し;そして、基材の第1の表面上に防食組成物を適用して、その上に防食被膜層を形成する;工程を含む。次に、被膜層を乾燥して被覆基材を形成することができる。被覆基材を用いて予備処理された耐腐食性基材を形成することができる。本発明の1つの代表的な方法においては、化成被覆及び薄塗り表面処理において防食材料を用いることができる。   In a further exemplary embodiment of the present invention, the anticorrosion composition can be used in a method for producing a treated or coated anticorrosion material. In one exemplary method, the method of manufacturing the material provides a substrate having a first surface; and applying an anticorrosive composition on the first surface of the substrate, and further on Forming an anticorrosion coating layer; Next, the coating layer can be dried to form a coated substrate. A pre-treated corrosion resistant substrate can be formed using the coated substrate. In one exemplary method of the present invention, anticorrosion materials can be used in chemical conversion coatings and thin coating surface treatments.

以下の実施例によって本発明を更に説明するが、これらはいかなるようにもその範囲に対して限定を与えるように解釈すべきではない。それどころか、本解決手段は種々の他の態様、修正、及びその均等物を有することができ、これらは本明細書中の記載を読んだ後は、本発明の精神及び/又は特許請求の範囲から逸脱することなくそれ自体当業者に示唆される。   The invention is further illustrated by the following examples, which should not be construed as limiting the scope in any way. On the contrary, the solution may have various other aspects, modifications, and equivalents, which, after reading the description herein, come from the spirit of the invention and / or the claims. As such, it is suggested to those skilled in the art without departing.

実施例1:
3種類のコロイド状シリカゾルを調製した。
ゾル1:22nmの粒子;アンモニア安定化;pH〜9。
Example 1:
Three types of colloidal silica sols were prepared.
Sol 1: 22 nm particles; ammonia stabilized; pH˜9.

ゾル2:22nmの粒子;ナトリウムイオンを含むアルカリ性(pH〜9)。
ゾル3:22nmの粒子;US−2,892,797に開示されている方法にしたがってアルミン酸塩で安定化させ、pH4まで脱イオン化した。
Sol 2: 22 nm particles; alkaline (pH˜9) containing sodium ions.
Sol 3: 22 nm particles; stabilized with aluminate according to the method disclosed in US-2,892,797 and deionized to pH4.

ゾル4:12nmの粒子;US−2,892,797にしたがってアルミン酸塩で安定化させ、pH4まで脱イオン化した。
0.5MのCa(NO及び水の混合物を、撹拌しながらこれらのゾルのそれぞれに加えて、試料が20%のSiOを含み、Ca/SiOの重量比が0.005、0.01、0.02、及び0.03となるようにした。以下のように、これらの試料を室温において8日間にわたって観察した。
Sol 4: 12 nm particles; stabilized with aluminate according to US-2,892,797 and deionized to pH4.
A mixture of 0.5 M Ca (NO 3 ) 2 and water is added to each of these sols with stirring, so that the sample contains 20% SiO 2 and the weight ratio Ca / SiO 2 is 0.005 0.01, 0.02, and 0.03. These samples were observed for 8 days at room temperature as follows.

ゾル1及びゾル2から製造された試料はほぼ直ちにゲル化し、アルカリ性のゾルは使用できないことが示された。ゾル3から製造された試料は、0.005の比において試験時間中安定であった。他の全てのゾル3の試料は5日後にゲル化した。ゾル4から製造された試料は、0.005及び0.01の比において試験時間中安定であった。0.02の比においては、試料は8日後にゲル化し、0.03の比においては、試料は1日後にゲル化した。これにより、コロイド状粒子の寸法は配合物の安定性に対して重要な役割を果たし、その選択は必要な安定性及び防食特性に基づいて行わなければならないことが示される。   Samples made from sol 1 and sol 2 gelled almost immediately, indicating that alkaline sols cannot be used. The sample made from sol 3 was stable during the test time at a ratio of 0.005. All other sol 3 samples gelled after 5 days. Samples made from sol 4 were stable during the test time at ratios of 0.005 and 0.01. At a ratio of 0.02, the sample gelled after 8 days and at a ratio of 0.03 the sample gelled after 1 day. This indicates that the size of the colloidal particles plays an important role on the stability of the formulation, and the selection must be made based on the required stability and anticorrosion properties.

実施例2:
乳酸カルシウム(0.57M)溶液を実施例1のゾル4に加えて、0.03のCa/SiOの重量比を有し、20重量%のSiOを含む試料を調製した。この試料は室温において7日後にゲル化した。これにより、このカルシウム化合物を用いることもできることが示される。
Example 2:
A calcium lactate (0.57 M) solution was added to sol 4 of Example 1 to prepare a sample having a Ca / SiO 2 weight ratio of 0.03 and containing 20 wt% SiO 2 . This sample gelled after 7 days at room temperature. This shows that this calcium compound can also be used.

実施例3:
この実験は、好適に選択された金属イオンがSiOと共に働いて、コロイド状シリカ単独を用いる場合と比較して、亜鉛メッキ鋼及びガルバリウム鋼上の化成被膜においてより良好な耐腐食性を与えることを示す。全ての試料に関して実施例1のゾル3を用い、全てリン酸(HPO)を用いて約1.5〜2のpHに調節した。
Example 3:
This experiment shows that well-selected metal ions work with SiO 2 to give better corrosion resistance in conversion coatings on galvanized and gallium steels compared to using colloidal silica alone. Indicates. For all samples, the sol 3 of Example 1 was used and all were adjusted to a pH of about 1.5-2 using phosphoric acid (H 3 PO 4 ).

試料1:ゾル3;20%SiO;リン酸でpH〜2に調節;多価金属イオンを有しない。
試料2:20%のSiOを含み、Ca/SiOの重量比がpH〜2において0.03である、ゾル3、リン酸水素カルシウム(CaHPO)、及びリン酸の混合物。
Sample 1: Sol 3; 20% SiO 2 ; adjusted to pH˜2 with phosphoric acid; no polyvalent metal ions.
Sample 2: A mixture of sol 3, calcium hydrogen phosphate (CaHPO 4 ), and phosphoric acid containing 20% SiO 2 and having a Ca / SiO 2 weight ratio of 0.03 at pH˜2.

試料3:20%のSiOを含み、V/SiOの重量比がpH〜1.5において0.06である、ゾル3、通常の手段により五酸化バナジウム(V)を還元することによって調製された4+の酸化状態のバナジウム(V4+)、及びリン酸の混合物。 Sample 3: Sol 3 containing 20% SiO 2 and a V / SiO 2 weight ratio of 0.06 at pH˜1.5, reducing vanadium pentoxide (V 2 O 5 ) by conventional means 4+ oxidation state vanadium (V 4+ ), and a mixture of phosphoric acid.

試料4:20%のSiOを含み、V/SiOの重量比がpH〜1.5において0.03である、ゾル3、通常の手段により五酸化バナジウム(V)を還元することによって調製された4+の酸化状態のバナジウム(V4+)、及びリン酸の混合物。 Sample 4: Sol 20 with 20% SiO 2 and V / SiO 2 weight ratio of 0.03 at pH˜1.5, reducing vanadium pentoxide (V 2 O 5 ) by conventional means 4+ oxidation state vanadium (V 4+ ), and a mixture of phosphoric acid.

これらの試料を通常の化成溶液に加えて、処理組成物が1〜5%の固形分を含み、1〜3のpHを示すようにした。50〜80℃の1〜3%のアルカリ性溶液を用いて、亜鉛メッキ基材及びガルバリウム基材を30〜120秒間清浄化し、水洗浄し、次に上記記載の試料1〜4を含み、3〜4.5のpHの化成溶液で30〜90秒間処理した。試料の固形分含量は約1〜5%であった。この処理によって基材上に防食層を堆積させた。表1に示す結果は、本発明の防食組成物(則ち多価金属イオンを有する)で処理した基材は、多価金属イオンを用いないで処理した基材よりも非常に良好に機能することを示す。   These samples were added to a normal chemical conversion solution so that the treatment composition contained 1-5% solids and exhibited a pH of 1-3. Using a 1-3% alkaline solution at 50-80 ° C., the galvanized substrate and the galvalume substrate are cleaned for 30-120 seconds, washed with water, then containing the samples 1-4 described above, Treated with a conversion solution at pH 4.5 for 30-90 seconds. The solids content of the sample was about 1-5%. By this treatment, an anticorrosion layer was deposited on the substrate. The results shown in Table 1 show that the substrate treated with the anticorrosive composition of the present invention (that is, having polyvalent metal ions) functions much better than the substrate treated without using polyvalent metal ions. It shows that.

Figure 2011505499
Figure 2011505499

本明細書及び特許請求の範囲において用いる単数形「a」、「and」、及び「the」は、記載が他に明確に示さない限り複数の指示物を包含することに注意すべきである。したがって、例えば「酸化物(an oxide)」という記載は複数のかかる酸化物を包含し、「酸化物(oxide)」という記載は1種類以上の酸化物及び当業者に公知のその均等物などの記載を包含する。   It should be noted that the singular forms “a”, “and”, and “the” as used herein and in the claims include plural referents unless the description clearly dictates otherwise. Thus, for example, reference to “an oxide” includes a plurality of such oxides, and reference to “oxide” includes one or more oxides and equivalents known to those skilled in the art, and the like. Includes description.

例えば、本発明の幾つかの態様の説明において用いる組成物中の成分の量、濃度、体積、プロセス温度、プロセス時間、回収率又は収率、流速、及び同様の値、並びにその範囲を修飾する「約」は、例えば典型的な測定及び取り扱い手順を通して、これらの手順における偶然のエラーを通して、方法を行うために用いる成分における差を通して起こる可能性のある数量の変動;並びに同様の近似考慮事項を指す。「約」という用語はまた、特定の初期濃度を有する配合物又は混合物の熟成によって相違する量、並びに特定の初期濃度を有する配合物又は混合物の混合又は処理によって相違する量も包含する。「約」という用語によって修飾されているかどうかにかかわらず、特許請求の範囲はこれらの量の均等範囲を包含する。   For example, modifying the amount, concentration, volume, process temperature, process time, recovery rate or yield, flow rate, and similar values of components in the compositions used in the description of some aspects of the invention, and ranges thereof “About” means, for example, through typical measurement and handling procedures, through accidental errors in these procedures, variations in quantities that may occur through differences in the components used to perform the method; and similar approximation considerations Point to. The term “about” also encompasses amounts that differ by aging of a formulation or mixture having a particular initial concentration, as well as amounts that differ by mixing or processing of a formulation or mixture having a particular initial concentration. The claims encompass equivalent ranges of these quantities, whether modified by the term “about” or not.

本発明を限られた数の態様によって説明したが、これらの特定の態様は本明細書において他に記載され特許請求されている発明の範囲を制限することを意図するものではない。更なる修正、均等物、及び変更が可能であることは、本明細書中の代表的な態様を検討することにより当業者に明らかである。実施例及び明細書の残りの部分における全ての部及びパーセントは、他に特定しない限り重量基準である。更に、明細書又は特許請求の範囲において示す全ての数値範囲、例えば特性の特定の組、測定値の単位、条件、物理的状態、又は割合を示すものは、明らかに、言及するか又は他の方法で示すかかる範囲内に含まれる全ての数、並びにそのように示されている任意の範囲内の数の任意の部分集合を文字通り含むものであると意図される。例えば、下限R及び上限Rを有する数値範囲が開示されている場合には常に、この範囲内に含まれる任意の数Rが具体的に開示されている。特に、この範囲内の次式の数R:R=R+k(R−R)(式中、kは1%の増分で1%〜100%の範囲の変数であり、例えばkは、1%、2%、3%、4%、5%、・・・50%、51%、52%、・・・95%、96%、97%、98%、99%、又は100%である)が具体的に開示されている。更に、上記で算出されるRの任意の二つの値によって表される任意の数値範囲も、具体的に開示されている。本明細書において示し記載したものに加えて、本発明の任意の修正は、上記の記載及び添付の図面から当業者に明らかとなろう。かかる修正は、特許請求の範囲内に包含されると意図される。ここで引用した全ての公報はその全部を参照として本明細書中に包含する。 Although the invention has been described in terms of a limited number of embodiments, these specific embodiments are not intended to limit the scope of the invention otherwise described and claimed herein. It will be apparent to those skilled in the art from consideration of the exemplary embodiments herein that further modifications, equivalents, and changes are possible. All parts and percentages in the examples and the rest of the specification are by weight unless otherwise specified. Further, all numerical ranges set forth in the specification or claims, such as those indicating a particular set of characteristics, units of measure, conditions, physical state, or proportions, are clearly mentioned or otherwise It is intended to literally include all numbers falling within such ranges as indicated by the method, as well as any subset of numbers within any ranges so indicated. For example, whenever a numerical range with a lower limit, R L and an upper limit, R U, is disclosed, any number R falling within the range is specifically disclosed. In particular, the number of the following formula within this range: R = R L + k (R U −R L ), where k is a variable in the range of 1% to 100% in 1% increments, for example k is 1%, 2%, 3%, 4%, 5%, ... 50%, 51%, 52%, ... 95%, 96%, 97%, 98%, 99%, or 100% There is a specific disclosure. Furthermore, any numerical range represented by any two values of R calculated above is also specifically disclosed. In addition to those shown and described herein, any modification of the present invention will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the claims. All publications cited herein are hereby incorporated by reference in their entirety.

Claims (35)

溶媒;
コロイド状粒子;及び
少なくとも1種類の多価金属イオン;
を含み、コロイド状粒子に対する金属イオンの重量比が約0.001より大きく約0.1以下である、防食組成物。
solvent;
Colloidal particles; and at least one polyvalent metal ion;
And a weight ratio of metal ions to colloidal particles is greater than about 0.001 and not greater than about 0.1.
該コロイド状粒子が、シリカ、アルミナ、チタニア、ジルコニア、又はこれらの混合物を含む、請求項1に記載の防食組成物。   The anticorrosive composition of claim 1, wherein the colloidal particles comprise silica, alumina, titania, zirconia, or a mixture thereof. 該コロイド状粒子がシリカを含む、請求項1に記載の防食組成物。   The anticorrosion composition according to claim 1, wherein the colloidal particles contain silica. 該多価金属イオンが、Al、Ga、Ti、Zr、Hf、Zn、Mg、Ca、Nb、Ta、Fe、Cu、Sn、Co、W、Ce、又はこれらの混合物を含む、請求項1に記載の防食組成物。   The polyvalent metal ion comprises Al, Ga, Ti, Zr, Hf, Zn, Mg, Ca, Nb, Ta, Fe, Cu, Sn, Co, W, Ce, or a mixture thereof. The anticorrosive composition as described. 該多価金属イオンが、Sn、Zn、Ca、又はこれらの混合物を含む、請求項1に記載の防食組成物。   The anticorrosive composition according to claim 1, wherein the polyvalent metal ion comprises Sn, Zn, Ca, or a mixture thereof. 該重量比が約0.005より大きく約0.08以下である、請求項1に記載の防食組成物。   The anticorrosive composition of claim 1, wherein the weight ratio is greater than about 0.005 and not greater than about 0.08. 該重量比が約0.01より大きく約0.05以下である、請求項1に記載の防食組成物。   The anticorrosive composition of claim 1, wherein the weight ratio is greater than about 0.01 and less than or equal to about 0.05. 溶媒;
コロイド状粒子;及び
組成物の全重量を基準として少なくとも約0.001重量%乃至約4重量%以下の量で存在する少なくとも1種類の多価金属イオン;
を含む防食組成物。
solvent;
Colloidal particles; and at least one polyvalent metal ion present in an amount of at least about 0.001 wt% to about 4 wt% or less based on the total weight of the composition;
An anticorrosion composition comprising:
該コロイド状粒子が、シリカ、アルミナ、チタニア、ジルコニア、又はこれらの混合物を含む、請求項8に記載の防食組成物。   The anticorrosion composition according to claim 8, wherein the colloidal particles comprise silica, alumina, titania, zirconia, or a mixture thereof. 該コロイド状粒子がシリカを含む、請求項8に記載の防食組成物。   The anticorrosive composition according to claim 8, wherein the colloidal particles comprise silica. 該多価金属イオンが、Al、Ga、Ti、Zr、Hf、Zn、Mg、Ca、Nb、Ta、Fe、Cu、Sn、Co、W、Ce、又はこれらの混合物を含む、請求項8に記載の防食組成物。   9. The polyvalent metal ion comprises Al, Ga, Ti, Zr, Hf, Zn, Mg, Ca, Nb, Ta, Fe, Cu, Sn, Co, W, Ce, or a mixture thereof. The anticorrosive composition as described. 該多価金属イオンが、Sn、Zn、Ca、又はこれらの混合物を含む、請求項8に記載の防食組成物。   The anticorrosive composition according to claim 8, wherein the polyvalent metal ion comprises Sn, Zn, Ca, or a mixture thereof. 少なくとも1種類の多価金属イオンが組成物の全重量を基準として少なくとも約0.005重量%乃至約3重量%以下の量で存在する、請求項8に記載の防食組成物。   The anticorrosion composition of claim 8, wherein the at least one polyvalent metal ion is present in an amount of at least about 0.005 wt% to about 3 wt% or less based on the total weight of the composition. 少なくとも1種類の多価金属イオンが組成物の全重量を基準として少なくとも約0.01重量%乃至約2重量%以下の量で存在する、請求項8に記載の防食組成物。   The anticorrosion composition of claim 8, wherein the at least one polyvalent metal ion is present in an amount of at least about 0.01 wt% to about 2 wt% or less, based on the total weight of the composition. 溶媒;
コロイド状粒子;及び
少なくとも1種類の多価金属イオン;
を含み、25℃において少なくとも8時間安定状態を保つ防食組成物。
solvent;
Colloidal particles; and at least one polyvalent metal ion;
An anticorrosive composition that remains stable at 25 ° C. for at least 8 hours.
該コロイド状粒子が、シリカ、アルミナ、チタニア、ジルコニア、又はこれらの混合物を含む、請求項15に記載の防食組成物。   The anticorrosion composition of claim 15, wherein the colloidal particles comprise silica, alumina, titania, zirconia, or a mixture thereof. 該コロイド状粒子がシリカを含む、請求項15に記載の防食組成物。   The anticorrosive composition according to claim 15, wherein the colloidal particles comprise silica. 該多価金属イオンが、Al、Ga、Ti、Zr、Hf、Zn、Mg、Ca、Nb、Ta、Fe、Cu、Sn、Co、W、Ce、又はこれらの混合物を含む、請求項15に記載の防食組成物。   The polyvalent metal ion comprises Al, Ga, Ti, Zr, Hf, Zn, Mg, Ca, Nb, Ta, Fe, Cu, Sn, Co, W, Ce, or a mixture thereof. The anticorrosive composition as described. 該多価金属イオンが、Sn、Zn、Ca、又はこれらの混合物を含む、請求項15に記載の防食組成物。   The anticorrosive composition according to claim 15, wherein the polyvalent metal ion comprises Sn, Zn, Ca, or a mixture thereof. 25℃において少なくとも10時間安定状態を保つ、請求項15に記載の防食組成物。   The anticorrosion composition according to claim 15, which is kept stable at 25 ° C for at least 10 hours. 60℃において少なくとも60分間安定状態を保つ、請求項15に記載の防食組成物。   The anticorrosive composition according to claim 15, which remains stable at 60 ° C for at least 60 minutes. バインダー;
溶媒;
コロイド状粒子;及び
少なくとも1種類の多価金属イオン;
を含み、コロイド状粒子に対する金属イオンの比が約0.001より大きく約0.1以下である、防食配合物。
binder;
solvent;
Colloidal particles; and at least one polyvalent metal ion;
And a ratio of metal ions to colloidal particles greater than about 0.001 and not greater than about 0.1.
該コロイド状粒子が、シリカ、アルミナ、チタニア、ジルコニア、又はこれらの混合物を含む、請求項22に記載の防食組成物。   The anticorrosive composition of claim 22, wherein the colloidal particles comprise silica, alumina, titania, zirconia, or a mixture thereof. 該コロイド状粒子がシリカを含む、請求項22に記載の防食組成物。   The anticorrosion composition according to claim 22, wherein the colloidal particles comprise silica. 該多価金属イオンが、Al、Ga、Ti、Zr、Hf、Zn、Mg、Ca、Nb、Ta、Fe、Cu、Sn、Co、W、Ce、又はこれらの混合物を含む、請求項22に記載の防食組成物。   The polyvalent metal ion comprises Al, Ga, Ti, Zr, Hf, Zn, Mg, Ca, Nb, Ta, Fe, Cu, Sn, Co, W, Ce, or mixtures thereof. The anticorrosive composition as described. 該多価金属イオンが、Sn、Zn、Ca、又はこれらの混合物を含む、請求項22に記載の防食組成物。   The anticorrosion composition according to claim 22, wherein the polyvalent metal ion comprises Sn, Zn, Ca, or a mixture thereof. 該重量比が約0.005より大きく約0.08以下である、請求項22に記載の防食組成物。   23. The anticorrosive composition of claim 22, wherein the weight ratio is greater than about 0.005 and not greater than about 0.08. 該重量比が約0.01より大きく約0.05以下である、請求項22に記載の防食組成物。   23. The anticorrosive composition of claim 22, wherein the weight ratio is greater than about 0.01 and not greater than about 0.05. 基材;及び
コロイド状粒子;及び少なくとも1種類の多価金属イオンを有し;金属酸化物に対する金属イオンの比が約0.001より大きく約0.1以下である、基材上の防食被膜;
を有する耐腐食性材料。
A substrate; and colloidal particles; and having at least one polyvalent metal ion; the ratio of metal ion to metal oxide is greater than about 0.001 and less than or equal to about 0.1 and less ;
Having corrosion resistant material.
該コロイド状粒子が、シリカ、アルミナ、チタニア、ジルコニア、又はこれらの混合物を含む、請求項29に記載の防食組成物。   30. The anticorrosion composition of claim 29, wherein the colloidal particles comprise silica, alumina, titania, zirconia, or a mixture thereof. 該コロイド状粒子がシリカを含む、請求項29に記載の防食組成物。   30. The anticorrosion composition of claim 29, wherein the colloidal particles comprise silica. 該多価金属イオンが、Al、Ga、Ti、Zr、Hf、Zn、Mg、Ca、Nb、Ta、Fe、Cu、Sn、Co、W、Ce、又はこれらの混合物を含む、請求項29に記載の防食組成物。   30. The multivalent metal ion of claim 29, comprising Al, Ga, Ti, Zr, Hf, Zn, Mg, Ca, Nb, Ta, Fe, Cu, Sn, Co, W, Ce, or mixtures thereof. The anticorrosive composition as described. 該多価金属イオンが、Sn、Zn、Ca、又はこれらの混合物を含む、請求項29に記載の防食組成物。   30. The anticorrosive composition of claim 29, wherein the polyvalent metal ion comprises Sn, Zn, Ca, or a mixture thereof. 該重量比が約0.005より大きく約0.08以下である、請求項29に記載の防食組成物。   30. The anticorrosive composition of claim 29, wherein the weight ratio is greater than about 0.005 and not greater than about 0.08. 該重量比が約0.01より大きく約0.05以下である、請求項29に記載の防食組成物。   30. The anticorrosion composition of claim 29, wherein the weight ratio is greater than about 0.01 and less than or equal to about 0.05.
JP2010536910A 2007-12-04 2008-11-24 Anticorrosive material Expired - Fee Related JP5829807B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US529607P 2007-12-04 2007-12-04
US61/005,296 2007-12-04
PCT/US2008/013087 WO2009073112A1 (en) 2007-12-04 2008-11-24 Anticorrosion material

Publications (3)

Publication Number Publication Date
JP2011505499A true JP2011505499A (en) 2011-02-24
JP2011505499A5 JP2011505499A5 (en) 2012-01-12
JP5829807B2 JP5829807B2 (en) 2015-12-09

Family

ID=40316924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010536910A Expired - Fee Related JP5829807B2 (en) 2007-12-04 2008-11-24 Anticorrosive material

Country Status (14)

Country Link
US (1) US20100314585A1 (en)
EP (1) EP2235233A1 (en)
JP (1) JP5829807B2 (en)
KR (1) KR20100098426A (en)
CN (1) CN101932752A (en)
AR (1) AR069474A1 (en)
AU (1) AU2008331914A1 (en)
BR (1) BRPI0820020A2 (en)
CA (1) CA2707829A1 (en)
CL (1) CL2008003597A1 (en)
MX (1) MX2010005951A (en)
RU (1) RU2010127279A (en)
TW (1) TW200932851A (en)
WO (1) WO2009073112A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014515783A (en) * 2011-02-04 2014-07-03 マクダーミッド アキューメン インコーポレーテッド Aluminum treatment composition
JP6085831B1 (en) * 2016-05-16 2017-03-01 日本表面化学株式会社 Chemical film treatment agent and method for producing the same
JP2018024937A (en) * 2016-08-05 2018-02-15 株式会社神戸製鋼所 Surface treated metal plate and method for manufacturing the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTV20080160A1 (en) 2008-12-05 2010-06-06 Nanto Srl PAINTS AND ANTICORROSION COATINGS CONTAINING NANOCLAY
CN102753628A (en) * 2009-11-11 2012-10-24 比克化学股份有限公司 Coating composition
US20120094130A1 (en) * 2010-10-15 2012-04-19 Universidade Estadual De Campinas Coating Compositions With Anticorrosion Properties
US9371454B2 (en) 2010-10-15 2016-06-21 Bunge Amorphic Solutions Llc Coating compositions with anticorrosion properties
US9005355B2 (en) * 2010-10-15 2015-04-14 Bunge Amorphic Solutions Llc Coating compositions with anticorrosion properties
CN102009037B (en) 2010-10-25 2013-06-19 江苏考普乐新材料股份有限公司 Method for protecting metal by photoelectrochemistry
US9849512B2 (en) 2011-07-01 2017-12-26 Attostat, Inc. Method and apparatus for production of uniformly sized nanoparticles
AU2013209303B2 (en) * 2012-08-01 2015-05-07 Dongkuk Coated Metal Co., Ltd. Method and apparatus for producing zinc-aluminum alloy-coated steel sheet with superior workability and corrosion resistance
US20160168724A1 (en) * 2014-12-15 2016-06-16 The Boeing Company Polyvinylbutyral coating containing thiol corrosion inhibitors
WO2016161348A1 (en) 2015-04-01 2016-10-06 Attostat, Inc. Nanoparticle compositions and methods for treating or preventing tissue infections and diseases
US11473202B2 (en) 2015-04-13 2022-10-18 Attostat, Inc. Anti-corrosion nanoparticle compositions
WO2016168346A1 (en) 2015-04-13 2016-10-20 Attostat, Inc. Anti-corrosion nanoparticle compositions
WO2016167928A1 (en) * 2015-04-15 2016-10-20 Henkel Ag & Co. Kgaa Thin corrosion protective coatings incorporating polyamidoamine polymers
JP6626805B2 (en) * 2016-09-13 2019-12-25 株式会社神戸製鋼所 Surface-treated metal plate and method for producing surface-treated metal plate
US11646453B2 (en) 2017-11-28 2023-05-09 Attostat, Inc. Nanoparticle compositions and methods for enhancing lead-acid batteries
US11018376B2 (en) 2017-11-28 2021-05-25 Attostat, Inc. Nanoparticle compositions and methods for enhancing lead-acid batteries
CN112128019A (en) * 2019-06-09 2020-12-25 固安县朝阳生物科技有限公司 Production method of propellant column box
CN112295877B (en) * 2020-10-23 2023-02-28 云南华电鲁地拉水电有限公司 Method for preventing local cavitation of flow passage component of water turbine
WO2022088146A1 (en) * 2020-10-31 2022-05-05 河北比尔尼克新材料科技股份有限公司 Aqueous composite flaky zinc-aluminum anti-corrosion paint, preparation method therefor, and use thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128384A (en) * 1990-09-17 1992-04-28 Nippon Paint Co Ltd Treatment of metallic surface, treating bath and treating agent
JPH04176875A (en) * 1990-11-08 1992-06-24 Nkk Corp Post-treatment of zinc-plated steel sheet
JPH11335864A (en) * 1998-05-20 1999-12-07 Nkk Corp Production of surface treated steel plate having excellent corrosion resistance
JP2003183587A (en) * 2001-12-19 2003-07-03 Kansai Paint Co Ltd Composition for lubricating film and metal plate excellent in lubricity using the same
JP2005154811A (en) * 2003-11-21 2005-06-16 Jfe Steel Kk Surface-treated steel sheet superior in corrosion resistance, conductivity and coating film appearance
JP2005232504A (en) * 2004-02-18 2005-09-02 Fukushima Prefecture Solution and method for blackening zinc or zinc alloy
JP2007217731A (en) * 2006-02-15 2007-08-30 Jfe Steel Kk Surface-treated steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2794115A1 (en) * 1999-05-12 2000-12-01 Univ Franche Comte SILICA SOL, COMPOSITION COMPRISING SAME, TREATMENT METHOD AND USES THEREOF
BR0317779B1 (en) * 2003-01-10 2012-12-25 coating composition.
JP4416167B2 (en) * 2005-03-08 2010-02-17 新日本製鐵株式会社 Chemically treated ground treatment agent for anticorrosion coated steel, chemical groundwork treatment method for anticorrosive coated steel, and anticorrosive coated steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04128384A (en) * 1990-09-17 1992-04-28 Nippon Paint Co Ltd Treatment of metallic surface, treating bath and treating agent
JPH04176875A (en) * 1990-11-08 1992-06-24 Nkk Corp Post-treatment of zinc-plated steel sheet
JPH11335864A (en) * 1998-05-20 1999-12-07 Nkk Corp Production of surface treated steel plate having excellent corrosion resistance
JP2003183587A (en) * 2001-12-19 2003-07-03 Kansai Paint Co Ltd Composition for lubricating film and metal plate excellent in lubricity using the same
JP2005154811A (en) * 2003-11-21 2005-06-16 Jfe Steel Kk Surface-treated steel sheet superior in corrosion resistance, conductivity and coating film appearance
JP2005232504A (en) * 2004-02-18 2005-09-02 Fukushima Prefecture Solution and method for blackening zinc or zinc alloy
JP2007217731A (en) * 2006-02-15 2007-08-30 Jfe Steel Kk Surface-treated steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014515783A (en) * 2011-02-04 2014-07-03 マクダーミッド アキューメン インコーポレーテッド Aluminum treatment composition
JP6085831B1 (en) * 2016-05-16 2017-03-01 日本表面化学株式会社 Chemical film treatment agent and method for producing the same
JP2017206722A (en) * 2016-05-16 2017-11-24 日本表面化学株式会社 Chemical conversion coating treatment agent and method for manufacturing the same
JP2018024937A (en) * 2016-08-05 2018-02-15 株式会社神戸製鋼所 Surface treated metal plate and method for manufacturing the same

Also Published As

Publication number Publication date
CL2008003597A1 (en) 2009-11-27
CN101932752A (en) 2010-12-29
BRPI0820020A2 (en) 2015-05-19
CA2707829A1 (en) 2009-06-11
EP2235233A1 (en) 2010-10-06
TW200932851A (en) 2009-08-01
KR20100098426A (en) 2010-09-06
AU2008331914A1 (en) 2009-06-11
JP5829807B2 (en) 2015-12-09
RU2010127279A (en) 2012-01-10
US20100314585A1 (en) 2010-12-16
MX2010005951A (en) 2010-06-23
AR069474A1 (en) 2010-01-27
WO2009073112A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5829807B2 (en) Anticorrosive material
JP3952197B2 (en) Metal surface treatment method and galvanized steel sheet
JP5144660B2 (en) Aqueous surface treatment solution for galvanized steel sheet and galvanized steel sheet
TW218888B (en)
EP2977417B1 (en) Hydrophilic surface treatment agent for aluminum-containing metal heat exchangers having excellent drainage
JPH0285373A (en) Surface treatment method and composition
WO1999037582A1 (en) Titanium oxide colloidal sol and process for the preparation thereof
US5041487A (en) Sol/gel polymer surface coatings and tannin block enhancement
US9234104B2 (en) Composite metal oxide particles and methods of making and using the same
JPS6035062A (en) Thixotropic coating paint and coating method
CN101918500A (en) Submicron anti-corrosive particles
US4650699A (en) Thixotropic alumina coating compositions, parts and methods
AU2003300475B2 (en) A coating composition
CN105063596A (en) Treating fluid for chromate-free passivation of aluminum profiles before coating and preparation method thereof
CN116083892A (en) Phosphate-free nitrogen-free conversion agent before coating and preparation method thereof
CN104968836B (en) Concentrate for metal surface anticorrosive processing
CN105063597A (en) High-corrosion-resistance aluminum profile chromium-free passivation conditioning fluid and preparation method thereof
JPS6153363A (en) Manufacture of anticorrosive particle
CN105088206A (en) High-adhesion aluminum profile chromate-free passivation treating fluid and preparation method thereof
JP3615781B2 (en) Method for producing trivalent chromium compound sol, surface treatment agent for metal material containing the sol, and surface treatment method
JPH0713302B2 (en) Corrosion resistant paint laminate
JPH02279771A (en) Water-base emulsion of sustained alkali release resin
JP2007169682A (en) Undiluted solution for coating composition
JPH0635666B2 (en) Pretreatment method for coating metal materials
JP2023522565A (en) Alumina modified with short chain carboxylic acid for use as a coating and method for making same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131009

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140108

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140310

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140612

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140912

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140922

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141002

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141009

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141111

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150424

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150508

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150604

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151023

R150 Certificate of patent or registration of utility model

Ref document number: 5829807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees