JP2011257120A - Production apparatus for hot water and cold water for drinking water - Google Patents

Production apparatus for hot water and cold water for drinking water Download PDF

Info

Publication number
JP2011257120A
JP2011257120A JP2010144254A JP2010144254A JP2011257120A JP 2011257120 A JP2011257120 A JP 2011257120A JP 2010144254 A JP2010144254 A JP 2010144254A JP 2010144254 A JP2010144254 A JP 2010144254A JP 2011257120 A JP2011257120 A JP 2011257120A
Authority
JP
Japan
Prior art keywords
heat storage
heat
water
compressor
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010144254A
Other languages
Japanese (ja)
Inventor
Kenji Ogiri
健次 大桐
Reiko Ogiri
麗子 大桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010144254A priority Critical patent/JP2011257120A/en
Publication of JP2011257120A publication Critical patent/JP2011257120A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that in a conventional compressor of chlorofluorocarbon refrigerant specification, since discharge gas temperature does not become high, it cannot be used as refrigerant for hot water manufacturing apparatus.SOLUTION: Compressor discharge gas temperature can be made high by using carbon dioxide refrigerant, and hot water can be manufactured easily as a result. Temperature of each of a heating side heat storage tank and a cooling side heat storage tank can be changed within the range of -5°C to +65°C by changing a ratio of inclusion by using poly ethylene glycol-based heat storage agents having different freezing points for the heating side heat storage tank and the cooling side heat storage tank. Also, heat of solidification of poly ethylene glycol-based heat storage agent is 35 to 40 times that of water.

Description

炭酸ガスを冷媒として製作された冷蔵庫の、圧縮機吐出側排熱及び圧縮機吸入側残熱を利用して温水及び冷水を作り出す。温水製造については、圧縮機より吐出された高温高圧の冷媒ガスを、中温高圧の液化ガスにする為に凝縮器兼蓄熱槽内に、水道水・加熱用熱交換器を取付、水道水を通過させ加熱し、温水を製造する。又冷水については、冷蔵庫を冷却して後の、熱交換が出来ない冷媒ガスの、残冷熱源を利用して冷水側蓄熱槽に、水道水・冷却用熱交換器を取付、水道水を通過させ冷却し、冷水を製造する。加熱側蓄熱槽及び冷却側蓄熱槽に凝固点の異なる、ポリエチレングリコール系の蓄熱剤を使用する事で、含有物の比率を変える事により、各蓄熱槽の温度を−5℃〜+65℃の範囲で使用を可能にする。又ポリエチレングリコール系蓄熱剤の凝固熱は水の35〜40倍を有している。等を特徴とした冷蔵庫兼温水、冷水製造装置である。  Hot water and cold water are produced by using the exhaust heat on the discharge side of the compressor and the residual heat on the suction side of the compressor of the refrigerator manufactured using carbon dioxide as a refrigerant. For hot water production, tap water / heating heat exchanger is installed in the condenser / heat storage tank to pass the tap water through the condenser / heat storage tank to convert the high-temperature / high-pressure refrigerant gas discharged from the compressor into a medium-temperature / high-pressure liquefied gas. Heated to produce hot water. As for cold water, tap water / cooling heat exchanger is installed in the cold water-side heat storage tank using the residual cooling heat source of the refrigerant gas that cannot be exchanged after cooling the refrigerator, and passes the tap water. And cool to produce cold water. By using a polyethylene glycol-based heat storage agent with different freezing points in the heating-side heat storage tank and the cooling-side heat storage tank, the temperature of each heat storage tank is changed in the range of -5 ° C to + 65 ° C by changing the ratio of the contents. Enable use. The heat of solidification of the polyethylene glycol heat storage agent is 35 to 40 times that of water. It is a refrigerator / hot water / cold water production apparatus characterized by the above.

冷凍技術については、50年程度の歴史があります。冷媒…冷凍技術の初期ごろの冷媒としては、アンモニア及びメチレンクロライド等の、毒性及び引火性のある冷媒を使用していました。後の冷媒…35年程度前よりフロン冷媒に変わり現在に至っております。フロン冷媒の特徴としては、毒性の無い無味、無臭及び引火性が無い為に、冷凍サイクルに最適の冷媒として開発され、冷凍空調業界がめざましく発達しました、フロン冷媒は・圧縮機の吐出ガス温度が低い・圧縮機の吐出圧力が低い・又機械的、化学的ストレスを与えても、物性は変化せず安定している事を最大の特徴とする冷媒である為に、漏洩したフロン冷媒は時間をかけて成層圏まで上昇しオゾン層を破壊して、近年大変大きな問題になっています。現在のフロン冷媒は、オゾン層破壊係数は小さくなってきましたが、温暖化にはまだまだ問題があります。今後の冷媒として炭酸ガス冷媒及び可燃性ガス冷媒が最も有力です。炭酸ガス冷媒の特徴‥欠点・圧縮機吐出ガス温度が高い、圧縮機吐出圧力が高い、しかしこの吐出温度が高い事を利用して、温水製造及び物の加熱が可能となる。今後の圧縮機としては、炭酸ガス及び可燃性ガス仕様の圧縮機が支流となる。圧縮機の構造形式の流れ、単段レシプロ式圧縮機⇒高速多気筒圧縮機⇒ロータリ式・スクロール式圧縮機と開発されて来ました。ロータリ式及びスクロール式圧縮機の特徴であるインジェクション回路が組み込める事によって、圧縮機の効率を下げることなく、圧縮機吐出ガスを高温でコントロールする事が可能となり冷蔵庫兼温水、冷水製造装置の製作が可能となった。  The refrigeration technology has a history of about 50 years. Refrigerant: As a refrigerant in the early days of refrigeration technology, toxic and flammable refrigerants such as ammonia and methylene chloride were used. Refrigerant after ... It has changed to CFC refrigerant from about 35 years ago. The characteristics of chlorofluorocarbon refrigerants are that they are non-toxic, tasteless, odorless and non-flammable, so they have been developed as the best refrigerant for the refrigeration cycle, and the refrigeration and air conditioning industry has developed dramatically.・ The compressor discharge pressure is low ・ Furthermore, even if mechanical or chemical stress is applied, the physical properties are stable and the refrigerant is stable. Over time, it has risen to the stratosphere, destroying the ozone layer, and has become a very big problem in recent years. Current CFC refrigerants have a smaller ozone depletion potential, but there are still problems with global warming. Carbon dioxide and flammable gas refrigerants are the most promising refrigerants in the future. Characteristics of carbon dioxide refrigerant ... Disadvantages-High compressor discharge gas temperature, high compressor discharge pressure, but using this high discharge temperature makes it possible to produce hot water and heat products. As future compressors, compressors with carbon dioxide and combustible gas specifications will be the tributaries. The structural flow of the compressor has been developed as a single-stage reciprocating compressor-> high-speed multi-cylinder compressor-> rotary and scroll compressors. By incorporating an injection circuit, which is a feature of rotary and scroll compressors, it is possible to control the compressor discharge gas at a high temperature without lowering the efficiency of the compressor, making it possible to produce refrigerators and hot water and cold water production equipment. It has become possible.

開発の開示Disclosure of development

発明が解決しようとする課題Problems to be solved by the invention

従来のフロン冷媒仕様圧縮機では、吐出ガス温度が高くならない為に、温水製造装置用冷媒としては使用できない‥吐出ガス温度が高くならない事が、フロン冷媒の最大の特徴  Conventional CFC refrigerant compressors cannot be used as refrigerant for hot water production equipment because the discharge gas temperature does not increase. The biggest feature of CFC refrigerants is that the discharge gas temperature does not increase.

温水を効率よく製造するには、圧縮機吐出ガス温度を高く保ち、吐出ガス温度のコントロールが可能な圧縮機が必要となる。  In order to efficiently produce hot water, a compressor capable of keeping the compressor discharge gas temperature high and controlling the discharge gas temperature is required.

温水蓄熱及び冷水蓄熱‥設置面積を極力小さくする為に、温度調整の容易に可能な蓄熱剤が必要。  Hot water heat storage and cold water heat storage: To reduce the installation area as much as possible, a heat storage agent that allows easy temperature adjustment is required.

温水、冷水製造装置に供給される水道水は、一定時間停滞又は蓄熱槽での貯水は、雑菌等が増殖する為に、大容量の水槽を使用する事が出来ない。  The tap water supplied to the hot water and cold water production apparatus is stagnant for a certain time, or the water stored in the heat storage tank cannot be used in a large capacity water tank because various germs etc. grow.

冷蔵庫設置室内の温度上昇に対する問題点…日本の夏季冷房負荷の大きな要因の一つである、冷蔵庫よりの放熱に対する問題。  Problems with temperature rise in refrigerator installation room ... A problem with heat dissipation from the refrigerator, which is one of the major factors in Japan's summer cooling load.

課題を解決する為の手段Means to solve the problem

この課題を解決した本発明は、温水製造‥炭酸ガス冷媒を使用する事によって、圧縮機吐出ガス温度を高くする事が出来、容易に温水製造する事を可能にする。従来のフロン冷媒仕様のレシプロ式圧縮機ではインジェクション回路が無い為に、圧縮機の温度コントロ−ルが出来ない、近年ロータリ式及びスクロール式圧縮機が開発された為に、圧縮機にインジェクション回路が装備され温度コントロールが可能になり、炭酸ガス冷媒を使用した冷凍サイクルの組立が可能になった為に、冷凍機の吐出ガスを利用して温水製造が可能になった。加熱側蓄熱槽及び冷却側蓄熱槽に凝固点の異なる、ポリエチレングリコール系の蓄熱剤を使用する事で、含有物の比率を変える事により、各蓄熱槽の温度を−5℃〜+65℃の範囲に変える事を可能にする。又ポリエチレングリコール系の凝固熱は水の35〜40倍を有している。又温水、冷水製造装置に供給される水道水は、一定時間停滞又は蓄熱槽での貯水を、少なくする為に、フィンコイル式の熱交換器を使用する。  The present invention that has solved this problem makes it possible to increase the discharge gas temperature of the compressor by using hot water production... Carbon dioxide gas refrigerant, and easily produce hot water. The conventional refrigerant reciprocating compressor specification does not have an injection circuit, so the compressor temperature cannot be controlled. Recently, rotary and scroll compressors have been developed, so the compressor has an injection circuit. Equipped with temperature control and refrigeration cycle assembly using carbon dioxide gas refrigerant, making it possible to produce hot water using the discharge gas of the refrigerator. By using polyethylene glycol-based heat storage agents with different freezing points in the heating-side heat storage tank and the cooling-side heat storage tank, the temperature of each heat storage tank is changed to the range of -5 ° C to + 65 ° C by changing the ratio of the contents. Make it possible to change. Further, the heat of solidification of the polyethylene glycol system has 35 to 40 times that of water. In addition, the tap water supplied to the hot water and cold water manufacturing apparatus uses a fin coil type heat exchanger in order to reduce stagnation for a certain time or water storage in the heat storage tank.

発明の効果The invention's effect

従来のフロン冷媒仕様圧縮機では、吐出ガス温度が高くならない為に、温水製造装置用冷媒としては使用出来なかったが、近年地球温暖化防止の為に、脱フロンによって炭酸ガス冷媒の使用する事の出来る、圧縮機が研究開発されて、近い将来使用が可能となり、吐出ガス温度を高くする事が出来、容易に温水製造する事を可能する。  In conventional CFC refrigerant compressors, the discharge gas temperature does not increase, so it could not be used as a refrigerant for hot water production equipment. However, in order to prevent global warming in recent years, carbon dioxide refrigerant has been used by removing CFCs. The compressor that can be used will be researched and developed and can be used in the near future, the discharge gas temperature can be increased, and hot water can be produced easily.

温水蓄熱及び冷水蓄熱‥設置面積を極力小さくする為に、加熱側蓄熱槽及び冷却側蓄熱槽に凝固点の異なる、ポリエチレングリコール系の蓄熱剤を使用する事で、含有物の比率を変える事により、各蓄熱槽の温度を−5℃〜+65℃の範囲に変える事を可能にする。又ポリエチレングリコール系、蓄熱剤の凝固熱は水の35〜40倍を有している為に、温水蓄熱槽及び冷水蓄熱槽の容量を水のみ使用の蓄熱量に比べて1/30程度の水槽に縮小出来る。  Hot water heat storage and cold water heat storage: To reduce the installation area as much as possible, by using a polyethylene glycol-based heat storage agent with different freezing points in the heating-side heat storage tank and the cooling-side heat storage tank, It is possible to change the temperature of each heat storage tank to the range of -5 ° C to + 65 ° C. Also, since the heat of solidification of polyethylene glycol-based heat storage agent has 35 to 40 times that of water, the capacity of the hot water storage tank and the cold water storage tank is about 1/30 that of heat storage using only water. Can be reduced.

以下、本発明の実施の形態を図1〜図4に基づいて具体的に説明する。  Hereinafter, embodiments of the present invention will be specifically described with reference to FIGS.

この実施の形態における飲料水用温水・冷水製造装置は、図1に示す如く、1圧縮機.4加熱槽部.7壁放熱式・冷蔵庫部.20冷却槽部を冷媒管路で接続してなる。  As shown in FIG. 1, the apparatus for producing hot / cold water for drinking water in this embodiment is a compressor. 4 heating tank section. 7-wall heat dissipation type, refrigerator section. 20 cooling tank parts are connected by a refrigerant line.

圧縮機1は、図1に示す如く、圧縮機の配管接続口を示す、
吐出口2.吸入口23.インジェクション・吸入口18、で構成されている。
吐出口2‥圧縮機によって、低温低圧の冷媒ガスを高温高圧の冷媒ガスにして後の、圧縮機よりの吐出口である。
吸入口23‥冷却側蓄熱槽で完全に熱交換を終了した冷媒ガス、圧縮機冷媒・導入管22を通過して、吸入口23より圧縮機に吸入される。
圧縮機インジェクション・吸入口‥圧縮機の温度をコントロールする為に直接冷媒液を圧縮機ロータ内に噴射する為の接続口
As shown in FIG. 1, the compressor 1 shows a piping connection port of the compressor.
Discharge port 2. Inlet 23. The injection / suction port 18 is constituted.
Discharge port 2 is a discharge port from the compressor after the low-temperature and low-pressure refrigerant gas is changed into a high-temperature and high-pressure refrigerant gas by the compressor.
Suction port 23. The refrigerant gas that has completely exchanged heat in the cooling-side heat storage tank, passes through the compressor refrigerant / introduction pipe 22, and is sucked into the compressor through the suction port 23.
Compressor injection / suction port: Connection port for direct injection of refrigerant liquid into the compressor rotor to control the compressor temperature

インジェクションについて‥冷媒圧縮用圧縮機は、冷媒の種類、圧縮比によって、吐出温度、吐出圧力が大きく変わる。特に炭酸ガス冷媒では、吐出圧力:10Mpa以上、吐出温度100℃以上になる・この吐出温度をコントロールする事によって、冷凍サイクルより凝縮熱を効率よく回収し、温水を製造する事が出来る。又温度コントロールにはインジェクション回路が必要となる。従来のレシプロ方式圧縮機では、温度コントロールする為に、液冷媒を直接圧縮機吸入側へ噴射する為に、圧縮効率を極端に低下させ、大幅な冷却能力ダウンになる。近年開発されている、ロータリ式又はスクロール式圧縮機では、冷媒圧縮中、圧縮機内の圧縮室に直接液冷媒を噴射して温度コントロールをする為に、圧縮効率には影響がなく、冷却能力の低下は生じない。  Injection: The discharge temperature and discharge pressure of a refrigerant compression compressor vary greatly depending on the type of refrigerant and the compression ratio. In particular, in the case of a carbon dioxide refrigerant, the discharge pressure is 10 Mpa or higher and the discharge temperature is 100 ° C. or higher. By controlling this discharge temperature, the heat of condensation can be efficiently recovered from the refrigeration cycle and hot water can be produced. Moreover, an injection circuit is required for temperature control. In the conventional reciprocating compressor, the liquid refrigerant is directly injected to the compressor suction side in order to control the temperature, so that the compression efficiency is extremely lowered and the cooling capacity is greatly reduced. In a rotary type or scroll type compressor that has been developed in recent years, during refrigerant compression, the liquid refrigerant is directly injected into the compression chamber in the compressor to control the temperature, so there is no effect on the compression efficiency and the cooling capacity is low. There is no decline.

加熱槽4は、図1に示す如く、内外装ステンレス・発泡ウレタン断熱材によって一体構成されている。加熱槽4.加熱槽・加熱管5.水道水・加熱用熱交換器27.加熱槽用・蓄熱剤28.温水吐出・蛇口29.水道水導入口24.水道水分岐管25.加熱槽・水道水導入管26の主要部品で構成する。  As shown in FIG. 1, the heating tank 4 is integrally constituted by inner and outer stainless steel / foamed urethane heat insulating materials. 3. Heating tank 4. Heating tank / heating tube Tap water / heating heat exchanger 27. Heating tank / heat storage agent 28. Hot water discharge / faucet 29. Tap water inlet 24. Tap water branch pipe 25. It consists of the main parts of the heating tank / tap water introduction pipe 26.

図4に示す如く、水道水・加熱用熱交換器27について‥アルミフィン.ステンレス管のフィンコイル式の熱交換器で、加熱又は冷却される水道水が多量停滞する事がなく、雑菌の繁殖が極力少なく、伝熱面積が大きく効率の良い、フィンコイル式の熱交換器を使用する。  As shown in FIG. 4, the tap water / heating heat exchanger 27 is made of aluminum fins. A fin-coil heat exchanger with stainless steel pipes that does not stagnate a lot of heated or cooled tap water, minimizes the growth of germs, has a large heat transfer area, and is efficient. Is used.

加熱槽用・蓄熱剤28について‥加熱槽にポリエチレングリコール系の蓄熱剤を使用している為に、蓄熱量は水の35〜40倍になる。故に、加熱水槽の容量は水のみ使用の蓄熱水槽に比べて1/30程度の大きさに縮小出来る。  Heating tank / heat storage agent 28. Since a polyethylene glycol heat storage agent is used in the heating tank, the heat storage amount is 35 to 40 times that of water. Therefore, the capacity of the heated water tank can be reduced to about 1/30 compared with the heat storage water tank using only water.

壁放熱式・冷蔵庫7は、図1に示す如く、内外装ステンレス・発泡ウレタン断熱材によって一体構成されている。凝縮器導入管6.壁放熱式・放熱管8.冷蔵庫庫内・冷却器9.冷媒液・分岐管10.冷却器・冷媒液管11.冷却器・ドライヤ12.冷却器・キャピラリ−チュ−ブ13.冷却器・導入管14.の主要部品で構成する。  As shown in FIG. 1, the wall heat radiation type refrigerator 7 is integrally constituted by inner and outer stainless steel and urethane foam heat insulating materials. 5. Condenser inlet tube Wall heat radiation type, heat radiation pipe8. Inside refrigerator / cooler 9. Refrigerant liquid / branch pipe10. 10. Cooler / refrigerant liquid pipe Cooler / Dryer 12. Cooler / capillary tube 13. Cooler / introducing pipe 14. It consists of the main parts.

冷却槽用・蓄熱剤32について‥冷却槽にポリエチレングリコール系の蓄熱剤を使用している為に、蓄熱量は水の35〜40倍になる。故に、冷却水槽の容量は水のみ使用の蓄熱水槽に比べて1/30程度の大きさに縮小出来る。  About the cooling tank / heat storage agent 32. Since a polyethylene glycol heat storage agent is used in the cooling tank, the heat storage amount is 35 to 40 times that of water. Therefore, the capacity of the cooling water tank can be reduced to about 1/30 compared with the heat storage water tank using only water.

本発明に係る飲料水用温水・冷水製造装置は、工業的に量産する事が可能であるため、産業上の利用可能性を有する。  Since the hot / cold water production apparatus for drinking water according to the present invention can be industrially mass-produced, it has industrial applicability.

冷媒及び水道水、配管系統図である。  It is a refrigerant, tap water, and a piping system diagram. 一般の電気冷蔵庫に加熱槽及び冷却槽を、追加した冷蔵庫の正面図である。  It is a front view of the refrigerator which added the heating tank and the cooling tank to the general electric refrigerator. 一般の電気冷蔵庫に加熱槽及び冷却槽を、追加した冷蔵庫の平面図である。  It is a top view of the refrigerator which added the heating tank and the cooling tank to the general electric refrigerator. フィンコイル式冷却器の外形図である。  It is an external view of a fin coil type cooler.

1…圧縮機、2…吐出口、3…吐出管、4…加熱槽、5…加熱槽・加熱管、6…凝縮器導入管、7…壁放熱式・冷蔵庫、8…壁放熱式・放熱管、9…冷蔵庫庫内・冷却器、10…冷媒液・分岐管、11…冷却器・冷媒液管、12…冷却器・ドライヤ、13…冷却器・キャピラリ−チューブ、14…冷却器・冷媒導入管、15…圧縮器インジェクション・冷媒液管、16…圧縮機インジェクション・ドライヤ、17…圧縮器インジェクション・キャピラリ−チュ−ブ、18…圧縮機インジェクション・吸入口、19…冷却槽低温ガス冷媒・導入管、20…冷却槽、21…冷却槽・冷却管、22…圧縮機冷媒・導入管、23…圧縮機・吸入口、24…水道水導入口、25…水道水分岐管、26…加熱槽・水道水導入管、27…水道水・加熱用熱交換器、28…加熱槽用・蓄熱剤、29…温水吐出・蛇口、30…冷却槽・水道水導入管、31…水道水・冷却用熱交換器、32…冷却槽用・蓄熱剤、33…冷水吐出・蛇口、34…水道水導入口、35…熱交換器・鏡板、36…アルミ製加熱.冷却フィン、37…ステンレス製加熱.冷却管、38…水道水出口管DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Discharge port, 3 ... Discharge pipe, 4 ... Heating tank, 5 ... Heating tank and heating pipe, 6 ... Condenser introduction pipe, 7 ... Wall heat radiation type / refrigerator, 8 ... Wall heat radiation type / heat radiation Pipes, 9 ... Inside refrigerator / cooler, 10 ... Refrigerant liquid / branch pipe, 11 ... Cooler / refrigerant liquid pipe, 12 ... Cooler / dryer, 13 ... Cooler / capillary tube, 14 ... Cooler / refrigerant Introduction pipe, 15 ... Compressor injection / refrigerant liquid pipe, 16 ... Compressor injection / dryer, 17 ... Compressor injection / capillary tube, 18 ... Compressor injection / inlet, 19 ... Cooling tank cryogenic gas refrigerant / Introduction pipe, 20 ... Cooling tank, 21 ... Cooling tank / cooling pipe, 22 ... Compressor refrigerant / introduction pipe, 23 ... Compressor / suction port, 24 ... Tap water introduction port, 25 ... Tap water branch pipe, 26 ... Heating Tank / tap water introduction pipe, 27 ... Tap water / heat heat exchange 28 ... Heating tank / heat storage agent, 29 ... Hot water discharge / faucet, 30 ... Cooling tank / tap water introduction pipe, 31 ... Tap water / cooling heat exchanger, 32 ... Cooling tank / heat storage agent, 33 ... Cold water discharge / faucet, 34 ... tap water inlet, 35 ... heat exchanger / end plate, 36 ... aluminum heating. Cooling fins, 37 ... stainless steel heating. Cooling pipe, 38 ... tap water outlet pipe

Claims (1)

炭酸ガスを冷媒として製作された冷蔵庫の、圧縮機吐出側排熱及び圧縮機吸入側残熱を、利用して温水及び冷水を作りだす。温水製造については、圧縮機より吐出された高温高圧の冷媒ガスを、中温高圧の液化ガスにする為に、凝縮機兼蓄熱槽によって熱交換をして温水を製造する。又冷水については、冷蔵庫内を冷却後、熱交換が出来ない、残熱源を利用して熱交換器兼蓄熱槽によって熱交換をして冷水を製造する。加熱側蓄熱槽及び冷却側蓄熱槽に凝固点の異なる、ポリエチレングリコール系の蓄熱剤を使用する事で、含有物の比率を変える事により、各蓄熱槽の温度を−5℃〜+65℃の範囲に変える事を可能にする。又ポリエチレングリコール系蓄熱剤の凝固熱は、水の35〜40倍を有している。等を特徴とした冷蔵庫兼温水、冷水製造装置Hot water and cold water are produced using the exhaust heat on the discharge side of the compressor and the residual heat on the suction side of the compressor of the refrigerator manufactured using carbon dioxide as a refrigerant. About hot water manufacture, in order to make the high temperature / high pressure refrigerant gas discharged from the compressor into a medium temperature / high pressure liquefied gas, heat is exchanged by a condenser / heat storage tank to produce hot water. Moreover, about cold water, after the inside of a refrigerator is cooled, heat exchange cannot be performed, and a cold water is manufactured by exchanging heat with a heat exchanger and heat storage tank using a residual heat source. By using polyethylene glycol-based heat storage agents with different freezing points in the heating-side heat storage tank and the cooling-side heat storage tank, the temperature of each heat storage tank is changed to the range of -5 ° C to + 65 ° C by changing the ratio of the contents. Make it possible to change. The heat of solidification of the polyethylene glycol heat storage agent has 35 to 40 times that of water. Refrigerator combined with hot water and cold water production equipment
JP2010144254A 2010-06-08 2010-06-08 Production apparatus for hot water and cold water for drinking water Pending JP2011257120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010144254A JP2011257120A (en) 2010-06-08 2010-06-08 Production apparatus for hot water and cold water for drinking water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010144254A JP2011257120A (en) 2010-06-08 2010-06-08 Production apparatus for hot water and cold water for drinking water

Publications (1)

Publication Number Publication Date
JP2011257120A true JP2011257120A (en) 2011-12-22

Family

ID=45473471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010144254A Pending JP2011257120A (en) 2010-06-08 2010-06-08 Production apparatus for hot water and cold water for drinking water

Country Status (1)

Country Link
JP (1) JP2011257120A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231393A (en) * 2012-04-27 2013-11-14 Toshiba Corp Steam turbine plant
KR101577039B1 (en) * 2015-07-07 2015-12-22 (주)케이에스피 Water dispenser of power saving in high efficiency
CN109163443A (en) * 2018-08-23 2019-01-08 民勤县威瑞环保有限责任公司 It is a kind of can self-purging water source energy-saving heating type travelling scuttlebutt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231393A (en) * 2012-04-27 2013-11-14 Toshiba Corp Steam turbine plant
KR101577039B1 (en) * 2015-07-07 2015-12-22 (주)케이에스피 Water dispenser of power saving in high efficiency
CN109163443A (en) * 2018-08-23 2019-01-08 民勤县威瑞环保有限责任公司 It is a kind of can self-purging water source energy-saving heating type travelling scuttlebutt

Similar Documents

Publication Publication Date Title
US11255579B2 (en) Control method of transcritical carbon dioxide composite heat pump system
CN103635761A (en) Refrigeration device
Xu et al. Experimental research on vapor-injected heat pump using injection subcooling
CN106839481A (en) A kind of cooling unit with auxiliary cold source
JP2017161115A (en) Air-conditioning hot water supply system
CN102445098A (en) Hot superconductor water source heat exchanger
CN103836790A (en) Heat pump water heater
CN101275790A (en) Low-temperature refrigerating method using carbon dioxide as circulating working substance and heat pump system thereof
JP2011257120A (en) Production apparatus for hot water and cold water for drinking water
CN104676933A (en) Refrigerating equipment
CN201945082U (en) Integrative industrial water chiller unit
CN204285882U (en) A kind of supermarket cold chain system
CN203349414U (en) Air conditioner system
KR20200084238A (en) A cooling system without an outdoor unit combining a freezer and an air conditioner
KR20120021907A (en) Cold and hot water production system using waste water
CN104197634A (en) Quick fluid cooler with cold accumulation function
CN208567185U (en) A kind of indirect cooling system experimental bench of band defrosting function
RU2009143336A (en) INSTALLATION FOR COOLING MILK USING NATURAL AND ARTIFICIAL COLD
JP2017161164A (en) Air-conditioning hot water supply system
JP2004176931A (en) Ice thermal storage refrigerating device with secondary carbon dioxide cooling medium
CN111084230A (en) Overlapped air source ultra-high temperature instant sterilization device and method
AU2013100041A4 (en) A Solar Assisted Chiller System
CN108709331A (en) A kind of indirect cooling system experimental bench of band defrosting function
Jeon et al. Analytical study on the performance characteristics of an instant cooling type water purifier with the design parameters of the cooling tank
CN219014673U (en) Refrigerating system, air conditioner and refrigeration house