JP2011256541A - Deep mixing method and deep mixing device for soil stabilization - Google Patents

Deep mixing method and deep mixing device for soil stabilization Download PDF

Info

Publication number
JP2011256541A
JP2011256541A JP2010129665A JP2010129665A JP2011256541A JP 2011256541 A JP2011256541 A JP 2011256541A JP 2010129665 A JP2010129665 A JP 2010129665A JP 2010129665 A JP2010129665 A JP 2010129665A JP 2011256541 A JP2011256541 A JP 2011256541A
Authority
JP
Japan
Prior art keywords
stirring blade
stirring
shaft
stirring shaft
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010129665A
Other languages
Japanese (ja)
Other versions
JP5646218B2 (en
Inventor
Shohei Senda
昌平 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chida Eng Inc
CHIDA ENGINEERING Inc
Original Assignee
Chida Eng Inc
CHIDA ENGINEERING Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chida Eng Inc, CHIDA ENGINEERING Inc filed Critical Chida Eng Inc
Priority to JP2010129665A priority Critical patent/JP5646218B2/en
Priority to PCT/JP2010/071978 priority patent/WO2011155090A1/en
Publication of JP2011256541A publication Critical patent/JP2011256541A/en
Application granted granted Critical
Publication of JP5646218B2 publication Critical patent/JP5646218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • E02D3/126Consolidating by placing solidifying or pore-filling substances in the soil and mixing by rotating blades

Abstract

PROBLEM TO BE SOLVED: To provide a deep mixing method for soil stabilization capable of expanding an improvement diameter without reducing advantages unique to a powder solidifying material.SOLUTION: An agitating shaft 10 excavates and penetrates into ground down to an improvement object portion of the ground by rotating the same around the center of the shaft. During this process, a fluidity improver is injected through a second injection port 16 provided at a tip of the agitating shaft 10 and in-situ soil and the fluidity improver are agitated and mixed with agitating blades 13 and 14 which rotate. Then, the agitating shaft 10 is pulled out from the improvement object portion of the ground by rotating the same around the center of the shaft. During this process, a powder solidifying agent is injected through a first injection port 15 provided on a back side of an upper agitating blade with respect to a rotation direction of the blade for constructing a columnar solidified body CB by agitating and mixing in-situ soil G and the power solidifying agent with the agitating blades 13 and 14 which rotate.

Description

本発明は、深層混合処理工法およびこれに好適な深層混合処理装置に関するものである。   The present invention relates to a deep layer processing method and a deep layer processing apparatus suitable for the method.

深層混合処理工法は、撹拌翼を備えた撹拌軸を地盤に挿入し、撹拌軸を介して地盤中に固化材を供給するとともに、撹拌軸を回転させて撹拌翼により原位置土と固化材とを撹拌混合して柱状の固化体を造成するものであり、わが国固有の技術として開発され、普及以来30年余りを経過している工法である。深層混合処理工法は、これまで多くの実績を上げ、現在もなお代表的な地盤改良工法として広く用いられており、最近では、海外でも普及が始まり、深層混合処理工法は国際的な工法となりつつある。
深層混合処理工法は、セメント系固化材を水で溶いてスラリー状にして地盤に供給するスラリー系方向と、粉体状の固化材を直接地中に供給する粉体系工法とに大別することができる。一般に前者はCDM工法、後者はDJM工法といわれている。両工法の相違点は次の通りである。
In the deep mixing method, a stirring shaft equipped with a stirring blade is inserted into the ground, and the solidification material is supplied into the ground through the stirring shaft. This is a method that has been developed as a technology unique to Japan and has passed over 30 years since its popularization. The deep-mixing treatment method has a lot of achievements so far and is still widely used as a typical ground improvement method. Recently, it has been widely used overseas, and the deep-mixing treatment method is becoming an international method. is there.
The deep mixing treatment method is roughly divided into the slurry system direction in which cement-based solidification material is dissolved in water to form a slurry and supplied to the ground, and the powder-based method for supplying powdered solidification material directly into the ground. Can do. In general, the former is called the CDM method, and the latter is called the DJM method. The differences between the two methods are as follows.

(固化材の相違)
スラリー系工法の場合は、セメントまたはセメント系固化材が好適であり、吸水性の高いフライアッシュや石灰系固化材は不向きであるのに対して、粉体系工法の場合はこれらの材料をベースにした広い範囲の材料に適用できるため、低コストの材料を選定することができる。
(Difference in solidified material)
In the case of the slurry method, cement or cement-based solidified material is suitable, and fly ash and lime-based solidified material with high water absorption are not suitable, whereas in the case of the powder-based method, these materials are used as a base. Therefore, a low cost material can be selected.

(余剰土)
スラリー系工法では、スラリー化するために固化材を水に溶解することから、その分だけ固化材の体積が増加し、改良地盤の20〜30%程度のスラリーを供給することになる。その結果、飽和している地盤であればその分が余剰土となり、その処理・処分が必要となる。これに対して、粉体系工法の場合は原位置の水分に固化材を吸着させて固化させるため、スラリー系のような固化材の体積増はなく、したがって余剰土も殆ど発生しない。
(Excess soil)
In the slurry system construction method, since the solidified material is dissolved in water to make a slurry, the volume of the solidified material is increased correspondingly, and a slurry of about 20 to 30% of the improved ground is supplied. As a result, if the ground is saturated, that portion becomes surplus soil, which requires treatment and disposal. On the other hand, in the case of the powder system construction method, since the solidification material is adsorbed and solidified by the moisture in situ, there is no increase in volume of the solidification material as in the slurry system, and therefore, no excess soil is generated.

(撹拌混合の原理)
粉体系工法では、空気圧送される粉体固化材が回転する撹拌翼の背後に一瞬できる空隙に噴射され、撹拌翼により流動化された軟弱土の撹拌面(空隙内面)に散布されて軟弱土内の水分に付着する。粉体固化材とともに噴射された空気は、軸周辺を通って地上に排出される。固化材が付着した軟弱泥土は、撹拌翼の回転速度と撹拌軸の軸方向移動速度の関係で定まる螺旋状の深さ方向ピッチで撹拌翼によって削り取られ、面的に撹拌されることで混合される。この撹拌翼による削り取り作用により、撹拌翼の背後に形成される空隙内には順次新しい固化材付着面が作り出され、固化材の付着・切削・撹拌が繰り返される結果、混合性の高い柱体が造成される。これに対して、スラリー系工法では、粉体系工法のような固化材の原位置土との付着現象がないため、文字通り固化材スラリーと原位置土とを混合させる必要がある。そのため、混合性能を向上させるために、撹拌翼の形状、正逆回転翼、固定翼の取り付けなどの工夫がなされている。
しかしながら、粉体系工法においては、スラリー系工法と比べて掘削貫入時及び固化材撹拌混合時の撹拌翼の回転抵抗が大きく、改良径の3乗に比例するともいわれており、改良径の大径化が困難であり、施工機械の大型化が不可避である等の問題点が残されていた。
建設需要の低迷と海外需要の増加に伴い低コスト化が余儀なくされている昨今では、大径化、すなわち大断面にすることによって、単位時間当たりの施工量を増やし1m3当たりのコストを低減することは極めて重要である。
(Principle of stirring and mixing)
In the powder system construction method, the powder solidification material that is fed pneumatically is sprayed into the gap that can be momentarily behind the rotating stirring blade, and sprayed on the stirring surface (inner surface of the void) fluidized by the stirring blade. Adhere to the moisture inside. The air injected together with the powder solidifying material is discharged to the ground through the periphery of the shaft. The soft mud with the solidifying material attached is scraped off by a stirring blade at a helical depth pitch determined by the relationship between the rotation speed of the stirring blade and the axial movement speed of the stirring shaft, and mixed by being stirred on the surface. The By this scraping action by the stirring blade, a new solidified material adhering surface is created sequentially in the gap formed behind the stirring blade, and as a result of repeated adhesion, cutting and stirring of the solidified material, a highly mixed column is formed. Created. On the other hand, in the slurry system construction method, there is no adhesion phenomenon with the in situ soil of the solidifying material unlike the powder system construction method, so it is literally necessary to mix the solidifying material slurry and the in situ soil. For this reason, in order to improve the mixing performance, a device such as the shape of the stirring blade, the forward / reverse rotating blade, and the fixed blade is devised.
However, in the powder system construction method, it is said that the rotational resistance of the stirring blade during drilling penetration and solidification material stirring mixing is larger than that in the slurry system construction method and is proportional to the cube of the improved diameter. However, it was difficult to increase the size of the construction machine and it was inevitable that the construction machine would be increased in size.
In recent years when construction costs have been stagnation and overseas demand has been increasing, the cost has been reduced. By increasing the diameter, that is, by increasing the cross section, the construction volume per unit time is increased and the cost per m 3 is reduced. That is extremely important.

特許第2790759号公報Japanese Patent No. 2790759 特許第3509579号公報Japanese Patent No. 3509579

そこで、本発明の主たる課題は、粉体系工法において、粉体系特有の利点を損ねずに、改良径の大径化を可能ならしめることにある。
なお、粉体系工法においては、低含水比の地盤における撹拌混合に際し、原位置に水を供給して原位置土の含水比を調整する工法も提案されている(特許文献1、2参照)が、これらの技術は、低含水比の地盤において含水比を調整する範囲では加水により結果的に撹拌翼の回転抵抗が低減するものであるが、積極的に回転抵抗を低減して改良径の大径化を図ろうとするものではない。
Therefore, the main problem of the present invention is to enable the diameter of the improved diameter to be increased without impairing the advantages unique to the powder system in the powder system construction method.
In addition, in the powder system construction method, a method of adjusting the water content ratio of the in-situ soil by supplying water to the original position during the mixing with stirring in the ground having a low water content ratio has been proposed (see Patent Documents 1 and 2). However, these technologies are intended to reduce the rotational resistance of the stirring blade as a result of the addition of water in the range where the water content ratio is adjusted in the ground with a low water content ratio. It is not intended to reduce the diameter.

上記課題を解決した本発明は次記のとおりである。
<請求項1記載の発明>
径方向に突出する撹拌翼を備えた撹拌軸を、軸心周りに回転させつつ地盤の改良対象部位に掘削貫入するとともに、その過程で前記撹拌軸の先端部から流動性向上剤を噴射し、回転する前記撹拌翼により原位置土と流動性向上剤とを撹拌混合し、
しかる後に、前記撹拌軸を軸心周りに回転しつつ、前記改良対象部位に挿入した状態から引き抜くとともに、その過程で前記撹拌翼の回転方向背後に粉体固化材を噴射し、回転する前記撹拌翼により原位置土と粉体固化材とを撹拌混合して柱状の固化体を造成する、
ことを特徴とする深層混合処理工法。
The present invention that has solved the above problems is as follows.
<Invention of Claim 1>
While agitating shaft provided with a stirring blade projecting in the radial direction is rotated around the shaft center and drilled into the site to be improved in the ground, a fluidity improver is injected from the tip of the stirring shaft in the process, The in-situ soil and the fluidity improver are stirred and mixed by the rotating stirring blade,
Thereafter, while rotating the stirring shaft about the axis, the stirring shaft is pulled out from the state inserted into the improvement target portion, and in the process, the powder solidification material is injected behind the rotating direction of the stirring blade, and the stirring is rotated. The in-situ soil and the powder solidified material are stirred and mixed with a wing to form a columnar solidified body.
This is a deep mixing process.

(作用効果)
本発明の主たる特徴は、粉体固化材の供給に先立ち、流動性向上剤を改良対象部位に供給して、掘削貫入時及び固化材撹拌混合時の撹拌翼の回転抵抗を軽減することにある。このように原位置土と流動性向上剤とを混合すると、原位置土の流動性向上及び粘性低下により、撹拌翼の回転抵抗が軽減するだけでなく、後の粉体固化材との撹拌混合性も向上することになる。
(Function and effect)
The main feature of the present invention is that, prior to the supply of the powder solidifying material, a fluidity improver is supplied to the site to be improved to reduce the rotational resistance of the stirring blades during drilling and solidifying material stirring and mixing. . When the in-situ soil and the fluidity improver are mixed in this way, not only the rotational resistance of the stirring blade is reduced by the fluidity improvement and viscosity reduction of the in-situ soil, but also the agitation and mixing with the powder solidifying material later. Will also improve.

特筆すべきは、本発明における流動性向上剤の利用は、単なる流動性向上剤の摩擦軽減効果の利用に留まらないことである。粉体系工法においては、前述したように、回転する撹拌翼の背後に一瞬できる空隙に粉体固化材が噴射され、固化材が付着した軟弱泥土は、撹拌翼の回転速度と撹拌軸の軸方向移動速度の関係で定まる螺旋状の深さ方向ピッチで撹拌翼によって削り取られ、面的に撹拌されることで混合され、この固化材の付着・切削・撹拌の繰り返しにより高い混合性が維持される。つまり、本発明の場合、粉体固化材の撹拌混合原理と流動性向上剤との巧みな組み合わせにより、撹拌混合時の撹拌翼の回転抵抗が低減しても混合性が低下し難いのである。これは、スラリー状固化材と原位置土とを撹拌翼で立体的に撹拌するスラリー系工法のように、一般的な撹拌混合原理に基づく場合、良好な混合性を得るためには撹拌翼の回転抵抗も大きくなければならないのとは対照的である。   It should be noted that the use of the fluidity improver in the present invention is not limited to the use of the friction reducing effect of the fluidity improver. In the powder system construction method, as described above, the powder solidified material is injected into the gap that can be momentarily behind the rotating stirring blade, and the soft mud soil to which the solidifying material adheres is the rotational speed of the stirring blade and the axial direction of the stirring shaft. It is scraped off by a stirring blade at a helical depth pitch determined by the moving speed and mixed by surface stirring, and high mixing is maintained by repeated adhesion, cutting and stirring of this solidified material. . In other words, in the case of the present invention, due to the skillful combination of the stirring and mixing principle of the powder solidifying material and the fluidity improver, the mixing property is hardly lowered even if the rotational resistance of the stirring blade during stirring and mixing is reduced. This is because, in the case of a general slurry mixing method in which the slurry-like solidified material and the in-situ soil are three-dimensionally stirred with a stirring blade, in order to obtain good mixing properties, In contrast to the fact that the rotational resistance must also be large.

このように、本発明によれば、粉体系特有の利点を損ねずに、改良径の大径化が可能となる(換言すると、改良径が同径であれば、駆動装置や撹拌翼の小型化等、施工機械の小型化が可能となる)。また、原位置土の粘着性が高い場合であっても、土の塊が撹拌翼や撹拌軸に付着し難くなるという効果もある。さらに、従来の粉体系工法においては、原位置土及びこれと固化材との撹拌混合物の流動性が比較的に乏しいため、原位置に供給した空気が地上に抜けずに改良体内に空気溜まりとして残るおそれがあるが、本発明では流動性向上剤の使用により原位置土の流動性向上及び粘性低下が図られるため、原位置に供給した空気は撹拌軸外周面に沿って上昇して排気され易くなり、空気溜まりが発生し難くなるという効果もある。   Thus, according to the present invention, it is possible to increase the diameter of the improved diameter without losing the advantages inherent in the powder system (in other words, if the improved diameter is the same diameter, the drive device and the agitating blade can be reduced in size). This makes it possible to reduce the size of construction machines). Moreover, even if the in-situ soil has high adhesiveness, there is an effect that the lump of soil becomes difficult to adhere to the stirring blade and the stirring shaft. Furthermore, in the conventional powder system construction method, the fluidity of the agitated mixture of the in-situ soil and the solidified material is relatively poor, so that the air supplied to the in-situ area does not escape to the ground and remains as an air pool in the improved body. Although there is a risk of remaining, in the present invention, the use of the fluidity improver improves the fluidity and lowers the viscosity of the in situ soil, so the air supplied to the in situ rises along the outer peripheral surface of the stirring shaft and is exhausted. This also has the effect of facilitating the formation of air pockets.

<請求項2記載の発明>
前記撹拌軸は、先端部に設けられた下段撹拌翼と、この下段撹拌翼に対して基端側に所定の間隔を空けて設けられた上段撹拌翼とを、前記撹拌翼として備えており、
前記撹拌軸の掘削貫入過程において、定着部深度より上段撹拌翼と下段撹拌翼との間隔分以上浅い深度に下段撹拌翼が到達したならば、それ以降は定着部深度まで、前記撹拌軸の先端部からスラリー固化材を噴射し、回転する前記下段撹拌翼により原位置土とスラリー固化材とを撹拌混合して先端部処理を行い、
しかる後に、前記撹拌軸を軸心周りに回転しつつ、前記先端部処理後の挿入状態から引き抜くとともに、その過程で前記上段撹拌翼の回転方向背後に粉体固化材を噴射し、回転する前記上段撹拌翼により原位置土と粉体固化材とを撹拌混合して柱状の固化体を造成する、
請求項1記載の深層混合処理工法。
<Invention of Claim 2>
The stirring shaft includes, as the stirring blade, a lower stirring blade provided at a tip portion and an upper stirring blade provided at a predetermined interval on the base end side with respect to the lower stirring blade,
In the drilling penetration process of the stirring shaft, if the lower stirring blade reaches a depth shallower than the distance between the upper stirring blade and the lower stirring blade than the fixing portion depth, then the tip of the stirring shaft reaches the fixing portion depth thereafter. The slurry solidifying material is jetted from the part, the in-situ soil and the slurry solidifying material are stirred and mixed by the rotating lower stirring blade, and the tip is processed.
After that, while rotating the stirring shaft around the axis, it is withdrawn from the inserted state after the tip portion treatment, and in the process, the powder solidification material is jetted behind the rotating direction of the upper stirring blade and rotates. The in-situ soil and the powder solidified material are stirred and mixed with the upper stirring blade to form a columnar solidified body.
The deep mixing method according to claim 1.

(作用効果)
このように、スラリー固化材による先端部処理を組み合わせることにより、撹拌軸の挿入深度全体にわたり少ない回転抵抗で(つまり、粉体固化材による改良部分については流動性向上剤により、また先端部についてはスラリー固化材によりそれぞれ回転抵抗が低減される)改良体を造成できるようになる。
(Function and effect)
In this way, by combining the tip treatment with the slurry solidifying material, with a small rotational resistance over the entire insertion depth of the stirring shaft (that is, with the fluidity improver for the improved portion by the powder solidifying material, and for the tip portion) It becomes possible to build an improved body whose rotational resistance is reduced by the slurry solidifying material.

<請求項3記載の発明>
径方向に突出する撹拌翼と、この撹拌翼の回転方向一方側に設けられた第1噴射口と、先端部に設けられた第2噴射口と、を備えた撹拌軸と、
この撹拌軸を支持するとともに、撹拌軸に回転力、引上げ力及び押し込み力を付与するベースマシンと、
前記撹拌軸内を通じて前記第1噴射口に粉体固化材を圧縮空気に乗せて圧送供給する第1供給装置と、
この粉体固化材供給手段とは別に設けられた、前記撹拌軸内を通じて前記第2噴射口に流動性向上剤を圧送供給する第2供給装置と、
を備えたことを特徴とする深層混合処理装置。
<Invention of Claim 3>
A stirring shaft provided with a stirring blade protruding in the radial direction, a first injection port provided on one side of the rotation direction of the stirring blade, and a second injection port provided at the tip;
A base machine that supports the stirring shaft and applies a rotational force, a lifting force, and a pushing force to the stirring shaft;
A first supply device for supplying the solidified powder material to the first injection port on the compressed air through the stirring shaft;
A second supply device provided separately from the powder solidifying material supply means, for supplying a fluidity improver to the second injection port through the stirring shaft;
A deep mixing apparatus characterized by comprising:

(作用効果)
請求項1記載の発明と同様の作用効果を奏する。
(Function and effect)
The same effects as those of the first aspect of the invention can be achieved.

<請求項4記載の発明>
前記撹拌軸の外周面に、前記第1噴射口の近傍から撹拌軸の長手方向に沿って延在する筋状突起を形成した、請求項3記載の深層混合処理装置。
<Invention of Claim 4>
The deep-mixing processing apparatus of Claim 3 which formed the streak process extended along the longitudinal direction of the stirring shaft from the vicinity of the said 1st injection nozzle in the outer peripheral surface of the said stirring shaft.

(作用効果)
粉体系工法においては、原位置土及びこれと固化材との撹拌混合物の流動性が比較的に乏しいため、原位置に供給した空気が地上に抜けずに改良体内に空気溜まりとして残るおそれがある。これに対して、撹拌軸に上述のような筋状突起を設けると、撹拌軸の回転に伴って突起背後に形成される空隙が空気排出通路となり、原位置に供給した空気はこの空気排出通路を介して上昇して排気されるため、空気溜まりが発生し難くなる。
(Function and effect)
In the powder system construction method, the fluidity of the in-situ soil and the stirring mixture of this and the solidified material is relatively poor, so the air supplied to the in-situ region may not remain on the ground and remain as an air pool in the improved body. . On the other hand, when the stirrer shaft as described above is provided on the stirring shaft, the air gap formed behind the projection as the stirring shaft rotates becomes an air discharge passage, and the air supplied to the original position is the air discharge passage. As the air is raised and exhausted through the air, it is difficult for air pockets to occur.

<請求項5記載の発明>
前記撹拌翼における第1噴射口側の面には、第1噴射口の上側近傍の高さ位置に、径方向に沿って翼基端から翼先端部近傍まで延在する尾根状の凸筋を形成した、請求項3又は4記載の深層混合処理装置。
<Invention of Claim 5>
On the surface on the first injection port side of the stirring blade, a ridge-like convex line extending from the blade base end to the blade tip portion along the radial direction is provided at a height position near the upper side of the first injection port. The deep layer processing apparatus according to claim 3 or 4, which is formed.

(作用効果)
粉体系工法においては、原位置土及びこれと固化材との撹拌混合物の流動性が比較的に乏しいため、原位置に供給した空気が地上に抜けずに改良体内に空気溜まりとして残るおそれがある。これに対して、上述のような凸筋を設けると、第1噴射口から粉体固化剤を噴射する際、撹拌翼の回転方向背後に上下2段に空隙が形成され、凸筋下側に噴射される空気が凸筋上側の空隙を通じて本体管側に還流し、本体管と地盤との間を通じて地上に排出されるため、改良体に空気溜まりが発生し難くなる。
(Function and effect)
In the powder system construction method, the fluidity of the in-situ soil and the stirring mixture of this and the solidified material is relatively poor, so the air supplied to the in-situ region may not remain on the ground and remain as an air pool in the improved body. . In contrast, when the convex streaks as described above are provided, when the powder solidifying agent is ejected from the first ejection port, a gap is formed in two upper and lower stages behind the rotation direction of the stirring blade, and the lower side of the convex streaks is formed. The jetted air flows back to the main body pipe side through the gap above the convex muscle and is discharged to the ground through the main body pipe and the ground, so that it is difficult for the improved body to collect air.

以上のとおり本発明によれば、粉体系工法において、粉体系特有の利点を損ねずに、改良径の大径化(又は同径であれば施工機械の小型化)が可能となる、等の利点がもたらされる。   As described above, according to the present invention, in the powder system construction method, it is possible to increase the diameter of the improved diameter (or to reduce the size of the construction machine if the diameter is the same) without impairing the advantages specific to the powder system. Benefits are provided.

深層混合処理装置の概略図である。It is the schematic of a deep-layer mixing processing apparatus. スイーベルジョイント部分の縦断面図である。It is a longitudinal cross-sectional view of a swivel joint part. 撹拌軸の撹拌翼部分を示す拡大図である。It is an enlarged view which shows the stirring blade part of a stirring shaft. 撹拌軸の横断面図である。It is a cross-sectional view of a stirring shaft. 撹拌軸の撹拌翼部分を示す拡大図である。It is an enlarged view which shows the stirring blade part of a stirring shaft. 撹拌軸の横断面図である。It is a cross-sectional view of a stirring shaft. 撹拌軸の上段撹拌翼部分を示す横断面図である。It is a cross-sectional view which shows the upper stage stirring blade part of a stirring shaft. 撹拌軸の下段撹拌翼部分を示す横断面図である。It is a cross-sectional view which shows the lower stage stirring blade part of the stirring shaft. 掘削貫入時の下段撹拌翼周囲の状態を示す概略図である。It is the schematic which shows the state around the lower stage stirring blade at the time of excavation penetration. 引き上げ撹拌時の上段撹拌翼周囲の状態を示す概略図である。It is the schematic which shows the state around the upper stage stirring blade at the time of raising stirring. 下段撹拌翼の締固め効果を説明するための概略図である。It is the schematic for demonstrating the compaction effect of a lower stage stirring blade. 施工方法例を示す概略図である。It is the schematic which shows the construction method example. 施工方法例を示す概略図である。It is the schematic which shows the construction method example.

以下、本発明の一実施形態について添付図面を参照しながら詳説する。
図1は、本発明に係る深層混合処理装置1を示しており、この装置1は、撹拌軸10を備えたベースマシン20と、粉体固化材を計量圧送する第1供給装置30と、流動性向上剤およびスラリー固化材を製造し、これらを選択的に切り替えて圧送する第2供給装置40とで構成されている。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a deep mixing apparatus 1 according to the present invention, which includes a base machine 20 having a stirring shaft 10, a first supply device 30 for metering and feeding a powder solidified material, and a flow It is comprised with the 2nd supply apparatus 40 which manufactures a property improvement agent and a slurry solidification material, selectively switches these, and pumps.

ベースマシン20は、前端部に立設されたリーダー21と、リーダー21に沿って昇降自在に設けられた昇降部22と、昇降部22によって支持された撹拌軸10と、昇降部に搭載された、撹拌軸10を軸心周りに回転させる回転駆動装置23とを備えている。撹拌軸10は、昇降部22の昇降によって押し込み力又は引上げ力が付与されるとともに、回転駆動装置23により回転力が付与されるようになっている。   The base machine 20 is mounted on a leader 21 erected at the front end, an elevating part 22 provided so as to be movable up and down along the leader 21, an agitation shaft 10 supported by the elevating part 22, and the elevating part. And a rotation driving device 23 that rotates the stirring shaft 10 around the axis. The agitation shaft 10 is applied with a pushing force or a pulling force by raising and lowering the elevating unit 22, and a rotating force is given by the rotation driving device 23.

撹拌軸10は、図3〜図8に示すように、頭部にスイーベルジョイント11が取り付けられた本体管12と、本体管12の先端部に設けられた、径方向両側に突出する下段撹拌翼13と、この下段撹拌翼13に対して基端側に所定の間隔を空けて設けられた、径方向両側に突出する上段撹拌翼14とを備えている。本体管12は、例えば図3及び図4に示すように角管により形成する他、図5及び図6に示すように円管により形成することもできる。   As shown in FIGS. 3 to 8, the stirring shaft 10 includes a main body tube 12 having a swivel joint 11 attached to the head, and a lower stirrer blade provided at the tip of the main body tube 12 and protruding in both radial directions. 13 and an upper stirrer blade 14 that protrudes on both sides in the radial direction and is provided at a predetermined interval on the base end side with respect to the lower stirrer blade 13. For example, the main body tube 12 may be formed of a square tube as shown in FIGS. 3 and 4, or may be formed of a circular tube as shown in FIGS. 5 and 6.

図3、図5、図7及び図8に示すように、上段撹拌翼14及び下段撹拌翼13は、撹拌軸10の周方向一方側が他方側よりも下側に位置する所定の傾斜姿勢で取り付けられており、貫入時の撹拌軸10の回転方向は翼下縁部が回転方向前側となり、引上げ時の回転方向はその逆で翼上縁部が回転方向前側となる。下段撹拌翼13の下縁部には下方に突出するカッターb1が径方向に適宜の間隔を空けて取り付けられている。このカッターb1は掘削貫入時に地盤を切削するためのものである。また、上段撹拌翼14の下縁部には下方に突出する撹拌刃b2が径方向に適宜の間隔を空けて取り付けられている。さらに、下段撹拌翼13の上縁部にも、上方に突出する撹拌刃b2が径方向に適宜の間隔を空けて取り付けられている。これらの撹拌刃b2は撹拌作用を発揮するものである。   As shown in FIGS. 3, 5, 7, and 8, the upper stirring blade 14 and the lower stirring blade 13 are attached with a predetermined inclination posture in which one side in the circumferential direction of the stirring shaft 10 is located below the other side. Thus, the rotation direction of the stirring shaft 10 at the time of penetration is the blade lower edge portion at the front side in the rotation direction, and the rotation direction at the time of pulling up is the opposite, and the blade upper edge portion is at the front side in the rotation direction. A cutter b1 protruding downward is attached to the lower edge portion of the lower stirring blade 13 at an appropriate interval in the radial direction. This cutter b1 is for cutting the ground at the time of excavation penetration. Further, a stirring blade b2 protruding downward is attached to the lower edge portion of the upper stirring blade 14 at an appropriate interval in the radial direction. Furthermore, the stirring blade b2 protruding upward is also attached to the upper edge portion of the lower stirring blade 13 at an appropriate interval in the radial direction. These stirring blades b2 exhibit a stirring action.

本体管12外面には、上段撹拌翼14の引上げ時回転方向背後の位置に第1噴射口15が形成されるとともに、下段撹拌翼13の貫入時回転方向背後の位置に第2噴射口16が設けられており、これら第1噴射口15及び第2噴射口16には、本体管12に内蔵された内部第1ラインL1及び内部第2ラインL2がそれぞれ接続されている。内部第1ラインL1及び内部第2ラインL2はパイプまたはホースにより形成することができる。   On the outer surface of the main body pipe 12, a first injection port 15 is formed at a position behind the rotation direction when the upper stirring blade 14 is pulled up, and a second injection port 16 is formed at a position behind the rotation direction when the lower stirring blade 13 is inserted. An internal first line L1 and an internal second line L2 built in the main body pipe 12 are connected to the first injection port 15 and the second injection port 16, respectively. The internal first line L1 and the internal second line L2 can be formed by pipes or hoses.

また、図示例では、上段撹拌翼14の引上げ時回転方向背面には、第1噴射口15の上側近傍の高さ位置に、径方向に沿って翼基端から先端部近傍まで延在する尾根状の凸筋17が形成されている。さらに、図示例では、本体管12の外周面に、本体管12の長手方向に沿って延在する筋状突起18が形成されている。この筋状突起18は長手方向に沿って延在する限り、図示例のような上下方向に沿う直線状とする他、本体管12の外周に沿って上昇する螺旋状等、曲線状にすることもでき、長手方向に延在する限り、図3に示すように凸筋1718が不連続な部分を有していても良い。直線状とする場合、本体管12が角管の場合は角の部分に筋状突起18を取付け、円管の場合は上段撹拌翼14と対応する位置に筋状突起18を形成するのが好ましい。   Further, in the illustrated example, on the rear side in the rotational direction when the upper stirring blade 14 is pulled up, a ridge extending from the blade base end to the vicinity of the tip portion along the radial direction at a height position near the upper side of the first injection port 15. A convex line 17 is formed. Further, in the illustrated example, a streak 18 extending along the longitudinal direction of the main body tube 12 is formed on the outer peripheral surface of the main body tube 12. As long as the streak 18 extends along the longitudinal direction, the streak 18 has a linear shape along the vertical direction as in the illustrated example, and a curved shape such as a spiral rising along the outer periphery of the main body tube 12. As long as it extends in the longitudinal direction, the convex streaks 1718 may have discontinuous portions as shown in FIG. When the main tube 12 is a square tube, it is preferable that the streak 18 is attached to the corner portion, and when the main tube 12 is a circular tube, the streak 18 is formed at a position corresponding to the upper stirring blade 14. .

図2に詳細に示すように、撹拌軸10の頭部には、粉体および液体を個別のラインで同時に圧送できる構造のスイーベルジョイント11が設けられており、撹拌軸10の内部第1ラインL1及び内部第2ラインL2は、このスイーベルジョイント11を介して対応する外部第1ラインL11及び外部第2ラインL12に相互独立に且つ恒常的に接続されており、外部第1ラインL11は第1供給装置30に、及び外部第2ラインL12は第2供給装置40にそれぞれ接続されている。   As shown in detail in FIG. 2, the head of the stirring shaft 10 is provided with a swivel joint 11 having a structure capable of simultaneously pumping powder and liquid through separate lines, and the first internal line L <b> 1 of the stirring shaft 10. The internal second line L2 is constantly and independently connected to the corresponding external first line L11 and external second line L12 via the swivel joint 11, and the external first line L11 is the first supply. The device 30 and the external second line L12 are connected to the second supply device 40, respectively.

第1供給装置30は、粉体固化材を貯留するサイロ31と、このサイロ31から投入される粉体固化材を図示しないコンプレッサーから供給される圧縮空気に乗せて、外部第1ラインL11を介して送出する送出機32とを備えている。また、第2供給装置40は、流動性向上剤液を貯留する貯留槽41と、スラリー固化材を貯留する撹拌槽42と、これらの貯留物のうち切替バルブ43により選択される方を外部第2ラインL12を介して送出するポンプ44とを備えている。流動性向上剤は、土の流動性を向上させる薬品である限り、粉体、液体を問わず使用することができ、特に限定されるものではないが、界面活性剤を含有するものが好適である。流動性向上剤としては、例えばコンクリート用混和剤として公知の、起泡剤(合成界面活性剤系、樹脂石鹸系、蛋白系)、流動化剤(界面活性剤が主成分であり、ナフタリンスルホン酸ホルムアルデヒド高縮合物塩やメラミンスルホン酸ホルムアルデヒド高縮合物塩、スチレンスルホン酸共重合物塩など)、AE剤、AE減水剤、減水剤、高性能AE減水剤等を好適に使用することができる。また、流動性向上剤は、水等で希釈して適宜濃度の液体にして用いるのが好ましい。   The first supply device 30 places a silo 31 for storing the powder solidified material, and puts the powder solidified material charged from the silo 31 on compressed air supplied from a compressor (not shown), and passes the external first line L11. And a sending machine 32 for sending out. In addition, the second supply device 40 has an external storage tank 41 for storing the fluidity improver liquid, an agitation tank 42 for storing the slurry solidifying material, and one of these storages selected by the switching valve 43. And a pump 44 for feeding through the two lines L12. As long as the fluidity improver is a chemical that improves the fluidity of the soil, it can be used regardless of powder or liquid, and is not particularly limited, but those containing a surfactant are suitable. is there. Examples of fluidity improvers include foaming agents (synthetic surfactants, resin soaps, proteins), fluidizers (surfactants are the main components, naphthalenesulfonic acid, which are known as admixtures for concrete, for example. Formaldehyde high condensate salts, melamine sulfonic acid formaldehyde high condensate salts, styrene sulfonic acid copolymer salts, etc.), AE agents, AE water reducing agents, water reducing agents, high performance AE water reducing agents and the like can be suitably used. The fluidity improver is preferably used by diluting with water or the like to obtain a liquid having an appropriate concentration.

他方、図12は、上記深層混合処理装置1を用いた施工方法の一例を示している。この例は、撹拌軸10を掘削貫入後、引上げ時に粉体状の固化材を噴射撹拌し、固化柱体CBを造成する施工形態への応用例である。この例では、先ず図12(a)に示されるように、撹拌軸10を軸心周りに回転しつつ地盤の改良対象部位に掘削貫入するとともに、その過程で、第1供給装置30からは逆流防止のため圧縮空気のみ供給し、粉体固化材の供給は停止したまま、第2供給装置40の切替バルブ43を流動性向上剤側に切替えてポンプ44を作動させ、第2供給装置40から流動性向上剤を送出し、外部第2ラインL12及び内部第2ラインL2を経て第2噴射口16から噴射させる。第2噴射口16から噴射される流動性向上剤は、図9に示すように下段撹拌翼13の回転方向背後に形成される空隙S1に散布される。これによって、回転する撹拌翼13,14により原位置土Gと流動性向上剤とが撹拌混合され、原位置土Gの流動性向上及び粘性低下が図られる。その結果、掘削貫入時の撹拌翼13,14の回転抵抗が軽減され、改良径を大径化しても良好に掘削貫入を行うことができるとともに、改良対象部位が後の粉体固化材の散布混合に適した泥土になる。改良径(撹拌翼径)は特に限定されないが、本発明によれば従来の1m径に対して1.5〜3m径程度とすることができる。   On the other hand, FIG. 12 shows an example of a construction method using the deep mixing processing apparatus 1. This example is an application example to a construction form in which a solidified columnar body CB is formed by jetting and agitating a powdered solidified material at the time of pulling up after excavating the stirring shaft 10. In this example, as shown in FIG. 12 (a), first, the agitation shaft 10 rotates around the axis and penetrates into the site to be improved in the ground. In order to prevent this, only compressed air is supplied, and the supply of the powder solidifying material is stopped, the switching valve 43 of the second supply device 40 is switched to the fluidity improver side, and the pump 44 is operated. The fluidity improver is delivered and injected from the second injection port 16 through the external second line L12 and the internal second line L2. As shown in FIG. 9, the fluidity improver injected from the second injection port 16 is dispersed in a gap S <b> 1 formed behind the lower stirring blade 13 in the rotation direction. Thereby, the in-situ soil G and the fluidity improver are agitated and mixed by the rotating stirring blades 13 and 14, and the in-situ soil G is improved in fluidity and reduced in viscosity. As a result, the rotational resistance of the stirring blades 13 and 14 at the time of drilling penetration is reduced, and even if the improved diameter is increased, the drilling penetration can be performed well, and the site to be improved is sprayed with the powder solidified material later. It becomes mud suitable for mixing. The improved diameter (stirring blade diameter) is not particularly limited, but according to the present invention, it can be about 1.5 to 3 m diameter compared to the conventional 1 m diameter.

次に、図12(b)に示すように、定着部(改良部位の底部)深度から上段撹拌翼14と下段撹拌翼13との間隔D1分だけ浅い深度(間隔D1分以上浅ければ良い)に、下段撹拌翼13が達したならば、必要に応じて、次のような先端部処理を行うことができる。すなわち、下段撹拌翼13が所定深度に達したならば、第2供給装置40の切替バルブをスラリー固化材側に切替えて、図12(c)に示すように、第2供給装置40からスラリー固化材を送出し、外部第2ラインL12及び内部第2ラインL2を経て第2噴射口16から噴射させつつ、更に撹拌軸10を回転させつつ貫入する。これにより、第1噴射口15よりも先端側の改良対象部位についてはスラリー固化材を供給して、先端部改良体を造成することができる。あるいは、第2供給装置40から流動性向上剤を供給しつつ一旦定着部まで掘削貫入したのち、上記間隔D1分だけ撹拌軸10を引上げ、この状態から上述の先端部処理を行っても良い。この場合、先端処理部まで流動性向上剤による撹拌軸10の回転抵抗低減効果が発揮される。   Next, as shown in FIG. 12 (b), the depth is shallower by the distance D1 between the upper stirring blade 14 and the lower stirring blade 13 than the depth of the fixing portion (the bottom of the improved portion) (should be shallower than the interval D1 minutes). In addition, if the lower stirring blade 13 has reached, the following tip processing can be performed as necessary. That is, when the lower stirring blade 13 reaches a predetermined depth, the switching valve of the second supply device 40 is switched to the slurry solidifying material side, and the slurry solidification is performed from the second supply device 40 as shown in FIG. The material is fed out and injected through the second injection port 16 through the external second line L12 and the internal second line L2, and further, while the stirring shaft 10 is rotated. Thereby, about the improvement object site | part of the front end side rather than the 1st injection port 15, a slurry solidification material can be supplied and a front-end | tip part improvement body can be created. Alternatively, after supplying the fluidity improver from the second supply device 40 and once excavating and penetrating to the fixing portion, the stirring shaft 10 may be pulled up by the interval D1 and the above-described tip portion processing may be performed from this state. In this case, the effect of reducing the rotational resistance of the stirring shaft 10 by the fluidity improver is exhibited up to the tip treatment section.

そして、下段撹拌翼13が定着部深度に達したならば、第2供給装置40を停止した後、図13(d)に示すように、撹拌軸10を貫入時とは逆に回転しつつ引き上げるとともに、その過程で、第1供給装置30を作動させて粉体固化材を外部第1ラインL11及び内部第1ラインL1を経て第1噴射口15から噴射させる。第1噴射口15から噴射される粉体固化材は、図10に示すように上段撹拌翼14の回転方向背後に形成される空隙S2に散布される。固化材が付着した軟弱泥土は、上段撹拌翼14の回転速度と撹拌軸10の軸方向移動速度の関係で定まる螺旋状の深さ方向ピッチで撹拌翼によって削り取られ、面的に撹拌されることで混合される。さらに、図示例では、撹拌軸10の引き上げに伴い、下段撹拌翼13の上縁部に設けられた掘削ビットにより、上段撹拌翼14に続いて、逆向きで面的な撹拌がなされるため、混合性はより一層向上する。そして、この固化材の付着・切削・撹拌の繰り返しによって、図13(e)及び(f)に示すように、原位置土と粉体固化材とが良好に撹拌混合されて柱状の固化体CBが造成される。また、この際、下段撹拌翼13は図11に矢印で示すように混合処理土を下方に押し付ける作用を発揮するため、造成される改良体CBは良好に締め固められたものとなる。   When the lower stirring blade 13 reaches the fixing portion depth, after the second supply device 40 is stopped, as shown in FIG. 13D, the stirring shaft 10 is pulled up while rotating in the direction opposite to the time of penetration. At the same time, the first supply device 30 is operated to inject the powder solidified material from the first injection port 15 through the external first line L11 and the internal first line L1. As shown in FIG. 10, the powder solidified material injected from the first injection port 15 is dispersed in a gap S <b> 2 formed behind the upper stirring blade 14 in the rotation direction. The soft mud to which the solidifying material adheres is scraped by a stirring blade at a spiral depth pitch determined by the relationship between the rotational speed of the upper stirring blade 14 and the axial movement speed of the stirring shaft 10 and is agitated in a plane. Mixed in. Further, in the illustrated example, as the stirring shaft 10 is pulled up, the excavation bit provided at the upper edge portion of the lower stirring blade 13 causes the surface stirring in the reverse direction following the upper stirring blade 14. Mixability is further improved. Then, as shown in FIGS. 13 (e) and 13 (f), the in-situ soil and the powder solidified material are well stirred and mixed by repeating the adhesion, cutting, and stirring of the solidified material, so that the columnar solidified body CB is obtained. Is created. Further, at this time, the lower stirring blade 13 exerts an action of pressing the mixed treated soil downward as shown by an arrow in FIG. 11, so that the improved body CB to be formed is well compacted.

一方、粉体固化材とともに供給された空気は、図13(d)及び(e)に示すように、撹拌軸10外面に沿って地上に排出される。特に、図示例のように上段撹拌翼14背面に凸筋17を有すると、図10に示す図からも理解できるように、上段撹拌翼14の回転方向背後に上下2段に空隙が形成され、図5に二点鎖線で示すように凸筋17下側に噴射される空気が凸筋17上側の空隙を通じて本体管12側に還流し、本体管12と地盤との間を通じて地上に排出されるため、改良体に空気溜まりが発生し難くなる。また、図示例のように、撹拌軸10の外周面に撹拌軸10の長手方向に沿って延在する筋状突起18を有すると、図5にも示すように、筋状突起18の回転方向背後に、本体管12の外面に沿って地上へ通じる空隙S3が形成されるため、これが空気排出通路となって、原位置に供給した空気が上昇(図5二点鎖線矢印参照)して排気され易くなる。   On the other hand, the air supplied together with the powder solidifying material is discharged to the ground along the outer surface of the stirring shaft 10 as shown in FIGS. 13 (d) and 13 (e). In particular, when the upper stirrer blades 14 have the convex streaks 17 on the back as in the illustrated example, as can be understood from the diagram shown in FIG. As shown by a two-dot chain line in FIG. 5, the air injected below the convex muscle 17 returns to the main body pipe 12 through the gap above the convex muscle 17 and is discharged to the ground between the main body pipe 12 and the ground. For this reason, it is difficult for the improved body to generate air pockets. Further, as shown in FIG. 5, when the stirrer protrusion 18 extending along the longitudinal direction of the stirrer shaft 10 is provided on the outer peripheral surface of the stirrer shaft 10, the rotation direction of the streak protrusion 18 is also shown in FIG. 5. Since a gap S3 leading to the ground along the outer surface of the main body pipe 12 is formed behind, this serves as an air discharge passage, and the air supplied to the original position rises (see the two-dot chain line arrow in FIG. 5) and exhausts. It becomes easy to be done.

他方、粉体圧送圧が限界となる限界深度よりも高深度(例えば25m以上)まで改良する必要のあるところでは、限界深度までは第2噴射口16から流動性向上剤を供給しつつ掘削貫入し、限界深度からは先端部処理と同様に、第2噴射口16から固化材スラリー噴射に切り替えて、貫入吐出を行い、引上げ時に再撹拌をして限界深度よりも深い部分にスラリー固化材による固化柱体を造成し、第1噴射口15が限界深度に戻ったところで第2供給装置40を停止して第1供給装置30を作動させ、第1噴射口15から粉体固化材を噴射させて、限界深度以浅に粉体固化材による固化柱体を造成するといったことも可能である。   On the other hand, when it is necessary to improve to a depth (for example, 25 m or more) higher than the limit depth where the powder pressure is limited, drilling penetration is performed while supplying the fluidity improver from the second injection port 16 to the limit depth. Then, from the limit depth, as in the tip processing, the second injection port 16 is switched to the solidified material slurry injection, the penetration discharge is performed, the re-stirring is performed at the time of pulling up, and the slurry solidified material is formed in a portion deeper than the limit depth. A solidified column is formed, and when the first injection port 15 returns to the limit depth, the second supply device 40 is stopped and the first supply device 30 is operated to inject the powder solidified material from the first injection port 15. Thus, it is possible to form a solidified column with a powder solidified material shallower than the limit depth.

また、改良対象部位が含水量の大きい軟弱な地層であれば良いが、ある程度締まった地層や粘着力の大きい地層の場合には、別途又は流動性向上剤の添加水量を増加することにより、予め改良対象部位に加水して、粉体固化材に対して適切な含水比の原位置土Gに調整することができる。例えば、高含水量の地層では少量の活性剤または原液に近い少量の活性剤を使用することができる。なお、各深度における活性剤の噴射量および加水量は、あらかじめ地層構成が分かっている場合には初期設定により制御することができ、そうでない場合や自動化する場合には、地盤状態を電動機駆動の場合は電流計から、油圧駆動の場合は油圧計から検知して制御することもできる。後者の場合、掘削推力、回転トルクを直接検知するセンサーを取り付ければより高精度の管理が可能になる。   In addition, the site to be improved may be a soft formation with a large water content, but in the case of a formation that has been tightened to some extent or a formation with a large adhesive strength, the amount of water added to the fluidity improver may be increased separately or in advance. It can be added to the site to be improved and adjusted to the in-situ soil G having an appropriate water content ratio with respect to the powder solidified material. For example, in a high water content formation, a small amount of active agent or a small amount of active agent close to the stock solution can be used. It should be noted that the injection amount and water addition amount of the active agent at each depth can be controlled by the initial setting when the stratum structure is known in advance. In the case of hydraulic drive, it can be detected and controlled from the hydraulic meter in the case of hydraulic drive. In the latter case, if a sensor that directly detects excavation thrust and rotational torque is attached, more accurate management becomes possible.

(その他)
(A)上記例と異なり、第1噴射口15及び第2噴射口16は撹拌軸10における同じ深さ位置に設けることもできる。また、撹拌翼は一段としても良い。さらに、同一の段の撹拌翼は図示例では対向方向に2枚突出させているが、3枚以上放射方向に突出させることも可能である。
(B)第2噴射口16の位置は、撹拌軸10の先端部であれば、撹拌翼の貫入時回転方向背後でなくても良い。
(C)上記例では、スラリー固化材を併用して先端部処理或は大深度処理を行っているが、本発明ではスラリー固化材は用いなくても良い。
(D)粉体固化材の噴射は、流動性向上剤の撹拌混合後であれば撹拌軸10の引上げ時のみならず、撹拌軸10を一度引上げた後に再度貫入する過程で行うこともできる。
(E)本発明では、セメント、セメント系固化材、フライアッシュ(石炭灰)、石灰系固化材等の複数種の粉体固化材を同時噴射することができ、その場合、供給ラインを粉体固化材の種類別に設けて個別に圧送・噴射するほか、予め混合可能な材料である場合は共通の供給ラインで圧送・噴射することができる。
(F)本発明では、流動性向上剤を空気とともに高圧噴射することができ、これにより流動性向上剤と原位置土との混合性を向上させるとともに、改良体内への気泡混入により改良体の軽量化を図ることができる。スラリー固化材を噴射する際も同様にスラリー固化材を空気とともに高圧噴射することができる。
(Other)
(A) Unlike the above example, the first injection port 15 and the second injection port 16 can be provided at the same depth position in the stirring shaft 10. Further, the stirring blade may be a single stage. Furthermore, two stirring blades at the same stage are projected in the opposite direction in the illustrated example, but three or more stirring blades can be projected in the radial direction.
(B) If the position of the 2nd injection port 16 is a front-end | tip part of the stirring shaft 10, it may not be behind the rotation direction at the time of penetration of a stirring blade.
(C) In the above example, the slurry solidifying material is used in combination to perform the tip processing or the deep processing, but the slurry solidifying material may not be used in the present invention.
(D) The injection of the powder solidifying material can be performed not only when the stirring shaft 10 is pulled up but also in the process of re-penetrating after the stirring shaft 10 is pulled up once if the fluidity improver is stirred and mixed.
(E) In the present invention, a plurality of types of powder solidifying materials such as cement, cement-based solidified material, fly ash (coal ash), and lime-based solidified material can be simultaneously injected. In addition to providing the solidified material for each type and individually pumping / injecting, it is possible to press and inject using a common supply line in the case of materials that can be mixed in advance.
(F) In the present invention, the fluidity improver can be injected together with air at a high pressure, thereby improving the mixing property between the fluidity improver and the in-situ soil, and mixing the bubbles into the improved body. Weight reduction can be achieved. Similarly, when the slurry solidifying material is jetted, the slurry solidifying material can be jetted together with air at a high pressure.

本発明は、深層混合処理工法および深層混合処理装置に適用できるものである。   The present invention can be applied to a deep layer processing method and a deep layer processing apparatus.

1…深層混合処理装置、10…撹拌軸、13…下段撹拌翼、14…上段撹拌翼、15…第1噴射口、16…第2噴射口。   DESCRIPTION OF SYMBOLS 1 ... Deep layer processing apparatus, 10 ... Stirring shaft, 13 ... Lower stage stirring blade, 14 ... Upper stage stirring blade, 15 ... 1st injection port, 16 ... 2nd injection port.

本発明は、深層混合処理工法およびこれに好適な深層混合処理装置に関するものである。   The present invention relates to a deep layer processing method and a deep layer processing apparatus suitable for the method.

深層混合処理工法は、撹拌翼を備えた撹拌軸を地盤に挿入し、撹拌軸を介して地盤中に固化材を供給するとともに、撹拌軸を回転させて撹拌翼により原位置土と固化材とを撹拌混合して柱状の固化体を造成するものであり、わが国固有の技術として開発され、普及以来30年余りを経過している工法である。深層混合処理工法は、これまで多くの実績を挙げ、現在もなお代表的な地盤改良工法として広く用いられており、最近では、海外でも普及が始まり、深層混合処理工法は国際的な工法となりつつある。
深層混合処理工法は、セメント系固化材を水で溶いてスラリー状にして地盤に供給するスラリー系工法と、粉体状の固化材を直接地中に供給する粉体系工法とに大別することができる。一般に前者はCDM工法、後者はDJM工法といわれている。両工法の相違点は次の通りである。
In the deep mixing method, a stirring shaft equipped with a stirring blade is inserted into the ground, and the solidification material is supplied into the ground through the stirring shaft. This is a method that has been developed as a technology unique to Japan and has passed over 30 years since its popularization. Deep Mixing method is cited so far many achievements, current still widely used as a typical ground improvement method, in recent years, the spread begins overseas, deep mixing processing method is becoming an international construction methods is there.
The deep mixing treatment method is roughly divided into a slurry-based method in which cement-based solidification material is dissolved in water to form a slurry and supplied to the ground, and a powder-based method in which powdered solidification material is directly supplied to the ground. Can do. In general, the former is called the CDM method, and the latter is called the DJM method. The differences between the two methods are as follows.

(固化材の相違)
スラリー系工法の場合は、セメントまたはセメント系固化材が好適であり、吸水性の高いフライアッシュや石灰系固化材は不向きであるのに対して、粉体系工法の場合はこれらの材料をベースにした広い範囲の材料に適用できるため、低コストの材料を選定することができる。
(Difference in solidified material)
In the case of the slurry method, cement or cement-based solidified material is suitable, and fly ash and lime-based solidified material with high water absorption are not suitable, whereas in the case of the powder-based method, these materials are used as a base. Therefore, a low cost material can be selected.

(余剰土)
スラリー系工法では、スラリー化するために固化材を水に溶解することから、その分だけ固化材の体積が増加し、改良地盤の20〜30%程度のスラリーを供給することになる。その結果、飽和している地盤であればその分が余剰土となり、その処理・処分が必要となる。これに対して、粉体系工法の場合は原位置の水分に固化材を吸着させて固化させるため、スラリー系のような固化材の体積増はなく、したがって余剰土も殆ど発生しない。
(Excess soil)
In the slurry system construction method, since the solidified material is dissolved in water to make a slurry, the volume of the solidified material is increased correspondingly, and a slurry of about 20 to 30% of the improved ground is supplied. As a result, if the ground is saturated, that portion becomes surplus soil, which requires treatment and disposal. On the other hand, in the case of the powder system construction method, since the solidification material is adsorbed and solidified by the moisture in situ, there is no increase in volume of the solidification material as in the slurry system, and therefore, no excess soil is generated.

(撹拌混合の原理)
粉体系工法では、空気圧送される粉体固化材が回転する撹拌翼の背後に一瞬できる空隙に噴射され、撹拌翼により流動化された軟弱土の撹拌面(空隙内面)に散布されて軟弱土内の水分に付着する。粉体固化材とともに噴射された空気は、軸周辺を通って地上に排出される。固化材が付着した軟弱泥土は、撹拌翼の回転速度と撹拌軸の軸方向移動速度の関係で定まる螺旋状の深さ方向ピッチで撹拌翼によって削り取られ、面的に撹拌されることで混合される。この撹拌翼による削り取り作用により、撹拌翼の背後に形成される空隙内には順次新しい固化材付着面が作り出され、固化材の付着・切削・撹拌が繰り返される結果、混合性の高い柱体が造成される。これに対して、スラリー系工法では、粉体系工法のような固化材の原位置土との付着現象がないため、文字通り固化材スラリーと原位置土とを混合撹拌させる必要がある。そのため、混合性能を向上させるために、撹拌翼の形状、正逆回転翼、固定翼の取り付けなどの工夫がなされている。
しかしながら、粉体系工法においては、スラリー系工法と比べて掘削貫入時及び固化材撹拌混合時の撹拌翼の回転抵抗が大きく、改良径の3乗に比例するともいわれており、改良径の大径化が困難であり、施工機械の大型化が不可避である等の問題点が残されていた。
建設需要の低迷と海外需要の増加に伴い低コスト化が余儀なくされている昨今では、大径化、すなわち大断面にすることによって、単位時間当たりの施工量を増やしコストを低減することは極めて重要である。
(Principle of stirring and mixing)
In the powder system construction method, the powder solidification material that is fed pneumatically is sprayed into the gap that can be momentarily behind the rotating stirring blade, and sprayed on the stirring surface (inner surface of the void) fluidized by the stirring blade. Adhere to the moisture inside. The air injected together with the powder solidifying material is discharged to the ground through the periphery of the shaft. The soft mud with the solidifying material attached is scraped off by a stirring blade at a helical depth pitch determined by the relationship between the rotation speed of the stirring blade and the axial movement speed of the stirring shaft, and mixed by being stirred on the surface. The By this scraping action by the stirring blade, a new solidified material adhering surface is created sequentially in the gap formed behind the stirring blade, and as a result of repeated adhesion, cutting and stirring of the solidified material, a highly mixed column is formed. Created. On the other hand, in the slurry system construction method, there is no adhesion phenomenon with the in situ soil of the solidifying material as in the powder system construction method. Therefore, it is necessary to literally mix and agitate the solidifying material slurry and the in situ soil. For this reason, in order to improve the mixing performance, a device such as the shape of the stirring blade, the forward / reverse rotating blade, and the fixed blade is devised.
However, in the powder system construction method, it is said that the rotational resistance of the stirring blade during drilling penetration and solidification material stirring mixing is larger than that in the slurry system construction method and is proportional to the cube of the improved diameter. However, it was difficult to increase the size of the construction machine and it was inevitable that the construction machine would be increased in size.
In recent years when construction demand has been stagnation and overseas demand has been increasing, cost reductions are inevitable. It is extremely important to increase the construction volume per unit time and reduce costs by increasing the diameter, that is, by increasing the cross section. It is.

特許第2790759号公報Japanese Patent No. 2790759 特許第3509579号公報Japanese Patent No. 3509579

そこで、本発明の主たる課題は、粉体系工法において、粉体系特有の利点を損ねずに、改良径の大径化を可能ならしめることにある。
なお、粉体系工法においては、低含水比の地盤における撹拌混合に際し、原位置に水を供給して原位置土の含水比を調整する工法も提案されている(特許文献1、2参照)が、これらの技術は、低含水比の地盤において含水比を調整する範囲では加水により結果的に撹拌翼の回転抵抗が低減するものであるが、積極的に回転抵抗を低減して改良径の大径化を図ろうとするものではない。
Therefore, the main problem of the present invention is to enable the diameter of the improved diameter to be increased without impairing the advantages unique to the powder system in the powder system construction method.
In addition, in the powder system construction method, a method of adjusting the water content ratio of the in-situ soil by supplying water to the original position during the mixing with stirring in the ground having a low water content ratio has been proposed (see Patent Documents 1 and 2). However, these technologies are intended to reduce the rotational resistance of the stirring blade as a result of the addition of water in the range where the water content ratio is adjusted in the ground with a low water content ratio. It is not intended to reduce the diameter.

上記課題を解決した本発明は次記のとおりである。
<請求項1記載の発明>
先端部に設けられた径方向に突出する下段撹拌翼と、この下段撹拌翼に対して基端側に所定の間隔を空けて設けられた径方向に突出する上段撹拌翼と、この上段撹拌翼の引上げ時回転方向背後の位置に設けられた第1噴射口と、前記下段撹拌翼の貫入時回転方向背後の位置に設けられた第2噴射口と、を備えた撹拌軸と、
前記撹拌軸内の内部第1ラインを通じて前記第1噴射口に粉体固化材を圧縮空気に乗せて圧送供給する第1供給装置と、
この第1供給装置とは別の供給ラインにより構成された、前記撹拌軸内の内部第2ラインを通じて前記第2噴射口に界面活性剤を含有する流動性向上剤液を圧送供給する第2供給装置とを用い、
前記撹拌軸を、軸心周りに回転させつつ地盤の改良対象部位に掘削貫入するとともに、その過程で前記撹拌軸の先端部の前記第2噴射口から流動性向上剤を噴射し、回転する前記撹拌翼により原位置土と流動性向上剤とを撹拌混合し、
しかる後に、前記撹拌軸を軸心周りに回転しつつ、前記改良対象部位に挿入した状態から引き抜くとともに、その過程で前記撹拌翼の回転方向背後に前記第1噴射口から粉体固化材を噴射し、回転する前記撹拌翼により原位置土と粉体固化材とを撹拌混合して柱状の固化体を造成する、
ことを特徴とする深層混合処理工法。
The present invention that has solved the above problems is as follows.
<Invention of Claim 1>
A lower stirring blade projecting in the radial direction provided at the distal end, an upper stirring blade projecting in the radial direction provided at a predetermined interval on the proximal end side with respect to the lower stirring blade, and the upper stirring blade A first injection port provided at a position behind the rotational direction when pulling up, and a second injection port provided at a position behind the rotational direction when penetrating the lower stirring blade,
A first supply device for supplying a powder solidified material to the first injection port through compressed air through the first internal line in the stirring shaft;
A second supply configured to supply a fluidity improver liquid containing a surfactant to the second injection port through an internal second line in the stirring shaft, which is constituted by a supply line different from the first supply device. Using the device,
The agitation shaft rotates around the axis and penetrates into the site to be improved in the ground, and in the process, the fluidity improver liquid is injected from the second injection port at the tip of the agitation shaft and rotates. The in situ soil and the fluidity improver liquid are stirred and mixed by the stirring blade,
Thereafter, the stirring shaft is rotated around the axis and pulled out from the state where it has been inserted into the improvement target portion, and in the process, the powder solidification material is injected from the first injection port behind the stirring blade in the rotation direction. Then, the in-situ soil and the powder solidified material are stirred and mixed by the rotating stirring blade to form a columnar solidified body.
This is a deep mixing process.

(作用効果)
本発明の主たる特徴は、粉体固化材の供給に先立ち、流動性向上剤を改良対象部位に供給して、掘削貫入時及び固化材撹拌混合時の撹拌翼の回転抵抗を軽減することにある。このように原位置土と流動性向上剤とを混合すると、原位置土の流動性向上及び粘性低下により、撹拌翼の回転抵抗が軽減するだけでなく、後の粉体固化材との撹拌混合性も向上することになる。
(Function and effect)
The main feature of the present invention is to supply the fluidity improver liquid to the site to be improved prior to the supply of the powder solidifying material, thereby reducing the rotational resistance of the stirring blades during drilling and solidifying material stirring and mixing. is there. When the in-situ soil and the fluidity improver liquid are mixed in this way, not only the rotational resistance of the stirring blade is reduced by the fluidity improvement and viscosity reduction of the in-situ soil, but also the subsequent stirring with the powder solidifying material. Mixability is also improved.

特筆すべきは、本発明における流動性向上剤の利用は、単なる流動性向上剤の摩擦軽減効果の利用に留まらないことである。粉体系工法においては、前述したように、回転する撹拌翼の背後に一瞬できる空隙に粉体固化材が噴射され、固化材が付着した軟弱泥土は、撹拌翼の回転速度と撹拌軸の軸方向移動速度の関係で定まる螺旋状の深さ方向ピッチで撹拌翼によって削り取られ、面的に撹拌されることで混合され、この固化材の付着・切削・撹拌の繰り返しにより高い混合性が維持される。つまり、本発明の場合、粉体固化材の撹拌混合原理と流動性向上剤との巧みな組み合わせにより、撹拌混合時の撹拌翼の回転抵抗が低減しても混合性が低下し難いのである。これは、スラリー状固化材と原位置土とを撹拌翼で立体的に撹拌するスラリー系工法のように、一般的な撹拌混合原理に基づく場合、良好な混合性を得るためには撹拌翼の回転抵抗も大きくなければならないのとは対照的である。 It should be noted that the use of the fluidity improver solution in the present invention is not limited to the use of the friction reducing effect of the fluidity improver solution . In the powder system construction method, as described above, the powder solidified material is injected into the gap that can be momentarily behind the rotating stirring blade, and the soft mud soil to which the solidifying material adheres is the rotational speed of the stirring blade and the axial direction of the stirring shaft. It is scraped off by a stirring blade at a helical depth pitch determined by the moving speed and mixed by surface stirring, and high mixing is maintained by repeated adhesion, cutting and stirring of this solidified material. . In other words, in the case of the present invention, due to the skillful combination of the stirring and mixing principle of the powder solidifying material and the fluidity improver liquid , the mixing property is hardly lowered even if the rotational resistance of the stirring blade during stirring and mixing is reduced. . This is because, in the case of a general slurry mixing method in which the slurry-like solidified material and the in-situ soil are three-dimensionally stirred with a stirring blade, in order to obtain good mixing properties, In contrast to the fact that the rotational resistance must also be large.

このように、本発明によれば、粉体系特有の利点を損ねずに、改良径の大径化が可能となる(換言すると、改良径が同径であれば、駆動装置や撹拌翼の小型化等、施工機械の小型化が可能となる)。また、原位置土の粘着性が高い場合であっても、土の塊が撹拌翼や撹拌軸に付着し難くなるという効果もある。さらに、従来の粉体系工法においては、原位置土及びこれと固化材との撹拌混合物の流動性が比較的に乏しいため、原位置に供給した空気が地上に抜けずに改良体内に空気溜まりとして残るおそれがあるが、本発明では流動性向上剤の使用により原位置土の流動性向上及び粘性低下が図られるため、原位置に供給した空気は撹拌軸外周面に沿って上昇して排気され易くなり、空気溜まりが発生し難くなるという効果もある。 Thus, according to the present invention, it is possible to increase the diameter of the improved diameter without losing the advantages inherent in the powder system (in other words, if the improved diameter is the same diameter, the drive device and the agitating blade can be reduced in size). This makes it possible to reduce the size of construction machines). Moreover, even if the in-situ soil has high adhesiveness, there is an effect that the lump of soil becomes difficult to adhere to the stirring blade and the stirring shaft. Furthermore, in the conventional powder system construction method, the fluidity of the agitated mixture of the in-situ soil and the solidified material is relatively poor, so that the air supplied to the in-situ area does not escape to the ground and remains as an air pool in the improved body. However, in the present invention, the fluidity of the in-situ soil is improved and the viscosity is lowered by using the fluidity improver solution , so that the air supplied to the in-situ region rises along the outer peripheral surface of the stirring shaft and is exhausted. There is also an effect that it becomes easy to be carried out and it becomes difficult to generate air pockets.

<請求項2記載の発明>
前記撹拌軸の掘削貫入過程において、前記第2噴射口から流動性向上剤液を噴射し、回転する前記撹拌翼により原位置土と流動性向上剤液とを撹拌混合しつつ、定着部深度より上段撹拌翼と下段撹拌翼との間隔分以上浅い深度に下段撹拌翼が到達したならば、それ以降は定着部深度まで、前記撹拌軸の先端部の前記第2噴射口からスラリー固化材を噴射し、回転する前記下段撹拌翼により原位置土とスラリー固化材とを撹拌混合して先端部処理を行い、
しかる後に、前記撹拌軸を軸心周りに回転しつつ、前記先端部処理後の挿入状態から引き抜くとともに、その過程で前記上段撹拌翼の回転方向背後に前記第1噴射口から粉体固化材を噴射し、回転する前記上段撹拌翼により原位置土と粉体固化材とを撹拌混合して柱状の固化体を造成する、
請求項1記載の深層混合処理工法。
<Invention of Claim 2>
In the excavation and penetration process of the agitation shaft, the fluidity improver liquid is injected from the second injection port, and the in situ soil and the fluidity improver liquid are agitated and mixed by the rotating agitating blades, from the fixing unit depth. If the lower stirring blade reaches a depth shallower than the interval between the upper stirring blade and the lower stirring blade, the slurry solidifying material is sprayed from the second injection port at the tip of the stirring shaft to the fixing portion depth thereafter. Then, the in situ soil and the slurry solidified material are agitated and mixed by the rotating lower agitating blade, and the tip portion is processed.
Thereafter, while rotating the agitation shaft around the axis, it is pulled out from the inserted state after the tip portion treatment, and in the process, the powder solidification material is fed from the first injection port behind the rotation direction of the upper agitation blade. A columnar solidified body is formed by stirring and mixing the in-situ soil and the powder solidified material with the upper stirring blades that are jetted and rotated.
The deep mixing method according to claim 1.

(作用効果)
このように、スラリー固化材による先端部処理を組み合わせることにより、撹拌軸の挿入深度全体にわたり少ない回転抵抗で(つまり、粉体固化材による改良部分については流動性向上剤により、また先端部についてはスラリー固化材によりそれぞれ回転抵抗が低減される)改良体を造成できるようになる。
(Function and effect)
In this way, by combining the tip treatment with the slurry solidifying material, with a small rotational resistance over the entire insertion depth of the stirring shaft (that is, with the fluidity improver liquid for the improved portion by the powder solidifying material and for the tip portion) (The rotation resistance is reduced by the slurry solidifying material, respectively).

<請求項3記載の発明>
先端部に設けられた径方向に突出する下段撹拌翼と、この下段撹拌翼に対して基端側に所定の間隔を空けて設けられた径方向に突出する上段撹拌翼と、この上段撹拌翼の回転方向背後の位置に設けられた第1噴射口と、前記下段撹拌翼の貫入時回転方向背後の位置に設けられた第2噴射口と、を備えた撹拌軸と、
この撹拌軸を支持するとともに、撹拌軸に回転力、引上げ力及び押し込み力を付与するベースマシンと、
前記撹拌軸内の内部第1ラインを通じて前記第1噴射口に粉体固化材を圧縮空気に乗せて圧送供給する第1供給装置と、
この第1供給装置とは別の供給ラインにより構成された、前記撹拌軸内の内部第2ラインを通じて前記第2噴射口に界面活性剤を含有する流動性向上剤を圧送供給する第2供給装置と、を備え
前記撹拌軸を、軸心周りに回転させつつ地盤の改良対象部位に掘削貫入するとともに、その過程で前記撹拌軸の先端部の前記第2噴射口から流動性向上剤液を噴射し、回転する前記撹拌翼により原位置土と流動性向上剤液とを撹拌混合し、
しかる後に、前記撹拌軸を軸心周りに回転しつつ、前記改良対象部位に挿入した状態から引き抜くとともに、その過程で前記撹拌翼の回転方向背後に前記第1噴射口から粉体固化材を噴射し、回転する前記撹拌翼により原位置土と粉体固化材とを撹拌混合して柱状の固化体を造成するように構成したことを特徴とする深層混合処理装置。
<Invention of Claim 3>
A lower stirring blade projecting in the radial direction provided at the distal end , an upper stirring blade projecting in the radial direction provided at a predetermined interval on the proximal end side with respect to the lower stirring blade, and the upper stirring blade a first injection port provided in the position in the rotational direction behind the stirring shaft and a second injection port provided at a position of penetration during the rotation direction behind the lower stirring blade,
A base machine that supports the stirring shaft and applies a rotational force, a lifting force, and a pushing force to the stirring shaft;
A first supply device for supplying a powder solidified material to the first injection port through compressed air through the first internal line in the stirring shaft;
A second fluidity improver liquid containing a surfactant is pumped and supplied to the second injection port through an internal second line in the stirring shaft, which is constituted by a supply line different from the first supply device . A supply device ,
The agitation shaft rotates around the axis and penetrates into the site to be improved in the ground, and in the process, the fluidity improver liquid is injected from the second injection port at the tip of the agitation shaft and rotates. The in situ soil and the fluidity improver liquid are stirred and mixed by the stirring blade,
Thereafter, the stirring shaft is rotated around the axis and pulled out from the state where it has been inserted into the improvement target portion, and in the process, the powder solidification material is injected from the first injection port behind the stirring blade in the rotation direction. A deep-mixing processing apparatus, wherein the in-situ soil and the powder solidified material are stirred and mixed by the rotating stirring blade to form a columnar solidified body .

(作用効果)
請求項1記載の発明と同様の作用効果を奏する。
(Function and effect)
The same effects as those of the first aspect of the invention can be achieved.

<請求項4記載の発明>
前記撹拌軸の外周面に、前記第1噴射口の近傍から撹拌軸の長手方向に沿って延在する筋状突起を形成した、請求項3記載の深層混合処理装置。
<Invention of Claim 4>
The deep-mixing processing apparatus of Claim 3 which formed the streak process extended along the longitudinal direction of the stirring shaft from the vicinity of the said 1st injection nozzle in the outer peripheral surface of the said stirring shaft.

(作用効果)
粉体系工法においては、原位置土及びこれと固化材との撹拌混合物の流動性が比較的に乏しいため、原位置に供給した空気が地上に抜けずに改良体内に空気溜まりとして残るおそれがある。これに対して、撹拌軸に上述のような筋状突起を設けると、撹拌軸の回転に伴って突起背後に形成される空隙が空気排出通路となり、原位置に供給した空気はこの空気排出通路を介して上昇して排気されるため、空気溜まりが発生し難くなる。
(Function and effect)
In the powder system construction method, the fluidity of the in-situ soil and the stirring mixture of this and the solidified material is relatively poor, so the air supplied to the in-situ region may not remain on the ground and remain as an air pool in the improved body. . On the other hand, when the stirrer shaft as described above is provided on the stirring shaft, the air gap formed behind the projection as the stirring shaft rotates becomes an air discharge passage, and the air supplied to the original position is the air discharge passage. As the air is raised and exhausted through the air, it is difficult for air pockets to occur.

<請求項5記載の発明>
前記上段撹拌翼の下縁部に、下方に突出する撹拌刃が径方向に間隔を空けて取り付けられており、前記下段撹拌翼の上縁部にも、上方に突出する撹拌刃が径方向に間隔を空けて取り付けられている、請求項3又は4記載の深層混合処理装置。
<Invention of Claim 5>
A stirring blade protruding downward is attached to a lower edge portion of the upper stirring blade with a radial interval, and a stirring blade protruding upward is also radially attached to the upper edge portion of the lower stirring blade. 5. The deep mixing apparatus according to claim 3 or 4, wherein the deep mixing apparatus is attached at an interval .

以上のとおり本発明によれば、粉体系工法において、粉体系特有の利点を損ねずに、改良径の大径化(又は同径であれば施工機械の小型化)が可能となる、等の利点がもたらされる。   As described above, according to the present invention, in the powder system construction method, it is possible to increase the diameter of the improved diameter (or to reduce the size of the construction machine if the diameter is the same) without impairing the advantages specific to the powder system. Benefits are provided.

深層混合処理装置の概略図である。It is the schematic of a deep-layer mixing processing apparatus. スイーベルジョイント部分の縦断面図である。It is a longitudinal cross-sectional view of a swivel joint part. 撹拌軸の撹拌翼部分を示す拡大図である。It is an enlarged view which shows the stirring blade part of a stirring shaft. 撹拌軸の横断面図である。It is a cross-sectional view of a stirring shaft. 撹拌軸の撹拌翼部分を示す拡大図である。It is an enlarged view which shows the stirring blade part of a stirring shaft. 撹拌軸の横断面図である。It is a cross-sectional view of a stirring shaft. 撹拌軸の上段撹拌翼部分を示す横断面図である。It is a cross-sectional view which shows the upper stage stirring blade part of a stirring shaft. 撹拌軸の下段撹拌翼部分を示す横断面図である。It is a cross-sectional view which shows the lower stage stirring blade part of the stirring shaft. 掘削貫入時の下段撹拌翼周囲の状態を示す概略図である。It is the schematic which shows the state around the lower stage stirring blade at the time of excavation penetration. 引き上げ撹拌時の上段撹拌翼周囲の状態を示す概略図である。It is the schematic which shows the state around the upper stage stirring blade at the time of raising stirring. 下段撹拌翼の締固め効果を説明するための概略図である。It is the schematic for demonstrating the compaction effect of a lower stage stirring blade. 施工方法例を示す概略図である。It is the schematic which shows the construction method example. 施工方法例を示す概略図である。It is the schematic which shows the construction method example.

以下、本発明の一実施形態について添付図面を参照しながら詳説する。
図1は、本発明に係る深層混合処理装置1を示しており、この装置1は、撹拌軸10を備えたベースマシン20と、粉体固化材を計量圧送する第1供給装置30と、流動性向上剤およびスラリー固化材を製造し、これらを選択的に切り替えて圧送する第2供給装置40とで構成されている。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a deep mixing apparatus 1 according to the present invention, which includes a base machine 20 having a stirring shaft 10, a first supply device 30 for metering and feeding a powder solidified material, and a flow It is comprised with the 2nd supply apparatus 40 which manufactures a property improvement agent liquid and a slurry solidification material, selectively switches these, and pumps.

ベースマシン20は、前端部に立設されたリーダー21と、リーダー21に沿って昇降自在に設けられた昇降部22と、昇降部22によって支持された撹拌軸10と、昇降部に搭載された、撹拌軸10を軸心周りに回転させる回転駆動装置23とを備えている。撹拌軸10は、昇降部22の昇降によって押し込み力又は引上げ力が付与されるとともに、回転駆動装置23により回転力が付与されるようになっている。   The base machine 20 is mounted on a leader 21 erected at the front end, an elevating part 22 provided so as to be movable up and down along the leader 21, an agitation shaft 10 supported by the elevating part 22, and the elevating part. And a rotation driving device 23 that rotates the stirring shaft 10 around the axis. The agitation shaft 10 is applied with a pushing force or a pulling force by raising and lowering the elevating unit 22, and a rotating force is given by the rotation driving device 23.

撹拌軸10は、図3〜図8に示すように、頭部にスイーベルジョイント11が取り付けられた本体管12と、本体管12の先端部に設けられた、径方向両側に突出する下段撹拌翼13と、この下段撹拌翼13に対して基端側に所定の間隔を空けて設けられた、径方向両側に突出する上段撹拌翼14とを備えている。本体管12は、例えば図3及び図4に示すように角管により形成する他、図5及び図6に示すように円管により形成することもできる。   As shown in FIGS. 3 to 8, the stirring shaft 10 includes a main body tube 12 having a swivel joint 11 attached to the head, and a lower stirrer blade provided at the tip of the main body tube 12 and protruding in both radial directions. 13 and an upper stirrer blade 14 that protrudes on both sides in the radial direction and is provided at a predetermined interval on the base end side with respect to the lower stirrer blade 13. For example, the main body tube 12 may be formed of a square tube as shown in FIGS. 3 and 4, or may be formed of a circular tube as shown in FIGS. 5 and 6.

図3、図5、図7及び図8に示すように、上段撹拌翼14及び下段撹拌翼13は、撹拌軸10の周方向一方側が他方側よりも下側に位置する所定の傾斜姿勢で取り付けられており、貫入時の撹拌軸10の回転方向は翼下縁部が回転方向前側となり、引上げ時の回転方向はその逆で翼上縁部が回転方向前側となる。下段撹拌翼13の下縁部には下方に突出するカッターb1が径方向に適宜の間隔を空けて取り付けられている。このカッターb1は掘削貫入時に地盤を切削するためのものである。また、上段撹拌翼14の下縁部には下方に突出する撹拌刃b2が径方向に適宜の間隔を空けて取り付けられている。さらに、下段撹拌翼13の上縁部にも、上方に突出する撹拌刃b2が径方向に適宜の間隔を空けて取り付けられている。これらの撹拌刃b2は撹拌作用を発揮するものである。   As shown in FIGS. 3, 5, 7, and 8, the upper stirring blade 14 and the lower stirring blade 13 are attached with a predetermined inclination posture in which one side in the circumferential direction of the stirring shaft 10 is located below the other side. Thus, the rotation direction of the stirring shaft 10 at the time of penetration is the blade lower edge portion at the front side in the rotation direction, and the rotation direction at the time of pulling up is the opposite, and the blade upper edge portion is at the front side in the rotation direction. A cutter b1 protruding downward is attached to the lower edge portion of the lower stirring blade 13 at an appropriate interval in the radial direction. This cutter b1 is for cutting the ground at the time of excavation penetration. Further, a stirring blade b2 protruding downward is attached to the lower edge portion of the upper stirring blade 14 at an appropriate interval in the radial direction. Furthermore, the stirring blade b2 protruding upward is also attached to the upper edge portion of the lower stirring blade 13 at an appropriate interval in the radial direction. These stirring blades b2 exhibit a stirring action.

本体管12外面には、上段撹拌翼14の引上げ時回転方向背後の位置に第1噴射口15が形成されるとともに、下段撹拌翼13の貫入時回転方向背後の位置に第2噴射口16が設けられており、これら第1噴射口15及び第2噴射口16には、本体管12に内蔵された内部第1ラインL1及び内部第2ラインL2がそれぞれ接続されている。内部第1ラインL1及び内部第2ラインL2はパイプまたはホースにより形成することができる。   On the outer surface of the main body pipe 12, a first injection port 15 is formed at a position behind the rotation direction when the upper stirring blade 14 is pulled up, and a second injection port 16 is formed at a position behind the rotation direction when the lower stirring blade 13 is inserted. An internal first line L1 and an internal second line L2 built in the main body pipe 12 are connected to the first injection port 15 and the second injection port 16, respectively. The internal first line L1 and the internal second line L2 can be formed by pipes or hoses.

また、図示例では、上段撹拌翼14の引上げ時回転方向背面には、第1噴射口15の上側近傍の高さ位置に、径方向に沿って翼基端から先端部近傍まで延在する尾根状の凸筋17が形成されている。さらに、図示例では、本体管12の外周面に、本体管12の長手方向に沿って延在する筋状突起18が形成されている。この筋状突起18は長手方向に沿って延在する限り、図示例のような上下方向に沿う直線状とする他、本体管12の外周に沿って上昇する螺旋状等、曲線状にすることもでき、長手方向に延在する限り、図3に示すように凸筋1718が不連続な部分を有していても良い。直線状とする場合、本体管12が角管の場合は角の部分に筋状突起18を取付け、円管の場合は上段撹拌翼14と対応する位置に筋状突起18を形成するのが好ましい。   Further, in the illustrated example, on the rear side in the rotational direction when the upper stirring blade 14 is pulled up, a ridge extending from the blade base end to the vicinity of the tip portion along the radial direction at a height position near the upper side of the first injection port 15. A convex line 17 is formed. Further, in the illustrated example, a streak 18 extending along the longitudinal direction of the main body tube 12 is formed on the outer peripheral surface of the main body tube 12. As long as the streak 18 extends along the longitudinal direction, the streak 18 has a linear shape along the vertical direction as in the illustrated example, and a curved shape such as a spiral rising along the outer periphery of the main body tube 12. As long as it extends in the longitudinal direction, the convex streaks 1718 may have discontinuous portions as shown in FIG. When the main tube 12 is a square tube, it is preferable that the streak 18 is attached to the corner portion, and when the main tube 12 is a circular tube, the streak 18 is formed at a position corresponding to the upper stirring blade 14. .

図2に詳細に示すように、撹拌軸10の頭部には、粉体および液体を個別のラインで同時に圧送できる構造のスイーベルジョイント11が設けられており、撹拌軸10の内部第1ラインL1及び内部第2ラインL2は、このスイーベルジョイント11を介して対応する外部第1ラインL11及び外部第2ラインL12に相互独立に且つ恒常的に接続されており、外部第1ラインL11は第1供給装置30に、及び外部第2ラインL12は第2供給装置40にそれぞれ接続されている。   As shown in detail in FIG. 2, the head of the stirring shaft 10 is provided with a swivel joint 11 having a structure capable of simultaneously pumping powder and liquid through separate lines, and the first internal line L <b> 1 of the stirring shaft 10. The internal second line L2 is constantly and independently connected to the corresponding external first line L11 and external second line L12 via the swivel joint 11, and the external first line L11 is the first supply. The device 30 and the external second line L12 are connected to the second supply device 40, respectively.

第1供給装置30は、粉体固化材を貯留するサイロ31と、このサイロ31から投入される粉体固化材を図示しないコンプレッサーから供給される圧縮空気に乗せて、外部第1ラインL11を介して送出する送出機32とを備えている。また、第2供給装置40は、流動性向上剤液を貯留する貯留槽41と、スラリー固化材を貯留する撹拌槽42と、これらの貯留物のうち切替バルブ43により選択される方を外部第2ラインL12を介して送出するポンプ44とを備えている。流動性向上剤は、土の流動性を向上させる薬品であ、界面活性剤を含有するものである。流動性向上剤としては、例えばコンクリート用混和剤として公知の、起泡剤(合成界面活性剤系、樹脂石鹸系、蛋白系)、流動化剤(界面活性剤が主成分であり、ナフタリンスルホン酸ホルムアルデヒド高縮合物塩やメラミンスルホン酸ホルムアルデヒド高縮合物塩、スチレンスルホン酸共重合物塩など)、AE剤、AE減水剤、減水剤、高性能AE減水剤等を好適に使用することができる。また、流動性向上剤は、水等で希釈して適宜濃度の液体にして用いるのが好ましい。 The first supply device 30 places a silo 31 for storing the powder solidified material, and puts the powder solidified material charged from the silo 31 on compressed air supplied from a compressor (not shown), and passes the external first line L11. And a sending machine 32 for sending out. In addition, the second supply device 40 has an external storage tank 41 for storing the fluidity improver liquid, an agitation tank 42 for storing the slurry solidifying material, and one of these storages selected by the switching valve 43. And a pump 44 for feeding through the two lines L12. Flow improver liquid, Ri chemicals der to improve the fluidity of the soil are those containing a surfactant. Examples of fluidity improvers include foaming agents (synthetic surfactants, resin soaps, proteins), fluidizers (surfactants are the main components, naphthalenesulfonic acid, which are known as admixtures for concrete, for example. Formaldehyde high condensate salt, melamine sulfonic acid formaldehyde high condensate salt, styrene sulfonic acid copolymer salt, etc.), AE agent, AE water reducing agent, water reducing agent, high performance AE water reducing agent and the like can be suitably used. The fluidity improver is preferably used by diluting with water or the like to obtain a liquid having an appropriate concentration.

他方、図12は、上記深層混合処理装置1を用いた施工方法の一例を示している。この例は、撹拌軸10を掘削貫入後、引上げ時に粉体状の固化材を噴射撹拌し、固化柱体CBを造成する施工形態への応用例である。この例では、先ず図12(a)に示されるように、撹拌軸10を軸心周りに回転しつつ地盤の改良対象部位に掘削貫入するとともに、その過程で、第1供給装置30からは逆流防止のため圧縮空気のみ供給し、粉体固化材の供給は停止したまま、第2供給装置40の切替バルブ43を流動性向上剤側に切替えてポンプ44を作動させ、第2供給装置40から流動性向上剤を送出し、外部第2ラインL12及び内部第2ラインL2を経て第2噴射口16から噴射させる。第2噴射口16から噴射される流動性向上剤は、図9に示すように下段撹拌翼13の回転方向背後に形成される空隙S1に散布される。これによって、回転する撹拌翼13,14により原位置土Gと流動性向上剤とが撹拌混合され、原位置土Gの流動性向上及び粘性低下が図られる。その結果、掘削貫入時の撹拌翼13,14の回転抵抗が軽減され、改良径を大径化しても良好に掘削貫入を行うことができるとともに、改良対象部位が後の粉体固化材の散布混合に適した泥土になる。改良径(撹拌翼径)は特に限定されないが、本発明によれば従来の1m径に対して1.5〜3m径程度とすることができる。 On the other hand, FIG. 12 shows an example of a construction method using the deep mixing processing apparatus 1. This example is an application example to a construction form in which a solidified columnar body CB is formed by jetting and agitating a powdered solidified material at the time of pulling up after excavating the stirring shaft 10. In this example, as shown in FIG. 12 (a), first, the agitation shaft 10 rotates around the axis and penetrates into the site to be improved in the ground. In order to prevent this, only the compressed air is supplied, and the supply of the powder solidifying material is stopped, the switching valve 43 of the second supply device 40 is switched to the fluidity improver liquid side, and the pump 44 is operated. The fluidity improver liquid is sent out from the second injection port 16 through the external second line L12 and the internal second line L2. As shown in FIG. 9, the fluidity improver liquid injected from the second injection port 16 is dispersed in the gap S <b> 1 formed behind the lower stirring blade 13 in the rotation direction. As a result, the in-situ soil G and the fluidity improver liquid are stirred and mixed by the rotating stirring blades 13 and 14, and the in-situ soil G is improved in fluidity and reduced in viscosity. As a result, the rotational resistance of the stirring blades 13 and 14 at the time of drilling penetration is reduced, and even if the improved diameter is increased, the drilling penetration can be performed well, and the site to be improved is sprayed with the powder solidified material later. It becomes mud suitable for mixing. The improved diameter (stirring blade diameter) is not particularly limited, but according to the present invention, it can be about 1.5 to 3 m diameter compared to the conventional 1 m diameter.

次に、図12(b)に示すように、定着部(改良部位の底部)深度から上段撹拌翼14と下段撹拌翼13との間隔D1分だけ浅い深度(間隔D1分以上浅ければ良い)に、下段撹拌翼13が達したならば、必要に応じて、次のような先端部処理を行うことができる。すなわち、下段撹拌翼13が所定深度に達したならば、第2供給装置40の切替バルブをスラリー固化材側に切替えて、図12(c)に示すように、第2供給装置40からスラリー固化材を送出し、外部第2ラインL12及び内部第2ラインL2を経て第2噴射口16から噴射させつつ、更に撹拌軸10を回転させつつ貫入する。これにより、第1噴射口15よりも先端側の改良対象部位についてはスラリー固化材を供給して、先端部改良体を造成することができる。あるいは、第2供給装置40から流動性向上剤を供給しつつ一旦定着部まで掘削貫入したのち、上記間隔D1分だけ撹拌軸10を引上げ、この状態から上述の先端部処理を行っても良い。この場合、先端処理部まで流動性向上剤による撹拌軸10の回転抵抗低減効果が発揮される。 Next, as shown in FIG. 12 (b), the depth is shallower by the distance D1 between the upper stirring blade 14 and the lower stirring blade 13 than the depth of the fixing portion (the bottom of the improved portion) (should be shallower than the interval D1 minutes). In addition, if the lower stirring blade 13 has reached, the following tip processing can be performed as necessary. That is, when the lower stirring blade 13 reaches a predetermined depth, the switching valve of the second supply device 40 is switched to the slurry solidifying material side, and the slurry solidification is performed from the second supply device 40 as shown in FIG. The material is fed out and injected through the second injection port 16 through the external second line L12 and the internal second line L2, and further, while the stirring shaft 10 is rotated. Thereby, about the improvement object site | part of the front end side rather than the 1st injection port 15, a slurry solidification material can be supplied and a front-end | tip part improvement body can be created. Alternatively, after supplying the fluidity improver solution from the second supply device 40 and once excavating the fixing portion, the stirring shaft 10 may be pulled up by the interval D1 and the tip portion processing may be performed from this state. . In this case, the effect of reducing the rotational resistance of the agitation shaft 10 by the fluidity improver liquid is exhibited up to the tip treatment section.

そして、下段撹拌翼13が定着部深度に達したならば、第2供給装置40を停止した後、図13(d)に示すように、撹拌軸10を貫入時とは逆に回転しつつ引き上げるとともに、その過程で、第1供給装置30を作動させて粉体固化材を外部第1ラインL11及び内部第1ラインL1を経て第1噴射口15から噴射させる。第1噴射口15から噴射される粉体固化材は、図10に示すように上段撹拌翼14の回転方向背後に形成される空隙S2に散布される。固化材が付着した軟弱泥土は、上段撹拌翼14の回転速度と撹拌軸10の軸方向移動速度の関係で定まる螺旋状の深さ方向ピッチで撹拌翼によって削り取られ、面的に撹拌されることで混合される。さらに、図示例では、撹拌軸10の引き上げに伴い、下段撹拌翼13の上縁部に設けられた掘削ビットにより、上段撹拌翼14に続いて、逆向きで面的な撹拌がなされるため、混合性はより一層向上する。そして、この固化材の付着・切削・撹拌の繰り返しによって、図13(e)及び(f)に示すように、原位置土と粉体固化材とが良好に撹拌混合されて柱状の固化体CBが造成される。また、この際、下段撹拌翼13は図11に矢印で示すように混合処理土を下方に押し付ける作用を発揮するため、造成される改良体CBは良好に締め固められたものとなる。   When the lower stirring blade 13 reaches the fixing portion depth, after the second supply device 40 is stopped, as shown in FIG. 13D, the stirring shaft 10 is pulled up while rotating in the direction opposite to the time of penetration. At the same time, the first supply device 30 is operated to inject the powder solidified material from the first injection port 15 through the external first line L11 and the internal first line L1. As shown in FIG. 10, the powder solidified material injected from the first injection port 15 is dispersed in a gap S <b> 2 formed behind the upper stirring blade 14 in the rotation direction. The soft mud to which the solidifying material adheres is scraped by a stirring blade at a spiral depth pitch determined by the relationship between the rotational speed of the upper stirring blade 14 and the axial movement speed of the stirring shaft 10 and is agitated in a plane. Mixed in. Further, in the illustrated example, as the stirring shaft 10 is pulled up, the excavation bit provided at the upper edge portion of the lower stirring blade 13 causes the surface stirring in the reverse direction following the upper stirring blade 14. Mixability is further improved. Then, as shown in FIGS. 13 (e) and 13 (f), the in-situ soil and the powder solidified material are well stirred and mixed by repeating the adhesion, cutting, and stirring of the solidified material, so that the columnar solidified body CB is obtained. Is created. Further, at this time, the lower stirring blade 13 exerts an action of pressing the mixed treated soil downward as shown by an arrow in FIG. 11, so that the improved body CB to be formed is well compacted.

一方、粉体固化材とともに供給された空気は、図13(d)及び(e)に示すように、撹拌軸10外面に沿って地上に排出される。特に、図示例のように上段撹拌翼14背面に凸筋17を有すると、図10に示す図からも理解できるように、上段撹拌翼14の回転方向背後に上下2段に空隙が形成され、図5に二点鎖線で示すように凸筋17下側に噴射される空気が凸筋17上側の空隙を通じて本体管12側に還流し、本体管12と地盤との間を通じて地上に排出されるため、改良体に空気溜まりが発生し難くなる。また、図示例のように、撹拌軸10の外周面に撹拌軸10の長手方向に沿って延在する筋状突起18を有すると、図5にも示すように、筋状突起18の回転方向背後に、本体管12の外面に沿って地上へ通じる空隙S3が形成されるため、これが空気排出通路となって、原位置に供給した空気が上昇(図5二点鎖線矢印参照)して排気され易くなる。   On the other hand, the air supplied together with the powder solidifying material is discharged to the ground along the outer surface of the stirring shaft 10 as shown in FIGS. 13 (d) and 13 (e). In particular, when the upper stirrer blades 14 have the convex streaks 17 on the back as in the illustrated example, as can be understood from the diagram shown in FIG. As shown by a two-dot chain line in FIG. 5, the air injected below the convex muscle 17 returns to the main body pipe 12 through the gap above the convex muscle 17 and is discharged to the ground between the main body pipe 12 and the ground. For this reason, it is difficult for the improved body to generate air pockets. Further, as shown in FIG. 5, when the stirrer protrusion 18 extending along the longitudinal direction of the stirrer shaft 10 is provided on the outer peripheral surface of the stirrer shaft 10, the rotation direction of the streak protrusion 18 is also shown in FIG. 5. Since a gap S3 leading to the ground along the outer surface of the main body pipe 12 is formed behind, this serves as an air discharge passage, and the air supplied to the original position rises (see the two-dot chain line arrow in FIG. 5) and exhausts. It becomes easy to be done.

他方、粉体圧送圧が限界となる限界深度よりも高深度(例えば25m以上)まで改良する必要のあるところでは、限界深度までは第2噴射口16から流動性向上剤を供給しつつ掘削貫入し、限界深度からは先端部処理と同様に、第2噴射口16から固化材スラリー噴射に切り替えて、貫入吐出を行い、引上げ時に再撹拌をして限界深度よりも深い部分にスラリー固化材による固化柱体を造成し、第1噴射口15が限界深度に戻ったところで第2供給装置40を停止して第1供給装置30を作動させ、第1噴射口15から粉体固化材を噴射させて、限界深度以浅に粉体固化材による固化柱体を造成するといったことも可能である。 On the other hand, when it is necessary to improve to a depth (for example, 25 m or more) higher than the limit depth where the powder pressure is limited, excavation is performed while supplying the fluidity improver liquid from the second injection port 16 to the limit depth. From the limit depth, as with the tip treatment, switch to the solidified material slurry injection from the second injection port 16, perform intrusion discharge, re-stir at the time of pulling up, and slurry solidified material deeper than the limit depth When the first injection port 15 returns to the limit depth, the second supply device 40 is stopped and the first supply device 30 is operated to inject the powder solidified material from the first injection port 15. It is also possible to create a solidified column with a powder solidifying material shallower than the limit depth.

また、改良対象部位が含水量の大きい軟弱な地層であれば良いが、ある程度締まった地層や粘着力の大きい地層の場合には、別途又は流動性向上剤の添加水量を増加することにより、予め改良対象部位に加水して、粉体固化材に対して適切な含水比の原位置土Gに調整することができる。例えば、高含水量の地層では少量の流動性向上剤液または原液に近い少量の流動性向上剤液を使用することができる。なお、各深度における流動性向上剤液の噴射量および加水量は、あらかじめ地層構成が分かっている場合には初期設定により制御することができ、そうでない場合や自動化する場合には、地盤状態を電動機駆動の場合は電流計から、油圧駆動の場合は油圧計から検知して制御することもできる。後者の場合、掘削推力、回転トルクを直接検知するセンサーを取り付ければより高精度の管理が可能になる。 In addition, the improvement target site may be a soft formation with a large water content, but in the case of a formation that is tightened to some extent or a formation with a large adhesive force, by separately adding or increasing the amount of water added to the fluidity improver liquid , It is possible to adjust to the in-situ soil G having an appropriate water content ratio with respect to the powder solidified material by adding water to the site to be improved in advance. For example, in a high water content formation, a small amount of fluidity improver solution or a small amount of fluidity improver solution close to the stock solution can be used. In addition, the injection amount and water addition amount of the fluidity improver liquid at each depth can be controlled by the initial setting when the stratum structure is known in advance, and in other cases or when it is automated, the ground condition is changed. It can also be detected and controlled from an ammeter in the case of electric motor drive and from an oil pressure meter in the case of hydraulic drive. In the latter case, if a sensor that directly detects excavation thrust and rotational torque is attached, more accurate management becomes possible.

(その他)
(A)同一の段の撹拌翼は図示例では対向方向に2枚突出させているが、3枚以上放射方向に突出させることも可能である。
)上記例では、スラリー固化材を併用して先端部処理或は大深度処理を行っているが、本発明ではスラリー固化材は用いなくても良い。
)粉体固化材の噴射は、流動性向上剤の撹拌混合後であれば撹拌軸10の引上げ時のみならず、撹拌軸10を一度引上げた後に再度貫入する過程で行うこともできる。
)本発明では、セメント、セメント系固化材、フライアッシュ(石炭灰)、石灰系固化材等の複数種の粉体固化材を同時噴射することができ、その場合、供給ラインを粉体固化材の種類別に設けて個別に圧送・噴射するほか、予め混合可能な材料である場合は共通の供給ラインで圧送・噴射することができる。
(E)本発明では、流動性向上剤を空気とともに高圧噴射することができ、これにより流動性向上剤と原位置土との混合性を向上させるとともに、改良体内への気泡混入により改良体の軽量化を図ることができる。スラリー固化材を噴射する際も同様にスラリー固化材を空気とともに高圧噴射することができる。
(Other)
(A) Two stirring blades at the same stage protrude in the opposing direction in the illustrated example, but three or more stirring blades may protrude in the radial direction.
( B ) In the above example, the slurry solidifying material is used in combination to perform the tip processing or the deep processing, but in the present invention, the slurry solidifying material may not be used.
( C ) The injection of the powder solidifying material can be performed not only when the stirring shaft 10 is pulled up but also in the process of re-penetrating after lifting the stirring shaft 10 once it is after stirring and mixing of the fluidity improver liquid. .
( D ) In the present invention, a plurality of types of powder solidifying materials such as cement, cement-based solidified material, fly ash (coal ash), and lime-based solidified material can be simultaneously injected. In addition to providing the solidified material for each type and individually pumping / injecting, it is possible to press and inject using a common supply line in the case of materials that can be mixed in advance.
(E) In the present invention, the fluidity improver liquid can be jetted together with air at a high pressure, thereby improving the mixing property between the fluidity improver liquid and the in-situ soil and improving by mixing bubbles in the improved body. The weight of the body can be reduced. Similarly, when the slurry solidifying material is jetted, the slurry solidifying material can be jetted together with air at a high pressure.

本発明は、深層混合処理工法および深層混合処理装置に適用できるものである。   The present invention can be applied to a deep layer processing method and a deep layer processing apparatus.

1…深層混合処理装置、10…撹拌軸、13…下段撹拌翼、14…上段撹拌翼、15…第1噴射口、16…第2噴射口。   DESCRIPTION OF SYMBOLS 1 ... Deep layer processing apparatus, 10 ... Stirring shaft, 13 ... Lower stage stirring blade, 14 ... Upper stage stirring blade, 15 ... 1st injection port, 16 ... 2nd injection port.

Claims (5)

径方向に突出する撹拌翼を備えた撹拌軸を、軸心周りに回転させつつ地盤の改良対象部位に掘削貫入するとともに、その過程で前記撹拌軸の先端部から流動性向上剤を噴射し、回転する前記撹拌翼により原位置土と流動性向上剤とを撹拌混合し、
しかる後に、前記撹拌軸を軸心周りに回転しつつ、前記改良対象部位に挿入した状態から引き抜くとともに、その過程で前記撹拌翼の回転方向背後に粉体固化材を噴射し、回転する前記撹拌翼により原位置土と粉体固化材とを撹拌混合して柱状の固化体を造成する、
ことを特徴とする深層混合処理工法。
While agitating shaft provided with a stirring blade projecting in the radial direction is rotated around the shaft center and drilled into the site to be improved in the ground, a fluidity improver is injected from the tip of the stirring shaft in the process, The in-situ soil and the fluidity improver are stirred and mixed by the rotating stirring blade,
Thereafter, while rotating the stirring shaft about the axis, the stirring shaft is pulled out from the state inserted into the improvement target portion, and in the process, the powder solidification material is injected behind the rotating direction of the stirring blade, and the stirring is rotated. The in-situ soil and the powder solidified material are stirred and mixed with a wing to form a columnar solidified body.
This is a deep mixing process.
前記撹拌軸は、先端部に設けられた下段撹拌翼と、この下段撹拌翼に対して基端側に所定の間隔を空けて設けられた上段撹拌翼とを、前記撹拌翼として備えており、
前記撹拌軸の掘削貫入過程において、定着部深度より上段撹拌翼と下段撹拌翼との間隔分以上浅い深度に下段撹拌翼が到達したならば、それ以降は定着部深度まで、前記撹拌軸の先端部からスラリー固化材を噴射し、回転する前記下段撹拌翼により原位置土とスラリー固化材とを撹拌混合して先端部処理を行い、
しかる後に、前記撹拌軸を軸心周りに回転しつつ、前記先端部処理後の挿入状態から引き抜くとともに、その過程で前記上段撹拌翼の回転方向背後に粉体固化材を噴射し、回転する前記上段撹拌翼により原位置土と粉体固化材とを撹拌混合して柱状の固化体を造成する、
請求項1記載の深層混合処理工法。
The stirring shaft includes, as the stirring blade, a lower stirring blade provided at a tip portion and an upper stirring blade provided at a predetermined interval on the base end side with respect to the lower stirring blade,
In the drilling penetration process of the stirring shaft, if the lower stirring blade reaches a depth shallower than the distance between the upper stirring blade and the lower stirring blade than the fixing portion depth, then the tip of the stirring shaft reaches the fixing portion depth thereafter. The slurry solidifying material is jetted from the part, the in-situ soil and the slurry solidifying material are stirred and mixed by the rotating lower stirring blade, and the tip is processed.
After that, while rotating the stirring shaft around the axis, it is withdrawn from the inserted state after the tip portion treatment, and in the process, the powder solidification material is jetted behind the rotating direction of the upper stirring blade and rotates. The in-situ soil and the powder solidified material are stirred and mixed with the upper stirring blade to form a columnar solidified body.
The deep mixing method according to claim 1.
径方向に突出する撹拌翼と、この撹拌翼の回転方向一方側に設けられた第1噴射口と、先端部に設けられた第2噴射口と、を備えた撹拌軸と、
この撹拌軸を支持するとともに、撹拌軸に回転力、引上げ力及び押し込み力を付与するベースマシンと、
前記撹拌軸内を通じて前記第1噴射口に粉体固化材を圧縮空気に乗せて圧送供給する第1供給装置と、
この粉体固化材供給手段とは別に設けられた、前記撹拌軸内を通じて前記第2噴射口に流動性向上剤を圧送供給する第2供給装置と、
を備えたことを特徴とする深層混合処理装置。
A stirring shaft provided with a stirring blade protruding in the radial direction, a first injection port provided on one side of the rotation direction of the stirring blade, and a second injection port provided at the tip;
A base machine that supports the stirring shaft and applies a rotational force, a lifting force, and a pushing force to the stirring shaft;
A first supply device for supplying the solidified powder material to the first injection port on the compressed air through the stirring shaft;
A second supply device provided separately from the powder solidifying material supply means, for supplying a fluidity improver to the second injection port through the stirring shaft;
A deep mixing apparatus characterized by comprising:
前記撹拌軸の外周面に、前記第1噴射口の近傍から撹拌軸の長手方向に沿って延在する筋状突起を形成した、請求項3記載の深層混合処理装置。   The deep-mixing processing apparatus of Claim 3 which formed the streak process extended along the longitudinal direction of the stirring shaft from the vicinity of the said 1st injection nozzle in the outer peripheral surface of the said stirring shaft. 前記撹拌翼における第1噴射口側の面には、第1噴射口の上側近傍の高さ位置に、径方向に沿って翼基端から翼先端部近傍まで延在する尾根状の凸筋を形成した、請求項3又は4記載の深層混合処理装置。   On the surface on the first injection port side of the stirring blade, a ridge-like convex line extending from the blade base end to the blade tip portion along the radial direction is provided at a height position near the upper side of the first injection port. The deep layer processing apparatus according to claim 3 or 4, which is formed.
JP2010129665A 2010-06-07 2010-06-07 Deep mixing processing method and deep mixing processing equipment Active JP5646218B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010129665A JP5646218B2 (en) 2010-06-07 2010-06-07 Deep mixing processing method and deep mixing processing equipment
PCT/JP2010/071978 WO2011155090A1 (en) 2010-06-07 2010-12-08 Deep mixing method and deep mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010129665A JP5646218B2 (en) 2010-06-07 2010-06-07 Deep mixing processing method and deep mixing processing equipment

Publications (2)

Publication Number Publication Date
JP2011256541A true JP2011256541A (en) 2011-12-22
JP5646218B2 JP5646218B2 (en) 2014-12-24

Family

ID=45097715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010129665A Active JP5646218B2 (en) 2010-06-07 2010-06-07 Deep mixing processing method and deep mixing processing equipment

Country Status (2)

Country Link
JP (1) JP5646218B2 (en)
WO (1) WO2011155090A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231319A (en) * 2012-05-01 2013-11-14 Fudo Tetra Corp Apparatus for creating solidified pile and method for creating solidified pile
WO2016208543A1 (en) * 2015-06-25 2016-12-29 株式会社チダエンジニアリング Deep layer mixing method using powdery solidifying material, and deep layer mixing device
JP6072949B1 (en) * 2016-02-08 2017-02-01 あおみ建設株式会社 Deep layer processing equipment
JP6072950B1 (en) * 2016-02-08 2017-02-01 あおみ建設株式会社 Deep layer processing equipment
CN110847147A (en) * 2019-12-29 2020-02-28 北京中岩大地科技股份有限公司 Construction equipment for deep stirring by adopting curing material and construction method thereof
JP2020165142A (en) * 2019-03-29 2020-10-08 株式会社不動テトラ Ground displacement control method of slurry stirring type deep mixing treatment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257136A (en) * 1993-03-08 1994-09-13 Takeshi Mitani Method and device for improving soft ground
JPH0841861A (en) * 1994-07-27 1996-02-13 Shohei Senda Multi-shaft stirring and mixing device for soil improvement
JPH0885940A (en) * 1994-09-20 1996-04-02 Ohbayashi Corp Mixing method with stirring
JP2000290988A (en) * 1999-04-12 2000-10-17 Fudo Constr Co Ltd Earth removing type soil mixing process device
JP2006070517A (en) * 2004-09-01 2006-03-16 Chem Grouting Co Ltd Soil improving method
JP2006233600A (en) * 2005-02-25 2006-09-07 Onoda Chemico Co Ltd Agitating device for soil improving machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949377B2 (en) * 1981-03-04 1984-12-03 株式会社神戸製鋼所 Ground improvement methods and equipment
JPS6178914A (en) * 1984-09-26 1986-04-22 Nippon Kokudo Kaihatsu Kk Powder charger for ground improvement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257136A (en) * 1993-03-08 1994-09-13 Takeshi Mitani Method and device for improving soft ground
JPH0841861A (en) * 1994-07-27 1996-02-13 Shohei Senda Multi-shaft stirring and mixing device for soil improvement
JPH0885940A (en) * 1994-09-20 1996-04-02 Ohbayashi Corp Mixing method with stirring
JP2000290988A (en) * 1999-04-12 2000-10-17 Fudo Constr Co Ltd Earth removing type soil mixing process device
JP2006070517A (en) * 2004-09-01 2006-03-16 Chem Grouting Co Ltd Soil improving method
JP2006233600A (en) * 2005-02-25 2006-09-07 Onoda Chemico Co Ltd Agitating device for soil improving machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231319A (en) * 2012-05-01 2013-11-14 Fudo Tetra Corp Apparatus for creating solidified pile and method for creating solidified pile
WO2016208543A1 (en) * 2015-06-25 2016-12-29 株式会社チダエンジニアリング Deep layer mixing method using powdery solidifying material, and deep layer mixing device
JP2017008673A (en) * 2015-06-25 2017-01-12 株式会社チダエンジニアリング Deep mixing method using powder solidifying material and deep mixing device
JP6072949B1 (en) * 2016-02-08 2017-02-01 あおみ建設株式会社 Deep layer processing equipment
JP6072950B1 (en) * 2016-02-08 2017-02-01 あおみ建設株式会社 Deep layer processing equipment
JP2020165142A (en) * 2019-03-29 2020-10-08 株式会社不動テトラ Ground displacement control method of slurry stirring type deep mixing treatment method
JP7150656B2 (en) 2019-03-29 2022-10-11 株式会社不動テトラ Ground Displacement Control Method for Slurry Agitation Deep Mixing Method
CN110847147A (en) * 2019-12-29 2020-02-28 北京中岩大地科技股份有限公司 Construction equipment for deep stirring by adopting curing material and construction method thereof
WO2021135156A1 (en) * 2019-12-29 2021-07-08 北京中岩大地科技股份有限公司 Construction apparatus for deep stirring by using curing material and construction method therefor

Also Published As

Publication number Publication date
WO2011155090A1 (en) 2011-12-15
JP5646218B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5646218B2 (en) Deep mixing processing method and deep mixing processing equipment
JP6532319B2 (en) Deep mixing processing method and deep mixing processing apparatus using powder solidifying material
KR101421173B1 (en) Drill Stirrer for the Hard Soil Layers
CN103806479B (en) A kind of pile foundation combined casting reinforced construction method of combination water-stop curtain
JP2017008673A5 (en)
KR101284089B1 (en) Enhanced ground improvement of mixing device and method of ground improvement
JPWO2006051865A1 (en) Jet stirring method and jet stirring device
JPH05202693A (en) Mechanical shield excavation method using foaming agent
CN106351665A (en) Construction method using slag and soil improvement in soil pressure balance type rectangular shield top tunneling of sand gravel stratum
JP4679705B2 (en) Equipment for constructing mechanically stirred air cement milk mixed pressure feeding method
JP2014152576A (en) Foundation pile and foot protection method of foundation pile
CN109914401A (en) Superficial layer of sand or saturation layer of sand cement-soil stirring pile construction device and method
JP2006097458A (en) Excavating machine
JP2007077739A (en) Jet grout type ground improvement construction method
JP2010053668A (en) Construction method of columnar soil improving body
JPH0885941A (en) System for mixing method with stirring
JPH0885940A (en) Mixing method with stirring
JP2005113647A (en) Jetting stirring method and apparatus
JP4615841B2 (en) Synthetic pile construction method and synthetic pile
JP5759151B2 (en) Displacement-reducing ground improvement method
JP6724200B1 (en) Excavator
KR100599323B1 (en) Agitating device for improving ground with elevating blade and method for improving ground using the same
JP2004300847A (en) Construction method for columnar foundation improvement body using steel pipe pile
JPS6353327B2 (en)
KR102321610B1 (en) the cutting and agitating apparatus for improving ground

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5646218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250