JP2011258408A - Optical element and lighting device - Google Patents

Optical element and lighting device Download PDF

Info

Publication number
JP2011258408A
JP2011258408A JP2010131718A JP2010131718A JP2011258408A JP 2011258408 A JP2011258408 A JP 2011258408A JP 2010131718 A JP2010131718 A JP 2010131718A JP 2010131718 A JP2010131718 A JP 2010131718A JP 2011258408 A JP2011258408 A JP 2011258408A
Authority
JP
Japan
Prior art keywords
optical element
axis
concentric circle
planar light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010131718A
Other languages
Japanese (ja)
Other versions
JP5673923B2 (en
Inventor
Yuki Naoi
由紀 直井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2010131718A priority Critical patent/JP5673923B2/en
Publication of JP2011258408A publication Critical patent/JP2011258408A/en
Application granted granted Critical
Publication of JP5673923B2 publication Critical patent/JP5673923B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a lighting device and an optical element capable of securing indoor uniform illuminance at low cost while taking design into consideration.SOLUTION: An outer surface 12a of the optical element 12 has a shape of rotational symmetry against an axis X of the optical element 12. Meanwhile, an inner surface 12e of the optical element 12 has four divided regions. More concretely, the element has a shape as if the back surface of the optical element 12 is dug out by four oval spheres having major axes at an interval of 90 degrees on an identical surface orthogonally crossing the axial line X of the optical element.

Description

本発明は、光学素子及び照明装置に関し、例えば天井等に配設され、屋内を照明するのに好適な照明装置及びそれに用いる光学素子に関するものである。   The present invention relates to an optical element and an illuminating device, and more particularly to an illuminating device which is disposed on a ceiling or the like and is suitable for illuminating an interior, and an optical element used therefor.

従来から、屋内を照明する光源として白熱球や蛍光灯が広く用いられている。しかるに、環境保護が注目され始めた近年では、従来の白熱球や蛍光灯に比べ、より消費電力が少ないLED光源を用いた照明器具が開発され、既に市販されている。   Conventionally, incandescent bulbs and fluorescent lamps have been widely used as light sources for illuminating the interior. However, in recent years when environmental protection has begun to attract attention, lighting fixtures using LED light sources that consume less power than conventional incandescent bulbs and fluorescent lamps have been developed and are already on the market.

例えば、特許文献1には、液晶表示パネルの背面側から面状に照明するバックライトであって、室内の一般照明に用いることもできる発光装置が開示されている。   For example, Patent Literature 1 discloses a light-emitting device that is a backlight that illuminates in a planar shape from the back side of a liquid crystal display panel and can also be used for indoor general illumination.

特許第4357508号明細書Japanese Patent No. 4357508

特許文献1の発光装置によれば、単一のLED光源から出射された光を、光束制御部材を介して配光特性を制御することにより、明暗のバラツキを抑えた照明を行うことができるから、これを屋内用の照明装置に使用できることが開示されている。しかし、現在のLED光源は、一つの発光素子だけでは白熱球や蛍光灯に比べると光量が低い場合が多く、室内用の照明装置として使用できる明るさを確保するためには発光素子を複数用いる必要がある。また屋内の照明器具の問題として、照明する部屋の中央部のみに照明器具を配置した場合、光源の直下では照度が高いが、部屋の周辺では照度が低くなるという問題がある。従って、特許文献1の発光装置を用いて、部屋全体で均一な照度を確保するためには、天井に複数の発光装置を設けなくてはならず、取り付けや配線の手間がかかり、また内装デザインの自由度を制限するという問題がある。   According to the light-emitting device of Patent Document 1, it is possible to perform illumination with light and dark variations suppressed by controlling light distribution characteristics of light emitted from a single LED light source via a light flux control member. It is disclosed that this can be used for an indoor lighting device. However, in the current LED light source, the amount of light is often low compared to incandescent bulbs and fluorescent lamps with only one light emitting element, and a plurality of light emitting elements are used to ensure brightness that can be used as an indoor lighting device. There is a need. As a problem with indoor lighting fixtures, when a lighting fixture is arranged only in the center of a room to be illuminated, there is a problem that the illuminance is high immediately below the light source, but the illuminance is low around the room. Therefore, in order to ensure uniform illuminance throughout the room using the light-emitting device of Patent Document 1, it is necessary to provide a plurality of light-emitting devices on the ceiling, which requires time and effort for installation and wiring, and interior design. There is a problem of limiting the degree of freedom.

本発明は、低コストでありながら、例えば部屋の中央部のみに照明器具を配置した場合においても、照明器具から出射される光の配光特性を器具直下強度が周辺部に比較して弱い分布とすることで部屋の中央と周辺でほぼ均一な照度を確保できる照明装置及び光学素子を提供することを目的とする。   Although the present invention is low-cost, for example, even when a lighting fixture is arranged only in the center of a room, the light distribution characteristic of light emitted from the lighting fixture is a distribution in which the intensity directly below the fixture is weak compared to the peripheral portion Thus, an object of the present invention is to provide an illuminating device and an optical element that can ensure substantially uniform illuminance at the center and the periphery of a room.

請求項1に記載の光学素子は、複数の面状発光光源と光学素子とを有する照明装置であって、
前記光学素子の出射面は、前記光学素子の軸線に対して回転対称の形状を有し、
前記光学素子の入射面は、各面状発光光源に対応し、且つ前記光学素子の軸線に対して直交する方向に長軸を備えた楕円球の表面の一部を組み合わせた形状を有し、
前記面状発光光源の光軸は、前記光学素子の入射面内であって、対応する前記楕円球の中心よりも前記光学素子の軸線から遠い側に位置することを特徴とする。
The optical element according to claim 1 is a lighting device having a plurality of planar light sources and an optical element,
The exit surface of the optical element has a rotationally symmetric shape with respect to the axis of the optical element,
The incident surface of the optical element has a shape corresponding to each planar light source and combined with a part of the surface of an elliptic sphere having a major axis in a direction perpendicular to the axis of the optical element,
The optical axis of the planar light source is located in the incident surface of the optical element and is located on the side farther from the axis of the optical element than the center of the corresponding elliptical sphere.

従来技術の問題を解消するためには、複数の光源を備えた単一の照明装置で例えば部屋の中央と周辺をほぼ均一に照明できることが好ましい。そのような照明装置の配光制御の方法の一つとして、各光源の光軸を、部屋の周辺にそれぞれ向けるように傾けて設置し、それにより部屋の周辺の照度を増大させることが考えられる。しかし、LED光源などの面状発光光源を複数用いる場合、同一基板上に形成した方が製造や配線が容易であるからコスト的には有利であり、更には全体的に薄形化を図れるのでデザイン上も好都合であり、同一基板上に各光源の光軸の向きがことなるように複数の光源を配置することは困難である。   In order to solve the problems of the prior art, it is preferable that, for example, the center and the periphery of a room can be illuminated almost uniformly with a single lighting device having a plurality of light sources. As one method for controlling the light distribution of such an illumination device, it is conceivable to install the light axes of the respective light sources so as to be directed toward the periphery of the room, thereby increasing the illuminance around the room. . However, when a plurality of planar light sources such as LED light sources are used, forming on the same substrate is advantageous in terms of cost because manufacturing and wiring are easier, and further, the overall thickness can be reduced. The design is also convenient, and it is difficult to arrange a plurality of light sources on the same substrate so that the directions of the optical axes of the light sources are different.

本発明者は、かかる問題に着目し、例えばLED光源のように複数の面状発光光源を同一基板上に形成した場合でも、光学素子を用いて配光特性を制御することで、照明装置の直下と、それに対して角度付けされた方向とで照度の均一化を図ることができることを見出した。より具体的には、前記光学素子の出射面は、前記光学素子の軸線に対して回転対称の形状を有し、前記光学素子の入射面は、各面状発光光源に対応し、且つ前記光学素子の軸線に対して直交する方向に長軸を備えた楕円球の表面の一部を組み合わせた形状を有し、前記面状発光光源の光軸は、前記光学素子の入射面内であって、対応する前記楕円球の中心よりも前記光学素子の軸線から遠い側に位置するので、前記光学素子により、複数の面状発光光源から出射された光の配光特性を制御して、照明装置の直下と、それに対して角度付けされた方向とで適切に光量を振り分けることにより、単一の照明装置でありながら室内の照度の均一化を図ることが可能となる。尚、「面状発光光源」とは、基板等の面から発光する光源をいい、例えばLED光源があるが、それに限られない。又、複数個の面状発光光源が近接配置されているときは、それらを単一な光源とみなす(つまり光軸は一つとする)ことも出来る。なお、「軸線」とは、光学素子の出射面の中心を通り、出射面の中心における出射面の法線方向の直線を表す。又、「光軸」とは、個々の発光光源の発光中心を通り、発光面の法線方向の直線を表す。更に、「楕円球」とは、後述する数式2で表現される3次元形状を表わす。また「複数の面状発光光源が近接配置されている」とは、個々の光源の発光中心間の距離αと、光源の発光領域間の最近接距離βの関係が、β/α<0.25を満たしていることを示し、発光中心とは、発光面の幾何学的重心点を指す(図10参照)。   The present inventor pays attention to such a problem, and for example, even when a plurality of planar light sources such as LED light sources are formed on the same substrate, by controlling the light distribution characteristics using an optical element, It has been found that the illuminance can be uniformed directly below and in a direction angled with respect to it. More specifically, the exit surface of the optical element has a rotationally symmetric shape with respect to the axis of the optical element, the incident surface of the optical element corresponds to each planar light source, and the optical element A shape obtained by combining a part of the surface of an elliptical sphere having a major axis in a direction perpendicular to the axis of the element, and the optical axis of the planar light source is within the incident surface of the optical element; Since the optical element is located farther from the axis of the optical element than the center of the corresponding ellipsoidal sphere, the light distribution characteristics of the light emitted from the plurality of planar light sources are controlled by the optical element, and the illumination device By appropriately allocating the amount of light between the position immediately below and the angled direction, it is possible to achieve uniform illuminance in the room even though it is a single lighting device. The “planar light source” refers to a light source that emits light from a surface such as a substrate. For example, there is an LED light source, but it is not limited thereto. In addition, when a plurality of planar light sources are arranged close to each other, they can be regarded as a single light source (that is, one optical axis is used). The “axis” represents a straight line passing through the center of the exit surface of the optical element and in the normal direction of the exit surface at the center of the exit surface. The “optical axis” represents a straight line passing through the light emission center of each light emitting source and in the normal direction of the light emitting surface. Furthermore, the “elliptical sphere” represents a three-dimensional shape expressed by Equation 2 described later. Further, “a plurality of planar light sources are arranged close to each other” means that the relationship between the distance α between the light emission centers of the individual light sources and the closest distance β between the light emission regions of the light sources is β / α <0. 25, and the light emission center refers to the geometric center of gravity of the light emitting surface (see FIG. 10).

請求項2に記載の光学素子は、請求項1に記載の発明において、前記面状発光光源の光軸は、前記光学素子の軸線を中心とする同心円上に配置され、前記光学素子の出射面は、前記同心円の外方が凸状となっていることを特徴とする。これにより、周辺の配光特性を良好なものとできる。   An optical element according to a second aspect is the optical element according to the first aspect, wherein an optical axis of the planar light emitting light source is arranged on a concentric circle centering on an axis of the optical element, and an emission surface of the optical element. Is characterized in that the outer sides of the concentric circles are convex. Thereby, the surrounding light distribution characteristic can be made favorable.

請求項3に記載の光学素子は、請求項2に記載の発明において、前記光学素子の出射面は、前記同心円の内方が凹状となる領域を有することを特徴とする。これにより、照明装置の軸線近傍における配光特性を調整できる。   According to a third aspect of the present invention, there is provided the optical element according to the second aspect, wherein the exit surface of the optical element has a region in which the inner side of the concentric circle is concave. Thereby, the light distribution characteristic in the axial line vicinity of an illuminating device can be adjusted.

請求項4に記載の光学素子は、請求項1〜3のいずれかに記載の発明において、前記面状発光光源とはLED光源であることを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the planar light source is an LED light source.

請求項5に記載の照明装置は、請求項4に記載の発明において、前記面状発光光源は4つであり、前記光学素子を介して出射された光により被照明面が矩形状に照明されることを特徴とする。よって矩形状の床面を有する室内の照明に用いると好適である。   According to a fifth aspect of the present invention, in the invention according to the fourth aspect, the number of the planar light source is four, and the surface to be illuminated is illuminated in a rectangular shape by the light emitted through the optical element. It is characterized by that. Therefore, it is suitable for use in indoor lighting having a rectangular floor surface.

請求項6に記載の光学素子は、複数の面状発光光源と光学素子とを有する照明装置の光学素子であって、
前記光学素子の出射面は、前記光学素子の軸線に対して回転対称の形状を有し、
前記光学素子の入射面は、各面状発光光源に対応し、且つ前記光学素子の軸線に対して直交する方向に長軸を備えた楕円球の表面の一部を組み合わせた形状を有しすることを特徴とする。これにより、複数の面状発光光源から出射された光の配光特性を軸線方向と軸線に対して角度を持つ方向で異ならせることができる。
The optical element according to claim 6 is an optical element of an illumination device having a plurality of planar light sources and an optical element,
The exit surface of the optical element has a rotationally symmetric shape with respect to the axis of the optical element,
The incident surface of the optical element has a shape corresponding to each planar light-emitting light source and a part of the surface of an elliptical sphere having a major axis in a direction orthogonal to the axis of the optical element. It is characterized by that. Thereby, the light distribution characteristic of the light radiate | emitted from the several planar light source can be varied by the direction which has an angle with respect to an axial direction and an axial line.

請求項7に記載の光学素子は、請求項6に記載の発明において、前記楕円球の中心は、前記光学素子の軸線を中心とする同心円上に等間隔に配置され、前記光学素子の出射面は、前記同心円の外方が凸状となっていることを特徴とする。これにより、周辺の配光特性を良好なものとできる。   An optical element according to a seventh aspect is the invention according to the sixth aspect, wherein the centers of the ellipsoidal spheres are arranged at equal intervals on a concentric circle centered on the axis of the optical element. Is characterized in that the outer sides of the concentric circles are convex. Thereby, the surrounding light distribution characteristic can be made favorable.

請求項8に記載の光学素子は、請求項7に記載の発明において、前記光学素子の出射面は、前記同心円の内方が凹状となる領域を有することを特徴とする。これにより、照明装置の軸線近傍における配光特性を調整できる。   An optical element according to an eighth aspect is the invention according to the seventh aspect, wherein an exit surface of the optical element has a region in which the inner side of the concentric circle is concave. Thereby, the light distribution characteristic in the axial line vicinity of an illuminating device can be adjusted.

請求項9に記載の光学素子は、前記光学素子は、請求項6〜8のいずれかに記載の発明において、前記複数の面状発光光源が同心円上に配置された照明装置に用いられる光学素子であり、前記楕円球の中心は、前記光学素子の軸線を中心とする同心円上に等間隔に配置され、前記楕円球の中心が配置されている同心円の半径は、前記複数の面状発光光源が配置されている同心円の半径よりも小さいことを特徴とする。これにより、複数の面状発光光源から出射された光の配光特性を制御して、照明装置の直下と、それに対して角度付けされた方向とで適切に光量を振り分けることができる   The optical element according to claim 9 is the optical element used in the illumination device according to any one of claims 6 to 8, wherein the plurality of planar light emitting sources are arranged concentrically. And the centers of the ellipsoidal spheres are arranged at equal intervals on a concentric circle centered on the axis of the optical element, and the radius of the concentric circles on which the centers of the ellipsoidal spheres are arranged is the plurality of planar light emitting sources. Is smaller than the radius of the concentric circle in which is arranged. Thereby, the light distribution characteristic of the light emitted from the plurality of planar light sources can be controlled, and the amount of light can be appropriately distributed between directly under the lighting device and the direction angled with respect to the lighting device.

本発明によれば、デザインを考慮しつつ、低コストでありながら、部屋全体でほぼ均一な照度を確保できる照明装置及び光学素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the illumination apparatus and optical element which can ensure substantially uniform illumination intensity in the whole room can be provided, considering the design and being low-cost.

第1の実施の形態に係る照明装置の正面図である。It is a front view of the illuminating device which concerns on 1st Embodiment. 図1の照明装置をII-II線で切断して矢印方向に見た図である。It is the figure which cut | disconnected the illuminating device of FIG. 1 by the II-II line | wire, and looked at the arrow direction. 図1の照明装置をIII-III線で切断して矢印方向に見た図である。It is the figure which cut | disconnected the illuminating device of FIG. 1 by the III-III line | wire, and looked at the arrow direction. 光学素子の基板当接面を90度分だけ切り取って示した図である。It is the figure which cut and showed the board | substrate contact surface of the optical element by 90 degree | times. 本実施の形態の照明装置における配光特性を示すシミュレーション図である。It is a simulation figure which shows the light distribution characteristic in the illuminating device of this Embodiment. 本実施の形態の照明装置10により床面を照射した状態をシミュレーションした図である。It is the figure which simulated the state which irradiated the floor surface with the illuminating device 10 of this Embodiment. 第2の実施の形態に係る照明装置の正面図である。It is a front view of the illuminating device which concerns on 2nd Embodiment. 図7の照明装置をVIII-VIII線で切断して矢印方向に見た図である。It is the figure which cut | disconnected the illuminating device of FIG. 7 by the VIII-VIII line, and looked at the arrow direction. 本実施の形態の照明装置における配光特性を示すシミュレーション図である。It is a simulation figure which shows the light distribution characteristic in the illuminating device of this Embodiment. 面状発光光源の配置を示す図である。It is a figure which shows arrangement | positioning of a planar light emission light source.

以下、本発明の実施の形態を、図面を参照して説明する。図1は、第1の実施の形態に係る照明装置の正面図である。図2は、図1の照明装置をII-II線で切断して矢印方向に見た図である。図3は、図1の照明装置をIII-III線で切断して矢印方向に見た図である。図4は、光学素子の基板当接面を90度分だけ切り取って発光部と共に示した概略図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a front view of the illumination device according to the first embodiment. FIG. 2 is a view of the lighting device of FIG. 1 taken along the line II-II and viewed in the direction of the arrow. FIG. 3 is a view of the illumination device of FIG. 1 taken along line III-III and viewed in the direction of the arrow. FIG. 4 is a schematic view showing the substrate contact surface of the optical element cut by 90 degrees together with the light emitting portion.

照明装置10は、LED光源としての発光部11aを4つ形成した円盤状の基板11と、基板11に取り付けられたカップ状の光学素子12とを有する。発光部11aは、光学素子12の軸線Xを中心とする同心円上に光軸Lが等間隔で配置されるよう、90度間隔で配置されている。基板11は、不図示のベース等に組み付けられて、屋内の天井等に取り付けられるようになっている。光学素子12はガラス又はプラスチック製であり、金型により成形される。   The illuminating device 10 includes a disk-shaped substrate 11 on which four light emitting portions 11 a serving as LED light sources are formed, and a cup-shaped optical element 12 attached to the substrate 11. The light emitting portions 11a are arranged at 90 ° intervals so that the optical axes L are arranged at equal intervals on a concentric circle centered on the axis X of the optical element 12. The substrate 11 is assembled to a base or the like (not shown) and attached to an indoor ceiling or the like. The optical element 12 is made of glass or plastic and is formed by a mold.

光学素子12の外表面12a(出射面)は、光学素子12の軸線Xに対して回転対称の形状を有している。より具体的には、外表面12aの周辺領域12cは、断面が円弧状である凸形状を有している。一方、外表面12aの中央領域12dは、僅かに凹形状となっているが、平面又は凸形状でも良い。かかる回転対称の形状であれば、特にデザインを損なう恐れも少ない。周辺領域12cと中央領域12dの境界線は、軸線Xを中心とする円に沿っており、好ましくは発光部11aの光軸Lより外方に位置している。   The outer surface 12 a (outgoing surface) of the optical element 12 has a rotationally symmetric shape with respect to the axis X of the optical element 12. More specifically, the peripheral region 12c of the outer surface 12a has a convex shape having a circular cross section. On the other hand, the central region 12d of the outer surface 12a is slightly concave, but it may be flat or convex. Such a rotationally symmetric shape is less likely to damage the design. The boundary line between the peripheral region 12c and the central region 12d is along a circle centered on the axis X, and is preferably located outward from the optical axis L of the light emitting portion 11a.

一方、光学素子12の内表面12b(入射面)は、4つの領域に分かれている。より具体的には、光学素子の軸線Xに対して直交する同一面に90度間隔で長軸を備え、かつ各楕円球の中心は同心円上に配置された4つの楕円球で、光学素子12の裏面をくり抜いたごとき形状を有する。つまり、内表面12bは、楕円球の表面の一部12fを組み合わせた形状を有し、楕円球の表面の一部からなる領域は、光源に向かって凹面となっている。   On the other hand, the inner surface 12b (incident surface) of the optical element 12 is divided into four regions. More specifically, the optical element 12 includes four elliptical spheres each having a major axis at 90 ° intervals on the same plane orthogonal to the axis X of the optical element, and the center of each elliptical sphere arranged on a concentric circle. It has a shape that is similar to that of the back side. That is, the inner surface 12b has a shape obtained by combining a part 12f of the surface of the ellipsoidal sphere, and a region composed of a part of the surface of the ellipsoidal sphere is concave toward the light source.

更に、図4において、楕円球の長軸をAとすると、光学素子12の軸線Xと、発光部11aの光軸Lは、長軸Aと直交するようになっており、また光学素子12の軸線Xから楕円球の中心(長軸Aの中央)Oまでの距離をL1(楕円球の中心が配置されている同心円の半径)、光学素子12の軸線Xから発光部11aの光軸Lまでの距離をL2(発光部の光軸が配置されている同心円の半径)としたときに、0.4<L1/L2<0.8なる関係が成立するようになっている。ここで、L1/L2が下限を上回ることにより、楕円球が光源位置に対応して配置されるため、発光部から出射される光の配光を適切に制御できる。また、L1/L2が上限を下回ることにより、楕円球の位置が外側になりすぎないため、光学素子12のサイズを小型にすることができる。   Furthermore, in FIG. 4, when the major axis of the elliptic sphere is A, the axis X of the optical element 12 and the optical axis L of the light emitting portion 11a are orthogonal to the major axis A. The distance from the axis X to the center of the elliptical sphere (the center of the long axis A) O is L1 (the radius of the concentric circle where the center of the elliptical sphere is arranged), and from the axis X of the optical element 12 to the optical axis L of the light emitting portion 11a. Is set to L2 (the radius of the concentric circle in which the optical axis of the light emitting unit is disposed), the relationship 0.4 <L1 / L2 <0.8 is established. Here, since L1 / L2 exceeds the lower limit, the ellipsoidal sphere is arranged corresponding to the light source position, so that the light distribution of the light emitted from the light emitting unit can be appropriately controlled. Further, when L1 / L2 is less than the upper limit, the position of the ellipsoidal sphere is not excessively outside, so that the size of the optical element 12 can be reduced.

図5は、本実施の形態の照明装置における配光特性を示すシミュレーション図であり、0度方向を軸線Xの方向とし、半径の大きさで到達光量を表すものとする。図5における一点鎖線は、光学特性を通さない発光部11aの元々の出射特性である。つまり、発光部11aのみでは、その直下が最も明るく照明されるが、その周辺は、離れるに連れて極端に照度が低下することがわかる。   FIG. 5 is a simulation diagram showing the light distribution characteristics in the illumination device of the present embodiment, where the 0 degree direction is the direction of the axis X, and the amount of light reached is represented by the size of the radius. The dashed-dotted line in FIG. 5 is the original emission characteristic of the light emitting part 11a that does not pass through the optical characteristic. That is, it can be seen that the light emitting portion 11a alone is the brightest illuminated immediately below, but the illuminance is extremely lowered as the distance from the light emitting portion 11a increases.

図5に示す点線は、本実施の形態の光学素子12を組み付けた照明装置10において、図2に示す断面方向の配光特性を示している。つまり、図2に示す断面方向では、0度方向よりも、±30度〜±60度前後の範囲が、より到達光量が高くなることがわかる。このような配光特性をバットウィングという。一般的に、天井に取り付けられた照明装置10から、直下の床面までの距離は、周辺の床面までの距離より短いので、バットウィングの配光特性は、床面の照度を均一化させる上で好ましいと言える。   The dotted lines shown in FIG. 5 indicate the light distribution characteristics in the cross-sectional direction shown in FIG. 2 in the illumination device 10 assembled with the optical element 12 of the present embodiment. That is, in the cross-sectional direction shown in FIG. 2, it can be seen that the amount of light reached is higher in the range of about ± 30 degrees to ± 60 degrees than in the 0 degree direction. Such a light distribution characteristic is called batwing. In general, since the distance from the lighting device 10 attached to the ceiling to the floor surface directly below is shorter than the distance to the surrounding floor surface, the light distribution characteristic of the bat wing makes the illuminance of the floor surface uniform. It can be said that it is preferable in the above.

一方、図5に示す実線は、本実施の形態の光学素子12を組み付けた照明装置10において、図3に示す断面方向の配光特性を示している。つまり、図3に示す断面方向では、±65度の位置で、最も到達光量が高くなるピークが現れることがわかる。このように、光学素子12の内表面を非回転対称な面とすることで、特定の角度方向(ここでは照明装置の軸線Xに直交する面内で90度毎、且つ軸線Xに対して±65度の方向)において到達光量を増大できる。これにより、暗くなりがちな部屋の四隅に対して選択的に光を投射することができる。   On the other hand, the solid line shown in FIG. 5 shows the light distribution characteristic in the cross-sectional direction shown in FIG. 3 in the illumination device 10 assembled with the optical element 12 of the present embodiment. That is, in the cross-sectional direction shown in FIG. 3, it can be seen that a peak with the highest amount of reached light appears at a position of ± 65 degrees. Thus, by making the inner surface of the optical element 12 a non-rotationally symmetric surface, a specific angular direction (here, every 90 degrees in a plane orthogonal to the axis X of the illuminating device, and ±± with respect to the axis X) In the direction of 65 degrees, the amount of light reaching can be increased. Thereby, light can be selectively projected to the four corners of the room that tends to be dark.

図6は、本実施の形態の照明装置10により床面を照射した状態をシミュレーションした図であり、点描の密度が少ないほど照度が高いことを示している。図6に示すように、本実施の形態の照明装置10によれば、室内の床面を正方形状に照明できるので、単一の照明装置10を用いながらも室内周辺の照度を確保することができる。   FIG. 6 is a diagram simulating a state in which the floor surface is irradiated by the illumination device 10 of the present embodiment, and shows that the illuminance is higher as the density of stippling is lower. As shown in FIG. 6, according to the illumination device 10 of the present embodiment, the floor surface in the room can be illuminated in a square shape, so that the illuminance around the room can be ensured while using the single illumination device 10. it can.

図7は、第2の実施の形態に係る照明装置の正面図である。図8は、図7の照明装置をVIII-VIII線で切断して矢印方向に見た図である。   FIG. 7 is a front view of the illumination device according to the second embodiment. FIG. 8 is a view of the illuminating device of FIG. 7 taken along line VIII-VIII and viewed in the direction of the arrow.

照明装置20は、LED光源としての発光部21aを3つ形成した円盤状の基板21と、基板21に取り付けられたカップ状の光学素子22とを有する。発光部21aは、光学素子22の軸線Xを中心とする同心円上に光軸Lが配置されるよう、120度間隔で配置されている。基板21は、不図示のベース等に組み付けられて、屋内の天井等に取り付けられるようになっている。   The illuminating device 20 includes a disk-shaped substrate 21 on which three light emitting portions 21 a serving as LED light sources are formed, and a cup-shaped optical element 22 attached to the substrate 21. The light emitting portions 21a are arranged at 120 degree intervals so that the optical axes L are arranged on concentric circles centering on the axis X of the optical element 22. The substrate 21 is assembled to a base or the like (not shown) and attached to an indoor ceiling or the like.

光学素子22の外表面22aは、上述の実施の形態と同様に、光学素子12の軸線Xに対して回転対称の形状を有している。一方、光学素子22の内表面22bは、3つの領域に分かれている。より具体的には、光学素子の軸線Xに対して直交する同一面に120度間隔で長軸を備えた3つの楕円球で、光学素子22の裏面をくり抜いたごとき形状を有する。つまり、内表面22bは、楕円球の表面の一部22fを組み合わせた形状を有する。   The outer surface 22a of the optical element 22 has a rotationally symmetric shape with respect to the axis X of the optical element 12 as in the above-described embodiment. On the other hand, the inner surface 22b of the optical element 22 is divided into three regions. More specifically, three ellipsoidal spheres having long axes at 120 degree intervals on the same plane orthogonal to the axis X of the optical element have a shape that is obtained by hollowing out the back surface of the optical element 22. That is, the inner surface 22b has a shape in which a part 22f of the surface of the elliptic sphere is combined.

図9は、本実施の形態の照明装置における配光特性を示すシミュレーション図であり、0度方向を軸線Xの方向とし、半径の大きさで到達光量を表すものとする。図9に示す点線は、本実施の形態の光学素子22を組み付けた照明装置20において、図8に示す断面に直交する方向(図7でIX-IX断面)の配光特性を示している。つまり、かかる断面方向では、±50度の位置が、最も到達光量が高くなることがわかる。一方、図9に示す実線は、本実施の形態の光学素子12を組み付けた照明装置10において、図8に示す断面方向の配光特性を示している。つまり、図8に示す断面方向では、左右非対称な配光特性になり、到達光量のピークは±70度の位置にくるが、左側より右側の方がより狭い領域を遠方まで照明できるようになっている。このように、光学素子22の内表面22bの形状を変更することで、照明装置20を設置する部屋の床面形状に応じた配光制御が可能となる。   FIG. 9 is a simulation diagram showing the light distribution characteristics in the lighting apparatus of the present embodiment, where the 0 degree direction is the direction of the axis X, and the amount of light reached is represented by the size of the radius. The dotted line shown in FIG. 9 indicates the light distribution characteristic in the direction orthogonal to the cross section shown in FIG. 8 (IX-IX cross section in FIG. 7) in the illumination device 20 assembled with the optical element 22 of the present embodiment. That is, it can be seen that in the cross-sectional direction, the amount of light reached is highest at a position of ± 50 degrees. On the other hand, the solid line shown in FIG. 9 shows the light distribution characteristic in the cross-sectional direction shown in FIG. 8 in the illumination device 10 assembled with the optical element 12 of the present embodiment. That is, in the cross-sectional direction shown in FIG. 8, the light distribution characteristic is asymmetrical in right and left, and the peak of the amount of reached light is at a position of ± 70 degrees, but a region narrower on the right side than the left side can be illuminated far. ing. Thus, by changing the shape of the inner surface 22b of the optical element 22, light distribution control according to the floor surface shape of the room in which the lighting device 20 is installed can be performed.

(実施例)
本実施に形態に対応する実施例について説明する。まず、光学素子の出射面(外表面)の形状は、数1に示す非球面の形状で表される。非球面の形状は、出射面と光学素子の軸線との交差点を原点とし、軸線方向にz軸、軸線に直交する方向をx軸、y軸とし、表1のデータを数1式に代入することで、(x、y)座標に対応する非球面のz座標を求めるものとする。尚、表中、光源4個は第1の実施の形態に相当し、光源3個は第2の実施の形態に相当する(以下同じ)。
(Example)
An example corresponding to the present embodiment will be described. First, the shape of the exit surface (outer surface) of the optical element is represented by the aspherical shape shown in Equation 1. The aspherical shape is defined by substituting the data in Table 1 into Equation 1, with the intersection between the exit surface and the axis of the optical element as the origin, the z-axis as the axial direction, the x-axis and the y-axis as the directions orthogonal to the axis. Thus, the z coordinate of the aspheric surface corresponding to the (x, y) coordinate is obtained. In the table, four light sources correspond to the first embodiment, and three light sources correspond to the second embodiment (the same applies hereinafter).

又、光学素子の入射面(内表面)の形状は、数2に示す非球面の形状で表される。非球面の形状は表2の(L1、Z1_1、γ1)、(L1、Z1_2,γ2)、(L1、Z1_3,γ3)を原点とし、軸線方向にz軸、軸線に直交する方向をx軸、y軸とし、表2のデータを数2式に代入することで、(x、y)座標に対応する非球面のz座標を求めるものとする。   The shape of the incident surface (inner surface) of the optical element is represented by the aspherical shape shown in Equation 2. The shape of the aspherical surface is (L1, Z1_1, γ1), (L1, Z1_2, γ2), (L1, Z1_3, γ3) in Table 2 as the origin, the z axis in the axial direction, and the x axis in the direction orthogonal to the axial line, Assume that the y-axis is used, and the data of Table 2 is substituted into Equation 2, thereby obtaining the aspherical z-coordinate corresponding to the (x, y) coordinate.

尚、本発明は以上の実施の形態に限られない。例えば一つの楕円球の表面に相当する面毎に1つのLED光源のみならず、複数のLED光源を配置しても良い。かかる場合、楕円球の長軸と、複数のLED光源の光軸が交差するように配置するのが望ましい。   The present invention is not limited to the above embodiment. For example, not only one LED light source but also a plurality of LED light sources may be arranged for each surface corresponding to the surface of one elliptical sphere. In such a case, it is desirable to arrange so that the major axis of the elliptic sphere and the optical axes of the plurality of LED light sources intersect.

10 照明装置
11 基板
11a 発光部
12 光学素子
12a 外表面
12b 内表面
12c 周辺領域
12d 中央領域
12f 内表面の一部
20 照明装置
21 基板
21a 発光部
22 光学素子
22a 外表面
22b 内表面
A 楕円球の長軸
L 発光部の光軸
O 楕円球の中心
X 光学素子の軸線
DESCRIPTION OF SYMBOLS 10 Illuminating device 11 Board | substrate 11a Light emission part 12 Optical element 12a Outer surface 12b Inner surface 12c Peripheral area | region 12d Central area | region 12f Part of inner surface 20 Illuminating device 21 Substrate 21a Light-emitting part 22 Optical element 22a Outer surface 22b Inner surface A Ellipsoidal sphere Long axis L Optical axis O of light emitting part O Center of elliptical sphere X Optical element axis

Claims (9)

複数の面状発光光源と光学素子とを有する照明装置であって、
前記光学素子の出射面は、前記光学素子の軸線に対して回転対称の形状を有し、
前記光学素子の入射面は、各面状発光光源に対応し、且つ前記光学素子の軸線に対して直交する方向に長軸を備えた楕円球の表面の一部を組み合わせた形状を有し、
前記面状発光光源の光軸は、対応する前記楕円球の中心よりも前記光学素子の軸線から遠い側に位置することを特徴とする照明装置。
An illumination device having a plurality of planar light sources and optical elements,
The exit surface of the optical element has a rotationally symmetric shape with respect to the axis of the optical element,
The incident surface of the optical element has a shape corresponding to each planar light source and combined with a part of the surface of an elliptic sphere having a major axis in a direction perpendicular to the axis of the optical element,
An illuminating device, wherein an optical axis of the planar light source is located on a side farther from an axis of the optical element than a center of the corresponding elliptical sphere.
前記面状発光光源の光軸は、前記光学素子の軸線を中心とする同心円上に配置され、前記光学素子の出射面は、前記同心円の外方が凸状となっていることを特徴とする請求項1に記載の照明装置。   The optical axis of the planar light source is arranged on a concentric circle centering on the axis of the optical element, and the exit surface of the optical element is convex outward of the concentric circle. The lighting device according to claim 1. 前記光学素子の出射面は、前記同心円の内方が凹状となる領域を有することを特徴とする請求項2に記載の照明装置。   The illuminating device according to claim 2, wherein an exit surface of the optical element has a region in which the inner side of the concentric circle is concave. 前記面状発光光源とはLED光源であることを特徴とする請求項1〜3のいずれかに記載の照明装置。   The lighting device according to claim 1, wherein the planar light source is an LED light source. 前記面状発光光源は4つであり、前記光学素子を介して出射された光により被照明面が矩形状に照明されることを特徴とする請求項4に記載の照明装置。   The illumination apparatus according to claim 4, wherein the number of the planar light source is four, and the illuminated surface is illuminated in a rectangular shape by the light emitted through the optical element. 複数の面状発光光源と光学素子とを有する照明装置の光学素子であって、
前記光学素子の出射面は、前記光学素子の軸線に対して回転対称の形状を有し、
前記光学素子の入射面は、各面状発光光源に対応し、且つ前記光学素子の軸線に対して直交する方向に長軸を備えた楕円球の表面の一部を組み合わせた形状を有することを特徴とする光学素子。
An optical element of a lighting device having a plurality of planar light source and optical element,
The exit surface of the optical element has a rotationally symmetric shape with respect to the axis of the optical element,
The incident surface of the optical element has a shape corresponding to each planar light-emitting light source and combined with a part of the surface of an elliptic sphere having a major axis in a direction orthogonal to the axis of the optical element. A featured optical element.
前記楕円球の中心は、前記光学素子の軸線を中心とする同心円上に等間隔に配置され、前記光学素子の出射面は、前記同心円の外方が凸状となっていることを特徴とする請求項6に記載の光学素子。   The centers of the ellipsoidal spheres are arranged at equal intervals on a concentric circle centered on the axis of the optical element, and the exit surface of the optical element is convex outward from the concentric circle. The optical element according to claim 6. 前記光学素子の出射面は、前記同心円の内方が凹状となる領域を有することを特徴とする請求項7に記載の光学素子。   The optical element according to claim 7, wherein an exit surface of the optical element has a region in which an inner side of the concentric circle is concave. 前記光学素子は、前記複数の面状発光光源が同心円上に配置された照明装置に用いられる光学素子であり、前記楕円球の中心は、前記光学素子の軸線を中心とする同心円上に等間隔に配置され、前記楕円球の中心が配置されている同心円の半径は、前記複数の面状発光光源が配置されている同心円の半径よりも小さいことを特徴とする請求項6〜8のいずれかに記載の光学素子。   The optical element is an optical element used in an illuminating device in which the plurality of planar light sources are arranged on a concentric circle, and the centers of the ellipsoidal spheres are equidistantly spaced on a concentric circle centering on the axis of the optical element The concentric circle in which the center of the elliptic sphere is arranged is smaller than the radius of the concentric circle in which the plurality of planar light sources are arranged. An optical element according to 1.
JP2010131718A 2010-06-09 2010-06-09 Lighting device Expired - Fee Related JP5673923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010131718A JP5673923B2 (en) 2010-06-09 2010-06-09 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010131718A JP5673923B2 (en) 2010-06-09 2010-06-09 Lighting device

Publications (2)

Publication Number Publication Date
JP2011258408A true JP2011258408A (en) 2011-12-22
JP5673923B2 JP5673923B2 (en) 2015-02-18

Family

ID=45474369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010131718A Expired - Fee Related JP5673923B2 (en) 2010-06-09 2010-06-09 Lighting device

Country Status (1)

Country Link
JP (1) JP5673923B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041792A (en) * 2012-08-23 2014-03-06 Stanley Electric Co Ltd Illumination device
JP2014044853A (en) * 2012-08-27 2014-03-13 Stanley Electric Co Ltd Illumination apparatus
CN103759220A (en) * 2012-08-23 2014-04-30 斯坦雷电气株式会社 Lighting device
JP2014170713A (en) * 2013-03-05 2014-09-18 Sharp Corp Lighting device
KR20150120251A (en) * 2014-04-17 2015-10-27 (주) 강동테크 Lens and illumination optical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261049A (en) * 2005-03-18 2006-09-28 Koizumi Sangyo Corp Multi-point light source unit
JP2009044016A (en) * 2007-08-09 2009-02-26 Sharp Corp Light-emitting device and illuminator equipped with same
JP2009542017A (en) * 2006-06-30 2009-11-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic components and lighting equipment
JP2010092956A (en) * 2008-10-06 2010-04-22 Mitsubishi Electric Corp Led light source and luminary using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261049A (en) * 2005-03-18 2006-09-28 Koizumi Sangyo Corp Multi-point light source unit
JP2009542017A (en) * 2006-06-30 2009-11-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic components and lighting equipment
JP2009044016A (en) * 2007-08-09 2009-02-26 Sharp Corp Light-emitting device and illuminator equipped with same
JP2010092956A (en) * 2008-10-06 2010-04-22 Mitsubishi Electric Corp Led light source and luminary using it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041792A (en) * 2012-08-23 2014-03-06 Stanley Electric Co Ltd Illumination device
CN103759220A (en) * 2012-08-23 2014-04-30 斯坦雷电气株式会社 Lighting device
JP2014044853A (en) * 2012-08-27 2014-03-13 Stanley Electric Co Ltd Illumination apparatus
JP2014170713A (en) * 2013-03-05 2014-09-18 Sharp Corp Lighting device
KR20150120251A (en) * 2014-04-17 2015-10-27 (주) 강동테크 Lens and illumination optical system
KR101582273B1 (en) * 2014-04-17 2016-01-04 주식회사 강동테크 Lens and illumination optical system

Also Published As

Publication number Publication date
JP5673923B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP3163068U (en) Lighting fixture
TWI533023B (en) Beam control member, luminous device and lighting device
JP3171487U (en) LED lighting device
JP6356997B2 (en) Light flux controlling member, light emitting device, surface light source device, and display device
JP2008300203A (en) Luminaire
CA2879388C (en) Omni-directional reflector comprising a frusto-conical surface for a light-emitting diode
KR100931266B1 (en) Led lighting with broad and uniform light distribution
US8979317B2 (en) Luminous flux control member and illumination device
JP5673923B2 (en) Lighting device
US10480721B2 (en) Light flux controlling member, light emitting device and illuminating device
JP6347390B2 (en) Lighting device
JP2015176862A (en) Light-emitting device, surface light source device and display device
JP5861111B2 (en) lighting equipment
JP2015138761A (en) Lighting device
JP2020004563A (en) Optical device and lighting device
JP3172217U (en) Optical lens and base of transparent lamp
US10190730B2 (en) Light flux controlling member, light emitting device and illuminating device
KR100970856B1 (en) Led lamp with broad and uniform light distribution
JP3189005U (en) Light emitting diode holder and its lamp
US20190137071A1 (en) Ceiling lamp
JP5265393B2 (en) LED lighting equipment
JP2014135243A (en) Lighting apparatus
JP2011077002A (en) Luminaire
JP5807165B2 (en) lighting equipment
JP2015156394A (en) Luminaire device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141216

R150 Certificate of patent or registration of utility model

Ref document number: 5673923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees