JP2011256488A - Method for producing fiber by wet spinning - Google Patents

Method for producing fiber by wet spinning Download PDF

Info

Publication number
JP2011256488A
JP2011256488A JP2010132467A JP2010132467A JP2011256488A JP 2011256488 A JP2011256488 A JP 2011256488A JP 2010132467 A JP2010132467 A JP 2010132467A JP 2010132467 A JP2010132467 A JP 2010132467A JP 2011256488 A JP2011256488 A JP 2011256488A
Authority
JP
Japan
Prior art keywords
fiber
protein
hollow fiber
wet spinning
coagulation liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010132467A
Other languages
Japanese (ja)
Other versions
JP5299358B2 (en
Inventor
Naoto Kuriyama
直人 栗山
Hiromitsu Takeuchi
宏充 竹内
Ayumi Iwata
阿佑美 岩田
Takanori Nakai
孝憲 中井
Takashi Maeno
隆 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2010132467A priority Critical patent/JP5299358B2/en
Publication of JP2011256488A publication Critical patent/JP2011256488A/en
Application granted granted Critical
Publication of JP5299358B2 publication Critical patent/JP5299358B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a fiber of protein with a high molecular orientation from dope containing protein.SOLUTION: In a method for producing a fiber by wet spinning, a tubular hollow fiber made from a porous semipermeable membrane is set such that an outer peripheral surface and a tip opening are in a coagulation liquid. Protein that is dissolved in dope is sent to the hollow fiber. The protein is made to be a fiber in a semi-solidification state which can be drawn, by the action of the coagulation liquid that permeates the hollow fiber, and the resulting fiber is discharged from the tip opening of the hollow fiber into the coagulation liquid. The fiber in the semi-solidification state which has been discharged into the coagulation liquid is drawn and then coagulated, thereby obtaining a protein fiber.

Description

本発明は、湿式紡糸による繊維の製造方法に関するものである。   The present invention relates to a method for producing fibers by wet spinning.

ドープ(ポリマーが溶剤等に溶けている材料)を微小ノズルから凝固液中に直接吐出させ、ドープ中の溶剤等が凝固液中に溶け出し、ポリマーを固化して繊維化する方法を湿式紡糸という。特にポリマーがタンパク質であるタンパク質ドープの湿式紡糸では、凝固液中でタンパク質の急激な固化並びに凝集が起こりやすいので、一定した繊維径が得られず、後で延伸作業もできないという問題があった。その上、一旦凝固してしまったタンパク質は、分子間相互作用が働くことで、再溶解が困難になる問題も有していた。   Wet spinning is a method in which a dope (a material in which a polymer is dissolved in a solvent or the like) is directly discharged from a micro nozzle into a coagulating liquid, and the solvent in the dope is dissolved in the coagulating liquid and the polymer is solidified and fiberized. . Particularly in protein-spun wet spinning, in which the polymer is a protein, rapid solidification and aggregation of the protein is likely to occur in the coagulation liquid, so that there is a problem that a constant fiber diameter cannot be obtained and stretching work cannot be performed later. In addition, once solidified, the protein has a problem that it is difficult to redissolve due to the interaction between molecules.

特許文献1には、管状通路を形成する壁の一部が半浸透性および多孔質の材料からなり、この管状通路を流体材料が包囲しており、紡糸液が管状通路に沿って送られるとき、前記壁の半浸透性および多孔性の材料を浸透する流体材料の成分によって、管状通路を流れる紡糸液のpH、イオン組成、含水量および(または)低分子量組成を変化させて処理する紡糸方法が記載されている。その例として、組み換えた蜘蛛の分泌糸や蚕の生糸のタンパク質の溶液を含有するドープから繊維を形成するために使用できるとされ、タンパク質を溶液中に保持するために他の成分がドープに加えられ、その成分は、液体のドープから糸または繊維のような固体製品への変換を誘起させることが望まれる管状通路の適当な箇所にドープが達したときに、半浸透性および多孔性の壁を通して除去されることが記載されている。   In Patent Document 1, when a part of a wall forming the tubular passage is made of a semipermeable and porous material, the tubular material is surrounded by a fluid material, and the spinning solution is sent along the tubular passage. A spinning method in which the pH, ionic composition, water content, and / or low molecular weight composition of the spinning solution flowing through the tubular passage is changed by the component of the fluid material that penetrates the semipermeable and porous material of the wall. Is described. For example, it can be used to form fibers from a dope containing a protein solution of recombinant silkworm silk or silkworm silk, and other ingredients can be added to the dope to keep the protein in solution. Its components are semi-permeable and porous walls when the dope reaches the appropriate place in the tubular passage where it is desired to induce the conversion of the liquid dope into a solid product such as yarn or fiber. Is removed.

特許文献2には、固浴組成として、有機酸、無機中性塩、過酸化水素を用いたタンパク繊維の製造方法が記載されている。   Patent Document 2 describes a protein fiber production method using an organic acid, an inorganic neutral salt, and hydrogen peroxide as a solid bath composition.

特許文献3には、植物タンパク質とポリビニルアルコールとの特定比率からなる繊維の製造方法が記載されている。   Patent Document 3 describes a method for producing a fiber comprising a specific ratio of plant protein and polyvinyl alcohol.

特表2003−515009号公報Special Table 2003-515209 特開昭48−80761号公報Japanese Patent Laid-Open No. 48-80761 特表2005−513298号公報JP-T-2005-513298

特許文献1の紡糸方法は、管状通路の形状の工夫により配向が改善されることが記載されている。例えば、段落0029には「先細形または末広形の型の使用は、粒滴内に引き伸ばされる流れを都合良く誘起させて、体積相内に配向され引き伸ばされた充填粒子または間隙を形成させる。先細型はそのような粒滴を形成された製品と平行な方向に配向して引き伸ばすのに対して、末広型は粒滴を管状通路内の流れの方向を横切るフープ方向に配向させる傾向を有する。」とされている。
しかし、上記のような工夫によってもまだ分子配向が足りず、実用上十分な特性を備えた繊維を得ることができないと考えられる。その上、特許文献1の紡糸方法では、図11に示すように、管状通路の領域内で、タンパク質を含有するドープからタンパク質を溶液中に保持している成分(添加剤)がほとんど除去されてしまい、管状通路の出口から、凝固がほとんど終了した状態でタンパク質の繊維が引き抜かれるものと考えられる。そのため、繊維径にバラツキが生じるおそれがあるとともに、引き抜かれた繊維に延伸等を行うことで配向を高めることもできないと考えられる。
The spinning method of Patent Document 1 describes that the orientation is improved by devising the shape of the tubular passage. For example, in paragraph 0029, “The use of a tapered or divergent mold advantageously induces a flow that is stretched into the droplets to form oriented and stretched packed particles or gaps in the volume phase. The mold tends to orient and stretch such droplets in a direction parallel to the formed product, whereas the divergent mold tends to orient the droplets in the hoop direction across the direction of flow in the tubular passage. It is said that.
However, it is considered that even with the above-described devices, the molecular orientation is still insufficient and a fiber having practically sufficient characteristics cannot be obtained. In addition, in the spinning method of Patent Document 1, as shown in FIG. 11, the components (additives) that hold the protein in the solution are almost removed from the dope containing the protein in the region of the tubular passage. Therefore, it is considered that the protein fibers are pulled out from the outlet of the tubular passage with the coagulation almost completed. For this reason, there is a possibility that the fiber diameter may vary, and it is considered that the orientation cannot be increased by stretching the drawn fiber.

そこで、本発明の目的は、タンパク質を含有するドープから、高い分子配向を備えたタンパク質の繊維を製造することにある。   Accordingly, an object of the present invention is to produce a protein fiber having a high molecular orientation from a dope containing a protein.

本発明の湿式紡糸による繊維の製造方法は、多孔質の半浸透性膜よりなる管状の中空糸を外周面及び先端開口が凝固液中にあるようにセットし、ドープ中に溶解しているタンパク質を前記中空糸に送り、前記中空糸を浸透する前記凝固液の作用により、前記タンパク質を延伸可能な半凝固状態の繊維にして前記中空糸の先端開口から前記凝固液中に吐出させ、凝固液中に吐出された前記半凝固状態の繊維を延伸した後、凝固させてタンパク質繊維を得ることを特徴とする。   The method for producing a fiber by wet spinning according to the present invention is a protein in which a tubular hollow fiber made of a porous semipermeable membrane is set so that an outer peripheral surface and a tip opening are in a coagulation liquid, and dissolved in a dope To the hollow fiber, and by the action of the coagulation liquid penetrating the hollow fiber, the protein is made into a semi-coagulated fiber that can be drawn and discharged into the coagulation liquid from the opening of the tip of the hollow fiber, and the coagulation liquid The semi-coagulated fiber discharged inside is stretched and then coagulated to obtain a protein fiber.

本発明における各要素の態様を以下に例示する。   The aspect of each element in the present invention is exemplified below.

凝固液中に吐出された半凝固状態の繊維の延伸は、凝固液中で行ってもよいし、空気等の気中や凝固液以外の液中で行ってもよい。工程が簡素化できることから、吐出された凝固液中で行うことが好ましい。   The drawing of the semi-solidified fiber discharged into the coagulation liquid may be performed in the coagulation liquid, or in the air such as air or in a liquid other than the coagulation liquid. Since the process can be simplified, it is preferably performed in the discharged coagulating liquid.

1.中空糸
中空糸の形状としては、特に限定されないが、延伸時の応力集中を回避できることから、直管形状が好ましい。
中空糸の寸法としては、特に限定されないが、直管形状の場合には長さ/内径の比率が200/1〜20/1であることが好ましい。長さが同比率より大きい場合には、ドープ中に溶解しているタンパク質が中空糸内で凝固してしまい、中空糸が詰まるおそれがある。一方、長さが同比率より小さい場合には、ドープ中に溶解しているタンパク質を半凝固状態の繊維として凝固液中に吐出することがむずかしくなる。
中空糸を形成している半浸透性膜の材質としては、特に限定されないが、タンパク質との相互作用が小さく、表面自由エネルギーが低い材質が好ましく、具体的には、ポリプロピレン等が例示できる。
中空糸の絶対ろ過精度としては、特に限定されないが、凝固液が浸透しやすいことから、0.01〜0.1μmであることが好ましい。
1. Hollow fiber The shape of the hollow fiber is not particularly limited, but a straight pipe shape is preferable because stress concentration during stretching can be avoided.
The dimension of the hollow fiber is not particularly limited, but in the case of a straight pipe shape, the length / inner diameter ratio is preferably 200/1 to 20/1. When the length is larger than the same ratio, the protein dissolved in the dope is solidified in the hollow fiber, and the hollow fiber may be clogged. On the other hand, when the length is smaller than the same ratio, it is difficult to discharge the protein dissolved in the dope into the coagulation liquid as a semi-coagulated fiber.
The material of the semipermeable membrane forming the hollow fiber is not particularly limited, but a material having a small interaction with protein and low surface free energy is preferable, and specific examples include polypropylene and the like.
The absolute filtration accuracy of the hollow fiber is not particularly limited, but is preferably 0.01 to 0.1 μm because the coagulation liquid easily permeates.

2.凝固液
凝固液としては、特に限定されないが、一種類のものを用いてもよいし、中空糸の長さ方向の中間部を境にした先端側と基端側とでタンパク質を溶解するためにドープ中に添加されている添加剤の溶解度が異なる二種類のものを用いてもよい。添加剤の溶解度が異なる二種類の凝固液を用いることで、中空糸内においてドープ中から前記添加剤を抜き取るスピードを変えることができ、タンパク質の凝固の制御が可能になる。具体的には、メタノール、エタノール等のアルコール、メタノール水溶液、エタノール水溶液等のアルコール水溶液等が例示できる。
2. Coagulation liquid The coagulation liquid is not particularly limited, but one kind of liquid may be used, and in order to dissolve the protein on the distal end side and the proximal end side with the middle portion in the length direction of the hollow fiber as a boundary. You may use two types from which the solubility of the additive currently added in dope differs. By using two kinds of coagulation liquids having different solubility of additives, the speed of extracting the additive from the dope in the hollow fiber can be changed, and the coagulation of protein can be controlled. Specific examples include alcohols such as methanol and ethanol, aqueous alcohol solutions such as methanol aqueous solution, and ethanol aqueous solution.

3.ドープ
ドープ中に溶解しているタンパク質としては、特に限定されないが、分子量が50KDa以上であることが好ましく、より好ましくは、50KDa〜1000KDaである。これは、ドープを凝固液に吐出したときに、分子が途切れないことで繊維状になりやすいからである。
3. Dope Although it does not specifically limit as protein melt | dissolved in dope, It is preferable that molecular weight is 50 KDa or more, More preferably, it is 50 KDa-1000 KDa. This is because when the dope is discharged into the coagulation liquid, the molecules are not interrupted and are likely to become fibrous.

4.添加剤
タンパク質を溶解するためにドープ中に添加されている添加剤としては、特に限定されないが、尿素や界面活性剤等の可溶化剤が例示できる。
4). Additive The additive added to the dope to dissolve the protein is not particularly limited, and examples include solubilizers such as urea and surfactants.

吐出される繊維の単位時間当たりの長さで表される吐出の速度としては、特に限定されないが、繊維化後の糸切れが防げるとともに、生産性がよいことから、0.6〜3m/分が好ましい。なお、さらに高速での紡糸を行うことも可能である。   The discharge speed represented by the length of the discharged fiber per unit time is not particularly limited, but it is 0.6 to 3 m / min since the yarn breakage after fiber formation can be prevented and the productivity is good. Is preferred. It is also possible to perform spinning at higher speed.

凝固液中に吐出された半凝固状態の繊維を延伸するときの延伸率としては、特に限定されないが、タンパク質の分子配向が揃うことで分子配向が高くなり、繊維の強度及び弾性率が向上することから、2〜20倍が好ましい。より好ましくは、3〜5倍である。   The stretching ratio when stretching the semi-solidified fiber discharged into the coagulation liquid is not particularly limited, but the molecular orientation is increased by aligning the molecular orientation of the protein, and the strength and elastic modulus of the fiber are improved. Therefore, 2 to 20 times is preferable. More preferably, it is 3 to 5 times.

本発明によれば、タンパク質を含有するドープから、高い分子配向を備えたタンパク質の繊維を製造することができる。   According to the present invention, a protein fiber having a high molecular orientation can be produced from a protein-containing dope.

実施例に用いた円筒管及び中空糸の写真である。It is a photograph of the cylindrical tube and hollow fiber used for the Example. 実施例1における中空糸の作用を示す模式図である。FIG. 3 is a schematic diagram showing the action of the hollow fiber in Example 1. 実施例1の工程の模式図である。3 is a schematic diagram of a process of Example 1. FIG. タンパク質繊維fの一部の偏光顕微鏡写真である。It is a polarization micrograph of a part of protein fiber f. タンパク質繊維gの一部の偏光顕微鏡写真である。It is a polarization micrograph of a part of protein fiber g. タンパク質繊維hの一部の偏光顕微鏡写真である。It is a polarization micrograph of a part of protein fiber h. タンパク質繊維hの一部の実体顕微鏡写真である。It is a stereomicrograph of a part of protein fiber h. タンパク質繊維の複屈折率のグラフである。It is a graph of the birefringence of protein fiber. タンパク質繊維の延伸率と引張破断強度との関係のグラフである。It is a graph of the relationship between the draw ratio of protein fiber, and tensile breaking strength. 実施例2における中空糸の作用を示す模式図である。FIG. 6 is a schematic diagram showing the action of the hollow fiber in Example 2. 従来の紡糸方法の模式図である。It is a schematic diagram of the conventional spinning method.

本発明は、ステンレス製の円筒管(ノズル)の先端部に取り付けた中空糸を外周面及び先端開口が凝固液中にあるようにセットした後、ドープを中空糸内に送った。そして、中空糸を浸透した凝固液の作用によりドープ中のタンパク質を半凝固状態の繊維として中空糸の先端から凝固液中に吐出させた。その後、この半凝固状態の繊維を延伸した後に凝固させてタンパク質繊維を得ることを特徴とする湿式紡糸による繊維の製造方法である。   In the present invention, after setting the hollow fiber attached to the tip of a stainless steel cylindrical tube (nozzle) so that the outer peripheral surface and the tip opening are in the coagulation liquid, the dope was fed into the hollow fiber. Then, the protein in the dope was discharged into the coagulation liquid from the tip of the hollow fiber as a semi-coagulated fiber by the action of the coagulation liquid permeating the hollow fiber. Thereafter, the semi-solidified fiber is drawn and then solidified to obtain a protein fiber, which is a method for producing a fiber by wet spinning.

以下、実施例1の湿式紡糸による繊維の製造方法について、図1〜図3を参照して説明する。   Hereinafter, a method for producing a fiber by wet spinning in Example 1 will be described with reference to FIGS.

[1]使用機材及び試料について
中空糸としては、外径が0.5mm、内径が0.4mmの円筒状の直管形状で多孔質のPP(ポリプロピレン)であり、絶対ろ過精度が0.05μmである住友スリーエム社の商品名「CUNOナノシールドフィルターチューブ」(型番:NSP005T15)の中空糸を用いた。
ドープとしては、7.5Mの尿素(添加剤)の水溶液にファブロインのタンパク質(分子量60KDa)を13質量%になるように溶解したものを用いた。
凝固液としては、エタノールである凝固液Aを用いた。
[1] Equipment and samples used The hollow fiber is a cylindrical straight tube porous PP (polypropylene) with an outer diameter of 0.5 mm and an inner diameter of 0.4 mm, and an absolute filtration accuracy of 0.05 μm. The hollow fiber of the brand name "CUNO nano shield filter tube" (model number: NSP005T15) of Sumitomo 3M Co. is used.
As the dope, a solution of Fabroin protein (molecular weight 60 KDa) dissolved in an aqueous solution of 7.5 M urea (additive) so as to be 13% by mass was used.
As the coagulation liquid, ethanol coagulation liquid A was used.

[2]手順について
[2−1]準備
(1)ドープを注射器に充填した。なお、製造量が多い場合等は、注射器の替わりにドープを溜めておく専用の容器(例えば底面等にドープを流出させる開口等があるもの)を用いる。
(2)内径が0.3mmのステンレス製の円筒管(注射針)を注射器に取り付けた。なお、注射器の替わりに専用の容器を用いる場合には、円筒管とこの専用容器とを接続する。
(3)図1に示すように、円筒部の先端部から10mm延伸させるようにして中空糸を円筒管に外嵌させ、円筒管と中空糸とを接続した。なお、円筒管と中空糸との接続部からドープが漏れないよう、円筒管の外径と中空糸の内径とは略同じにした。
(4)注射器をシリンジポンプにセットするとともに、図2に示すように、中空糸を凝固液A中に浸漬した状態でセットした。
[2] Procedure [2-1] Preparation (1) The dope was filled in a syringe. When the production amount is large, a dedicated container for storing the dope (for example, an opening for allowing the dope to flow out on the bottom or the like) is used instead of the syringe.
(2) A stainless steel cylindrical tube (injection needle) having an inner diameter of 0.3 mm was attached to the syringe. When a dedicated container is used instead of the syringe, the cylindrical tube and this dedicated container are connected.
(3) As shown in FIG. 1, the hollow fiber was fitted on the cylindrical tube so as to extend 10 mm from the tip of the cylindrical portion, and the cylindrical tube and the hollow fiber were connected. The outer diameter of the cylindrical tube and the inner diameter of the hollow fiber were made substantially the same so that the dope would not leak from the connecting portion between the cylindrical tube and the hollow fiber.
(4) The syringe was set in the syringe pump, and the hollow fiber was set in a state immersed in the coagulation liquid A as shown in FIG.

[2−2]紡糸及び延伸
(1)シリンジポンプを設定速度で稼動させて一定量のドープが円筒管を流れるようにしてドープを中空糸に送った。なお、注射器の替わりに専用の容器を用いる場合には、ギアポンプ等を用いて一定量のドープが円筒管を流れるようにする。
(2)図2に示すように、凝固液Aが中空糸内に浸透し、その作用で添加剤が凝固液A中に拡散する。その結果、添加剤の濃度が低くなることでタンパク質が半凝固状態になる。そして、図3に示すように、中空糸の先端開口から凝固液A中に吐出された繊維を、凝固液Aが充填されている凝固槽に設けられた延伸機を通した後、凝固槽の外に設けられた巻取りローラへと持っていった。
(3)延伸機の延伸ローラの回転により、凝固液Aへ吐出した後の半凝固状態の繊維を延伸する後延伸を行った後、半凝固状態の繊維を凝固させたタンパク質繊維を巻取りローラで巻き取った。
[2-2] Spinning and Drawing (1) The syringe pump was operated at a set speed so that a certain amount of dope flowed through the cylindrical tube, and the dope was sent to the hollow fiber. When a dedicated container is used instead of the syringe, a certain amount of dope flows through the cylindrical tube using a gear pump or the like.
(2) As shown in FIG. 2, the coagulation liquid A penetrates into the hollow fiber, and the additive diffuses into the coagulation liquid A by its action. As a result, the protein becomes semi-coagulated due to the lower concentration of the additive. And, as shown in FIG. 3, after passing the fiber discharged into the coagulation liquid A from the tip opening of the hollow fiber through a drawing machine provided in the coagulation tank filled with the coagulation liquid A, I took it to the take-up roller provided outside.
(3) After the stretching of the semi-solidified fiber after being discharged to the coagulating liquid A by the rotation of the stretching roller of the stretching machine, the protein fiber obtained by coagulating the semi-solidified fiber is wound up. I wound up with.

[3]タンパク質繊維
実施例1により4種類のタンパク質繊維a〜c、eを製造した。また、実施例1ではない製造方法でタンパク質繊維f〜hを製造した。
・タンパク質繊維a
上記実施例1の製造方法を用い、吐出の速度が0.7m/分となるようにドープを円筒管に送るとともに、中空糸の先端開口から凝固液A中に吐出された半凝固状態の繊維を延伸率が約3倍(長さが吐出されたときの約3倍)になるように延伸機により後延伸してタンパク質繊維aを製造した。
・タンパク質繊維b
延伸率を約5倍にした以外は、タンパク質繊維aと同じようにしてタンパク質繊維bを製造した。
・タンパク質繊維c
延伸率を約2倍にした以外は、タンパク質繊維aと同じようにしてタンパク質繊維cを製造した。
・タンパク質繊維e
延伸率を約4倍にした以外は、タンパク質繊維aと同じようにしてタンパク質繊維eを製造した。
・タンパク質繊維f
後延伸を行わない方法で、タンパク質繊維fを製造した。具体的には、吐出の速度が0.6m/分となるようにドープを円筒管に送り、ドープ中に溶解しているタンパク質を中空糸の先端開口から凝固液A中に半凝固状態の繊維として吐出させるとともに、延伸機を通さないことから後延伸を行わないで製造した。なお、後延伸を行わなかったことから、延伸率は1倍(長さが吐出されたときのままである)としている。
・タンパク質繊維g
吐出の速度を0.7m/分にした以外は、タンパク質繊維fと同じようにしてタンパク質繊維gを製造した。なお、後延伸を行わなかったことから、延伸率は1倍としている。
・タンパク質繊維h
中空糸を用いない方法で、タンパク質繊維hを製造した。具体的には、吐出の速度が0.6m/分となるようにドープを円筒管に送り、ドープ中に溶解しているタンパク質を円筒管の先端から凝固液A中に直接吐出させるとともに、延伸機を通さないことから後延伸を行わないで製造した。なお、後延伸を行わなかったことから、延伸率は1倍としている。
[3] Protein fiber Four types of protein fibers a to c and e were produced according to Example 1. Moreover, protein fiber fh was manufactured with the manufacturing method which is not Example 1. FIG.
・ Protein fiber a
Using the manufacturing method of Example 1 above, the dope is sent to the cylindrical tube so that the discharge speed is 0.7 m / min, and the fiber in a semi-solid state discharged from the opening of the hollow fiber into the coagulation liquid A Was stretched by a stretching machine so that the stretching ratio was about 3 times (about 3 times when the length was discharged) to produce a protein fiber a.
・ Protein fiber b
A protein fiber b was produced in the same manner as the protein fiber a except that the stretching ratio was about 5 times.
・ Protein fiber c
A protein fiber c was produced in the same manner as the protein fiber a, except that the stretch ratio was approximately doubled.
・ Protein fiber e
A protein fiber e was produced in the same manner as the protein fiber a except that the stretch ratio was about 4 times.
・ Protein fiber f
The protein fiber f was manufactured by the method which does not perform post-drawing. Specifically, the dope is sent to a cylindrical tube so that the discharge speed is 0.6 m / min, and the protein dissolved in the dope is semi-solidified into the coagulating liquid A from the end opening of the hollow fiber. In addition, since it was discharged as it was not passed through a stretching machine, it was manufactured without performing post-stretching. In addition, since the post-stretching was not performed, the stretch ratio is set to 1 time (the length remains as it was discharged).
・ Protein fiber g
A protein fiber g was produced in the same manner as the protein fiber f except that the discharge speed was 0.7 m / min. In addition, since the post-drawing was not performed, the drawing rate is set to 1 time.
・ Protein fiber h
Protein fiber h was produced by a method not using a hollow fiber. Specifically, the dope is sent to the cylindrical tube so that the discharge speed is 0.6 m / min, and the protein dissolved in the dope is directly discharged into the coagulation liquid A from the tip of the cylindrical tube and stretched. Since it did not pass through the machine, it was manufactured without post-stretching. In addition, since the post-drawing was not performed, the drawing rate is set to 1 time.

このようにして製造したタンパク質繊維a、b、f、g、hについて、コンペンセータを取り付けた偏光顕微鏡により複屈折率を測定し、その測定値を表1に示すとともに、図8に測定値のグラフを示す。また、タンパク質繊維f、g、hの顕微鏡写真を図4〜図7に示す。   The protein fibers a, b, f, g, and h thus produced were measured for birefringence with a polarizing microscope equipped with a compensator. The measured values are shown in Table 1, and FIG. 8 is a graph of measured values. Indicates. In addition, microphotographs of protein fibers f, g, and h are shown in FIGS.

ここで、複屈折率は次のようにして求めた。
コンペンセータ(オリンパス社の「U−CTB」)を偏光顕微鏡にセットし、消光位から+45°となるようにステージを固定した。そして、コンペンセータハンドルを回して角度計算からレタデーション値を求めた。このレタデーション値を繊維径で割った値を複屈折率として求めた。
Here, the birefringence was determined as follows.
A compensator (Olympus “U-CTB”) was set on a polarizing microscope, and the stage was fixed at 45 ° from the extinction position. Then, the retardation value was obtained from the angle calculation by turning the compensator handle. A value obtained by dividing the retardation value by the fiber diameter was determined as a birefringence.

また、タンパク質繊維a〜c、e、gについて、引張破断強度を測定し、その測定値を表2に示すとともに、図9に延伸率と引張破断強度とのグラフを示す。引張破断強度は、クロスヘッドスピード10mm/minで引張ったときの破断直前の荷重を繊維の断面積で除した値とした。   Moreover, while measuring the tensile breaking strength about protein fiber ac, e, and g, while showing the measured value in Table 2, the graph of an extending | stretching rate and tensile breaking strength is shown in FIG. The tensile breaking strength was a value obtained by dividing the load immediately before breaking when it was pulled at a crosshead speed of 10 mm / min by the cross-sectional area of the fiber.

中空糸を用いないで紡糸したタンパク質繊維hは、図7の写真に示すように、繊維径にムラが生じていた。そのため、凝固液A中での延伸を行うと、繊維径が小さい(細い)部位から切れてしまい良好な後延伸を行うことができなかった。これは、ドープ中に溶解しているタンパク質を円筒管の先端開口から凝固液A中に直接吐出させることから、吐出直後のタンパク質はドープ中に溶解した状態で、凝固液A中を流れるという不安定な状態になっていることと、このように凝固液A中を流れているタンパク質がある時に急に凝固して繊維化することによる。
また、タンパク質繊維hは、図6の写真に示すように、繊維の内部まで分子配列が不均一な状態となった。これは、中空糸を用いないため、ドープ中から尿素(添加剤)が抜けるスピードを調整することができず、タンパク質の凝集スピードを調整できないことによる。なお、偏光顕微鏡写真において、分子が配向している部位は明るく、分子が配向していない部位は暗く表れている。
As shown in the photograph of FIG. 7, the protein fiber h spun without using hollow fibers had uneven fiber diameters. Therefore, when stretching in the coagulating liquid A, the fiber diameter was cut off from a small (thin) part, and good post-stretching could not be performed. This is because the protein dissolved in the dope is directly discharged into the coagulation liquid A from the opening at the end of the cylindrical tube, so that the protein immediately after the discharge flows in the coagulation liquid A in a dissolved state in the dope. This is because it is in a stable state and suddenly coagulates into fibers when there is a protein flowing in the coagulation liquid A.
Moreover, as shown in the photograph of FIG. 6, the protein fiber h was in a state in which the molecular arrangement was not uniform up to the inside of the fiber. This is because the hollow fiber is not used, so the speed at which urea (additive) is removed from the dope cannot be adjusted, and the protein aggregation speed cannot be adjusted. In the polarizing micrograph, the part where the molecules are oriented is bright and the part where the molecules are not oriented appears dark.

中空糸を用いて紡糸したタンパク質繊維は、図4、図5の写真に示すように、繊維径の均一性が確保できた。これは、ドープ中に溶解しているタンパク質を円筒管の先端開口から凝固液A中に直接吐出させることをせず、内径が略均一の中空糸内に通すため、中空糸の壁面(多孔質ポリプロピレン)を浸透した凝固液Aの作用により、ドープ中から尿素(添加剤)が徐々に抜け、中空糸内においてタンパク質が徐々に凝固して繊維化することによる。
また、これらのタンパク質繊維は、図4、図5の写真に示すように、分子配列が均一(高い分子配向)な状態になった。これは、ドープ中に溶解しているタンパク質を中空糸内に通すため、中空糸の壁面(多孔質ポリプロピレン)を浸透した凝固液Aの作用によるドープ中の尿素(添加剤)の除去及び中空糸の壁面とのせん断が加速されることによる。
As shown in the photographs of FIGS. 4 and 5, the protein fiber spun using the hollow fiber was able to ensure the uniformity of the fiber diameter. This is because the protein dissolved in the dope is not directly discharged into the coagulation liquid A from the opening of the end of the cylindrical tube, but passes through the hollow fiber having a substantially uniform inner diameter. This is because urea (additive) is gradually removed from the dope due to the action of the coagulation liquid A infiltrated with (polypropylene), and the protein gradually coagulates into fibers in the hollow fiber.
Moreover, these protein fibers were in a state where the molecular arrangement was uniform (high molecular orientation) as shown in the photographs of FIGS. This is because the protein dissolved in the dope is passed through the hollow fiber, so that urea (additive) in the dope is removed by the action of the coagulation liquid A that has penetrated the wall surface (porous polypropylene) of the hollow fiber and the hollow fiber. This is due to the acceleration of shearing with the wall surface.

中空糸を用い且つ凝固液A中での後延伸を行う方法で紡糸したタンパク質繊維は、分子の配向が高くなった(分子配向が高くなることで、複屈折率が高くなる。表1及び図8のグラフ参照)。
また、分子配向が高くなったことで、引張破断強度が高くなった(表2及び図9のグラフ参照)。特に、3倍以上の延伸を行ったタンパク質繊維a、b、eは、引張破断強度が延伸を行わなかったタンパク質繊維gの3倍以上の値となった。
Protein fibers spun by a method using hollow fiber and post-stretching in coagulation liquid A have higher molecular orientation (higher molecular orientation results in higher birefringence. Table 1 and FIG. (See graph 8).
Further, the tensile strength at break increased due to the increase in molecular orientation (see the graphs in Table 2 and FIG. 9). In particular, the protein fibers a, b, and e that had been stretched 3 times or more had a value at least 3 times that of the protein fiber g that had not been stretched.

以上より、実施例1の繊維の製造方法によれば、外周面及び先端開口が凝固液中にある中空糸にドープを通すことから、繊維径が略均一で且つ高い分子配向を備えたタンパク質繊維を製造することができた。
また、タンパク質を分子がある程度配向した半凝固状態の繊維として凝固液A中に吐出することから、凝固液A中でも繊維が崩れにくい状態にすることができた。
また、中空糸の長さを変えることで凝固液A中に吐出される繊維状のタンパク質の半凝固状態を変えることができた。
また、凝固液A中に吐出された半凝固状態のタンパク質の繊維が凝固液A中で崩れない程度の強度を有することから、凝固液A中での後延伸が行え、分子配向をさらに向上させることができ、高い分子配向を備え、且つ、強度が高いタンパク質繊維を製造することができた。
As described above, according to the fiber manufacturing method of Example 1, the dope is passed through the hollow fiber having the outer peripheral surface and the tip opening in the coagulating liquid, so that the protein fiber has a substantially uniform fiber diameter and high molecular orientation. Could be manufactured.
In addition, since the protein is discharged into the coagulation liquid A as a semi-coagulated fiber in which molecules are oriented to some extent, the fiber can be made difficult to collapse even in the coagulation liquid A.
In addition, the semi-coagulated state of the fibrous protein discharged into the coagulation liquid A could be changed by changing the length of the hollow fiber.
In addition, since the semi-coagulated protein fibers discharged into the coagulation liquid A have a strength that does not collapse in the coagulation liquid A, post-stretching can be performed in the coagulation liquid A, and the molecular orientation is further improved. It was possible to produce a protein fiber having a high molecular orientation and high strength.

次に、実施例2の湿式紡糸による繊維の製造方法について、図10を参照して説明する。   Next, a method for producing fibers by wet spinning in Example 2 will be described with reference to FIG.

この製造方法は、中空糸の基端側と先端側とで尿素(添加剤)の溶解度が異なる凝固液を用いる点のみが実施例1の製造方法と異なり、その他の点については、実施例1と同じである。
具体的には、凝固液として、メタノールからなる凝固液Bと、メタノールが70体積%になるように水を加えたメタノールと水の混合物である70体積%メタノール水溶液からなる凝固液Cとの二種類の凝固液を用いた。
そして、図10に示すように、中空糸の長さ方向の略中央に設けた隔壁で槽内が二つに分けられた凝固槽を用い、中空糸の基端側の凝固槽に凝固液Bを充填し、中空糸の先端側の凝固層に凝固液Cを充填した後、中空糸の先端開口から凝固液C中にタンパク質を半凝固状態の繊維として吐出させた後、凝固液C中で後延伸を行った。
This manufacturing method differs from the manufacturing method of Example 1 only in that a coagulating liquid having different solubility of urea (additive) is used on the proximal end side and the distal end side of the hollow fiber. Is the same.
Specifically, as coagulation liquid, coagulation liquid B made of methanol and coagulation liquid C made of 70% by volume methanol aqueous solution, which is a mixture of methanol and water with methanol added to 70% by volume. Different types of coagulant were used.
Then, as shown in FIG. 10, using a coagulation tank in which the inside of the tank is divided into two by a partition wall provided substantially in the center in the length direction of the hollow fiber, the coagulation liquid B is added to the coagulation tank on the proximal end side of the hollow fiber. After filling the coagulation liquid C into the coagulation layer on the distal end side of the hollow fiber, the protein is discharged into the coagulation liquid C from the opening at the tip of the hollow fiber as a semi-coagulated fiber, and then in the coagulation liquid C. Post-stretching was performed.

実施例2の繊維の製造方法によれば、実施例1の繊維の製造方法で得られる効果に加え、凝固液Bによりドープ中から尿素(添加剤)を徐々に抜き取り、凝固液Cによりドープ中から尿素(添加剤)を完全に抜き取ることで、タンパク質の凝固を促進させることができた。   According to the fiber production method of Example 2, in addition to the effects obtained by the fiber production method of Example 1, urea (additive) is gradually extracted from the dope with the coagulation liquid B, and the dope with the coagulation liquid C. It was possible to promote protein coagulation by completely extracting urea (additive) from the protein.

なお、本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。   In addition, this invention is not limited to the said Example, In the range which does not deviate from the meaning of invention, it can change suitably and can be actualized.

Claims (10)

多孔質の半浸透性膜よりなる管状の中空糸を外周面及び先端開口が凝固液中にあるようにセットし、ドープ中に溶解しているタンパク質を前記中空糸に送り、前記中空糸を浸透する前記凝固液の作用により、前記タンパク質を延伸可能な半凝固状態の繊維にして前記中空糸の先端開口から前記凝固液中に吐出させ、凝固液中に吐出された前記半凝固状態の繊維を延伸した後、凝固させてタンパク質繊維を得ることを特徴とする湿式紡糸による繊維の製造方法。   A tubular hollow fiber made of a porous semi-permeable membrane is set so that the outer peripheral surface and the tip opening are in the coagulation liquid, the protein dissolved in the dope is sent to the hollow fiber, and the hollow fiber penetrates By the action of the coagulation liquid, the protein is drawn into a semi-coagulated fiber that can be drawn and discharged into the coagulation liquid from the opening of the tip of the hollow fiber, and the semi-coagulated fiber discharged into the coagulation liquid A method for producing a fiber by wet spinning, characterized by obtaining a protein fiber by stretching and then coagulating. 凝固液中に吐出された前記半凝固状態の繊維を前記凝固液中で延伸する請求項1記載の湿式紡糸による繊維の製造方法。   The method for producing a fiber by wet spinning according to claim 1, wherein the semi-solidified fiber discharged into the coagulating liquid is drawn in the coagulating liquid. 半浸透性膜の材質がポリプロピレンである請求項1又は2項に記載の湿式紡糸による繊維の製造方法。   The method for producing fibers by wet spinning according to claim 1 or 2, wherein the material of the semipermeable membrane is polypropylene. 中空糸の形状が直管形状である請求項1〜3のいずれか1項に記載の湿式紡糸による繊維の製造方法。   The method for producing a fiber by wet spinning according to any one of claims 1 to 3, wherein the hollow fiber has a straight pipe shape. 中空糸の長さ/内径の比率が200/1〜20/1である請求項4記載の湿式紡糸による繊維の製造方法。   The method for producing fibers by wet spinning according to claim 4, wherein the ratio of length / inner diameter of the hollow fiber is 200/1 to 20/1. 吐出の速度が0.6〜3m/分である請求項1〜5のいずれか1項に記載の湿式紡糸による繊維の製造方法。   The method for producing fibers by wet spinning according to any one of claims 1 to 5, wherein a discharge speed is 0.6 to 3 m / min. 前記半凝固状態の繊維を延伸する延伸率が2〜20倍である請求項1〜6のいずれか1項に記載の湿式紡糸による繊維の製造方法。   The method for producing a fiber by wet spinning according to any one of claims 1 to 6, wherein a drawing ratio for drawing the semi-solidified fiber is 2 to 20 times. 前記タンパク質は分子量が50KDa以上である請求項1〜7のいずれか1項に記載の湿式紡糸による繊維の製造方法。   The method for producing a fiber by wet spinning according to any one of claims 1 to 7, wherein the protein has a molecular weight of 50 KDa or more. 前記凝固液として一種類の凝固液を用いる請求項1〜8のいずれか1項に記載の湿式紡糸による繊維の製造方法。   The method for producing a fiber by wet spinning according to any one of claims 1 to 8, wherein one kind of coagulating liquid is used as the coagulating liquid. 前記凝固液として前記中空糸の長さ方向の中間部を境にした先端側と基端側とで前記タンパク質を溶解するために前記ドープ中に添加されている添加剤の溶解度が異なる二種類の凝固液を用いる請求項1〜8のいずれか1項に記載の湿式紡糸による繊維の製造方法。   As the coagulation liquid, two kinds of additives having different solubilities are added in the dope in order to dissolve the protein on the distal end side and the proximal end side with respect to the middle portion in the length direction of the hollow fiber. The method for producing a fiber by wet spinning according to any one of claims 1 to 8, wherein a coagulating liquid is used.
JP2010132467A 2010-06-09 2010-06-09 Method for producing fiber by wet spinning Expired - Fee Related JP5299358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010132467A JP5299358B2 (en) 2010-06-09 2010-06-09 Method for producing fiber by wet spinning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010132467A JP5299358B2 (en) 2010-06-09 2010-06-09 Method for producing fiber by wet spinning

Publications (2)

Publication Number Publication Date
JP2011256488A true JP2011256488A (en) 2011-12-22
JP5299358B2 JP5299358B2 (en) 2013-09-25

Family

ID=45472978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010132467A Expired - Fee Related JP5299358B2 (en) 2010-06-09 2010-06-09 Method for producing fiber by wet spinning

Country Status (1)

Country Link
JP (1) JP5299358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076374A1 (en) 2015-11-06 2017-05-11 Vysoké Učení Technické V Brně Polymer-made fibre preparation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346314A (en) * 1993-06-02 1994-12-20 Toyobo Co Ltd Regenerated silk fibroin yarn and its production
JPH07207520A (en) * 1994-01-14 1995-08-08 Kiyoichi Matsumoto Production of silk fibroin fiber
JP2003515009A (en) * 1999-11-27 2003-04-22 スピノックス リミテッド Material molding apparatus and method
JP2004068161A (en) * 2001-03-14 2004-03-04 Tokyo Univ Of Agriculture & Technology Method for producing fiber, film and nonwoven fabric of silk and silky material and fiber, film or nonwoven fabric produced by the method
JP2004532362A (en) * 2001-04-02 2004-10-21 ザイロス ピーエルシー Silk fiber
WO2008004356A1 (en) * 2006-07-04 2008-01-10 National University Corporation Tokyo University Of Agriculture And Technology Spinning solution composition, process for producing regenerated silk fiber using the composition, and regenerated silk fiber produced by the process
JP2009221401A (en) * 2008-03-18 2009-10-01 Tokyo Univ Of Agriculture & Technology Reclaimed silk material and method of producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346314A (en) * 1993-06-02 1994-12-20 Toyobo Co Ltd Regenerated silk fibroin yarn and its production
JPH07207520A (en) * 1994-01-14 1995-08-08 Kiyoichi Matsumoto Production of silk fibroin fiber
JP2003515009A (en) * 1999-11-27 2003-04-22 スピノックス リミテッド Material molding apparatus and method
JP2004068161A (en) * 2001-03-14 2004-03-04 Tokyo Univ Of Agriculture & Technology Method for producing fiber, film and nonwoven fabric of silk and silky material and fiber, film or nonwoven fabric produced by the method
JP2004532362A (en) * 2001-04-02 2004-10-21 ザイロス ピーエルシー Silk fiber
WO2008004356A1 (en) * 2006-07-04 2008-01-10 National University Corporation Tokyo University Of Agriculture And Technology Spinning solution composition, process for producing regenerated silk fiber using the composition, and regenerated silk fiber produced by the process
JP2009221401A (en) * 2008-03-18 2009-10-01 Tokyo Univ Of Agriculture & Technology Reclaimed silk material and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076374A1 (en) 2015-11-06 2017-05-11 Vysoké Učení Technické V Brně Polymer-made fibre preparation method

Also Published As

Publication number Publication date
JP5299358B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
CN101837248B (en) Production method of cellosilk enhanced compound hollow fiber membrane
JPS5860010A (en) Hollow fiber and dialytic membrane consisting of said hollow fiber
CN107059150B (en) A kind of preparation method of high intensity regenerated fibroin fiber
CN206500037U (en) A kind of preparation facilities of high pollution-resistant polyvinylidene fluoride hollow fiber ultrafiltration membrane
CN102151489A (en) Multi-core hollow fiber porous membrane and preparation method thereof
TWI472370B (en) Method for producing hollow fiber membrane
WO2012108390A1 (en) Cellulose fiber manufacturing method
CN103949166B (en) Inner pressed fiber reinforcement filter membrane and preparation method thereof
JP6405177B2 (en) Polyamide hollow fiber membrane
CN107456880A (en) A kind of preparation method of hollow fiber nanofiltration membrane
CN105873668B (en) Composite hollow fiber membrane and its manufacture method
JP5299358B2 (en) Method for producing fiber by wet spinning
Wang et al. Polypropylene hollow fiber membrane prepared with green binary diluents via TIPS: Effects of spinning process parameters and VMD desalination performance
CN103774253B (en) A kind of wet spinning shaped device
CN105435654B (en) The preparation method of single skin hollow-fibre membrane
CN105597580A (en) Solidification liquid preparation apparatus, solidification liquid preparation method, and applications of solidification liquid preparation apparatus
JPH0359105A (en) Spinning cap and production of hollow fiber
JP6378995B2 (en) Polyamide hollow fiber membrane
JP6591782B2 (en) Polyarylate hollow fiber membrane, production method thereof, and hollow fiber membrane module
KR101472094B1 (en) Manufacturing method of cellulose fiber controlled degree of crystllity according to solidification rate and cellulose fiber produced by using the same
Tang et al. Effect of solution extrusion rate on morphology and performance of polyvinylidene fluoride hollow fiber membranes using polyvinyl pyrrolidone as an additive
JP2714849B2 (en) Manufacturing method of hollow fiber
JP3473202B2 (en) Manufacturing method of hollow fiber membrane
Arbab et al. The synergistic effect of dope concentration and jetdrawing on structure development of wet-spun poly (acrylonitrile)
JP2818352B2 (en) Manufacturing method of hollow fiber membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees