JP2011257657A - Forming method and forming device of electrophotographic photoreceptor - Google Patents

Forming method and forming device of electrophotographic photoreceptor Download PDF

Info

Publication number
JP2011257657A
JP2011257657A JP2010133434A JP2010133434A JP2011257657A JP 2011257657 A JP2011257657 A JP 2011257657A JP 2010133434 A JP2010133434 A JP 2010133434A JP 2010133434 A JP2010133434 A JP 2010133434A JP 2011257657 A JP2011257657 A JP 2011257657A
Authority
JP
Japan
Prior art keywords
substrate
cylindrical
auxiliary
base
cylindrical substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010133434A
Other languages
Japanese (ja)
Other versions
JP2011257657A5 (en
JP5599042B2 (en
Inventor
Motoya Yamada
基也 山田
Tatsuji Okamura
竜次 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010133434A priority Critical patent/JP5599042B2/en
Publication of JP2011257657A publication Critical patent/JP2011257657A/en
Publication of JP2011257657A5 publication Critical patent/JP2011257657A5/ja
Application granted granted Critical
Publication of JP5599042B2 publication Critical patent/JP5599042B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a forming method and a forming device of an electrophotographic photoreceptor which can form an electrophotographic photoreceptor excellent in the uniformity of a film characteristic.SOLUTION: In a forming method of an electrophotographic photoreceptor, a cylindrical base body 101 and an auxiliary base body 103 are installed in this order in a base body holder 102. The base body holder 102 provided with the cylindrical base body 101 and the auxiliary base body 103 is installed on a cradle 107 which is grounded and connected in a reaction vessel that can be decompressed. Raw material gas is introduced into the reaction vessel, and high-frequency power is applied to an electrode installed so as to encircle the cylindrical base body 101, thereby forming a deposition film on the cylindrical base body 101. The formation of the deposition film is made under the state that the auxiliary base body 103 is pressurized in the longitudinal direction of the cylindrical base body 101 by a pressure means (a spring 106) and the auxiliary base body 103 is pressed to the cylindrical base body 101.

Description

本発明はプラズマCVD法を用いた電子写真感光体の形成方法及び形成装置に関する。   The present invention relates to a method and apparatus for forming an electrophotographic photosensitive member using a plasma CVD method.

従来、電子写真感光体として、アモルファスシリコン、例えば水素原子及び/又はハロゲン原子を含有し、シリコン原子を母体とするアモルファス材料で構成された堆積膜が提案され、その中のいくつかは実用に付されている。
そして、アモルファスシリコンからなる堆積膜の形成方法としては、高周波電力のグロー放電により堆積膜形成用ガスのプラズマを生成し、その分解種を基体の上に堆積させるプラズマCVD法がある。
Conventionally, as an electrophotographic photoreceptor, a deposited film composed of amorphous silicon, for example, an amorphous material containing a hydrogen atom and / or a halogen atom and having a silicon atom as a base has been proposed. Has been.
As a method for forming a deposited film made of amorphous silicon, there is a plasma CVD method in which plasma of a deposited film forming gas is generated by glow discharge with high-frequency power and the decomposition species is deposited on a substrate.

これらの方法で、電子写真感光体のような大面積を有する堆積膜を形成する場合、膜特性の均一化が必要であり、そのために堆積膜を形成する装置の構成に関して各種提案がされている。
例えば、アモルファスシリコンからなる電子写真感光体を形成する場合、円筒状基体を真空反応容器の中に運搬ならびに保持する必要があることから、円筒状基体に基体ホルダーを挿入することが開示されている。また、堆積膜形成中に分解された化学種が基体の裏側へまわり込むことを防止する目的で基体の上部に補助基体を設けることが開示されている。(特許文献1参照)
When a deposited film having a large area such as an electrophotographic photosensitive member is formed by these methods, it is necessary to make the film characteristics uniform, and various proposals have been made regarding the configuration of the apparatus for forming the deposited film. .
For example, when forming an electrophotographic photosensitive member made of amorphous silicon, it is necessary to transport and hold the cylindrical substrate in a vacuum reaction vessel, and therefore it is disclosed to insert a substrate holder into the cylindrical substrate. . Further, it is disclosed that an auxiliary substrate is provided on the upper portion of the substrate for the purpose of preventing chemical species decomposed during the formation of the deposited film from entering the back side of the substrate. (See Patent Document 1)

特開2000−073173号公報JP 2000-073173 A

従来、上記のような方策により堆積膜の膜特性の均一化が図られてきた。
しかし、近年、このような堆積膜を利用した装置の高機能化、例えば電子写真装置のデジタル化、カラー化に伴い、堆積膜の膜特性の均一性が従来以上に求められている。
例えば、電子写真プロセスを利用した近年の高画質カラー装置では、階調性が向上されているため、従来は実用上問題のなかった堆積膜の膜特性の不均一性でも、形成画像に視覚可能なムラを生じさせる可能性がある。このため、上述したような従来技術だけでは近年必要とされる堆積膜の膜特性の均一性を確保することが難しくなってきている。
本発明は、上記のような従来技術に鑑みてなされたものであり、膜特性の均一性に優れた電子写真感光体を形成することができる電子写真感光体の形成方法及び形成装置を提供することを目的とする。
Conventionally, the film characteristics of the deposited film have been made uniform by the above-described measures.
However, in recent years, uniformity of the film characteristics of the deposited film has been demanded more than ever with the enhancement of the function of the apparatus using such a deposited film, for example, the digitization and colorization of the electrophotographic apparatus.
For example, in recent high-quality color devices using an electrophotographic process, the gradation is improved, so that the formed image can be visualized even with non-uniformity in the film properties of the deposited film, which has not been a practical problem in the past. May cause unevenness. For this reason, it has become difficult to ensure the uniformity of the film characteristics of the deposited film that is required in recent years only by the conventional technique as described above.
The present invention has been made in view of the prior art as described above, and provides an electrophotographic photosensitive member forming method and a forming apparatus capable of forming an electrophotographic photosensitive member excellent in uniformity of film characteristics. For the purpose.

上記目的を達成するため、本発明に係る電子写真感光体の形成方法は、基体ホルダーに円筒状基体、補助基体を順に設置し、前記円筒状基体と前記補助基体が装着された前記基体ホルダーを減圧可能な反応容器の中の接地接続された受け台に設置し、前記反応容器の中に原料ガスを導入し、前記円筒状基体を取り囲むように設置された電極に高周波電力を印加することにより、前記円筒状基体の上に堆積膜の形成を行う電子写真感光体の形成方法において、前記補助基体を加圧手段により前記円筒状基体の長手方向へ加圧し、前記補助基体を前記円筒状基体へ押圧した状態で堆積膜の形成を行うことを特徴とする。
また、上記目的を達成するため、本発明に係る電子写真感光体の形成装置は
減圧可能な反応容器、円筒状基体を保持した円筒状基体保持装置が設置されるための接地接続された受け台、前記反応容器の中に原料ガスを供給する手段、前記反応容器の中を排気する手段、高周波電力により前記原料ガスを励起する手段、とを備えたプラズマCVD法による電子写真感光体の形成装置において、前記円筒状基体保持装置は、前記円筒状基体を貫通し前記円筒状基体の下端を保持する基体ホルダーと、前記円筒状基体の上部に設置される補助基体と、前記基体ホルダーと嵌合する押圧板とを有し、前記基体ホルダーと前記補助基体と前記押圧板とによって作られる空間に前記補助基体と前記押圧板とに押圧されることよって、前記円筒状基体の長手方向に蓄勢されているバネを有することを特徴とする。
In order to achieve the above object, a method for forming an electrophotographic photosensitive member according to the present invention includes a substrate holder in which a cylindrical substrate and an auxiliary substrate are sequentially installed, and the substrate holder on which the cylindrical substrate and the auxiliary substrate are mounted is provided. By installing on a pedestal connected to ground in a depressurizable reaction vessel, introducing a source gas into the reaction vessel, and applying high frequency power to an electrode installed so as to surround the cylindrical substrate In the method of forming an electrophotographic photosensitive member in which a deposited film is formed on the cylindrical substrate, the auxiliary substrate is pressed in the longitudinal direction of the cylindrical substrate by a pressing means, and the auxiliary substrate is pressed into the cylindrical substrate. The deposited film is formed in a pressed state.
In order to achieve the above object, the electrophotographic photosensitive member forming apparatus according to the present invention includes a reaction vessel that can be depressurized, and a grounded cradle for installing a cylindrical substrate holding device that holds the cylindrical substrate. An apparatus for forming an electrophotographic photosensitive member by plasma CVD, comprising: means for supplying a source gas into the reaction vessel; means for exhausting the reaction vessel; and means for exciting the source gas with high-frequency power The cylindrical substrate holding device includes a substrate holder that penetrates the cylindrical substrate and holds the lower end of the cylindrical substrate, an auxiliary substrate installed on the upper portion of the cylindrical substrate, and the substrate holder. A pressing plate that is pressed by the auxiliary substrate and the pressing plate in a space formed by the substrate holder, the auxiliary substrate, and the pressing plate. And having a spring which is prestressed in the direction.

本発明によれば、膜特性の均一性に優れた電子写真感光体を形成することができる。   According to the present invention, it is possible to form an electrophotographic photoreceptor excellent in uniformity of film characteristics.

本発明に係る円筒状基体の設置方法及び加圧手段を示す模式的断面図である。It is typical sectional drawing which shows the installation method and pressurization means of the cylindrical base | substrate which concern on this invention. 本発明に係る円筒状基体の設置方法及び加圧手段を示す模式的断面図である。It is typical sectional drawing which shows the installation method and pressurization means of the cylindrical base | substrate which concern on this invention. (a)は本発明に係る円筒状基体の設置方法及び加圧手段を示す模式的断面図である。(b)は本発明に係る押圧板の一例を示す模式的上視図である。(c)は本発明に係る基体ホルダーの一例を示す模式的上視図である。(d)は本発明に係る基体ホルダーの一例を示す模式的側面図である。(e)は本発明に係る押圧板を設置する前の円筒状基体保持装置の一例を示す模式的上視図である。(A) is typical sectional drawing which shows the installation method and pressurization means of the cylindrical base | substrate which concern on this invention. (B) is a schematic top view which shows an example of the press plate which concerns on this invention. (C) is a schematic top view showing an example of a substrate holder according to the present invention. (D) is a typical side view showing an example of a substrate holder concerning the present invention. (E) is a typical top view which shows an example of the cylindrical base | substrate holding | maintenance apparatus before installing the press plate which concerns on this invention. (a)は本発明に係る円筒状基体の設置方法及び加圧手段を示す模式的断面図である。(b)は本発明に係る押圧板を設置する前の円筒状基体保持装置の一例を示す模式的上視図である。(A) is typical sectional drawing which shows the installation method and pressurization means of the cylindrical base | substrate which concern on this invention. (B) is a schematic top view which shows an example of the cylindrical base | substrate holding | maintenance apparatus before installing the press plate which concerns on this invention. 従来のプラズマCVD装置内に設置される円筒状基体の設置方法の模式的断面図である。It is typical sectional drawing of the installation method of the cylindrical base | substrate installed in the conventional plasma CVD apparatus. 本発明に係る円筒状基体の設置方法及び加圧手段を示す模式的断面図である。It is typical sectional drawing which shows the installation method and pressurization means of the cylindrical base | substrate which concern on this invention. 本発明に係る電子写真感光体を形成するための形成装置の一例を示す模式的概略図である。1 is a schematic schematic diagram illustrating an example of a forming apparatus for forming an electrophotographic photosensitive member according to the present invention. 本発明に係る電子写真感光体の堆積膜を形成するためのプラズマCVD装置の一例を示す模式的概略図である。1 is a schematic diagram showing an example of a plasma CVD apparatus for forming a deposited film of an electrophotographic photosensitive member according to the present invention. アモルファスシリコン電子写真感光体用の層構成の一例を示す模式図である。It is a schematic diagram which shows an example of the layer structure for amorphous silicon electrophotographic photoreceptors.

本発明者らは堆積膜の膜特性の均一性を向上させるために、堆積膜形成装置の構成について鋭意検討を行った。
その結果、特に放電電力として高周波電力を使用する際には、円筒状基体と補助基体との間、及び円筒状基体と基体ホルダーとの間での高周波電力に対するアース面が不連続となるのを低減するような装置構成にすることが重要であることを見出した。
In order to improve the uniformity of the film characteristics of the deposited film, the present inventors have intensively studied the configuration of the deposited film forming apparatus.
As a result, when using high-frequency power as discharge power, the ground plane for high-frequency power between the cylindrical base and the auxiliary base and between the cylindrical base and the base holder is discontinuous. It has been found that it is important to make the device configuration to be reduced.

上述したような従来技術だけでは上記個所における高周波電力に対するアース面が不連続となっていることから、円筒状基体の上下端でのプラズマが不均一となり、堆積膜の膜特性の均一性が十分に得られない場合があることが判った。
図5は従来のアモルファスシリコンからなる電子写真感光体を形成する際にプラズマCVD装置内に設置される円筒状基体の設置方法の一例を模式的に示した断面図である。
図5(a)は円筒状基体501を基体ホルダー502に設置し、円筒状基体501の上部には補助基体503が設置されている。基体ホルダー502の中には基体加熱用ヒーター504が設置されている。さらに基体ホルダー502は上下端で接地接続されている。
この場合、補助基体503は円筒状基体501の上部に置かれているだけであり、基体ホルダー502との高周波電力に対する導通は必ずしも十分には確保されていない。このため、基体ホルダー502は上下端で接地されているにもかかわらず、上端の接地状態が補助基体503に充分に伝わらず、高周波電力に対するアース状態が不充分となる。
Since the ground plane for the high-frequency power at the above location is discontinuous only with the conventional technology as described above, the plasma at the upper and lower ends of the cylindrical substrate becomes non-uniform, and the uniformity of the film characteristics of the deposited film is sufficient. It was found that there are cases where it cannot be obtained.
FIG. 5 is a cross-sectional view schematically showing an example of a method for installing a cylindrical substrate that is installed in a plasma CVD apparatus when a conventional electrophotographic photosensitive member made of amorphous silicon is formed.
In FIG. 5A, a cylindrical substrate 501 is installed on a substrate holder 502, and an auxiliary substrate 503 is installed on the cylindrical substrate 501. A substrate heating heater 504 is installed in the substrate holder 502. Further, the substrate holder 502 is grounded at the upper and lower ends.
In this case, the auxiliary base body 503 is merely placed on the cylindrical base body 501, and conduction with high-frequency power with the base body holder 502 is not necessarily ensured sufficiently. For this reason, although the base holder 502 is grounded at the upper and lower ends, the grounding state of the upper end is not sufficiently transmitted to the auxiliary base 503, and the grounding state with respect to the high frequency power becomes insufficient.

さらに補助基体503と円筒状基体501は補助基体503の自重のみによって接触しているため、円筒状基体501は補助基体503と全周に渡って十分に接触しているとは言えず、円筒状基体501と補助基体503の導通は必ずしも十分には確保されていない。即ち、円筒状基体501と補助基体503の接続部分において、直流的には十分な導通が確保されている状態であっても、高周波電力は接触状態の影響を受けやすいために、高周波電力に対しては導通が十分に確保されない。このような場合、円筒状基体501から補助基体503にかけてのプラズマから見た電位の均一性が十分に確保できず、円筒状基体501の上端でのプラズマが不均一となり、堆積膜の均一性が十分に得られない場合がある。特に、補助基体503と円筒状基体502との周方向の接触面に微視的に見て隙間があった場合、そこにプラズマが集中し、著しく膜特性の均一性を悪化させる場合があった。「円筒状基体501から補助基体503にかけてのプラズマから見た電位の均一性」とは「『プラズマ空間と円筒状基体501の表面との電位差』及び『プラズマ空間と補助基体503の表面との電位差』の均一性」を意味する。   Further, since the auxiliary base 503 and the cylindrical base 501 are in contact with each other only by the weight of the auxiliary base 503, the cylindrical base 501 cannot be said to be in full contact with the auxiliary base 503 over the entire circumference. The continuity between the base body 501 and the auxiliary base body 503 is not always ensured sufficiently. That is, the high frequency power is easily affected by the contact state even in a state where sufficient conduction is ensured in the direct current at the connection portion between the cylindrical base 501 and the auxiliary base 503. As a result, sufficient continuity is not ensured. In such a case, the uniformity of the potential seen from the plasma from the cylindrical substrate 501 to the auxiliary substrate 503 cannot be sufficiently secured, the plasma at the upper end of the cylindrical substrate 501 becomes non-uniform, and the uniformity of the deposited film is reduced. You may not get enough. In particular, when there is a microscopic gap in the contact surface in the circumferential direction between the auxiliary substrate 503 and the cylindrical substrate 502, the plasma may concentrate there, and the uniformity of the film characteristics may be significantly deteriorated. . “The uniformity of the potential as seen from the plasma from the cylindrical substrate 501 to the auxiliary substrate 503” means “the potential difference between the plasma space and the surface of the cylindrical substrate 501” and “the potential difference between the plasma space and the surface of the auxiliary substrate 503”. "Uniformity" ".

また、円筒状基体501と基体ホルダー502との接続部分に関しても同様に堆積膜の均一性が十分に得られない場合がある。
円筒状基体501と補助基体503とを十分に接触させ、導通を強化させる方法として図5(b)に示すような構成が考えられる。
図5(b)は補助基体503に導電性の押え爪505をネジ506によって固定することで補助基体503と円筒状基体501との導通強化を図っている。
Similarly, there may be a case where the uniformity of the deposited film cannot be sufficiently obtained with respect to the connecting portion between the cylindrical substrate 501 and the substrate holder 502.
As a method for sufficiently bringing the cylindrical base body 501 and the auxiliary base body 503 into contact with each other to enhance conduction, a configuration as shown in FIG.
In FIG. 5B, the conductive presser claw 505 is fixed to the auxiliary base 503 with a screw 506 to enhance conduction between the auxiliary base 503 and the cylindrical base 501.

この方法によれば、押え爪505を介して円筒状基体501と補助基体503との導通強化が図られるため、円筒状基体501と補助基体503との接続部分において高周波電力に対するアース面が不連続となることを低減することが可能となる。
しかしながら、図5(b)に示すような押え爪505では、円筒状基体501の径方向に力をかけることによる導通強化のため、上述したような補助基体503と円筒状基体502との周方向の接触面の微視的な隙間の防止には効果がない。このため、プラズマの均一化には限界があった。
According to this method, since the conduction between the cylindrical base body 501 and the auxiliary base body 503 is enhanced through the presser claw 505, the ground surface for high-frequency power is discontinuous at the connection portion between the cylindrical base body 501 and the auxiliary base body 503. It becomes possible to reduce becoming.
However, in the presser claw 505 as shown in FIG. 5B, the circumferential direction between the auxiliary base 503 and the cylindrical base 502 as described above is provided to enhance conduction by applying a force in the radial direction of the cylindrical base 501. This is ineffective for preventing microscopic gaps on the contact surface. For this reason, there is a limit to homogenization of plasma.

さらに、押え爪505やネジ506のような構造物を円筒状基体501及び補助基体503の回りに取り付けた場合、それらの段差により、円筒状基体の上端でのプラズマが不均一となり、堆積膜の均一性が十分に得られない場合がある。
図5(b)に示すような段差を作らず、円筒状基体501と補助基体503を十分に接触させ、導通を強化させる方法として図5(c)に示すような構成が考えられる。
図5(c)は補助基体503と円筒状基体501の間に導電性の板バネ507を設けることで導通強化を図っている。
Further, when a structure such as a presser claw 505 or a screw 506 is attached around the cylindrical base body 501 and the auxiliary base body 503, the plasma at the upper end of the cylindrical base body becomes non-uniform due to the difference in level, and the deposited film In some cases, sufficient uniformity cannot be obtained.
A configuration as shown in FIG. 5C is conceivable as a method of making the cylindrical base 501 and the auxiliary base 503 sufficiently contact to enhance conduction without forming a step as shown in FIG. 5B.
In FIG. 5C, the conduction is enhanced by providing a conductive leaf spring 507 between the auxiliary base 503 and the cylindrical base 501.

この方法によれば、板バネ507を介して円筒状基体501と補助基体503との導通強化が図られるため、接続部分において高周波電力に対するアース面が不連続となることを低減することが可能となる。
しかしながら、このような板バネ507による導通強化を行った場合に於いても、上述したような周方向の接触面の微視的な隙間の防止には効果がないため、プラズマの均一化には限界があった。
According to this method, since the conduction between the cylindrical base body 501 and the auxiliary base body 503 is enhanced via the leaf spring 507, it is possible to reduce the discontinuity of the ground plane for high-frequency power at the connection portion. Become.
However, even when such conduction enhancement by the leaf spring 507 is performed, there is no effect in preventing the microscopic gap on the circumferential contact surface as described above. There was a limit.

さらに、図5(c)に示すように板バネ507により直接円筒状基体501の端部を径方向に加圧すると、均等に加圧することができず、円筒状基体501に歪みを生じさせてしまう場合がある。
このような歪みがある状態で堆積膜を形成し、その後開放すると堆積膜に応力がかかり、堆積膜の膜特性の均一性が十分に得られない場合がある。
Further, as shown in FIG. 5C, when the end of the cylindrical base 501 is directly pressed in the radial direction by the leaf spring 507, the cylindrical base 501 cannot be uniformly pressed, and the cylindrical base 501 is distorted. May end up.
If a deposited film is formed in a state where there is such a distortion and then released, stress is applied to the deposited film, and the uniformity of the film characteristics of the deposited film may not be sufficiently obtained.

逆に上記のような悪影響を与えない程度に板バネ507によって固定する際のバネの加圧力を減らすと、円筒状基体501と補助基体503の導通を強化するほどの接触力が得られない場合がある。
以上、上述したような従来技術だけでは、電子写真プロセスを利用した近年の高画質カラー装置での使用に耐えうるだけの膜特性の均一性が十分に得られない場合がある。
以下、本発明の具体的な実施形態について、図面を参照して説明する。
On the other hand, if the pressure applied by the spring when it is fixed by the leaf spring 507 is reduced to such an extent that it does not adversely affect as described above, a contact force sufficient to enhance the conduction between the cylindrical base 501 and the auxiliary base 503 cannot be obtained. There is.
As described above, the above-described conventional technology alone may not provide sufficient uniformity of film characteristics that can withstand use in a recent high-quality color apparatus using an electrophotographic process.
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

「円筒状基体設置方法及び加圧手段」
図2は本発明の円筒状基体設置方法及び加圧手段を説明するための模式的な断面図である。円筒状基体201を基体ホルダー202に設置し、円筒状基体201の上部には補助基体203が設置されている。円筒状基体201と補助基体203が装着された基体ホルダー202は反応容器の中の接地接続された受け台207に設置されている。基体ホルダー202の中には基体加熱用ヒーター204が設置されている。受け台207は接地接続されている下壁208の上に設けられている。
"Cylindrical substrate installation method and pressurizing means"
FIG. 2 is a schematic cross-sectional view for explaining the cylindrical substrate installation method and pressurizing means of the present invention. A cylindrical substrate 201 is installed on a substrate holder 202, and an auxiliary substrate 203 is installed on the cylindrical substrate 201. A substrate holder 202 on which the cylindrical substrate 201 and the auxiliary substrate 203 are mounted is installed on a grounded cradle 207 in the reaction vessel. A substrate heating heater 204 is installed in the substrate holder 202. The cradle 207 is provided on the lower wall 208 that is grounded.

円筒状基体201の材質は、使用目的に応じたものであればよい。円筒状基体201の材質としては、例えば、銅、アルミニウム、ニッケル、コバルト、鉄、クロム、モリブデン、チタンやこれらの合金を用いることができる。中でも加工性や製造コストを考慮するとアルミニウムが優れている。この場合、Al−Mg系合金、Al−Mn系合金のいずれかを用いることが好ましい。
また、基体ホルダー202及び補助基体203の材質も円筒状基体201に用いられるものと同様のものが挙げられる。
The material of the cylindrical base 201 may be any material depending on the intended use. As a material of the cylindrical base 201, for example, copper, aluminum, nickel, cobalt, iron, chromium, molybdenum, titanium, or an alloy thereof can be used. Among these, aluminum is excellent in consideration of workability and manufacturing cost. In this case, it is preferable to use either an Al—Mg alloy or an Al—Mn alloy.
Further, the material of the base holder 202 and the auxiliary base 203 may be the same as those used for the cylindrical base 201.

基体ホルダー202の形状に関しては円筒状基体201を真空反応容器の中に運搬ならびに保持することができるような形状であれば特に制限はない。しかし、円筒状基体201の設置がし易いことから、図2のように円筒状基体201の下端を保持するような形状が好適である。
補助基体203の形状に関しては円筒状基体201と十分に接触できるような形状であれば特に制限は無い。
The shape of the substrate holder 202 is not particularly limited as long as the cylindrical substrate 201 can be transported and held in the vacuum reaction vessel. However, since the cylindrical base body 201 can be easily installed, a shape that holds the lower end of the cylindrical base body 201 as shown in FIG. 2 is suitable.
The shape of the auxiliary base 203 is not particularly limited as long as it can sufficiently contact the cylindrical base 201.

基体加熱用ヒーター204としては、真空中で使用可能なものであればどのようなものを用いてもよい。具体的には、シース状ヒーター、板状ヒーター、セラミックヒーター、カーボンヒーターの如き電気抵抗発熱体や、ハロゲンランプ、赤外線ランプの如き熱放射ランプや、液体、気体を熱媒とした熱交換手段が対象として挙げられる。
図2に示す上壁205にはバネ209を介して押え板206が接続されている。上壁205、バネ209及び押え板206は接地接続されている。押え板206の材質は電気伝導率が高く、補助基体203を加圧できるだけの強度をもつものであれば特に制限はない。押え板206の材質も円筒状基体201に用いられるものと同様のものが挙げられる。
Any substrate heating heater 204 may be used as long as it can be used in a vacuum. Specifically, there are electric resistance heating elements such as sheath heaters, plate heaters, ceramic heaters, carbon heaters, heat radiation lamps such as halogen lamps and infrared lamps, and heat exchange means using liquid or gas as a heat medium. Listed as a target.
A presser plate 206 is connected to the upper wall 205 shown in FIG. The upper wall 205, the spring 209, and the presser plate 206 are grounded. The material of the pressing plate 206 is not particularly limited as long as it has high electrical conductivity and has a strength sufficient to pressurize the auxiliary base 203. The material of the pressing plate 206 may be the same as that used for the cylindrical substrate 201.

バネ209及び押え板206によって、補助基体203は円筒状基体201の長手方向に加圧されている。これにより、補助基体203は円筒状基体201へ押圧された状態となる。よって、円筒状基体201は補助基体203と全周に渡って十分に接触し、円筒状基体201と補助基体203との接続部分において高周波電力に対して導通が十分に確保される。そして、円筒状基体201から補助基体203にかけてのプラズマから見た電位の均一性が十分に確保される。これにより、円筒状基体201の上端でのプラズマの均一性が向上し、堆積膜の均一性を向上することが可能となる。   The auxiliary base 203 is pressed in the longitudinal direction of the cylindrical base 201 by the spring 209 and the presser plate 206. As a result, the auxiliary base 203 is pressed against the cylindrical base 201. Therefore, the cylindrical base 201 is sufficiently in contact with the auxiliary base 203 over the entire circumference, and sufficient conduction with respect to the high-frequency power is ensured at the connecting portion between the cylindrical base 201 and the auxiliary base 203. And the uniformity of the electric potential seen from the plasma from the cylindrical base | substrate 201 to the auxiliary | assistant base | substrate 203 is fully ensured. Thereby, the uniformity of the plasma at the upper end of the cylindrical substrate 201 is improved, and the uniformity of the deposited film can be improved.

補助基体203で円筒状基体201を押圧することにより、円筒状基体201は基体ホルダー202へも押圧されるので、円筒状基体201と基体ホルダー202との接続部分においても同様に堆積膜の均一性を向上させることが可能となる。
さらに、本発明によれば、補助基体203及び円筒状基体201はバネ209により長手方向に加圧されているため、補助基体203と円筒状基体201との周方向の接触面は微視的に見ても十分に密着しており、隙間は発生しない。このため、隙間にプラズマが集中し、膜特性の均一性を悪化させるということが無くなり、均一性の著しい向上が達成できる。
By pressing the cylindrical substrate 201 with the auxiliary substrate 203, the cylindrical substrate 201 is also pressed against the substrate holder 202. Therefore, the uniformity of the deposited film is similarly applied to the connecting portion between the cylindrical substrate 201 and the substrate holder 202. Can be improved.
Further, according to the present invention, since the auxiliary base 203 and the cylindrical base 201 are pressed in the longitudinal direction by the spring 209, the contact surface in the circumferential direction between the auxiliary base 203 and the cylindrical base 201 is microscopically. Even if it sees, it is contact | adhering enough and a clearance gap does not generate | occur | produce. For this reason, the plasma does not concentrate in the gap and the uniformity of the film characteristics is not deteriorated, and a significant improvement in uniformity can be achieved.

補助基体203を円筒状基体201の径方向に押圧する場合に比べて、補助基体203を円筒状基体201の長手方向へ押圧する場合、円筒状基体201の強度は長手方向が径方向より遙かに高いため、円筒状基体201はほとんど歪まない。よって、補助基体203を円筒状基体201の長手方向へ押圧する方がより高い加圧力を加えることが出来るため、円筒状基体201と補助基体203を全周に渡って十分に接触させることが出来る。   Compared with the case where the auxiliary substrate 203 is pressed in the radial direction of the cylindrical substrate 201, when the auxiliary substrate 203 is pressed in the longitudinal direction of the cylindrical substrate 201, the strength of the cylindrical substrate 201 is greater in the longitudinal direction than in the radial direction. Therefore, the cylindrical substrate 201 is hardly distorted. Therefore, since a higher pressing force can be applied when the auxiliary base 203 is pressed in the longitudinal direction of the cylindrical base 201, the cylindrical base 201 and the auxiliary base 203 can be brought into sufficient contact over the entire circumference. .

補助基体203を加圧する手段は補助基体203を円筒状基体201の長手方向に押圧できれば特に制限はないが、装置の改造を必要とせず簡易な方法として、図1のようにバネ106によって、補助基体103を加圧する方法が好適である。
図1は円筒状基体101を基体ホルダー102に装着し、円筒状基体101の上部には補助基体103が設置されている。円筒状基体101と補助基体103が装着された基体ホルダー102は反応容器の中の接地接続された受け台107に設置されている。
The means for pressing the auxiliary base 203 is not particularly limited as long as the auxiliary base 203 can be pressed in the longitudinal direction of the cylindrical base 201. However, as a simple method without requiring modification of the apparatus, the auxiliary base 203 is supported by a spring 106 as shown in FIG. A method of pressurizing the substrate 103 is preferable.
In FIG. 1, a cylindrical base 101 is mounted on a base holder 102, and an auxiliary base 103 is installed on the cylindrical base 101. The substrate holder 102 on which the cylindrical substrate 101 and the auxiliary substrate 103 are mounted is installed on a receiving base 107 connected to the ground in the reaction vessel.

図2と同様に、受け台107は接地接続されている下壁108の上に設けられているため、下壁108と同様に、接地接続されている。
基体ホルダー102の上端を接地接続する方法としては、接地接続されている上壁109に導電性の棒状体110を取り付け、棒状体110を基体ホルダー102の上端に押し当てる方法が挙げられる。これにより、基体ホルダー102の下端は受け台107及び下壁108によって、基体ホルダー102の上端は棒状体110及び上壁109によって、上下端で接地接続される構成となる。
Similar to FIG. 2, since the cradle 107 is provided on the lower wall 108 that is grounded, it is grounded similarly to the lower wall 108.
As a method of grounding the upper end of the base holder 102, there is a method of attaching a conductive bar 110 to the upper wall 109 that is grounded and pressing the bar 110 against the upper end of the base holder 102. Accordingly, the lower end of the base holder 102 is grounded at the upper and lower ends by the cradle 107 and the lower wall 108, and the upper end of the base holder 102 is connected at the upper and lower ends by the rod-like body 110 and the upper wall 109.

上記のように、反応容器内全体のプラズマの均一性を向上させるためには、基体ホルダー102は上下端で接地接続されることが好適である。
補助基体103と基体ホルダー102はネジ105によって固定されている。
ネジ105は補助基体103を基体ホルダー102に固定できるだけの強度をもつものであれば特に制限はないが、ネジ105を介して接地接続するために導電性であることが好ましい。ネジ105の材質としては例えば、銅、アルミニウム、ニッケル、コバルト、鉄、クロム、モリブデン、チタンやこれらの合金が好適である。
As described above, in order to improve the uniformity of plasma throughout the reaction vessel, the substrate holder 102 is preferably grounded at the upper and lower ends.
The auxiliary base 103 and the base holder 102 are fixed by screws 105.
The screw 105 is not particularly limited as long as it has a strength sufficient to fix the auxiliary base 103 to the base holder 102, but is preferably conductive for ground connection through the screw 105. As the material of the screw 105, for example, copper, aluminum, nickel, cobalt, iron, chromium, molybdenum, titanium, and alloys thereof are preferable.

また本発明においては、ネジ105と補助基体103の間に弾性部材であるバネ106を設けてもよい。ネジ105と補助基体103の間にバネ106を設けることにより、ネジ105の頭頂部と補助基体103の間が押し広げられる。ネジ105を押し込むことによって、弾性部材であるバネ106を補助基体103に押し付ける。その結果として、補助基体103が円筒状基体101に押しつけられることになる。このとき、基体ホルダー102からネジ105へ、ネジ105からバネ106へ、バネ106から補助基体103へ、補助基体103から円筒状基体101へという導通経路により円筒状基体101の上部が接地接続される。
ネジ105の締め付けトルクを適宜選択することで、バネ106により補助基体103を加圧する力を適切に調整することが可能となる。
In the present invention, a spring 106 that is an elastic member may be provided between the screw 105 and the auxiliary base 103. By providing a spring 106 between the screw 105 and the auxiliary base 103, the space between the top of the screw 105 and the auxiliary base 103 is spread. By pushing the screw 105, the spring 106, which is an elastic member, is pressed against the auxiliary base 103. As a result, the auxiliary base 103 is pressed against the cylindrical base 101. At this time, the upper part of the cylindrical base 101 is grounded by a conduction path from the base holder 102 to the screw 105, from the screw 105 to the spring 106, from the spring 106 to the auxiliary base 103, and from the auxiliary base 103 to the cylindrical base 101. .
By appropriately selecting the tightening torque of the screw 105, it is possible to appropriately adjust the force with which the auxiliary base 103 is pressed by the spring 106.

また、バネのみで加圧する場合はバネのバネ定数及びバネの押し込み長さを適宜選択することで、バネにより補助基体を加圧する力を適切に調整することが可能となる。
補助基体103を加圧する力が強すぎると補助基体103によって円筒状基体101が長手方向に押圧されたとしても、円筒状基体101に歪みを生じてしまう場合がある。逆に補助基体103を加圧する力が弱すぎると補助基体103と円筒状基体101との周方向の接触面が微視的に見ても十分には密着されない場合がある。このため、堆積膜の均一性が十分に得られない場合がある。
In addition, when the pressure is applied only with the spring, the force for pressing the auxiliary base by the spring can be appropriately adjusted by appropriately selecting the spring constant of the spring and the pushing length of the spring.
If the force for pressing the auxiliary substrate 103 is too strong, the cylindrical substrate 101 may be distorted even if the cylindrical substrate 101 is pressed in the longitudinal direction by the auxiliary substrate 103. Conversely, if the force for pressurizing the auxiliary base 103 is too weak, the contact surface in the circumferential direction between the auxiliary base 103 and the cylindrical base 101 may not be sufficiently adhered even when viewed microscopically. For this reason, the uniformity of the deposited film may not be sufficiently obtained.

上記理由により、補助基体103によって円筒状基体101が押圧されている圧力、つまり円筒状基体101と補助基体103が接触する部分において、単位面積あたりにかかる力を50kgf/cm以上、900kgf/cm以下とすることが好適である。より好ましくは、円筒状基体101と補助基体103が接触する部分において、単位面積あたりにかかる力を100kgf/cm以上、500kgf/cm以下とする。
補助基体103が円筒状基体101を押圧する圧力は、バネ106が補助基体103を加圧する圧力と補助基体103の自重により押圧する圧力との和と同等である。よって、補助基体103を加圧する圧力及び補助基体103の重量を調整することで、補助基体103が円筒状基体101を押圧する圧力を調整することが可能である。
For the above reasons, the pressure applied to the cylindrical substrate 101 by the auxiliary substrate 103, that is, the force applied per unit area at the portion where the cylindrical substrate 101 and the auxiliary substrate 103 are in contact is 50 kgf / cm 2 or more and 900 kgf / cm. It is preferable to set it to 2 or less. More preferably, the force per unit area is set to 100 kgf / cm 2 or more and 500 kgf / cm 2 or less in a portion where the cylindrical substrate 101 and the auxiliary substrate 103 are in contact with each other.
The pressure with which the auxiliary base 103 presses the cylindrical base 101 is equal to the sum of the pressure with which the spring 106 presses the auxiliary base 103 and the pressure with which the auxiliary base 103 presses due to its own weight. Therefore, by adjusting the pressure for pressurizing the auxiliary base 103 and the weight of the auxiliary base 103, the pressure at which the auxiliary base 103 presses the cylindrical base 101 can be adjusted.

また、バネ106は真空中、プラズマ中、高温中で使用可能なものなら特に制限はないが、バネ106を介しても接地接続できること、コストや取扱いの容易さから導電性材料からなることが好適である。
バネ106の材質としてはニッケル−クロム合金、チタン、ステンレスが好適である。
バネ106によって、補助基体103は円筒状基体101の長手方向に加圧されている。それにより、補助基体103は円筒状基体101へ押圧された状態となる。よって、円筒状基体101は補助基体103と全周に渡って隙間なく十分に接触し、円筒状基体101と補助基体103の接続部分において高周波電力に対して導通が十分に確保される。このことによって、円筒状基体101から補助基体103にかけてのプラズマから見た電位の均一性が十分に確保される。それにより、円筒状基体101の上端でのプラズマの均一性が向上し、堆積膜の均一性を向上することが可能となる。
The spring 106 is not particularly limited as long as it can be used in vacuum, plasma, or high temperature. However, the spring 106 is preferably made of a conductive material because it can be connected to the ground via the spring 106, and cost and handling are easy. It is.
As the material of the spring 106, nickel-chromium alloy, titanium, and stainless steel are suitable.
The auxiliary base 103 is pressed in the longitudinal direction of the cylindrical base 101 by the spring 106. Thereby, the auxiliary base 103 is pressed against the cylindrical base 101. Therefore, the cylindrical base 101 is in sufficient contact with the auxiliary base 103 over the entire circumference without any gap, and sufficient conduction with respect to the high-frequency power is ensured at the connecting portion between the cylindrical base 101 and the auxiliary base 103. As a result, the uniformity of the potential as seen from the plasma from the cylindrical substrate 101 to the auxiliary substrate 103 is sufficiently ensured. Thereby, the uniformity of the plasma at the upper end of the cylindrical substrate 101 is improved, and the uniformity of the deposited film can be improved.

また、搬送手段により搬送可能な、生産に供せられる円筒状基体保持装置の構成の一例として、図3(a)のような構成が好適である。
図3(a)は円筒状基体301を基体ホルダー302に装着し、円筒状基体301の上部には補助基体303が設置されている。さらに基体ホルダー302と補助基体303の間にバネ304が設置され、バネの上部には押圧板305が設けられている。バネ304の下部は補助基体303の一部と接するような構成となっている。このような構成とすることにより、基体ホルダー302の上部にネジやバネが突出せず、搬送手段の構成を簡易化することが可能となる。
Further, as an example of the configuration of the cylindrical substrate holding device that can be transported by the transporting unit and is used for production, the configuration as shown in FIG.
In FIG. 3A, a cylindrical base 301 is mounted on a base holder 302, and an auxiliary base 303 is installed on the cylindrical base 301. Further, a spring 304 is installed between the base holder 302 and the auxiliary base 303, and a pressing plate 305 is provided above the spring. The lower part of the spring 304 is configured to contact a part of the auxiliary base 303. By adopting such a configuration, a screw or a spring does not protrude above the base holder 302, and the configuration of the transport unit can be simplified.

さらに詳細に説明すると基体ホルダー302は円筒状基体301を貫通し、円筒状基体の下端で保持する構成となっており、補助基体303は円筒状基体の上端で保持される構成となっている。基体ホルダー302と補助基体303の間にはバネ304を設置し、更にその上に押圧板305を設置する。押圧板305は基体ホルダー302と嵌合、固定可能に設計されている。   More specifically, the base holder 302 penetrates the cylindrical base 301 and is held at the lower end of the cylindrical base, and the auxiliary base 303 is held at the upper end of the cylindrical base. A spring 304 is installed between the substrate holder 302 and the auxiliary substrate 303, and a pressing plate 305 is further installed thereon. The pressing plate 305 is designed to be fitted and fixed to the base holder 302.

バネ304を設置するための空間に関しては、図3(a)に示すように補助基体303の下部は円筒状基体301と直径を公差範囲内で同一とし、上部は円筒状基体301より直径を広くすることにより、バネ304を内蔵できるような構成としてもよい。また、図4(a)に示すように補助基体403は円筒状基体401と直径を公差範囲内で同一として、基体ホルダー402の上部の直径を細くすることにより、バネ404を内蔵できるような構成にしてもよい。   As for the space for installing the spring 304, as shown in FIG. 3A, the lower part of the auxiliary base 303 has the same diameter as the cylindrical base 301 within a tolerance range, and the upper part has a larger diameter than the cylindrical base 301. By doing so, it is good also as a structure which can incorporate the spring 304. FIG. Further, as shown in FIG. 4A, the auxiliary base 403 has the same diameter as that of the cylindrical base 401 within a tolerance range, and the diameter of the upper part of the base holder 402 can be reduced to incorporate the spring 404. It may be.

押圧板305によりバネ304を加圧し、押圧板305を基体ホルダー302と嵌合し、固定することによりバネ304は押圧板305と補助基体303によって、円筒状基体301の長手方向に蓄勢されている状態となる。これにより、補助基体303は円筒状基体301へ押圧された状態となる。よって、円筒状基体301は補助基体303と全周に渡って隙間なく十分に接触し、円筒状基体301と補助基体303との接続部分において高周波電力に対して導通が十分に確保される。このことによって、円筒状基体301から補助基体303にかけてのプラズマから見た電位の均一性が十分に確保される。これにより、円筒状基体301の上端でのプラズマの均一性が向上し、堆積膜の均一性を向上することが可能となる。   When the spring 304 is pressed by the pressing plate 305, and the pressing plate 305 is fitted to the base holder 302 and fixed, the spring 304 is stored in the longitudinal direction of the cylindrical base 301 by the pressing plate 305 and the auxiliary base 303. It becomes a state. As a result, the auxiliary base 303 is pressed against the cylindrical base 301. Therefore, the cylindrical base 301 is in sufficient contact with the auxiliary base 303 over the entire circumference without any gap, and sufficient conduction with respect to high-frequency power is ensured at the connection portion between the cylindrical base 301 and the auxiliary base 303. As a result, the uniformity of the potential seen from the plasma from the cylindrical substrate 301 to the auxiliary substrate 303 is sufficiently ensured. Thereby, the uniformity of the plasma at the upper end of the cylindrical substrate 301 is improved, and the uniformity of the deposited film can be improved.

バネ304の加圧状態を維持するための嵌合、固定部分の構成は特に制限はないが、設置の簡易さから図3(b)〜図3(d)に示すような構成にすることが好適である。図3(b)は押圧板305の模式的上視図、図3(c)は基体ホルダー302の模式的上視図、図3(d)は基体ホルダー302の模式的側面図である。押圧板305は内周面に爪306を有する構成とし、さらに基体ホルダー302は押圧板305の内周面に設けられた爪306と嵌合、固定可能な溝307を有する構成とする。基体ホルダー302に形成された溝307の形状は爪306と嵌合、固定可能であれば特に制限はない。しかし、加工の容易さから図3(d)に示すように基体ホルダー302の上端部から長手方向に形成された溝307aと、長手方向に形成された溝から延びる周方向に形成された溝307bとすることが好適である。   There are no particular restrictions on the configuration of the fitting and fixing portions for maintaining the pressurized state of the spring 304, but the configuration shown in FIGS. 3 (b) to 3 (d) can be used for ease of installation. Is preferred. FIG. 3B is a schematic top view of the pressing plate 305, FIG. 3C is a schematic top view of the base holder 302, and FIG. 3D is a schematic side view of the base holder 302. The pressing plate 305 is configured to have a claw 306 on the inner peripheral surface, and the base holder 302 is configured to have a groove 307 that can be fitted and fixed to the claw 306 provided on the inner peripheral surface of the pressing plate 305. The shape of the groove 307 formed in the substrate holder 302 is not particularly limited as long as it can be fitted and fixed to the claw 306. However, for ease of processing, as shown in FIG. 3D, a groove 307a formed in the longitudinal direction from the upper end portion of the base holder 302 and a groove 307b formed in the circumferential direction extending from the groove formed in the longitudinal direction. Is preferable.

これらを用いて、爪306が溝307aに沿うように押圧板305を円筒状基体301側に押し込み、バネ304を押圧板305によって縮める。その後、爪306が溝307bに沿うように押圧板305を回転させることで押圧板305を固定する。これにより、押圧板305でバネ304を加圧し、加圧状態を維持することが可能となり、バネ304は押圧板305と補助基体303とによって、円筒状基体301の長手方向に蓄勢されている状態となる。爪306及び溝307はバネ304を押圧板305と補助基体303とによって、円筒状基体301の長手方向に蓄勢されている状態にできればどのような構成でもよい。   Using these, the pressing plate 305 is pressed toward the cylindrical base 301 so that the claw 306 is along the groove 307 a, and the spring 304 is contracted by the pressing plate 305. Thereafter, the pressing plate 305 is fixed by rotating the pressing plate 305 so that the claw 306 extends along the groove 307b. As a result, it is possible to pressurize the spring 304 with the pressing plate 305 and maintain the pressurized state, and the spring 304 is stored in the longitudinal direction of the cylindrical substrate 301 by the pressing plate 305 and the auxiliary substrate 303. It becomes a state. The claw 306 and the groove 307 may have any configuration as long as the spring 304 can be stored in the longitudinal direction of the cylindrical base body 301 by the pressing plate 305 and the auxiliary base body 303.

しかしながら、バネ304を円筒状基体301の長手方向に均一に蓄勢されている状態にできることから、爪306及び溝307は周方向に2箇所以上形成されていることが好適である。
押圧板305はバネ304を加圧し、加圧状態を維持できる強度をもつものであれば特に制限はないが、押圧板305を介しても接地接続できるため導電性であることが好ましい。押圧板305の材質としては例えば、銅、アルミニウム、ニッケル、コバルト、鉄、クロム、モリブデン、チタンやこれらの合金が好適である。
However, since the spring 304 can be uniformly accumulated in the longitudinal direction of the cylindrical base body 301, it is preferable that the claw 306 and the groove 307 are formed at two or more locations in the circumferential direction.
The pressing plate 305 is not particularly limited as long as the pressing plate 305 pressurizes the spring 304 and has a strength capable of maintaining the pressed state. However, the pressing plate 305 is preferably conductive because it can be connected to the ground via the pressing plate 305. As the material of the pressing plate 305, for example, copper, aluminum, nickel, cobalt, iron, chromium, molybdenum, titanium, and alloys thereof are preferable.

バネ304は真空中、プラズマ中、高温中で使用可能なものなら特に制限はないが、バネ304を介しても接地接続できること、コストや取扱いの容易さから導電性材料からなることが好適である。
バネ304の材質としてはニッケル−クロム合金、チタン、ステンレスが好適である。
また、バネ304の個数や形状にも特に制限はなく、補助基体303と基体ホルダー302との間に入る直径の小さいバネを複数個、周方向に設置し、その上から押圧板305で押さえても良い。また、図3(e)に示すように基体ホルダー302を取り囲むようなひと繋がりのバネとすることで、設置が容易となり、補助基体303を円筒状基体301の長手方向に均一に加圧できるため、好適である。図3(e)は押圧板305を設置する前の円筒状基体保持装置の模式的上視図である。
The spring 304 is not particularly limited as long as it can be used in vacuum, plasma, or high temperature. However, it is preferable that the spring 304 is made of a conductive material because it can be connected to the ground via the spring 304, and cost and handling are easy. .
As the material of the spring 304, nickel-chromium alloy, titanium, and stainless steel are suitable.
Also, the number and shape of the springs 304 are not particularly limited, and a plurality of small diameter springs that enter between the auxiliary base body 303 and the base body holder 302 are installed in the circumferential direction and pressed by the pressing plate 305 from above. Also good. Further, as shown in FIG. 3 (e), a single spring that surrounds the substrate holder 302 facilitates installation, and the auxiliary substrate 303 can be uniformly pressed in the longitudinal direction of the cylindrical substrate 301. Is preferable. FIG. 3E is a schematic top view of the cylindrical substrate holding device before the pressing plate 305 is installed.

以上のように基体ホルダー302を取り囲むようなひと繋がりのバネを用い、ネジを使用しない構成とすることにより、円筒状基体保持装置の部品点数を少なくすることが可能となり、組み上げ時間の短縮が可能となる。
また、円筒状基体保持装置の部品点数を少なくできることで、従来これらの部品に堆積膜形成時に付着した膜を落とすために費やしていた清掃時間も合わせて短縮することが可能となる。
As described above, by using a spring that surrounds the base holder 302 and using no screws, the number of parts of the cylindrical base holder can be reduced, and the assembly time can be shortened. It becomes.
In addition, since the number of parts of the cylindrical substrate holding device can be reduced, it is possible to shorten the cleaning time that was conventionally spent for removing the film adhered to these parts when forming the deposited film.

「電子写真感光体形成装置」
図7はプラズマCVD法による電子写真感光体の形成装置の一例を示す模式的な概略図である。図7に示す電子写真感光体の形成装置の構成は以下の通りである。この装置は大別すると、投入装置7100、加熱装置7200、反応装置7300、冷却及び排出装置7400、これらの装置間で移動可能な搬送装置7500から構成されている。
搬送装置7500の搬送容器7502内には円筒状基体7508と補助基体7510が装着された基体ホルダー7509を保持する保持部7507及び上下移動用のシャフトを備えたチャッキング部7511が設けられている。なお、保持部7507は基体ホルダー7509をロック、アンロックすることで保持、非保持が可能となる。また、チャッキング部7511の上下移動はエアシリンダー(図示せず)により行われている。
"Electrophotographic photoreceptor forming device"
FIG. 7 is a schematic diagram showing an example of an apparatus for forming an electrophotographic photosensitive member by a plasma CVD method. The configuration of the electrophotographic photosensitive member forming apparatus shown in FIG. 7 is as follows. This device is roughly divided into a charging device 7100, a heating device 7200, a reaction device 7300, a cooling and discharging device 7400, and a transfer device 7500 movable between these devices.
In a transfer container 7502 of the transfer device 7500, a holding unit 7507 for holding a substrate holder 7509 on which a cylindrical substrate 7508 and an auxiliary substrate 7510 are mounted and a chucking unit 7511 having a shaft for vertical movement are provided. Note that the holding portion 7507 can be held or not held by locking and unlocking the base holder 7509. Further, the vertical movement of the chucking portion 7511 is performed by an air cylinder (not shown).

各装置の加熱容器7202、反応容器7302、冷却及び排出容器7402、搬送容器7502には容器の中を真空に排気する為の排気ポンプ7205、7305、7405、7505、排気バルブ7203、7303、7403、7503が設置されている。また、各容器7202、7302、7402、7502には接続可能な開閉ゲート7201、7301、7401、7501が設置されている。
また、投入容器7102には、開閉ゲート7101が設置され容器の中を大気状態のまま円筒状基体7508と補助基体7510が装着された基体ホルダー7509が設置できる。加熱容器7202には、加熱時に使用するガスを流入させる為のバルブ7204があり、冷却及び排出容器7402は、容器の中を大気に戻す為のリークバルブ7404が設けられている。反応容器7302は、反応ガス流出バルブ7304、7306、高周波マッチングボックス及び高周波電源(図示せず)が接続されている。搬送容器7502には、容器の中を真空に排気する為の排気バルブ7503、ゲート間を真空に排気する為の排気バルブ7512、ゲート間を大気圧に戻す為のリークバルブ7504が設けられている。さらに、搬送容器7502には円筒状基体7508と補助基体7510が装着された基体ホルダー7509を保持、移動させるためのチャッキング部7511、移動用レール7506が設けられている。投入容器7102、加熱容器7202、反応容器7302、冷却及び取り出し容器7402の数は、それぞれの処理時間に応じた組み合わせが選択される。また、搬送容器7502は、同時に複数の基体を移送出来るように複数設ける事も可能である。また、搬送装置7500は直線移動方式、円周方向の移動でも可能である。
In each apparatus, a heating container 7202, a reaction container 7302, a cooling and discharging container 7402, and a transport container 7502 are exhaust pumps 7205, 7305, 7405, 7505 for exhausting the inside of the container to a vacuum, exhaust valves 7203, 7303, 7403, 7503 is installed. Each container 7202, 7302, 7402, 7502 is provided with connectable open / close gates 7201, 7301, 7401, 7501.
In addition, a base holder 7509 equipped with a cylindrical base 7508 and an auxiliary base 7510 can be installed in the charging container 7102 with the open / close gate 7101 installed and the inside of the container in an atmospheric state. The heating container 7202 is provided with a valve 7204 for allowing a gas to be used at the time of heating to flow, and the cooling and discharging container 7402 is provided with a leak valve 7404 for returning the inside of the container to the atmosphere. The reaction vessel 7302 is connected to reaction gas outlet valves 7304 and 7306, a high-frequency matching box, and a high-frequency power source (not shown). The transfer container 7502 is provided with an exhaust valve 7503 for exhausting the inside of the container to a vacuum, an exhaust valve 7512 for exhausting the space between the gates to a vacuum, and a leak valve 7504 for returning the space between the gates to atmospheric pressure. . Further, the transport container 7502 is provided with a chucking portion 7511 and a moving rail 7506 for holding and moving a substrate holder 7509 mounted with a cylindrical substrate 7508 and an auxiliary substrate 7510. The number of input containers 7102, heating containers 7202, reaction containers 7302, cooling and extraction containers 7402 is selected in accordance with the processing time. A plurality of transfer containers 7502 can be provided so that a plurality of substrates can be transferred simultaneously. Further, the transfer device 7500 can be moved in a linear movement system or in a circumferential direction.

こうした、電子写真感光体の形成装置は例えば以下のように使用される。
作業者が投入容器7102に円筒状基体7508と補助基体7510が装着された基体ホルダー7509を設置した後に、自動搬送専用の搬送容器7502が、投入容器7102の上に移動する。その後、搬送容器7502は更に下降して搬送容器開閉ゲート7501が開閉ゲート7101に接続する。
Such an electrophotographic photosensitive member forming apparatus is used as follows, for example.
After the operator installs the substrate holder 7509 on which the cylindrical substrate 7508 and the auxiliary substrate 7510 are mounted in the charging container 7102, the transport container 7502 dedicated for automatic transport moves onto the charging container 7102. Thereafter, the transfer container 7502 is further lowered, and the transfer container opening / closing gate 7501 is connected to the opening / closing gate 7101.

双方の開閉ゲートを開き円筒状基体7508と補助基体7510が装着された基体ホルダー7509をチャッキング部7511により搬送容器7502の中に設置し、双方の開閉ゲートを閉じ搬送容器7502が所定の位置まで上昇する。この状態で搬送容器7502の中を排気ポンプ7505及び排気バルブ7503により搬送容器7502の下部側から排気を行い大気圧から所定の真空度になるまで排気する。所定の真空度に到達した時点で、搬送容器7502を、排気バルブ7203及び排気ポンプ7205により予め真空保持した加熱容器7202に移送する。   Both the open / close gates are opened, and the base holder 7509 mounted with the cylindrical base body 7508 and the auxiliary base body 7510 is installed in the transport container 7502 by the chucking portion 7511. To rise. In this state, the inside of the transfer container 7502 is evacuated from the lower side of the transfer container 7502 by the exhaust pump 7505 and the exhaust valve 7503 and is exhausted from atmospheric pressure to a predetermined vacuum level. When a predetermined degree of vacuum is reached, the transfer container 7502 is transferred to a heating container 7202 that is previously held in vacuum by an exhaust valve 7203 and an exhaust pump 7205.

以降、後述する方法で加熱容器7202、反応容器7302の順に円筒状基体7508と補助基体7510が装着された基体ホルダー7509の受け渡しが行われる。加熱容器7202の中では円筒状基体7508が所定の温度に加熱され、反応容器7302の中では円筒状基体7202の上に所定の手段で堆積膜の形成が行なわれる。
その後、排気バルブ7403及び排気ポンプ7405により予め真空保持された冷却及び排出容器7402に移送され、後述する方法で円筒状基体7508と補助基体7510が装着された基体ホルダー7509が冷却及び排出容器7402の中に設置される。円筒状基体7508と補助基体7510が装着された基体ホルダー7509は冷却及び排出容器7402の中で所定の温度になるまで冷却される。その後、冷却及び排出容器7402の中が大気圧になるまでリーク用ガスをリークバルブ7404から流した後、円筒状基体7508と補助基体7510が装着された基体ホルダー7509が排出される。
Thereafter, the substrate holder 7509 to which the cylindrical substrate 7508 and the auxiliary substrate 7510 are attached is transferred in the order of the heating container 7202 and the reaction container 7302 by a method described later. In the heating container 7202, the cylindrical substrate 7508 is heated to a predetermined temperature, and in the reaction container 7302, a deposited film is formed on the cylindrical substrate 7202 by a predetermined means.
Thereafter, the substrate holder 7509 is transferred to the cooling and discharging container 7402, which has been previously held in vacuum by the exhaust valve 7403 and the exhaust pump 7405, and the cylindrical base 7508 and the auxiliary base 7510 are mounted by the method described later. Installed inside. A substrate holder 7509 mounted with a cylindrical substrate 7508 and an auxiliary substrate 7510 is cooled in a cooling and discharge container 7402 until a predetermined temperature is reached. Thereafter, a leakage gas is allowed to flow from the leak valve 7404 until the inside of the cooling and discharge container 7402 reaches atmospheric pressure, and then the substrate holder 7509 equipped with the cylindrical substrate 7508 and the auxiliary substrate 7510 is discharged.

搬送容器7502から加熱容器7202、反応容器7302、冷却及び排出容器7402に円筒状基体7508と補助基体7510が装着された基体ホルダー7509を設置する方法は、まず、搬送装置7500が、所定の容器上に移動する。そして、搬送容器開閉ゲート7501を、所定の開閉ゲート7201、7301、7401のいずれかに接続させる。
その後排気ポンプ7505、排気バルブ7512にて搬送容器開閉ゲート7501と所定の開閉ゲート7201、7301、7401との間を真空にする。尚、搬送容器7502内が所定の真空度で無い場合は、排気バルブ7503にて排気を行う。
A method of installing a substrate holder 7509 mounted with a cylindrical substrate 7508 and an auxiliary substrate 7510 from a transfer container 7502 to a heating container 7202, a reaction container 7302, and a cooling and discharge container 7402 is as follows. Move to. Then, the transfer container opening / closing gate 7501 is connected to one of predetermined opening / closing gates 7201, 7301, 7401.
Thereafter, the exhaust pump 7505 and the exhaust valve 7512 are evacuated between the transfer container opening / closing gate 7501 and the predetermined opening / closing gates 7201, 7301, 7401. If the inside of the transfer container 7502 is not at a predetermined degree of vacuum, the exhaust valve 7503 is evacuated.

搬送容器開閉ゲート7501と所定の開閉ゲート7201、7301、7401との間が所定の真空度に到達した段階で、双方の開閉ゲートを開く。そして、チャッキング部7511が下降して円筒状基体7508と補助基体7510が装着された基体ホルダー7509を不図示の受け台に設置する。その後、保持部7507をアンロックして、チャッキング部7511を上昇させて搬送容器7502の中に格納し、双方の開閉ゲートを閉じる。その後、リークバルブ7504からリーク用ガスを流し、搬送容器開閉ゲート7501と所定の開閉ゲート7201、7301、7401との間を大気圧にする。その後、搬送容器開閉ゲート7501は所定の開閉ゲート7201、7301、7401から切り離される。   When the predetermined vacuum degree is reached between the transfer container opening / closing gate 7501 and the predetermined opening / closing gates 7201, 7301, 7401, both opening / closing gates are opened. Then, the chucking portion 7511 descends and the base holder 7509 mounted with the cylindrical base 7508 and the auxiliary base 7510 is placed on a cradle (not shown). Thereafter, the holding portion 7507 is unlocked, the chucking portion 7511 is raised and stored in the transfer container 7502, and both opening / closing gates are closed. Thereafter, a leakage gas is allowed to flow from the leak valve 7504 to bring the pressure between the transfer container opening / closing gate 7501 and the predetermined opening / closing gates 7201, 7301, 7401 to atmospheric pressure. Thereafter, the transfer container opening / closing gate 7501 is disconnected from the predetermined opening / closing gates 7201, 7301, 7401.

これらの工程は全て自動制御によって行われる。
上記のような搬送を行う場合、円筒状基体の設置方法及び加圧手段としては、図3に示すように基体ホルダー302の上部にネジやバネが突出しない構成としたほうが、チャキング部7511の構成を簡易化することが可能となるため、好適である。
All these processes are performed by automatic control.
When carrying out the above-described conveyance, the configuration of the chucking portion 7511 is such that the screw and spring do not protrude from the upper portion of the substrate holder 302 as shown in FIG. Can be simplified, which is preferable.

次に電子写真感光体の堆積膜の形成方法及び形成装置について図8のプラズマCVD装置の模式的な構成図を用いて更に詳細に説明する。
この装置は大別すると、真空気密可能で減圧可能な反応容器8110を有する堆積装置8100、原料ガス供給装置8200、および、反応容器8110の中を減圧する為の排気装置(図示せず)から構成されている。反応容器8110の中の受け台8117には円筒状基体8111と補助基体8113が装着された基体ホルダー8112が設置されている。受け台8117は接地接続されている下壁8118の上に設けられているため、下壁8118と同様に、接地接続されている。さらに接地接続されているゲートバルブを兼ねる上壁8119には導電性の棒状体8120が取り付けられており棒状体8120の片端は基体ホルダー8112の上端に押し当てられている。これにより、基体ホルダー8112は上下端で接地接続されている。
Next, a method and an apparatus for forming a deposited film on an electrophotographic photoreceptor will be described in more detail with reference to the schematic configuration diagram of the plasma CVD apparatus in FIG.
This apparatus is roughly divided into a deposition apparatus 8100 having a reaction vessel 8110 that can be vacuum-tight and depressurized, a source gas supply apparatus 8200, and an exhaust device (not shown) for depressurizing the inside of the reaction container 8110. Has been. A cradle 8117 in the reaction vessel 8110 is provided with a substrate holder 8112 on which a cylindrical substrate 8111 and an auxiliary substrate 8113 are mounted. Since the cradle 8117 is provided on the lower wall 8118 that is grounded, the cradle 8117 is grounded similarly to the lower wall 8118. Further, a conductive rod 8120 is attached to the upper wall 8119 that also serves as a gate valve connected to the ground, and one end of the rod 8120 is pressed against the upper end of the substrate holder 8112. Thus, the base holder 8112 is grounded at the upper and lower ends.

また、補助基体8113と基体ホルダー8112の間にバネ8116が設置され、バネ8116の上部には押圧板8115が設けられている。押圧板8115によりバネ8116を加圧し、押圧板8115を基体ホルダー8112と嵌合させることによりバネ8116は押圧板8115と補助基体8113とによって、円筒状基体8111の長手方向に蓄勢されている状態となる。これにより、補助基体8113は円筒状基体8111へ押圧された状態となる。よって、円筒状基体8111は補助基体8113と全周に渡って隙間なく十分に接触し、円筒状基体8111と補助基体8113との接続部分において高周波電力に対して導通が十分に確保される。このことによって、円筒状基体8111から補助基体8113にかけてのプラズマから見た電位の均一性が十分に確保される。   A spring 8116 is provided between the auxiliary base 8113 and the base holder 8112, and a pressing plate 8115 is provided above the spring 8116. When the spring 8116 is pressed by the pressing plate 8115 and the pressing plate 8115 is fitted to the base holder 8112, the spring 8116 is accumulated in the longitudinal direction of the cylindrical base 8111 by the pressing plate 8115 and the auxiliary base 8113. It becomes. Thus, the auxiliary base 8113 is pressed against the cylindrical base 8111. Therefore, the cylindrical base 8111 is in sufficient contact with the auxiliary base 8113 over the entire circumference without any gap, and sufficient conduction with respect to high-frequency power is ensured at the connection portion between the cylindrical base 8111 and the auxiliary base 8113. As a result, the uniformity of the potential seen from the plasma from the cylindrical substrate 8111 to the auxiliary substrate 8113 is sufficiently ensured.

また、円筒状基体8111と基体ホルダー8112の接続部分においても上記同様、高周波電力に対するアース面が不連続となることが低減されている。
基体ホルダー8112の中には基体加熱用ヒーター8114が設置されている。また、反応容器8110の中には原料ガス導入管8121が設置されている。さらに円筒状基体8111を取り囲むように配置された電極8122には高周波マッチングボックス8123を介して高周波電源8124が接続されている。
In addition, in the connecting portion between the cylindrical base 8111 and the base holder 8112, the discontinuity of the ground plane for high-frequency power is reduced as described above.
A substrate heating heater 8114 is installed in the substrate holder 8112. In addition, a source gas introduction pipe 8121 is installed in the reaction vessel 8110. Further, a high frequency power source 8124 is connected to an electrode 8122 disposed so as to surround the cylindrical base 8111 via a high frequency matching box 8123.

原料ガス供給装置8200は、原料ガスボンベ8221〜8225、バルブ8231〜8235、圧力調整器8261〜8265、流入バルブ8241〜8245、流出バルブ8251〜8255及びマスフローコントローラ8211〜8215から構成されている。原料ガスとは、例えばSiH,H,CH,NO,Bである。原料ガス供給装置8200は補助バルブ8260を介して反応容器8110の中の原料ガス導入管8121に接続されている。
不図示の排気装置は例えば、メカニカルブースターポンプやロータリーポンプなどで構成される。
The source gas supply device 8200 includes source gas cylinders 8221 to 8225, valves 8231 to 8235, pressure regulators 8261 to 8265, inflow valves 8241 to 8245, outflow valves 8251 to 8255, and mass flow controllers 8211 to 8215. The source gas is, for example, SiH 4 , H 2 , CH 4 , NO, B 2 H 6 . The source gas supply device 8200 is connected to a source gas introduction pipe 8121 in the reaction vessel 8110 via an auxiliary valve 8260.
An unillustrated exhaust device is composed of, for example, a mechanical booster pump or a rotary pump.

次にこの装置を使った堆積膜の形成方法について説明する。まず、あらかじめ脱脂洗浄した円筒状基体8111を上述したようにセットし、図7で説明した搬送装置を用いて、反応容器8110の中の受け台8117に設置する。反応容器8110の中は排気バルブ及び排気ポンプ(図示せず)により予め真空保持されている。また、基体加熱用ヒーター8114には予め電力を供給し、加熱炉で加熱された円筒状基体8111が例えば50℃から350℃の所望の温度に保たれるよう加熱する。このとき、ガス供給装置8200より、Ar、He等の不活性ガスを反応容器8110に供給して、不活性ガス雰囲気中で加熱を行うこともできる。   Next, a method for forming a deposited film using this apparatus will be described. First, the cylindrical substrate 8111 that has been degreased and washed in advance is set as described above, and is installed on the cradle 8117 in the reaction vessel 8110 using the transfer device described in FIG. The inside of the reaction vessel 8110 is previously held in vacuum by an exhaust valve and an exhaust pump (not shown). In addition, power is supplied to the substrate heating heater 8114 in advance, and the cylindrical substrate 8111 heated in the heating furnace is heated so as to be maintained at a desired temperature of, for example, 50 ° C. to 350 ° C. At this time, an inert gas such as Ar or He can be supplied from the gas supply device 8200 to the reaction vessel 8110 and heated in an inert gas atmosphere.

次に、ガス供給装置8200より堆積膜形成に用いるガスを反応容器8110に供給する。すなわち、補助バルブ8260を開けて、必要に応じバルブ8231〜8235、流入バルブ8241〜8245、流出バルブ8251〜8255を開き、マスフローコントローラ8211〜8215の流量設定を行う。各マスフローコントローラ8211〜8215の流量が安定したところで、真空計8125の表示を見ながらメインバルブ8126を操作し、反応容器8110の中の圧力が所望の圧力になるように調整する。反応容器8110の中の圧力を調整するためには例えばメカニカルブースターポンプの回転数を操作することやメインバルブ8126の開度を操作することが挙げられる。   Next, a gas used to form a deposited film is supplied from the gas supply device 8200 to the reaction vessel 8110. That is, the auxiliary valve 8260 is opened, and the valves 8231 to 8235, the inflow valves 8241 to 8245, and the outflow valves 8251 to 8255 are opened as necessary to set the flow rate of the mass flow controllers 8211 to 8215. When the flow rate of each of the mass flow controllers 8211 to 8215 is stabilized, the main valve 8126 is operated while viewing the display of the vacuum gauge 8125 to adjust the pressure in the reaction vessel 8110 to a desired pressure. In order to adjust the pressure in the reaction vessel 8110, for example, the rotational speed of a mechanical booster pump or the opening degree of the main valve 8126 can be controlled.

所望の圧力が得られたところで高周波電源8124より高周波電力を印加すると同時に高周波マッチングボックス8123を操作し、反応容器8110の中にプラズマ放電を生起する。堆積膜形成に用いるガスは高周波電力により励起する。その後、速やかに高周波電力を所望の電力に調整し、堆積膜の形成を行う。
所定の堆積膜の形成が終わったところで、高周波電力の印加を停止し、バルブ8231〜8235、流入バルブ8241〜8245、流出バルブ8251〜8255、および補助バルブ8260を閉じ、原料ガスの供給を終える。同時に、メインバルブ8126を全開にし、反応容器8110の中を1Pa以下の圧力まで排気する。
以上で、堆積層の形成を終えるが、複数の堆積層を形成する場合、再び上記の手順を繰り返してそれぞれの層を形成すれば良い。すべての堆積膜形成が終わったのち、メインバルブ8126を閉じ、図7で説明した搬送装置を用いて、円筒状基体8111を取り出す。
When a desired pressure is obtained, high-frequency power is applied from the high-frequency power source 8124, and at the same time, the high-frequency matching box 8123 is operated to generate plasma discharge in the reaction vessel 8110. The gas used for forming the deposited film is excited by high frequency power. Thereafter, the high frequency power is quickly adjusted to a desired power, and a deposited film is formed.
When the formation of the predetermined deposited film is finished, the application of the high frequency power is stopped, the valves 8231 to 8235, the inflow valves 8241 to 8245, the outflow valves 8251 to 8255, and the auxiliary valve 8260 are closed, and the supply of the raw material gas is finished. At the same time, the main valve 8126 is fully opened and the reaction vessel 8110 is evacuated to a pressure of 1 Pa or less.
The formation of the deposited layers is completed as described above. When a plurality of deposited layers are formed, the above procedure is repeated again to form each layer. After all the deposited films are formed, the main valve 8126 is closed, and the cylindrical substrate 8111 is taken out using the transfer device described with reference to FIG.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって何ら限定されるものではない。
〔実施例1〕
図8に示す堆積膜形成装置を用いて、Al−Mg系合金5052よりなる外径84mm、長さ381mm、肉厚3mmの円筒状基体の上に、表1に示す条件で図9に示す層構成のアモルファスシリコンからなる電子写真感光体の形成を行った。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by these.
[Example 1]
Using the deposited film forming apparatus shown in FIG. 8, on the cylindrical substrate having an outer diameter of 84 mm, a length of 381 mm, and a thickness of 3 mm made of an Al—Mg alloy 5052, the layers shown in FIG. 9 under the conditions shown in Table 1. An electrophotographic photosensitive member made of amorphous silicon having a structure was formed.

図9において符号901は円筒状基体、902は下部阻止層、903は光導電層、904は上部阻止層、905は表面層をそれぞれ示す。
本実施例では円筒状基体の設置方法及び加圧手段を図1に示す構成にした。
本実施例では補助基体103の外径は84mmのものを用いた。基体ホルダー102、補助基体103の材質はAl−Mg系合金5052を用いた。
また、本実施例では、ネジ105の材質はSUS304を用いた。ネジ105は補助基体103の周方向に90度間隔で4個設置した。
In FIG. 9, reference numeral 901 denotes a cylindrical substrate, 902 denotes a lower blocking layer, 903 denotes a photoconductive layer, 904 denotes an upper blocking layer, and 905 denotes a surface layer.
In this embodiment, the cylindrical base body installation method and pressurizing means are configured as shown in FIG.
In this embodiment, the auxiliary base 103 has an outer diameter of 84 mm. The material of the base holder 102 and the auxiliary base 103 was Al-Mg alloy 5052.
In this embodiment, the material of the screw 105 is SUS304. Four screws 105 were installed at intervals of 90 degrees in the circumferential direction of the auxiliary base 103.

さらにネジ105と補助基体103との間に弾性部材であるバネ106を設けた。バネ106の材質はSUS304を用いた。
補助基体103と円筒状基体101の間に圧力測定フィルム(富士フイルム社製、プレスケール:登録商標)を挟み込み、予め、ネジ105の締め付けトルクと補助基体103によって円筒状基体101が押圧されている圧力の関係を測定した。そして、ネジ105の締め付けトルクを調整し、補助基体103によって円筒状基体101が押圧されている圧力を300kgf/cm2とした。
Further, a spring 106 as an elastic member is provided between the screw 105 and the auxiliary base 103. The material of the spring 106 was SUS304.
A pressure measurement film (manufactured by Fujifilm, prescale: registered trademark) is sandwiched between the auxiliary substrate 103 and the cylindrical substrate 101, and the cylindrical substrate 101 is pressed in advance by the tightening torque of the screw 105 and the auxiliary substrate 103. The pressure relationship was measured. Then, the tightening torque of the screw 105 was adjusted, and the pressure at which the cylindrical substrate 101 was pressed by the auxiliary substrate 103 was set to 300 kgf / cm 2 .

Figure 2011257657
Figure 2011257657

作製した電子写真感光体をキヤノン社製iRC6800をマイナス帯電で反転現像に改造した複写機に設置し、電子写真感光体の端部領域でのVdムラについて評価を行った。
(端部領域Vdムラ)
主帯電器の電流値を−1000μAの条件にして電子写真感光体を帯電した。この時、表面電位計により電子写真感光体の暗部表面電位を測定する。電子写真感光体の補助基体側の端部から10cmの領域を軸方向は2cmおき、周方向は36°おきに暗部表面電位を測定し、得られた各位置の暗部表面電位の最大値と最小値の電位差を端部領域Vdムラとして評価した。評価は、後述する比較例1で得られた結果を100とした時の、相対評価で実施した。つまり、評価結果は数字が小さいほど良い。
The produced electrophotographic photosensitive member was placed in a copying machine in which iRC6800 manufactured by Canon was modified to reverse development by negative charging, and Vd unevenness in the end region of the electrophotographic photosensitive member was evaluated.
(Uneven end region Vd)
The electrophotographic photosensitive member was charged under the condition that the current value of the main charger was −1000 μA. At this time, the surface potential of the dark part of the electrophotographic photosensitive member is measured with a surface potential meter. The dark portion surface potential is measured every 2 cm in the axial direction and every 36 ° in the circumferential direction in an area 10 cm from the end of the auxiliary substrate side of the electrophotographic photosensitive member, and the maximum and minimum values of the dark portion surface potential at each position obtained are measured. The potential difference of the values was evaluated as the end region Vd unevenness. Evaluation was carried out by relative evaluation when the result obtained in Comparative Example 1 described later was taken as 100. In other words, the smaller the number, the better the evaluation result.

そして、以下に示す基準でランク付けを行った。
ランクB以上で本発明の効果が得られていると考える。
AA ・・・30以上50未満
A ・・・50以上70未満
B ・・・70以上90未満
C ・・・90以上110未満
D ・・・110以上
評価結果を表2に示す。
And ranking was performed according to the following criteria.
It is considered that the effect of the present invention is obtained at rank B or higher.
AA ... 30 or more and less than 50 A ... 50 or more and less than 70 B ... 70 or more and less than 90 C ... 90 or more and less than 110 D ... 110 or more Evaluation results are shown in Table 2.

〔実施例2〕
本実施例では円筒状基体の設置方法及び加圧手段を図2に示す構成にしたこと以外は
実施例1と同様に、電子写真感光体の形成を行った。
反応容器の中の受け台207に円筒状基体201と補助基体203が装着された基体ホルダー202をセットした後、バネ209を介して押え板206が接続されている上壁205をセットした。このようにして、バネ209及び押え板206によって補助基体203が円筒状基体201の長手方向に加圧されている状態とした。
[Example 2]
In this example, an electrophotographic photosensitive member was formed in the same manner as in Example 1 except that the installation method of the cylindrical substrate and the pressing means were configured as shown in FIG.
After setting the substrate holder 202 with the cylindrical substrate 201 and the auxiliary substrate 203 mounted on the cradle 207 in the reaction vessel, the upper wall 205 to which the holding plate 206 was connected via the spring 209 was set. In this way, the auxiliary base 203 is pressed in the longitudinal direction of the cylindrical base 201 by the spring 209 and the presser plate 206.

押え板206及び補助基体203の自重による加圧も考慮して、バネ定数の異なるバネの中から最適なバネ定数のものを選択し、さらにバネ209の押し込み長さを調整した。そして、補助基体203によって円筒状基体201が押圧されている圧力を300kgf/cm2とした。
また、バネ209及び押え板206の材質はSUS304を用いた。
本実施例においても実施例1と同様の評価を行った。その評価結果を表2に示す。
Considering the pressurization due to the weight of the holding plate 206 and the auxiliary base 203, the spring having the optimum spring constant was selected from springs having different spring constants, and the pushing length of the spring 209 was adjusted. The pressure at which the cylindrical substrate 201 was pressed by the auxiliary substrate 203 was set to 300 kgf / cm 2 .
The material of the spring 209 and the presser plate 206 is SUS304.
In this example, the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 2.

〔実施例3〕
図6に示すように弾性部材を設けずにネジ604によって、補助基体603を加圧したこと及び補助基体603の材質をSUS304にしたこと以外は実施例1と同様に、電子写真感光体の形成を行った。
ネジ604の締め付けトルクを調整し、補助基体603によって円筒状基体601が押圧されている圧力を300kgf/cm2とした。
本実施例においても実施例1と同様の評価を行った。その評価結果を表2に示す。
Example 3
As shown in FIG. 6, the electrophotographic photosensitive member is formed in the same manner as in Example 1 except that the auxiliary base 603 is pressed with screws 604 without providing an elastic member and the material of the auxiliary base 603 is SUS304. Went.
The tightening torque of the screw 604 was adjusted, and the pressure at which the cylindrical substrate 601 was pressed by the auxiliary substrate 603 was set to 300 kgf / cm 2 .
In this example, the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 2.

〔比較例1〕
円筒状基体の設置方法を図5(a)に示す構成としたこと以外は実施例1と同様に、電子写真感光体の形成を行った。
本比較例においても実施例1と同様の評価を行った。その評価結果を表2に示す。
[Comparative Example 1]
An electrophotographic photosensitive member was formed in the same manner as in Example 1 except that the cylindrical substrate was installed as shown in FIG.
In this comparative example, the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 2.

〔比較例2〕
円筒状基体の設置方法を図5(b)に示す構成としたこと以外は実施例1と同様に、電子写真感光体の形成を行った。
本比較例では、押え爪505は補助基体503の周方向に90度間隔で4個設置した。押え爪505及びネジ506の材質はSUS304を用いた。
押え爪505及びネジ506を設置した状態で、補助基体503からネジ506の頭頂部までの長さ(図5(b)に示すA)は5mm、押え爪505の長さ(図5(b)に示すB)は20mmとした。
本比較例においても実施例1と同様の評価を行った。その評価結果を表2に示す。
[Comparative Example 2]
An electrophotographic photosensitive member was formed in the same manner as in Example 1 except that the cylindrical substrate was installed as shown in FIG.
In this comparative example, four presser claws 505 are installed at intervals of 90 degrees in the circumferential direction of the auxiliary base 503. SUS304 was used for the material of the presser claw 505 and the screw 506.
With the presser claw 505 and the screw 506 installed, the length from the auxiliary base 503 to the top of the screw 506 (A shown in FIG. 5B) is 5 mm, and the length of the presser claw 505 (FIG. 5B). B) shown in FIG.
In this comparative example, the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 2.

〔比較例3〕
円筒状基体の設置方法を図5(c)に示す構成としたこと以外は実施例1と同様に、電子写真感光体の形成を行った。
本比較例では、板バネ507は補助基体503の周方向に90度間隔で4個設置した。板バネ507の材質はSUS304を用いた。
本比較例においても実施例1と同様の評価を行った。その評価結果を表2に示す。
[Comparative Example 3]
An electrophotographic photosensitive member was formed in the same manner as in Example 1 except that the cylindrical substrate was installed in the configuration shown in FIG.
In this comparative example, four leaf springs 507 were installed at intervals of 90 degrees in the circumferential direction of the auxiliary base 503. The material of the leaf spring 507 was SUS304.
In this comparative example, the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 2.

Figure 2011257657
表2から、本発明による各実施例は端部領域Vdムラが改善されており、本発明の効果が明らかになった
Figure 2011257657
From Table 2, each embodiment according to the present invention has improved end region Vd unevenness, and the effects of the present invention became clear.

〔実施例4〜9〕
図1に示すネジ105の締め付けトルクを変更することにより、補助基体103によって円筒状基体101が押圧されている圧力を表3のように変更すること以外は実施例1と同様に、電子写真感光体の形成を行った。
本実施例においても実施例1と同様の評価を行った。その評価結果を表3に示す。
[Examples 4 to 9]
The electrophotographic photosensitive member is the same as in Example 1 except that the pressure at which the cylindrical substrate 101 is pressed by the auxiliary substrate 103 is changed as shown in Table 3 by changing the tightening torque of the screw 105 shown in FIG. The body was formed.
In this example, the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 3.

Figure 2011257657
表3から、補助基体によって円筒状基体が押圧されている圧力を50kgf/cm2以上、900kgf/cm2以下、さらには100kgf/cm2以上、500kgf/cm2以下にすることで、端部領域Vdムラが改善されており、本発明の効果が明らかになった。
Figure 2011257657
From Table 3, the pressure cylindrical substrate by an auxiliary substrate is pressed 50 kgf / cm 2 or more, 900 kgf / cm 2 or less, further 100 kgf / cm 2 or more, by the following 500 kgf / cm 2, the end regions Vd unevenness was improved, and the effect of the present invention became clear.

〔実施例10〕
円筒状基体の設置方法及び加圧手段を図3(a)〜(d)に示す構成にし、図7に示す電子写真感光体の形成装置を用いて前述した手順に従って円筒状基体7508と補助基体7510が装着された基体ホルダー7509の搬送を行った。そして、反応容器7302の中に円筒状基体7508と補助基体7510が装着された基体ホルダー7509を設置したこと以外は実施例1と同様に、電子写真感光体の形成を行った。
Example 10
The cylindrical base body 7508 and the auxiliary base body are set in accordance with the above-described procedure using the electrophotographic photosensitive member forming apparatus shown in FIG. The substrate holder 7509 mounted with 7510 was transported. Then, an electrophotographic photosensitive member was formed in the same manner as in Example 1 except that a substrate holder 7509 mounted with a cylindrical substrate 7508 and an auxiliary substrate 7510 was installed in the reaction vessel 7302.

本実施例では、押圧板305の材質はSUS304を用いた。バネ304はニッケル−クロム合金(スペシャルメタル社製、インコネル:登録商標)を用いた。
また、押圧板305の内周面に設けられた爪306及び基体ホルダー302に形成された溝307は周方向に90度間隔で4箇所とした。さらに基体ホルダー302に形成された溝307の形状は図3(d)のように基体ホルダー302の上端部から長手方向に形成された溝307aと、長手方向に形成された溝から延びる周方向に形成された溝307bとした。
In this embodiment, SUS304 is used as the material of the pressing plate 305. As the spring 304, a nickel-chromium alloy (special metal, Inconel: registered trademark) was used.
Further, the claw 306 provided on the inner peripheral surface of the pressing plate 305 and the grooves 307 formed in the base holder 302 are provided at four locations at intervals of 90 degrees in the circumferential direction. Further, as shown in FIG. 3D, the shape of the groove 307 formed in the substrate holder 302 is a groove 307a formed in the longitudinal direction from the upper end portion of the substrate holder 302 and a circumferential direction extending from the groove formed in the longitudinal direction. The formed groove 307b was used.

バネ304は基体ホルダー302を取り囲むようなひと繋がりのバネとした。
補助基体303の自重による加圧も考慮して、バネ定数の異なるバネの中から最適なバネ定数のものを選択し、さらに基体ホルダー302に形成された溝307aの長さを変更することで、バネ304の押し込み長さを調整した。そして、補助基体303によって円筒状基体301が押圧されている圧力を300kgf/cm2とした。
本実施例においても実施例1と同様の評価を行った。その評価結果を表4に示す。
The spring 304 is a single spring that surrounds the base holder 302.
Considering the pressurization due to the self-weight of the auxiliary base 303, selecting an optimal spring constant from springs having different spring constants, and further changing the length of the groove 307a formed in the base holder 302, The pushing length of the spring 304 was adjusted. The pressure at which the cylindrical substrate 301 was pressed by the auxiliary substrate 303 was 300 kgf / cm 2 .
In this example, the same evaluation as in Example 1 was performed. The evaluation results are shown in Table 4.

Figure 2011257657
表4から、本発明による実施例は端部領域Vdムラが改善されており、本発明の効果が明らかになった。
Figure 2011257657
From Table 4, the end region Vd unevenness was improved in the examples according to the present invention, and the effects of the present invention became clear.

101‥‥円筒状基体
102‥‥基体ホルダー
103‥‥補助基体
104‥‥基体加熱用ヒーター
105‥‥ネジ
106‥‥バネ
107‥‥受け台
108‥‥下壁
109‥‥上壁
110‥‥棒状体

101 ... Cylindrical substrate 102 ... Substrate holder 103 ... Auxiliary substrate 104 ... Substrate heating heater 105 ... Screw 106 ... Spring 107 ... Pedestal 108 ... Lower wall 109 ... Upper wall 110 ... Bar shape body

Claims (7)

基体ホルダーに円筒状基体、補助基体を順に設置し、前記円筒状基体と前記補助基体が装着された前記基体ホルダーを減圧可能な反応容器の中の接地接続された受け台に設置し、前記反応容器の中に原料ガスを導入し、前記円筒状基体を取り囲むように設置された電極に高周波電力を印加することにより、前記円筒状基体の上に堆積膜の形成を行う電子写真感光体の形成方法において、
前記補助基体を加圧手段により前記円筒状基体の長手方向へ加圧し、前記補助基体を前記円筒状基体へ押圧した状態で堆積膜の形成を行うことを特徴とする電子写真感光体の形成方法。
A cylindrical substrate and an auxiliary substrate are installed in this order on a substrate holder, and the substrate holder on which the cylindrical substrate and the auxiliary substrate are mounted is installed on a pedestal connected to the ground in a depressurizable reaction vessel, and the reaction Formation of an electrophotographic photosensitive member for forming a deposited film on the cylindrical substrate by introducing a source gas into the container and applying high frequency power to an electrode installed so as to surround the cylindrical substrate. In the method
A method of forming an electrophotographic photosensitive member, wherein the auxiliary substrate is pressed in a longitudinal direction of the cylindrical substrate by a pressing means, and the deposited film is formed in a state where the auxiliary substrate is pressed against the cylindrical substrate. .
前記補助基体によって前記円筒状基体が押圧されている圧力を50kgf/cm2以上、900kgf/cm2以下とすることを特徴とする請求項1に記載の電子写真感光体の形成方法。 The pressure the cylindrical substrate by the auxiliary base is pressed 50 kgf / cm 2 or more, the method of forming the electrophotographic photosensitive member according to claim 1, characterized in that a 900 kgf / cm 2 or less. 前記加圧手段が前記補助基体をネジ又は弾性部材によって加圧することを特徴とする請求項1又は2に記載の電子写真感光体の形成方法。   The method of forming an electrophotographic photosensitive member according to claim 1, wherein the pressurizing unit pressurizes the auxiliary substrate with a screw or an elastic member. 減圧可能な反応容器、円筒状基体を保持した円筒状基体保持装置が設置されるための接地接続された受け台、前記反応容器の中に原料ガスを供給する手段、前記反応容器の中を排気する手段、高周波電力により前記原料ガスを励起する手段、とを備えたプラズマCVD法による電子写真感光体の形成装置において、
前記円筒状基体保持装置は、前記円筒状基体を貫通し前記円筒状基体の下端を保持する基体ホルダーと、前記円筒状基体の上部に設置される補助基体と、前記基体ホルダーと嵌合、固定される押圧板とを有し、前記基体ホルダーと前記補助基体と前記押圧板とによって作られる空間に前記補助基体と前記押圧板とに押圧されることよって、前記円筒状基体の長手方向に蓄勢されているバネを有することを特徴とする電子写真感光体の形成装置。
A pressure-reducible reaction vessel, a grounded cradle for installing a cylindrical substrate holding device holding a cylindrical substrate, means for supplying a raw material gas into the reaction vessel, and exhausting the reaction vessel In an apparatus for forming an electrophotographic photosensitive member by a plasma CVD method, comprising: a means for exciting the source gas with high-frequency power;
The cylindrical substrate holding device includes a substrate holder that passes through the cylindrical substrate and holds the lower end of the cylindrical substrate, an auxiliary substrate installed on the upper portion of the cylindrical substrate, and is fitted and fixed to the substrate holder. A pressure plate that is pressed by the auxiliary substrate and the pressing plate in a space formed by the substrate holder, the auxiliary substrate, and the pressing plate, thereby accumulating in the longitudinal direction of the cylindrical substrate. An apparatus for forming an electrophotographic photosensitive member, comprising a spring that is biased.
前記押圧板は内周面に爪を有し、前記基体ホルダーは前記爪が嵌合、固定可能な溝を有することを特徴とする請求項4に記載の電子写真感光体の形成装置。   5. The electrophotographic photosensitive member forming apparatus according to claim 4, wherein the pressing plate has a claw on an inner peripheral surface, and the base holder has a groove into which the claw can be fitted and fixed. 前記爪及び前記溝は周方向に2箇所以上形成されていることを特徴とする請求項5に記載の電子写真感光体の形成装置。   6. The electrophotographic photosensitive member forming apparatus according to claim 5, wherein the claw and the groove are formed at two or more locations in the circumferential direction. 前記反応容器の中の前記受け台に前記円筒状基体を保持した前記円筒状基体保持装置を搬送するための搬送手段を有することを特徴とする請求項4乃至6のいずれか一項に記載の電子写真感光体の形成装置。   7. The transport device according to claim 4, further comprising a transport unit configured to transport the cylindrical substrate holding device that holds the cylindrical substrate on the cradle in the reaction vessel. 8. An apparatus for forming an electrophotographic photosensitive member.
JP2010133434A 2010-06-10 2010-06-10 Method and apparatus for producing electrophotographic photosensitive member Expired - Fee Related JP5599042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010133434A JP5599042B2 (en) 2010-06-10 2010-06-10 Method and apparatus for producing electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010133434A JP5599042B2 (en) 2010-06-10 2010-06-10 Method and apparatus for producing electrophotographic photosensitive member

Publications (3)

Publication Number Publication Date
JP2011257657A true JP2011257657A (en) 2011-12-22
JP2011257657A5 JP2011257657A5 (en) 2013-07-25
JP5599042B2 JP5599042B2 (en) 2014-10-01

Family

ID=45473873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010133434A Expired - Fee Related JP5599042B2 (en) 2010-06-10 2010-06-10 Method and apparatus for producing electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP5599042B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323378A (en) * 1991-04-23 1992-11-12 Canon Inc Deposited film forming equipment by plasma chemical vapor deposition method
JPH04354878A (en) * 1991-05-31 1992-12-09 Kyocera Corp Glow-discharge film forming device
JPH0710934U (en) * 1993-07-26 1995-02-14 京セラ株式会社 Glow discharge decomposition device
JPH09223674A (en) * 1996-02-14 1997-08-26 Canon Inc Fabrication method and apparatus for optical receptor member
JP2000073173A (en) * 1998-06-18 2000-03-07 Canon Inc Formation of deposited film and deposited film forming device
JP2002220672A (en) * 2001-01-24 2002-08-09 Canon Inc Method and apparatus for forming deposition film, and for manufacturing electrophotography photoreceptor
JP2007139951A (en) * 2005-11-16 2007-06-07 Canon Inc Method for manufacturing electrophotographic photoreceptor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323378A (en) * 1991-04-23 1992-11-12 Canon Inc Deposited film forming equipment by plasma chemical vapor deposition method
JPH04354878A (en) * 1991-05-31 1992-12-09 Kyocera Corp Glow-discharge film forming device
JPH0710934U (en) * 1993-07-26 1995-02-14 京セラ株式会社 Glow discharge decomposition device
JPH09223674A (en) * 1996-02-14 1997-08-26 Canon Inc Fabrication method and apparatus for optical receptor member
JP2000073173A (en) * 1998-06-18 2000-03-07 Canon Inc Formation of deposited film and deposited film forming device
JP2002220672A (en) * 2001-01-24 2002-08-09 Canon Inc Method and apparatus for forming deposition film, and for manufacturing electrophotography photoreceptor
JP2007139951A (en) * 2005-11-16 2007-06-07 Canon Inc Method for manufacturing electrophotographic photoreceptor

Also Published As

Publication number Publication date
JP5599042B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP3748473B2 (en) Deposited film forming equipment
JP5599042B2 (en) Method and apparatus for producing electrophotographic photosensitive member
JP4095205B2 (en) Deposited film forming method
JP2011257657A5 (en)
JP5398368B2 (en) Deposited film forming apparatus and method for producing electrophotographic photosensitive member
JP2009030122A (en) Deposited film formation device, method for forming deposited film, and method for forming electrophotography photoreceptor
JP2007119797A (en) Vacuum treatment device
JP2925291B2 (en) Deposition film forming equipment
JP5852378B2 (en) Method for forming deposited film and method for producing electrophotographic photosensitive member
JP2019060939A (en) Base body holder and method for manufacturing electrophotographic photoreceptor
JP2009108385A (en) Deposited film formation device
JP2020008672A (en) Method for manufacturing electrophotographic photoreceptor
JP5052182B2 (en) Deposited film forming apparatus and deposited film forming method
JP5936481B2 (en) Deposited film forming apparatus and method
JP5618617B2 (en) Electrophotographic photoreceptor manufacturing equipment
JP2013108133A (en) Vacuum treatment method and method for manufacturing electrophotographic photoreceptor
JP2010013717A (en) Deposited film formation device
JP2002285339A (en) Film depositing apparatus
JP2019183233A (en) Deposition film formation device and method of manufacturing electrophotographic photoreceptor
JP2005136027A (en) Plasma processing system
JP2020050942A (en) Deposition film formation device
JPH11125924A (en) Forming device and forming method of light-accepting member
JP2009249726A (en) Carrying vessel, and method carrying for substrate holder
JP2016056388A (en) Deposition film forming apparatus, and method of manufacturing electrophotographic photoreceptor
JP2019189892A (en) Deposition film formation method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140808

R151 Written notification of patent or utility model registration

Ref document number: 5599042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees