JP2011253629A - Positive electrode active material, positive electrode and nonaqueous electrolyte secondary battery - Google Patents

Positive electrode active material, positive electrode and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2011253629A
JP2011253629A JP2010124760A JP2010124760A JP2011253629A JP 2011253629 A JP2011253629 A JP 2011253629A JP 2010124760 A JP2010124760 A JP 2010124760A JP 2010124760 A JP2010124760 A JP 2010124760A JP 2011253629 A JP2011253629 A JP 2011253629A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010124760A
Other languages
Japanese (ja)
Other versions
JP5463208B2 (en
Inventor
Motoaki Nishijima
主明 西島
Koji Ohira
耕司 大平
Toshitsugu Sueki
俊次 末木
Shogo Ezaki
正悟 江▲崎▼
Isao Tanaka
功 田中
Yukinori Koyama
幸典 小山
Katsuhisa Tanaka
勝久 田中
Koji Fujita
晃司 藤田
Shunsuke Murai
俊介 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010124760A priority Critical patent/JP5463208B2/en
Publication of JP2011253629A publication Critical patent/JP2011253629A/en
Application granted granted Critical
Publication of JP5463208B2 publication Critical patent/JP5463208B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material required for a nonaqueous electrolyte secondary battery exhibiting excellent cycle characteristics.SOLUTION: The positive electrode active material has a composition represented by LiFeMPSiO(where, M is at least one kind of metal element selected from Zr, Sn, Y, and Al, 0.05≤x<1, 0.05≤y<1, and 0≤a≤0.05(a is an occupation ratio of iron obtained in the lithium site by Rietveld analysis from a powder X-ray diffraction pattern using a CuKα-ray as a radiation source)).

Description

本発明は、正極活物質、正極及び非水電解質二次電池に関する。更に詳しくは、本発明は、サイクル特性に優れた非水電解質二次電池を与える正極活物質、それを用いた正極及び非水電解質二次電池に関する。   The present invention relates to a positive electrode active material, a positive electrode, and a nonaqueous electrolyte secondary battery. More specifically, the present invention relates to a positive electrode active material that provides a nonaqueous electrolyte secondary battery having excellent cycle characteristics, a positive electrode using the same, and a nonaqueous electrolyte secondary battery.

非水電解質二次電池として、リチウム二次電池が実用化されており、広く普及している。更に近年、リチウム二次電池は、ポータブル電子機器用の小型のものだけでなく、車載用や電力貯蔵用等の大容量のデバイスとしても注目されている。そのため、安全性やコスト、寿命等の要求がより高くなっている。
リチウム二次電池は、その主たる構成要素として正極、負極、電解液、セパレータ、及び外装材を有する。また、上記正極は、正極活物質、導電材、集電体及びバインダー(結着剤)により構成される。
一般に、正極活物質としては、LiCoO2に代表される層状遷移金属酸化物が用いられている。しかしながら、層状遷移金属酸化物は、満充電状態において、150℃前後の比較的低温で酸素脱離を起こし易く、当該酸素脱離により電池の熱暴走反応が起こり得る。従って、このような正極活物質を有する電池をポータブル電子機器に用いる場合、電池の発熱、発火等の事故が発生する恐れがある。
As a non-aqueous electrolyte secondary battery, a lithium secondary battery has been put into practical use and is widely used. Further, in recent years, lithium secondary batteries are attracting attention not only as small-sized batteries for portable electronic devices but also as large-capacity devices for on-vehicle use and power storage. Therefore, demands for safety, cost, life, etc. are higher.
The lithium secondary battery has a positive electrode, a negative electrode, an electrolytic solution, a separator, and an exterior material as main components. The positive electrode includes a positive electrode active material, a conductive material, a current collector, and a binder (binder).
In general, a layered transition metal oxide typified by LiCoO 2 is used as the positive electrode active material. However, the layered transition metal oxide easily causes oxygen desorption at a relatively low temperature of about 150 ° C. in a fully charged state, and the thermal desorption reaction of the battery can occur due to the oxygen desorption. Therefore, when a battery having such a positive electrode active material is used for a portable electronic device, there is a risk that an accident such as heat generation or ignition of the battery may occur.

このため、構造が安定し異常時に酸素を放出せず、LiCoO2より安価なオリビン型構造を有するリン酸鉄リチウム(LiFePO4)が期待されている。
LiFePO4は、Li挿入時と脱離時の間の体積変化率が約7%と大きく、充放電サイクルを繰り返すことにより、容量劣化を生じることが知られている。容量変化を生じる理由は、次の通りである。即ち、充放電の繰返しによる体積変化によりLiFePO4からなる粒子状の正極活物質の破壊や導電パスの断絶等が生じる。破壊や断絶等により、正極内の内部抵抗の上昇や、不活性な部分が発生するため、容量劣化(低下)する。
体積変化率=(A−B)×100/A
Aはリチウム脱離前の結晶格子体積
Bはリチウム脱離後の結晶格子体積
また、高温においては非水電解質と正極界面との間で生成する反応物により、容量が劣化することも知られている。
For this reason, lithium iron phosphate (LiFePO 4 ) having an olivine type structure that is stable and does not release oxygen when abnormal and is cheaper than LiCoO 2 is expected.
LiFePO 4 is known to have a large volume change rate of about 7% between insertion and desorption of Li, and it is known that capacity deterioration occurs due to repeated charge / discharge cycles. The reason for causing the capacitance change is as follows. That is, the volume change due to repeated charge / discharge causes destruction of the particulate positive electrode active material made of LiFePO 4 , disconnection of the conductive path, and the like. Due to destruction, disconnection, etc., an increase in internal resistance in the positive electrode or an inactive portion occurs, resulting in capacity deterioration (decrease).
Volume change rate = (A−B) × 100 / A
A is the crystal lattice volume before lithium desorption, B is the crystal lattice volume after lithium desorption, and it is also known that the capacity deteriorates due to the reaction product formed between the nonaqueous electrolyte and the positive electrode interface at high temperatures. Yes.

上記容量劣化の解決法が種々提案されている。
例えば、特開2005−340056号公報(引用文献1)では、正極中に充放電に寄与しないAl23を入れて、容量劣化を抑制する試みがなされている。
また、特開2008−166207号公報(引用文献2)では、正極中に充放電に寄与しない無機物を入れて、正極活物質の分散性を上げることで、容量劣化を抑制する試みもなされている。
Various solutions for the capacity degradation have been proposed.
For example, in JP-A-2005-340056 (Cited document 1), an attempt is made to suppress capacity deterioration by putting Al 2 O 3 that does not contribute to charging / discharging in the positive electrode.
Japanese Patent Laid-Open No. 2008-166207 (Cited Document 2) also attempts to suppress capacity degradation by putting an inorganic substance that does not contribute to charge / discharge into the positive electrode to increase the dispersibility of the positive electrode active material. .

特開2005−340056号公報JP 2005-340056 A 特開2008−166207号公報JP 2008-166207 A

しかしながら、上記公報に記載されたいずれの正極活物質でも、容量劣化を十分抑制できていなかった。   However, none of the positive electrode active materials described in the above publication has been able to sufficiently suppress capacity deterioration.

本発明の発明者等は、検討の結果、
(i)LiFePO4のPサイトの一部をSiで置換するとともに、Feサイトの一部を置換すること
(ii)リチウムサイト中の鉄の占有比を所定値以下にすること
でリチウム含有金属酸化物の体積変化率を抑制でき、その結果、充放電による容量劣化を抑制できること、及び初回容量低下を防止できることを見出し、本発明に至った。
The inventors of the present invention have studied,
(I) Substituting part of the P site of LiFePO 4 with Si and substituting part of the Fe site (ii) Lithium-containing metal oxidation by reducing the occupation ratio of iron in the lithium site to a predetermined value or less The present inventors have found that the volume change rate of an object can be suppressed, and as a result, capacity deterioration due to charging / discharging can be suppressed, and that the initial capacity reduction can be prevented.

かくして本発明によれば、下記一般式(1)
LiaFe1-x+ax1-ySiy4 …(1)
(但し、式中、MはZr、Sn、Y、及びAlから選択される少なくとも1種の金属元素であり、xは0.05≦x<1であり、yは0.05≦y<1であり、aは0≦a≦0.05である(但し、aはCuKα線を線源に用いた粉末X線回折パターンからリートベルト解析を用いて求められるリチウムサイト中の鉄の占有比))
で表される組成を有することを特徴とする正極活物質が提供される。
また、本発明によれば、上記正極活物質と、導電材と、バインダーとを含むことを特徴とする正極が提供される。
更に、本発明によれば、上記正極活物質を含む正極と、負極と、電解質と、セパレータとを有することを特徴とする非水電解質二次電池が提供される。
Thus, according to the present invention, the following general formula (1)
Li a Fe 1-x + a M x P 1-y Si y O 4 (1)
(Wherein, M is at least one metal element selected from Zr, Sn, Y, and Al, x is 0.05 ≦ x <1, and y is 0.05 ≦ y <1. Where a is 0 ≦ a ≦ 0.05 (where a is the occupation ratio of iron in the lithium site determined by Rietveld analysis from a powder X-ray diffraction pattern using CuKα rays as a radiation source) )
The positive electrode active material characterized by having the composition represented by these is provided.
Moreover, according to this invention, the positive electrode characterized by including the said positive electrode active material, a electrically conductive material, and a binder is provided.
Furthermore, according to the present invention, there is provided a nonaqueous electrolyte secondary battery comprising a positive electrode including the positive electrode active material, a negative electrode, an electrolyte, and a separator.

本発明では、リチウムサイトを鉄が占有することによる初回容量の低下を抑制できる。更に、容量変化と初回容量低下を抑制うる正極及び非水電解質二次電池を提供できる。
正極活物質が、5%以下の体積変化率を有する場合、充放電サイクルの繰返しによる容量劣化、及び初回容量低下をより抑制できる。
Mが、+4価の価数を有する場合、充放電サイクルの繰返しによる容量劣化、及び初回容量低下をより抑制できる。
正極活物質は、MがZrである組成を有する場合、充放電サイクルの繰返しによる容量劣化、及び初回容量低下をより抑制できる。
In the present invention, a decrease in the initial capacity due to iron occupying the lithium site can be suppressed. Furthermore, it is possible to provide a positive electrode and a non-aqueous electrolyte secondary battery that can suppress capacity change and initial capacity reduction.
When the positive electrode active material has a volume change rate of 5% or less, capacity deterioration due to repeated charge / discharge cycles and initial capacity reduction can be further suppressed.
When M has a valence of +4, capacity deterioration due to repeated charge / discharge cycles and initial capacity reduction can be further suppressed.
When the positive electrode active material has a composition in which M is Zr, it is possible to further suppress capacity deterioration due to repeated charge / discharge cycles and initial capacity reduction.

正極活物質が、0.05≦x≦0.25の範囲のxで規定される組成を有する場合、充放電サイクルの繰返しによる容量劣化、及び初回容量低下をより抑制できる。
正極活物質が、0.10≦y≦0.50の範囲のyで規定される組成を有する場合、充放電サイクルの繰返しによる容量劣化、及び初回容量低下をより抑制できる。
正極活物質が、2x=yの組成を有する場合、充放電サイクルの繰返しによる容量劣化、及び初回容量低下をより抑制できる。
When the positive electrode active material has a composition defined by x in the range of 0.05 ≦ x ≦ 0.25, capacity deterioration due to repeated charge / discharge cycles and initial capacity reduction can be further suppressed.
When the positive electrode active material has a composition defined by y in the range of 0.10 ≦ y ≦ 0.50, capacity deterioration due to repeated charge / discharge cycles and initial capacity reduction can be further suppressed.
When the positive electrode active material has a composition of 2x = y, capacity deterioration due to repeated charge / discharge cycles and initial capacity reduction can be further suppressed.

正極活物質が、CuKα線を用いたX線回折パターンにおいて、0.7以上のピーク強度(A)と(B)との比(A/B)(但し、ピーク強度(A)は25.4〜25.6度付近の(111)面と(201)面由来のピーク強度を、ピーク強度(B)は20.5〜21.0度付近の(101)面由来のピーク強度を意味する)を有する場合、充放電サイクルの繰返しによる容量劣化、及び初回容量低下をより抑制できる。
正極活物質が、炭素で被覆された表面を有する場合、充放電サイクルの繰返しによる容量劣化、及び初回容量低下をより抑制できる。
In the X-ray diffraction pattern in which the positive electrode active material uses CuKα rays, the ratio (A / B) of peak intensity (A) to (B) of 0.7 or more (however, the peak intensity (A) is 25.4). The peak intensity derived from the (111) plane and the (201) plane around ˜25.6 degrees, and the peak intensity (B) means the peak intensity derived from the (101) plane around 20.5 to 21.0 degrees) When it has, it can suppress the capacity degradation by the repetition of a charging / discharging cycle, and a first time capacity | capacitance fall more.
When the positive electrode active material has a surface coated with carbon, capacity deterioration due to repeated charge / discharge cycles and initial capacity reduction can be further suppressed.

実施例1の正極活物質の粉末X線回折パターンである。2 is a powder X-ray diffraction pattern of the positive electrode active material of Example 1. FIG. 実施例2の正極活物質の粉末X線回折パターンである。2 is a powder X-ray diffraction pattern of the positive electrode active material of Example 2. FIG. 比較例1の正極活物質の粉末X線回折パターンである。2 is a powder X-ray diffraction pattern of a positive electrode active material of Comparative Example 1. 二次電池の概略断面図である。It is a schematic sectional drawing of a secondary battery.

「The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values Journal of Power Sources,Volume 194,Issue 1,20 October 2009,Pages 536−540 Jiali Liu,Rongrong Jiang,Xiaoya Wang,Tao Huang,Aishui Yu」によれば、LiFePO4において、リチウムサイトを鉄がわずかに占有し得ることが報告されている。本発明の発明者等は、検討の結果、LiFePO4のPサイトの一部をSiで置換するとともに、Feサイトの一部をMで置換することにより、リチウムサイトを占有する鉄の割合が10%以上に増加してしまうことを見出した。増加するとリチウムの拡散経路が断絶されてリチウムが脱離できなくなり、その結果、初回容量が低下することを見出した。従って、本発明によれば、リチウムサイト中の鉄の占有比を所定値以下にすることで、充放電サイクルの繰返しによる容量劣化、及び初回容量低下をより抑制できる。 "The defect chemistry of LiFePO 4 prepared by hydrothermal method at different pH values Journal of Power Sources, Volume 194, Issue 1,20 October 2009, Pages 536-540 Jiali Liu, Rongrong Jiang, Xiaoya Wang, Tao Huang, Aishui Yu " to According to the report, it has been reported that in LiFePO 4 , iron can occupy the lithium site slightly. As a result of investigation, the inventors of the present invention, as a result of substituting part of the P site of LiFePO 4 with Si and substituting part of the Fe site with M, the ratio of iron occupying the lithium site is 10 It has been found that it increases to more than%. It has been found that the increase causes the lithium diffusion path to be interrupted and lithium cannot be removed, resulting in a decrease in initial capacity. Therefore, according to the present invention, by setting the occupation ratio of iron in the lithium site to a predetermined value or less, it is possible to further suppress the capacity deterioration and the initial capacity reduction due to repeated charge / discharge cycles.

以下、本発明について詳しく説明する。
(I)正極活物質
正極活物質は、下記一般式(1)
Li1-aFe1-x+ax1-ySiy4 …(1)
(但し、式中、MはZr、Sn、Y、及びAlから選択される少なくとも1種の金属元素であり、xは0.05≦x<1であり、yは0.05≦y<1であり、aは0≦a≦0.05である(但し、aはCuKα線を線源に用いた粉末X線回折パターンからリートベルト解析を用いて求められるリチウムサイト中の鉄の占有比))
で表される組成を有するリチウム含有金属酸化物である。一般式(I)は、(Li1-aFea)(Fe1-xx)(P1-ySiy)O4と書き換えることができる。
The present invention will be described in detail below.
(I) Cathode Active Material The cathode active material is represented by the following general formula (1)
Li 1-a Fe 1-x + a M x P 1-y Si y O 4 (1)
(Wherein, M is at least one metal element selected from Zr, Sn, Y, and Al, x is 0.05 ≦ x <1, and y is 0.05 ≦ y <1. Where a is 0 ≦ a ≦ 0.05 (where a is the occupation ratio of iron in the lithium site determined by Rietveld analysis from a powder X-ray diffraction pattern using CuKα rays as a radiation source) )
It is a lithium containing metal oxide which has a composition represented by these. The general formula (I) can be rewritten as (Li 1−a Fe a ) (Fe 1−x M x ) (P 1−y Si y ) O 4 .

a値は0〜0.05の範囲の値をとり得る。a値はできるだけ小さい方が、正極活物質中のリチウム量が多くなり、特に初回容量低下を抑制(初回の放電容量を大きく)できる。a値を0.05付近に調製するには、焼成温度を従来のLiFePO4に最適と報告されている700℃よりも低くすること、仕込み組成を鉄が過剰になるように、Li:Feの比を0.95:1.05とすること等が挙げられ、0付近に調製するには、焼成温度を650〜700℃とすること、Li:Feの比を1:1とすること等が挙げられる。
一般式(1)の組成を有するほとんどのリチウム含有金属酸化物はオリビン型構造を有するが、オリビン型構造を有さない構成であってもよい。
The a value can take a value in the range of 0 to 0.05. When the a value is as small as possible, the amount of lithium in the positive electrode active material increases, and in particular, the decrease in the initial capacity can be suppressed (the initial discharge capacity can be increased). In order to adjust the a value to around 0.05, the firing temperature should be lower than 700 ° C., which is reported to be optimal for conventional LiFePO 4 , and the composition of Li: Fe should be such that the feed composition becomes excessive. The ratio is set to 0.95: 1.05, etc. In order to prepare it near 0, the firing temperature is set to 650 to 700 ° C., the ratio of Li: Fe is set to 1: 1, and the like. Can be mentioned.
Most lithium-containing metal oxides having the composition of the general formula (1) have an olivine type structure, but may have a configuration not having an olivine type structure.

一般式(1)中、Mは、Sn、Zr、Y、及びAlから選択される少なくとも1種の金属元素である。また、Mの価数は、特に限定されない。具体的には、Y及びAlは3価であり、Snは2価及び4価を、Zrは2〜4価を取り得る。また、Feは2〜4価及び6価を取り得る。Sn、Zr及びFeについては、単一の価数の金属元素を使用することもでき、複数の価数の金属元素の混合物も使用できる。これら価数の内、Sn及びZrについては、リチウム含有金属酸化物の製造時及び充放電時に価数の変化が少ないという観点から、4価のものを使用することが好ましい。Y及びAlは3価のもののみであるので、これらを使用すれば、リチウム含有金属酸化物の製造時及び充放電時に価数の変化を少なくすることができる。Feについては、Liの挿入及び脱離性を向上させる観点から、2価のものを使用することが好ましい。なお、混合物を使用する場合、便宜上一般式(1)中のxを規定するための価数は、平均値を意味する。
体積変化率の抑制効果が大きいという観点から、Mは3価又は4価の金属元素であることが好ましく、4価のZrであることがより好ましい。
In general formula (1), M is at least one metal element selected from Sn, Zr, Y, and Al. Further, the valence of M is not particularly limited. Specifically, Y and Al can be trivalent, Sn can be divalent and tetravalent, and Zr can be 2 to 4 valent. Moreover, Fe can take 2-4 valence and 6 valence. For Sn, Zr, and Fe, a single valence metal element can be used, and a mixture of a plurality of valence metal elements can also be used. Among these valences, it is preferable to use tetravalent ones for Sn and Zr from the viewpoint of little change in valence during the production of the lithium-containing metal oxide and during charge and discharge. Since Y and Al are only trivalent, if these are used, the change in valence can be reduced during the production of the lithium-containing metal oxide and during charge and discharge. About Fe, it is preferable to use a bivalent thing from a viewpoint of improving the insertion and detachment | desorption property of Li. In addition, when using a mixture, the valence for prescribing x in General formula (1) means an average value for convenience.
M is preferably a trivalent or tetravalent metal element, and more preferably tetravalent Zr, from the viewpoint that the effect of suppressing the volume change rate is large.

xは0.05≦x<1の範囲を、yは0.05≦y<1の範囲を取り得る。リチウム含有金属酸化物の体積変化率をより小さくさせる観点から、xは0.05≦x≦0.25の範囲及び/又はyは0.10≦y≦0.50の範囲であることが好ましく、0.075≦x≦0.25の範囲及び/又は0.15≦y≦0.5の範囲であることがより好ましい。
より具体的には、xの値が大きい(FeサイトのMでの置換量が多い)及び/又はyの値が大きい(PサイトのSiの置換量が多い)場合、体積変化率が小さくなり、放電容量が小さくなる傾向がある。従って、選択したMの種類と、所望する体積変化率及び放電容量と、からx及びyの値を決めることができる。
x may be in the range of 0.05 ≦ x <1, and y may be in the range of 0.05 ≦ y <1. From the viewpoint of reducing the volume change rate of the lithium-containing metal oxide, x is preferably in the range of 0.05 ≦ x ≦ 0.25 and / or y is preferably in the range of 0.10 ≦ y ≦ 0.50. , 0.075 ≦ x ≦ 0.25 and / or 0.15 ≦ y ≦ 0.5.
More specifically, when the value of x is large (the amount of substitution at the Fe site with M is large) and / or the value of y is large (the amount of substitution of Si at the P site is large), the volume change rate becomes small. The discharge capacity tends to be small. Therefore, the values of x and y can be determined from the selected type of M and the desired volume change rate and discharge capacity.

ここで、リチウム含有金属酸化物は、5%以下の体積変化率を有することが好ましい。その理由は、5%を境に容量維持率(初回容量に対する充放電サイクル後の容量の割合)の体積変化率に対する傾きが変化するリチウム含有金属酸化物が多いためである。つまり、体積変化率が約5%より高くなると、体積変化率の増加に対する容量維持率の低下の度合いが大きくなることがある。よって、体積変化率が5%以下であれば、容量維持率の低下をより抑制できる。
体積変化率を5%以下にする観点から、xは0.05≦x≦0.25の範囲及び/又はyは0.1≦y≦0.5の範囲であることが特に好ましい。この範囲内であれば、電池とした場合の放電容量を大きく減少させることなく、リチウム挿入脱離時に生じる体積変化を抑制できる。
Here, the lithium-containing metal oxide preferably has a volume change rate of 5% or less. The reason is that there are many lithium-containing metal oxides in which the slope with respect to the volume change rate of the capacity maintenance ratio (the ratio of the capacity after the charge / discharge cycle to the initial capacity) changes at 5% as a boundary. That is, when the volume change rate is higher than about 5%, the degree of decrease in the capacity maintenance rate with respect to the increase in the volume change rate may increase. Therefore, if the volume change rate is 5% or less, a decrease in the capacity maintenance rate can be further suppressed.
From the viewpoint of setting the volume change rate to 5% or less, it is particularly preferable that x is in the range of 0.05 ≦ x ≦ 0.25 and / or y is in the range of 0.1 ≦ y ≦ 0.5. Within this range, it is possible to suppress volume changes that occur during lithium insertion / extraction without greatly reducing the discharge capacity of the battery.

更に、xの値が大きいほど及び/又はyの値が大きいほど、体積変化率を抑制できるので、容量維持率を向上できる。体積変化率が4%以下であれば、容量維持率を90%以上とすることができる。
反対にxの値が大きいほど及び/又はyの値が大きいほど、初回容量が減少することがある。例えば、FeをZrで置換する場合、100mAh/g以上の初回容量を得る観点から、xは0.35以下及び/又はyは0.7以下であることが好ましく、110mAh/g以上の初回容量を得る観点から、xが0.3以下及び/又はyは0.6以下であることがより好ましく、120mAh/g以上の初回容量を得る観点から、xが0.25以下及び/又はyは0.5以下であることが更に好ましい。
Furthermore, the larger the value of x and / or the larger the value of y, the more the volume change rate can be suppressed, so that the capacity maintenance rate can be improved. If the volume change rate is 4% or less, the capacity maintenance rate can be 90% or more.
Conversely, the larger the value of x and / or the larger the value of y, the lower the initial capacity. For example, when replacing Fe with Zr, from the viewpoint of obtaining an initial capacity of 100 mAh / g or more, x is preferably 0.35 or less and / or y is 0.7 or less, and an initial capacity of 110 mAh / g or more. From the viewpoint of obtaining x, it is more preferable that x is 0.3 or less and / or y is 0.6 or less, and from the viewpoint of obtaining an initial capacity of 120 mAh / g or more, x is 0.25 or less and / or y is More preferably, it is 0.5 or less.

FeをSnで置換する場合、100mAh/g以上の初回容量を得る観点から、xは0.33以下及び/又はyは0.66以下であることが好ましく、110mAh/g以上の初回容量を得る観点から、xが0.29以下及び/又はyは0.58以下であることがより好ましく、120mAh/g以上の初回容量を得る観点から、xが0.23以下及び/又はyは0.46以下であることが更に好ましい。
FeをYで置換する場合、100mAh/g以上の初回容量を得る観点から、xは0.35以下及び/又はyは0.35以下であることが好ましく、110mAh/g以上の初回容量を得る観点から、xが0.35以下及び/又はyは0.35以下であることがより好ましく、120mAh/g以上の初回容量を得る観点から、xが0.25以下及び/又はyは0.25以下であることが更に好ましい。
When replacing Fe with Sn, from the viewpoint of obtaining an initial capacity of 100 mAh / g or more, x is preferably 0.33 or less and / or y is 0.66 or less, and an initial capacity of 110 mAh / g or more is obtained. From the viewpoint, x is preferably 0.29 or less and / or y is 0.58 or less. From the viewpoint of obtaining an initial capacity of 120 mAh / g or more, x is 0.23 or less and / or y is 0.00. More preferably, it is 46 or less.
When replacing Fe with Y, from the viewpoint of obtaining an initial capacity of 100 mAh / g or more, x is preferably 0.35 or less and / or y is preferably 0.35 or less, and an initial capacity of 110 mAh / g or more is obtained. From the viewpoint, x is preferably 0.35 or less and / or y is preferably 0.35 or less. From the viewpoint of obtaining an initial capacity of 120 mAh / g or more, x is 0.25 or less and / or y is 0.00. More preferably, it is 25 or less.

FeをAlで置換する場合、100mAh/g以上の初回容量を得る観点から、xは0.45以下及び/又はyは0.45以下であることが好ましく、110mAh/g以上の初回容量を得る観点から、xが0.4以下及び/又はyは0.4以下であることがより好ましく、120mAh/g以上の初回容量を得る観点から、xが0.35以下及び/又はyは0.35以下であることが更に好ましい。
Feを3価の金属原子で置換し、Feが全て2価である場合は、電気的中性を保つためにSiはFeの置換量と同量とできる。この場合、体積変化率を4%以下とする観点から、置換量としてはそれぞれ、Alでは0.35以上が好ましく、Yでは0.2以上が好ましい。
When replacing Fe with Al, from the viewpoint of obtaining an initial capacity of 100 mAh / g or more, x is preferably 0.45 or less and / or y is 0.45 or less, and an initial capacity of 110 mAh / g or more is obtained. From the viewpoint, x is preferably 0.4 or less and / or y is 0.4 or less, and from the viewpoint of obtaining an initial capacity of 120 mAh / g or more, x is 0.35 or less and / or y is 0.00. More preferably, it is 35 or less.
In the case where Fe is substituted with a trivalent metal atom and all of the Fe is divalent, Si can have the same amount as the substitution amount of Fe in order to maintain electrical neutrality. In this case, from the viewpoint of setting the volume change rate to 4% or less, the substitution amount is preferably 0.35 or more for Al and 0.2 or more for Y.

Feを+4価の金属原子で置換し、Feが全て+2価である場合は、電気的中性を保つためにSiはFeの置換量の2倍量とできる。この場合、体積変化率を4%以下とする観点から、置換量としては、Zrでは0.15以上が好ましく、Snでは0.25以上が好ましい。また、体積変化率を3%以下とする観点から、置換量としては、Zrでは0.2以上が好ましく、Snでは0.3以上が好ましい。更に、体積変化率を2%以下とする観点から、置換量としては、Zrでは0.25以上が好ましい。   In the case where Fe is substituted with a +4 valent metal atom and all of the Fe is +2 valent, Si can be double the amount of substitution of Fe in order to maintain electrical neutrality. In this case, from the viewpoint of setting the volume change rate to 4% or less, the substitution amount is preferably 0.15 or more for Zr and 0.25 or more for Sn. Further, from the viewpoint of setting the volume change rate to 3% or less, the substitution amount is preferably 0.2 or more for Zr and 0.3 or more for Sn. Furthermore, from the viewpoint of setting the volume change rate to 2% or less, the substitution amount is preferably 0.25 or more for Zr.

より具体的にリチウム含有金属酸化物としては、
Li1-aFe1-x+aZrx1-ySiy4(aは0.05以下、0.05≦x≦0.35、0.1≦y≦0.7)
Li1-aFe1-x+aSnx1-ySiy4(aは0.05以下、0.05≦x≦0.33、0.1≦y≦0.66)
Li1-aFe1-x+ax1-ySiy4(aは0.05以下、0.05≦x≦0.35、0.1≦y≦0.7)
Li1-aFe1-x+aAlx1-ySiy4(aは0.05以下、0.05≦x≦0.45、0.05≦y≦0.9)
More specifically, as the lithium-containing metal oxide,
Li 1-a Fe 1-x + a Zr x P 1-y Si y O 4 (a is 0.05 or less, 0.05 ≦ x ≦ 0.35,0.1 ≦ y ≦ 0.7)
Li 1-a Fe 1-x + a Sn x P 1-y Si y O 4 (a is 0.05 or less, 0.05 ≦ x ≦ 0.33, 0.1 ≦ y ≦ 0.66)
Li 1-a Fe 1-x + a Y x P 1-y Si y O 4 (a is 0.05 or less, 0.05 ≦ x ≦ 0.35, 0.1 ≦ y ≦ 0.7)
Li 1-a Fe 1-x + a Al x P 1-y Si y O 4 (a is 0.05 or less, 0.05 ≦ x ≦ 0.45, 0.05 ≦ y ≦ 0.9)

Li1-aFe1-x+a(Zr,Sn)x1-ySiy4
(aは0.05以下、0.05≦x≦0.33、0.1≦y≦0.7、ZrとSnの原子比0.99:0.01〜0.01:0.99)
Li1-aFe1-x+a(Zr,Y)x1-ySiy4
(aは0.05以下、0.05≦x≦0.35、0.1≦y≦0.7、ZrとYの原子比0.99:0.01〜0.01:0.99)
Li1-aFe1-x+a(Zr,Al)x1-ySiy4
(aは0.05以下、0.05≦x≦0.45、0.05≦y≦0.7、ZrとAlの原子比0.99:0.01〜0.01:0.99)
Li1-aFe1-x+a(Sn,Y)x1-ySiy4
(aは0.05以下、0.05≦x≦0.35、0.05≦y≦0.66、SnとYの原子比0.99:0.01〜0.01:0.99)
Li1-aFe1-x+a(Sn,Al)x1-ySiy4
(aは0.05以下、0.05≦x≦0.45、0.05≦y≦0.66、SnとAlの原子比0.99:0.01〜0.01:0.99)
Li1-aFe1-x+a(Y,Al)x1-ySiy4
(aは0.05以下、0.05≦x≦0.45、0.05≦y≦0.45、YとAlの原子比0.99:0.01〜0.01:0.99)
が挙げられる。
Li 1-a Fe 1-x + a (Zr, Sn) x P 1-y Si y O 4
(A is 0.05 or less, 0.05 ≦ x ≦ 0.33, 0.1 ≦ y ≦ 0.7, atomic ratio of Zr and Sn 0.99: 0.01 to 0.01: 0.99)
Li 1-a Fe 1-x + a (Zr, Y) x P 1-y Si y O 4
(A is 0.05 or less, 0.05 ≦ x ≦ 0.35, 0.1 ≦ y ≦ 0.7, atomic ratio of Zr and Y 0.99: 0.01 to 0.01: 0.99)
Li 1-a Fe 1-x + a (Zr, Al) x P 1-y Si y O 4
(A is 0.05 or less, 0.05 ≦ x ≦ 0.45, 0.05 ≦ y ≦ 0.7, atomic ratio of Zr and Al 0.99: 0.01 to 0.01: 0.99)
Li 1-a Fe 1-x + a (Sn, Y) x P 1-y Si y O 4
(A is 0.05 or less, 0.05 ≦ x ≦ 0.35, 0.05 ≦ y ≦ 0.66, atomic ratio of Sn and Y 0.99: 0.01 to 0.01: 0.99)
Li 1-a Fe 1-x + a (Sn, Al) x P 1-y Si y O 4
(A is 0.05 or less, 0.05 ≦ x ≦ 0.45, 0.05 ≦ y ≦ 0.66, atomic ratio of Sn and Al 0.99: 0.01 to 0.01: 0.99)
Li 1-a Fe 1-x + a (Y, Al) x P 1-y Si y O 4
(A is 0.05 or less, 0.05 ≦ x ≦ 0.45, 0.05 ≦ y ≦ 0.45, atomic ratio of Y and Al 0.99: 0.01 to 0.01: 0.99)
Is mentioned.

更に、Mが+4価の場合には、xとyが、2x=yの関係を有することが好ましい。また、Mが+3価の場合には、xとyが、x=yの関係を有することが好ましい。この関係を有するリチウム含有金属酸化物は、正極活物質に酸素欠損やPやLi等の元素欠陥が生じにくくなり、結晶構造が強固になるというという効果を与える。   Further, when M is +4, x and y preferably have a relationship of 2x = y. When M is +3 valent, x and y preferably have a relationship of x = y. The lithium-containing metal oxide having this relationship gives an effect that oxygen deficiency and elemental defects such as P and Li are less likely to occur in the positive electrode active material, and the crystal structure is strengthened.

(b)正極活物質の製造方法
リチウム含有金属酸化物は、原料として、各元素の炭酸塩、水酸化物、塩化物、硫酸塩、酢酸塩、酸化物、シュウ酸塩、硝酸塩等の組合せを用いることにより製造できる。製造方法としては、焼成法、固相法、ゾルゲル法、溶融急冷法、メカノケミカル法、共沈法、水熱法、噴霧熱分解法等の方法を用いることができる。これら方法の内、不活性雰囲気(例えば、窒素雰囲気)下での焼成法(焼成条件は、400〜800℃で1〜48時間)が簡便である。
(B) Method for Producing Positive Electrode Active Material Lithium-containing metal oxides are prepared by combining combinations of carbonates, hydroxides, chlorides, sulfates, acetates, oxides, oxalates, nitrates, etc. of each element as raw materials. It can be manufactured by using. As the production method, methods such as a firing method, a solid phase method, a sol-gel method, a melt quench method, a mechanochemical method, a coprecipitation method, a hydrothermal method, and a spray pyrolysis method can be used. Among these methods, a firing method under an inert atmosphere (for example, a nitrogen atmosphere) (firing conditions are 400 to 800 ° C. for 1 to 48 hours) is simple.

(c)その他
正極活物質は、導電性を向上するために、その表面が炭素で被覆されていてもよい。被覆は、正極活物質全面でもよく、一部でもよい。
被覆する炭素の割合は、正極活物質100重量部に対して、1〜10重量部の範囲であることが好ましい。1重量部未満の場合、炭素を被覆する効果が十分に得られないことがある。10重量部より多い場合、正極活物質と電解液界面でのリチウムの拡散を阻害するために、電池の容量が低下することがある。より好ましい割合は、1.5〜7重量部の範囲である。
(C) Others The surface of the positive electrode active material may be coated with carbon in order to improve conductivity. The coating may be on the entire surface of the positive electrode active material or a part thereof.
The ratio of carbon to be coated is preferably in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the positive electrode active material. When the amount is less than 1 part by weight, the effect of covering carbon may not be sufficiently obtained. When the amount is more than 10 parts by weight, the capacity of the battery may be decreased in order to inhibit the diffusion of lithium at the interface between the positive electrode active material and the electrolytic solution. A more desirable ratio is in the range of 1.5 to 7 parts by weight.

炭素の被覆方法は、特に限定されず、公知の方法を利用できる。例えば、リチウム含有金属酸化物及び/又は金属酸化物の原料に、炭素源となる化合物を混合し、得られた混合物を不活性雰囲気下で焼成することにより被覆する方法が挙げられる。炭素源となる化合物は、原料がリチウム含有金属酸化物及び/又は金属酸化物に変化することを妨げない化合物を使用する必要がある。そのような化合物としては、スクロース、フルクトース等の糖類、ポリエチレングリコールのようなグリコール類、ラウリン酸のような脂肪酸類、ピッチ、タール等が挙げられる。   The carbon coating method is not particularly limited, and a known method can be used. For example, the lithium-containing metal oxide and / or metal oxide raw material is mixed with a compound serving as a carbon source, and the obtained mixture is fired in an inert atmosphere to coat the mixture. As the compound serving as the carbon source, it is necessary to use a compound that does not prevent the raw material from changing to a lithium-containing metal oxide and / or metal oxide. Examples of such compounds include saccharides such as sucrose and fructose, glycols such as polyethylene glycol, fatty acids such as lauric acid, pitch, and tar.

(II)非水電解質二次電池
非水電解質二次電池は、正極と負極と非水電解質とセパレータとを有する。以下、各構成材料について説明する。
(a)正極
正極は、正極活物質と導電材とバインダーと集電体とを含み、例えば、活物質と導電材とバインダーとを有機溶剤と混合したスラリーを集電体に塗布する等の公知の方法によって作製できる。
(II) Nonaqueous electrolyte secondary battery The nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a nonaqueous electrolyte, and a separator. Hereinafter, each constituent material will be described.
(A) Positive Electrode The positive electrode includes a positive electrode active material, a conductive material, a binder, and a current collector. For example, a known mixture of an active material, a conductive material, and a binder mixed with an organic solvent is applied to the current collector. It can produce by the method of.

バインダー(結着材)としては、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等を用いることができる。
導電材としては、アセチレンブラック、カーボン、グラファイト、天然黒鉛、人造黒鉛、ニードルコークス等を用いることができる。
集電体としては、連続孔を持つ発泡(多孔質)金属、ハニカム状に形成された金属、焼結金属、エキスパンドメタル、不織布、板、箔、孔開きの板、箔等を用いることができる。
As binders (binders), polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluororubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, Nitrocellulose or the like can be used.
As the conductive material, acetylene black, carbon, graphite, natural graphite, artificial graphite, needle coke, or the like can be used.
As the current collector, foamed (porous) metal having continuous pores, metal formed in a honeycomb shape, sintered metal, expanded metal, non-woven fabric, plate, foil, perforated plate, foil, and the like can be used. .

有機溶剤としては、N−メチル−2−ピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等を用いることができる。
正極の厚さは、0.01〜20mm程度が好ましい。厚すぎると導電性が低下し、薄すぎると単位面積当たりの容量が低下するので好ましくない。なお、塗布並びに乾燥によって得られた正極は、活物質の充填密度を高めるためローラープレス等により圧縮してもよい。
As the organic solvent, N-methyl-2-pyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran, etc. are used. be able to.
The thickness of the positive electrode is preferably about 0.01 to 20 mm. If it is too thick, the conductivity is lowered, and if it is too thin, the capacity per unit area is lowered. In addition, you may compress the positive electrode obtained by application | coating and drying with a roller press etc. in order to raise the packing density of an active material.

(b)負極
負極は公知の方法により作製できる。具体的には、正極の作製法で説明した方法と同様にして作製できる。つまり、正極の作製法で説明した公知の結着材と公知の導電材とを負極活物質と混合した後、この混合粉末をシート状に成形し、当該成形体をステンレス、銅等の導電体網(集電体)に圧着すればよい。また、上記混合粉末を正極作製法で説明した公知の有機溶剤と混合して得られたスラリーを銅等の金属基板上に塗布することにより作製することもできる。
負極活物質としては公知の材料を用いることができる。高エネルギー密度電池を構成するためには、リチウムの挿入/脱離する電位が金属リチウムの析出/溶解電位に近いものが好ましい。その典型例は、粒子状(鱗片状、塊状、繊維状、ウィスカー状、球状、粉砕粒子状等)の天然もしくは人造黒鉛のような炭素材料である。
(B) Negative electrode A negative electrode can be produced by a known method. Specifically, it can be manufactured in the same manner as described in the method for manufacturing the positive electrode. That is, after mixing the known binder and the known conductive material described in the method for producing the positive electrode with the negative electrode active material, the mixed powder is formed into a sheet shape, and the formed body is made of a conductor such as stainless steel or copper. What is necessary is just to crimp | bond to a net | network (current collector). Moreover, it can also produce by apply | coating the slurry obtained by mixing the said mixed powder with the well-known organic solvent demonstrated by the positive electrode preparation method on metal substrates, such as copper.
A known material can be used as the negative electrode active material. In order to constitute a high energy density battery, it is preferable that the potential at which lithium is inserted / desorbed is close to the deposition / dissolution potential of metallic lithium. A typical example is a carbon material such as natural or artificial graphite in the form of particles (scale-like, lump-like, fibrous, whisker-like, spherical, pulverized particles, etc.).

人造黒鉛としては、メソカーボンマイクロビーズ、メソフェーズピッチ粉末、等方性ピッチ粉末等を黒鉛化して得られる黒鉛が挙げられる。また、非晶質炭素を表面に付着させた黒鉛粒子も使用できる。これらの中で、天然黒鉛は、安価でかつリチウムの酸化還元電位に近く、高エネルギー密度電池が構成できるためより好ましい。
また、リチウム遷移金属酸化物、リチウム遷移金属窒化物、遷移金属酸化物、酸化シリコン等も負極活物質として使用可能である。これらの中で、Li4Ti512は電位の平坦性が高く、かつ充放電による体積変化が小さいためより好ましい。
Examples of the artificial graphite include graphite obtained by graphitizing mesocarbon microbeads, mesophase pitch powder, isotropic pitch powder, and the like. Also, graphite particles having amorphous carbon attached to the surface can be used. Among these, natural graphite is more preferable because it is inexpensive, close to the redox potential of lithium, and can constitute a high energy density battery.
Further, lithium transition metal oxide, lithium transition metal nitride, transition metal oxide, silicon oxide, and the like can be used as the negative electrode active material. Among these, Li 4 Ti 5 O 12 is more preferable because of high potential flatness and small volume change due to charge and discharge.

(c)非水電解質
非水電解質としては、例えば、有機電解液、ゲル状電解質、高分子固体電解質、無機固体電解質、溶融塩等を用いることができる。非水電解質を注入した後に二次電池の容器の開口部を封止する。封止の前に通電し発生したガスを取り除いてもよい。
(C) Nonaqueous electrolyte As the nonaqueous electrolyte, for example, an organic electrolyte, a gel electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used. After injecting the nonaqueous electrolyte, the opening of the secondary battery container is sealed. Gas generated by energization before sealing may be removed.

有機電解質を構成する有機溶媒としては、プロピレンカーボネート(PC)とエチレンカーボネート(EC)、ブチレンカーボネート等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類、γ−ブチロラクトン(GBL)、γ−バレロラクトン等のラクトン類、テトラヒドロフラン、2−メチルテトラヒドロフラン等のフラン類、ジエチルエーテル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン、ジオキサン等のエーテル類、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチル等が挙げられ、これらの1種以上を混合して用いることができる。
また、PC、EC及びブチレンカーボネート等の環状カーボネート類は高沸点溶媒であるため、GBLとの混合する溶媒として好適である。
Examples of the organic solvent constituting the organic electrolyte include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC) and butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate, dipropyl carbonate, and the like. Chain carbonates, lactones such as γ-butyrolactone (GBL) and γ-valerolactone, furans such as tetrahydrofuran and 2-methyltetrahydrofuran, diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane , Ethers such as ethoxymethoxyethane, dioxane, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, methyl acetate and the like. it can.
Moreover, since cyclic carbonates such as PC, EC and butylene carbonate are high-boiling solvents, they are suitable as solvents to be mixed with GBL.

有機電解液を構成する電解質塩としては、ホウフッ化リチウム(LiBF4)、六フッ化リン酸リチウム(LiPF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、トリフルオロ酢酸リチウム(LiCF3COO)、リチウムビス(トリフルオロメタンスルホン)イミド(LiN(CF3SO22)等のリチウム塩が挙げられ、これらの1種以上を混合して用いることができる。電解液の塩濃度は、0.5〜3mol/lが好適である。 Examples of the electrolyte salt constituting the organic electrolyte include lithium borofluoride (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium trifluoroacetate (LiCF 3 COO) ), Lithium salts such as lithium bis (trifluoromethanesulfone) imide (LiN (CF 3 SO 2 ) 2 ), and one or more of these may be used in combination. The salt concentration of the electrolytic solution is preferably 0.5 to 3 mol / l.

(d)セパレータ
セパレータとしては、多孔質材料又は不織布等が挙げられる。セパレータの材質としては、上述した、電解質中に含まれる有機溶媒に対して溶解したり膨潤したりしないものが好ましい。具体的には、ポリエステル系ポリマー、ポリオレフィン系ポリマー(例えば、ポリエチレン、ポリプロピレン)、エーテル系ポリマー、ガラスのような無機材料等が挙げられる。
(D) Separator Examples of the separator include porous materials and nonwoven fabrics. As the material of the separator, the above-described one that does not dissolve or swell in the organic solvent contained in the electrolyte is preferable. Specific examples include polyester polymers, polyolefin polymers (for example, polyethylene and polypropylene), ether polymers, and inorganic materials such as glass.

(e)他の部材
電池容器のような他の部材についても従来公知の非水電解質二次電池に使用される各種材料を使用でき、特に制限はない。
(E) Other members Various materials used for conventionally known nonaqueous electrolyte secondary batteries can be used for other members such as battery containers, and there is no particular limitation.

(f)非水電解質二次電池の製造方法
非水電解質二次電池は、例えば、正極と負極と、それらの間に挟まれたセパレータとからなる積層体を備えている。積層体は、例えば短冊状の平面形状を有していてもよい。また、円筒型や扁平型の電池を作製する場合は、積層体を巻き取ってもよい。
積層体は、その1つ又は複数が電池容器の内部に挿入される。通常、正極及び負極は電池の外部導電端子に接続される。その後に、正極、負極及びセパレータを外気より遮断するために電池容器を密閉する。
(F) Manufacturing method of nonaqueous electrolyte secondary battery The nonaqueous electrolyte secondary battery includes, for example, a laminate including a positive electrode, a negative electrode, and a separator sandwiched therebetween. The laminate may have, for example, a strip-like planar shape. Moreover, when producing a cylindrical or flat battery, the laminate may be wound.
One or more of the laminates are inserted into the battery container. Usually, the positive electrode and the negative electrode are connected to the external conductive terminal of the battery. Thereafter, the battery container is sealed to block the positive electrode, the negative electrode, and the separator from the outside air.

密封の方法は、円筒電池の場合、電池容器の開口部に樹脂製のパッキンを有する蓋をはめ込み、電池容器と蓋とをかしめる方法が一般的である。また、角型電池の場合、金属性の封口板と呼ばれる蓋を開口部に取りつけ、溶接を行う方法を使用できる。これらの方法以外に、結着材で密封する方法、ガスケットを介してボルトで固定する方法も使用できる。更に、金属箔に熱可塑性樹脂を貼り付けたラミネート膜で密封する方法も使用できる。なお、密封時に電解質注入用の開口部を設けてもよい。   In the case of a cylindrical battery, the sealing method is generally a method in which a lid having a resin packing is fitted into the opening of the battery container and the battery container and the lid are caulked. In the case of a square battery, a method of attaching a lid called a metallic sealing plate to the opening and performing welding can be used. In addition to these methods, a method of sealing with a binder and a method of fixing with a bolt via a gasket can also be used. Furthermore, a method of sealing with a laminate film in which a thermoplastic resin is attached to a metal foil can also be used. An opening for electrolyte injection may be provided at the time of sealing.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例で使用した試薬等は、特に断りのない限りキシダ化学社製の特級試薬を用いた。
〔実施例1〕
まず、サンプル瓶に溶媒としてエタノールを30ml量りとった。出発原料にリチウム源としてLiCH3COOを1.3196g量りとり、鉄源としてFe(NO33・9H2O、ジルコニウム源としてZrCl4、リン源としてH3PO4(純度85%)、シリコン源としてSi(OC254をそれぞれモル比でLi:Fe:Zr:P:Si=1:0.75:0.25:0.5:0.5となるように量りとり、溶媒中に順に溶解させていった。すべての原料を溶媒に溶解後、室温でスターラーにて1週間攪拌し、次いで、40℃の大気雰囲気下の恒温槽内にて24時間放置することでエタノールを蒸発させて、茶褐色の粉末を得た。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to a following example. The reagents used in the examples were special grade reagents manufactured by Kishida Chemical Co. unless otherwise specified.
[Example 1]
First, 30 ml of ethanol was weighed into a sample bottle as a solvent. As a starting material, 1.3196 g of LiCH 3 COO as a lithium source was weighed, Fe (NO 3 ) 3 · 9H 2 O as an iron source, ZrCl 4 as a zirconium source, H 3 PO 4 (purity 85%) as a phosphorus source, silicon Si (OC 2 H 5 ) 4 as a source was weighed in a molar ratio of Li: Fe: Zr: P: Si = 1: 0.75: 0.25: 0.5: 0.5, and the solvent It was dissolved in order. After all the raw materials are dissolved in a solvent, the mixture is stirred for 1 week at room temperature with a stirrer, and then left in a constant temperature bath at 40 ° C. for 24 hours to evaporate ethanol to obtain a brown powder. It was.

得られた粉末に対して15wt%のスクロースを添加し、メノウ乳鉢中でよく混合した後、ペレット状に加圧形成した。得られたペレット状混合物を窒素雰囲気中で600℃、12時間焼成することで、LiaFe0.75Zr0.250.5Si0.54からなる試料を得た。この試料の表面には、試料100重量部に対して2.4重量部の炭素が付着していることを確認した。得られた試料をA1とする。
試料A1をメノウ乳鉢にて粉砕し、理学社製X線解析装置MiniFlexIIにより図1に示す粉末X線回折パターンを得た。測定条件は2θの範囲が10°〜90°、1ステップ0.02°で1ステップ当りの計測時間を3sのFTモードとした。
15 wt% sucrose was added to the obtained powder, mixed well in an agate mortar, and then pressed into a pellet. The obtained pellet-like mixture was baked at 600 ° C. for 12 hours in a nitrogen atmosphere to obtain a sample made of Li a Fe 0.75 Zr 0.25 P 0.5 Si 0.5 O 4 . It was confirmed that 2.4 parts by weight of carbon adhered to 100 parts by weight of the sample on the surface of the sample. The obtained sample is designated as A1.
Sample A1 was pulverized in an agate mortar, and the powder X-ray diffraction pattern shown in FIG. 1 was obtained using an X-ray analyzer MiniFlexII manufactured by Rigaku Corporation. The measurement conditions were a range of 2θ of 10 ° to 90 °, a step of 0.02 °, and a measurement time per step of FT mode of 3 s.

次に、得られた粉末X線回折パターンについて、「RIETAN−2000」(F.IzumI AND T.Ikeda,Mater.Sci.Forum,321−324(2000)198−203)を用いて、表1に示すパラメータを初期値として使用するリートベルト解析による構造解析を行った。なお、4aサイトの鉄とLiの占有率は以下の式を満たすような条件で精密化を行った。
4aサイトの鉄の占有率+4aサイトのリチウムの占有率=1
それ以外の占有率は表1の初期値で固定して構造の精密化を行った。
Next, with respect to the obtained powder X-ray diffraction pattern, using “RIETA-2000” (F. IzumI AND T. Ikeda, Mater. Sci. Forum, 321-324 (2000) 198-203), Table 1 Structural analysis by Rietveld analysis using the indicated parameters as initial values was performed. The occupancy ratio of iron and Li at the 4a site was refined under conditions that satisfy the following formula.
4a site iron occupancy + 4a site lithium occupancy = 1
The other occupancy rates were fixed at the initial values shown in Table 1, and the structure was refined.

Figure 2011253629
Figure 2011253629

構造解析結果より得られたa値を、4aサイト(リチウムサイト)中のリチウムと鉄の占有率、及び25.4〜25.6度付近の(111)面と(201)面からなるピーク強度(A)に対する、20.5〜21.0度付近の(101)面からなるピーク強度(B)の比(A/B)と共に、表2に示す。   The a value obtained from the structural analysis results is obtained by using the occupancy ratio of lithium and iron in the 4a site (lithium site) and the peak intensity composed of the (111) plane and the (201) plane in the vicinity of 25.4 to 25.6 degrees. Table 2 shows the ratio (A / B) of the peak intensity (B) composed of the (101) plane near 20.5 to 21.0 degrees with respect to (A).

〔実施例2〕
まず、サンプル瓶に溶媒としてエタノールを30ml量りとった。出発原料にリチウム源としてLiCH3COOを1.3196g量りとり、鉄源としてFe(NO33・9H2O、ジルコニウム源としてZrCl4、リン源としてH3PO4(純度85%)、シリコン源としてSi(OC254をそれぞれモル比でLi:Fe:Zr:P:Si=1:0.85:0.15:0.7:0.3となるように量りとり、溶媒中に順に溶解させていった。すべての原料を溶媒に溶解後、室温でスターラーにて1週間攪拌し、次いで、40℃の大気雰囲気下の恒温槽内にて24時間放置することでエタノールを蒸発させて、茶褐色の粉末を得た。
[Example 2]
First, 30 ml of ethanol was weighed into a sample bottle as a solvent. As a starting material, 1.3196 g of LiCH 3 COO as a lithium source was weighed, Fe (NO 3 ) 3 · 9H 2 O as an iron source, ZrCl 4 as a zirconium source, H 3 PO 4 (purity 85%) as a phosphorus source, silicon Si (OC 2 H 5 ) 4 as a source was weighed in a molar ratio of Li: Fe: Zr: P: Si = 1: 0.85: 0.15: 0.7: 0.3, and the solvent It was dissolved in order. After all the raw materials are dissolved in a solvent, the mixture is stirred for 1 week at room temperature with a stirrer, and then left in a constant temperature bath at 40 ° C. for 24 hours to evaporate ethanol to obtain a brown powder. It was.

得られた粉末に対して15wt%のスクロースを添加し、メノウ乳鉢中でよく混合した後、ペレット状に加圧形成した。得られたペレット状混合物を窒素雰囲気中で600℃、12時間焼成することで、LiaFe0.85Zr0.150.7Si0.34からなる試料を得た。この試料の表面には、試料100重量部に対して2.4重量部の炭素が付着していることを確認した。得られた試料をA2とする。実施例1と同様にして、図2に示すA2の粉末X線回折パターンを得た。実施例1と同様にして、a値を、4aサイト中のリチウムと鉄の占有率及び強度比(A/B)と共に、表2に示す。 15 wt% sucrose was added to the obtained powder, mixed well in an agate mortar, and then pressed into a pellet. The obtained pellet-like mixture was baked at 600 ° C. for 12 hours in a nitrogen atmosphere to obtain a sample made of Li a Fe 0.85 Zr 0.15 P 0.7 Si 0.3 O 4 . It was confirmed that 2.4 parts by weight of carbon adhered to 100 parts by weight of the sample on the surface of the sample. The obtained sample is designated as A2. In the same manner as in Example 1, a powder X-ray diffraction pattern A2 shown in FIG. 2 was obtained. In the same manner as in Example 1, the a value is shown in Table 2 together with the occupation ratio and strength ratio (A / B) of lithium and iron in the 4a site.

〔実施例3〕
まず、サンプル瓶に溶媒としてエタノールを30ml量りとった。出発原料にリチウム源としてLiCH3COOを1.3196g量りとり、鉄源としてFe(NO33・9H2O、ジルコニウム源としてZrCl4、リン源としてH3PO4(純度85%)、シリコン源としてSi(OC254をそれぞれモル比でLi:Fe:Zr:P:Si=1:0.875:0.125:0.75:0.25となるように量りとり、溶媒中に順に溶解させていった。すべての原料を溶媒に溶解後、室温でスターラーにて1週間攪拌し、次いで、40℃の大気雰囲気下の恒温槽内にて24時間放置することでエタノールを蒸発させて、茶褐色の粉末を得た。
Example 3
First, 30 ml of ethanol was weighed into a sample bottle as a solvent. As a starting material, 1.3196 g of LiCH 3 COO as a lithium source was weighed, Fe (NO 3 ) 3 · 9H 2 O as an iron source, ZrCl 4 as a zirconium source, H 3 PO 4 (purity 85%) as a phosphorus source, silicon Si (OC 2 H 5 ) 4 as a source was weighed in a molar ratio of Li: Fe: Zr: P: Si = 1: 0.875: 0.125: 0.75: 0.25, and the solvent It was dissolved in order. After all the raw materials are dissolved in a solvent, the mixture is stirred for 1 week at room temperature with a stirrer, and then left in a constant temperature bath at 40 ° C. for 24 hours to evaporate ethanol to obtain a brown powder. It was.

得られた粉末に対して15wt%のスクロースを添加し、メノウ乳鉢中でよく混合した後、ペレット状に加圧形成した。得られたペレット状混合物を窒素雰囲気中で600℃、12時間焼成することで、LiaFe0.875Zr0.1250.75Si0.254からなる試料を得た。この試料の表面には、試料100重量部に対して2.4重量部の炭素が付着していることを確認した。得られた試料をA3とする。実施例1と同様にして、a値を、4aサイト中のリチウムと鉄の占有率及び比(A/B)と共に、表2に示す。 15 wt% sucrose was added to the obtained powder, mixed well in an agate mortar, and then pressed into a pellet. The obtained pellet-like mixture was baked in a nitrogen atmosphere at 600 ° C. for 12 hours to obtain a sample made of Li a Fe 0.875 Zr 0.125 P 0.75 Si 0.25 O 4 . It was confirmed that 2.4 parts by weight of carbon adhered to 100 parts by weight of the sample on the surface of the sample. The obtained sample is designated as A3. In the same manner as in Example 1, the a value is shown in Table 2 together with the occupation ratio and ratio (A / B) of lithium and iron in the 4a site.

〔実施例4〕
まず、サンプル瓶に溶媒としてメタノールを30ml量りとった。出発原料にリチウム源としてLiCH3COOを1.3196g量りとり、鉄源としてFe(NO33・9H2O、ジルコニウム源としてZrCl4、リン源としてH3PO4(純度85%)、シリコン源としてSi(OC254をそれぞれモル比でLi:Fe:Zr:P:Si=1:0.9:0.1:0.8:0.2となるように量りとり、溶媒中に順に溶解させていった。すべての原料を溶媒に溶解後、室温でスターラーにて1週間攪拌し、次いで、40℃の大気雰囲気下の恒温槽内にて24時間放置することでエタノールを蒸発させて、茶褐色の粉末を得た。
Example 4
First, 30 ml of methanol was weighed as a solvent in a sample bottle. As a starting material, 1.3196 g of LiCH 3 COO as a lithium source was weighed, Fe (NO 3 ) 3 · 9H 2 O as an iron source, ZrCl 4 as a zirconium source, H 3 PO 4 (purity 85%) as a phosphorus source, silicon Si (OC 2 H 5 ) 4 as a source was weighed in a molar ratio of Li: Fe: Zr: P: Si = 1: 0.9: 0.1: 0.8: 0.2, and the solvent It was dissolved in order. After all the raw materials are dissolved in a solvent, the mixture is stirred for 1 week at room temperature with a stirrer, and then left in a constant temperature bath at 40 ° C. for 24 hours to evaporate ethanol to obtain a brown powder. It was.

得られた粉末に対して15wt%のスクロースを添加し、メノウ乳鉢中でよく混合した後、ペレット状に加圧形成した。得られたペレット状混合物を窒素雰囲気中で600℃、12時間焼成することで、LiaFe0.9Zr0.10.8Si0.24からなる試料を得た。この試料の表面には、試料100重量部に対して2.4重量部の炭素が付着していることを確認した。得られた試料をA4とする。実施例1と同様にして、a値を、4aサイト中のリチウムと鉄の占有率及び比(A/B)と共に、表2に示す。 15 wt% sucrose was added to the obtained powder, mixed well in an agate mortar, and then pressed into a pellet. The obtained pellet-like mixture was baked at 600 ° C. for 12 hours in a nitrogen atmosphere to obtain a sample made of Li a Fe 0.9 Zr 0.1 P 0.8 Si 0.2 O 4 . It was confirmed that 2.4 parts by weight of carbon adhered to 100 parts by weight of the sample on the surface of the sample. The obtained sample is designated as A4. In the same manner as in Example 1, the a value is shown in Table 2 together with the occupation ratio and ratio (A / B) of lithium and iron in the 4a site.

〔実施例5〕
まず、サンプル瓶に溶媒としてメタノールを30ml量りとった。出発原料にリチウム源としてLiCH3COOを1.3196g量りとり、鉄源としてFe(NO33・9H2O、ジルコニウム源としてZrCl4、リン源としてH3PO4(純度85%)、シリコン源としてSi(OC254をそれぞれモル比でLi:Fe:Zr:P:Si=1:0.925:0.075:0.85:0.15となるように量りとり、溶媒中に順に溶解させていった。すべての原料を溶媒に溶解後、室温でスターラーにて1週間攪拌し、次いで、40℃の大気雰囲気下の恒温槽内にて24時間放置することでエタノールを蒸発させて、茶褐色の粉末を得た。
Example 5
First, 30 ml of methanol was weighed as a solvent in a sample bottle. As a starting material, 1.3196 g of LiCH 3 COO as a lithium source was weighed, Fe (NO 3 ) 3 · 9H 2 O as an iron source, ZrCl 4 as a zirconium source, H 3 PO 4 (purity 85%) as a phosphorus source, silicon Si (OC 2 H 5 ) 4 as a source was weighed in a molar ratio of Li: Fe: Zr: P: Si = 1: 0.925: 0.075: 0.85: 0.15, and the solvent It was dissolved in order. After all the raw materials are dissolved in a solvent, the mixture is stirred for 1 week at room temperature with a stirrer, and then left in a constant temperature bath at 40 ° C. for 24 hours to evaporate ethanol to obtain a brown powder. It was.

得られた粉末に対して15wt%のスクロースを添加し、メノウ乳鉢中でよく混合した後、ペレット状に加圧形成した。得られたペレット状混合物を窒素雰囲気中で600℃、12時間焼成することで、LiaFe0.925Zr0.0750.85Si0.154からなる試料を得た。この試料の表面には、試料100重量部に対して2.4重量部の炭素が付着していることを確認した。得られた試料をA5とする。実施例1と同様にして、a値を、4aサイト中のリチウムと鉄の占有率と共に、表2に示す。 15 wt% sucrose was added to the obtained powder, mixed well in an agate mortar, and then pressed into a pellet. The obtained pellet-like mixture was baked at 600 ° C. for 12 hours in a nitrogen atmosphere to obtain a sample made of Li a Fe 0.925 Zr 0.075 P 0.85 Si 0.15 O 4 . It was confirmed that 2.4 parts by weight of carbon adhered to 100 parts by weight of the sample on the surface of the sample. The obtained sample is designated as A5. In the same manner as in Example 1, the a value is shown in Table 2 together with the occupation ratios of lithium and iron in the 4a site.

〔比較例1〕
まず、サンプル瓶に溶媒としてエタノールを30ml量りとった。出発原料にリチウム源としてLiNO3を1.3788g量りとり、鉄源としてFeCl3・6H2O、ジルコニウム源としてZrCl4、リン源としてH3PO4(純度85%)、シリコン源としてSi(OC254をそれぞれモル比でLi:Fe:Zr:P:Si=1:0.75:0.25:0.5:0.5となるように量りとり、溶媒中に順に溶解させていった。すべての原料を溶媒に溶解後、室温でスターラーにて1週間攪拌し、次いで、40℃の大気雰囲気下の恒温槽内にて24時間放置し、茶褐色の粉末を得た。
[Comparative Example 1]
First, 30 ml of ethanol was weighed into a sample bottle as a solvent. As a starting material, 1.3788 g of LiNO 3 as a lithium source was weighed, FeCl 3 .6H 2 O as an iron source, ZrCl 4 as a zirconium source, H 3 PO 4 (purity 85%) as a phosphorus source, Si (OC as a silicon source) 2 H 5 ) 4 is weighed in a molar ratio of Li: Fe: Zr: P: Si = 1: 0.75: 0.25: 0.5: 0.5 and dissolved in the solvent in order. I went. After all the raw materials were dissolved in the solvent, the mixture was stirred with a stirrer at room temperature for 1 week, and then left in a constant temperature bath at 40 ° C. for 24 hours to obtain a brown powder.

得られた粉末に対して15wt%のスクロースを添加し、メノウ乳鉢中でよく混合した後、ペレット状に加圧形成した。得られたペレット状混合物を窒素雰囲気中で600℃、12時間焼成することで、LiaFe0.75Zr0.250.5Si0.54からなる試料を得た。この試料の表面には、試料100重量部に対して2.4重量部の炭素が付着していることを確認した。得られた試料をB1とする。実施例1と同様にして、図3に示すB1の粉末X線回折パターンを得た。実施例1と同様にして、a値を、4aサイト中のリチウムと鉄の占有率及び比(A/B)と共に、表2に示す。 15 wt% sucrose was added to the obtained powder, mixed well in an agate mortar, and then pressed into a pellet. The obtained pellet-like mixture was baked at 600 ° C. for 12 hours in a nitrogen atmosphere to obtain a sample made of Li a Fe 0.75 Zr 0.25 P 0.5 Si 0.5 O 4 . It was confirmed that 2.4 parts by weight of carbon adhered to 100 parts by weight of the sample on the surface of the sample. The obtained sample is designated as B1. In the same manner as in Example 1, the powder X-ray diffraction pattern of B1 shown in FIG. 3 was obtained. In the same manner as in Example 1, the a value is shown in Table 2 together with the occupation ratio and ratio (A / B) of lithium and iron in the 4a site.

〔比較例2〕
まず、サンプル瓶に溶媒としてエタノールを30ml量りとった。出発原料にリチウム源としてLiOHを0.4789g量りとり、鉄源としてFeCl3・6H2O、ジルコニウム源としてZrCl4、リン源としてH3PO4(純度85%)、シリコン源としてSi(OC254をそれぞれモル比でLi:Fe:Zr:P:Si=1:0.875:0.125:0.75:0.25となるように量りとり、溶媒中に順に溶解させていった。すべての原料を溶媒に溶解後、室温でスターラーにて1週間攪拌し、次いで、40℃の大気雰囲気下の恒温槽内にて24時間放置し、茶褐色の粉末を得た。
[Comparative Example 2]
First, 30 ml of ethanol was weighed into a sample bottle as a solvent. As a starting material, 0.4789 g of LiOH was weighed as a lithium source, FeCl 3 .6H 2 O as an iron source, ZrCl 4 as a zirconium source, H 3 PO 4 (purity 85%) as a phosphorus source, and Si (OC 2 as a silicon source). H 5 ) 4 was weighed in a molar ratio of Li: Fe: Zr: P: Si = 1: 0.875: 0.125: 0.75: 0.25 and dissolved in the solvent in order. It was. After all the raw materials were dissolved in the solvent, the mixture was stirred with a stirrer at room temperature for 1 week, and then left in a constant temperature bath at 40 ° C. for 24 hours to obtain a brown powder.

得られた粉末に対して15wt%のスクロースを添加し、メノウ乳鉢中でよく混合した後、ペレット状に加圧形成した。得られたペレット状混合物を窒素雰囲気中で600℃、12時間焼成することで、LiaFe0.875Zr0.1250.75Si0.254からなる試料を得た。この試料の表面には、試料100重量部に対して2.4重量部の炭素が付着していることを確認した。得られた試料をB2とする。実施例1と同様にして、a値を、4aサイト中のリチウムと鉄の占有率及び比(A/B)と共に、表2に示す。 15 wt% sucrose was added to the obtained powder, mixed well in an agate mortar, and then pressed into a pellet. The obtained pellet-like mixture was baked in a nitrogen atmosphere at 600 ° C. for 12 hours to obtain a sample made of Li a Fe 0.875 Zr 0.125 P 0.75 Si 0.25 O 4 . It was confirmed that 2.4 parts by weight of carbon adhered to 100 parts by weight of the sample on the surface of the sample. The obtained sample is designated as B2. In the same manner as in Example 1, the a value is shown in Table 2 together with the occupation ratio and ratio (A / B) of lithium and iron in the 4a site.

〔比較例3〕
まず、サンプル瓶に溶媒としてメタノールを30ml量りとった。出発原料にリチウム源としてLiOHを0.4789g量りとり、鉄源としてFeCl3・6H2O、ジルコニウム源としてZrOCl2・8H2O、リン源としてH3PO4(純度85%)、シリコン源としてSi(OC254をそれぞれモル比でLi:Fe:Zr:P:Si=1:0.9:0.1:0.8:0.2となるように量りとり、溶媒中に順に溶解させていった。すべての原料を溶媒に溶解後、室温でスターラーにて1週間攪拌し、次いで、40℃の大気雰囲気下の恒温槽内にて24時間放置し、茶褐色の粉末を得た。
[Comparative Example 3]
First, 30 ml of methanol was weighed as a solvent in a sample bottle. 0.4789 g of LiOH as a lithium source was weighed as a starting material, FeCl 3 · 6H 2 O as an iron source, ZrOCl 2 · 8H 2 O as a zirconium source, H 3 PO 4 (purity 85%) as a phosphorus source, and a silicon source Si (OC 2 H 5 ) 4 was weighed in a molar ratio of Li: Fe: Zr: P: Si = 1: 0.9: 0.1: 0.8: 0.2, It was dissolved in order. After all the raw materials were dissolved in the solvent, the mixture was stirred with a stirrer at room temperature for 1 week, and then left in a constant temperature bath at 40 ° C. for 24 hours to obtain a brown powder.

得られた粉末に対して15wt%のスクロースを添加し、メノウ乳鉢中でよく混合した後、ペレット状に加圧形成した。得られたペレット状混合物を窒素雰囲気中で600℃、12時間焼成することで、LiaFe0.9Zr0.10.8Si0.24からなる試料を得た。この試料の表面には、試料100重量部に対して2.5重量部の炭素が付着していることを確認した。得られた試料をB3とする。実施例1と同様にして、a値を、4aサイト中のリチウムと鉄の占有率及び比(A/B)と共に、表2に示す。 15 wt% sucrose was added to the obtained powder, mixed well in an agate mortar, and then pressed into a pellet. The obtained pellet-like mixture was baked at 600 ° C. for 12 hours in a nitrogen atmosphere to obtain a sample made of Li a Fe 0.9 Zr 0.1 P 0.8 Si 0.2 O 4 . It was confirmed that 2.5 parts by weight of carbon adhered to 100 parts by weight of the sample on the surface of the sample. The obtained sample is designated as B3. In the same manner as in Example 1, the a value is shown in Table 2 together with the occupation ratio and ratio (A / B) of lithium and iron in the 4a site.

〔比較例4〕
まず、サンプル瓶に溶媒としてエタノールを30ml量りとった。出発原料にリチウム源としてLiCH3COOを1.3196g量りとり、鉄源としてFe(NO33・9H2O、ジルコニウム源としてZrCl4、リン源としてH3PO4(純度85%)、シリコン源としてSi(OC254をそれぞれモル比でLi:Fe:Zr:P:Si=1:0.98:0.02:0.96:0.04となるように量りとり、溶媒中に順に溶解させていった。すべての原料を溶媒に溶解後、室温でスターラーにて1週間攪拌し、次いで、40℃の大気雰囲気下の恒温槽内にて24時間放置し、茶褐色の粉末を得た。
[Comparative Example 4]
First, 30 ml of ethanol was weighed into a sample bottle as a solvent. As a starting material, 1.3196 g of LiCH 3 COO as a lithium source was weighed, Fe (NO 3 ) 3 · 9H 2 O as an iron source, ZrCl 4 as a zirconium source, H 3 PO 4 (purity 85%) as a phosphorus source, silicon Si (OC 2 H 5 ) 4 as a source was weighed in a molar ratio of Li: Fe: Zr: P: Si = 1: 0.98: 0.02: 0.96: 0.04 to obtain a solvent. It was dissolved in order. After all the raw materials were dissolved in the solvent, the mixture was stirred with a stirrer at room temperature for 1 week, and then left in a constant temperature bath at 40 ° C. for 24 hours to obtain a brown powder.

得られた粉末に対して15wt%のスクロースを添加し、メノウ乳鉢中でよく混合した後、ペレット状に加圧形成した。得られたペレット状混合物を窒素雰囲気中で600℃、12時間焼成することで、LiaFe0.98Zr0.020.96Si0.044からなる試料を得た。この試料の表面には、試料100重量部に対して2.4重量部の炭素が付着していることを確認した。得られた試料をB4とする。実施例1と同様にして、a値を、4aサイト中のリチウムと鉄の占有率及び強度比(A/B)と共に、表2に示す。 15 wt% sucrose was added to the obtained powder, mixed well in an agate mortar, and then pressed into a pellet. The obtained pellet-like mixture was baked at 600 ° C. for 12 hours in a nitrogen atmosphere to obtain a sample made of Li a Fe 0.98 Zr 0.02 P 0.96 Si 0.04 O 4 . It was confirmed that 2.4 parts by weight of carbon adhered to 100 parts by weight of the sample on the surface of the sample. The obtained sample is designated as B4. In the same manner as in Example 1, the a value is shown in Table 2 together with the occupation ratio and strength ratio (A / B) of lithium and iron in the 4a site.

Figure 2011253629
Figure 2011253629

表2から、実施例の試料は、いずれもa値が0.05以下に抑えられていることが分かる。また、実施例の試料は、いずれも強度比A/Bが0.7以上であることが分かる。   From Table 2, it can be seen that the samples of the examples all have a value of 0.05 or less. Moreover, it turns out that the intensity | strength ratio A / B of all the samples of an Example is 0.7 or more.

(正極容量及び体積変化率の測定)
各試料について以下の方法で、正極容量及び体積変化率測定用のセルを作製した。
A1〜A5及びB1〜B4をそれぞれ約1g秤量しメノウ乳鉢にて粉砕し、これに導電剤として約10wt%のアセチレンブラック(電気化学工業社製デンカブラック)と、結着剤として約10wt%のテフロン(登録商標)樹脂粉末(呉羽化学社製クレハKFポリマー)とを混合した。
この混合物をN−メチル−2−ピロリドンに溶解してスラリー状にし、これを厚さ20μmのアルミニウム箔の両面にドクターブレード法で塗布した。塗布量としては約5mg/cm2となるようした。この塗膜を乾燥した後に、電極塗布面が2cm×2cmとなるように切断し、プレスを行って正極を得た。
(Measurement of positive electrode capacity and volume change rate)
For each sample, a positive electrode capacity and volume change rate measurement cell was prepared by the following method.
About 1 g each of A1 to A5 and B1 to B4 are weighed and pulverized in an agate mortar, and about 10 wt% acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive agent and about 10 wt% as a binder. Teflon (registered trademark) resin powder (Kureha KF Polymer Kureha KF Polymer) was mixed.
This mixture was dissolved in N-methyl-2-pyrrolidone to form a slurry, which was applied to both surfaces of an aluminum foil having a thickness of 20 μm by a doctor blade method. The coating amount was about 5 mg / cm 2 . After drying this coating film, it was cut so that the electrode application surface was 2 cm × 2 cm, and pressed to obtain a positive electrode.

50mlのビーカーに、1モル/リットルのLiPF6を溶解させた50体積%のエチレンカーボネートと50体積%のジエチルカーボネートとからなる約30mlの電解質を注入した。電解質に、正極と、負極活物質としての金属リチウムを対極として浸漬することで、セルを得た。
25℃の環境下で得られたセルの初回充電を行った。充電電流は0.1mAとし、セルの電位が4Vに到達した時点で充電を終了させた。充電が終了後1mAで放電を行いセルの電位が2.0Vに到達した時点で放電を終了した。この充電と放電条件から容量(実測容量:初回放電容量)を算出した。得られた実測容量を、各正極の理論容量及び容量比(実測容量×100/理論容量)と共に表3に示す。
About 30 ml of electrolyte composed of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate in which 1 mol / liter of LiPF 6 was dissolved was poured into a 50 ml beaker. A cell was obtained by immersing the positive electrode and metallic lithium as the negative electrode active material in the electrolyte as a counter electrode.
The cell obtained in an environment of 25 ° C. was charged for the first time. The charging current was 0.1 mA, and the charging was terminated when the cell potential reached 4V. After charging was completed, discharging was performed at 1 mA, and discharging was terminated when the cell potential reached 2.0V. The capacity (measured capacity: initial discharge capacity) was calculated from the charging and discharging conditions. The obtained measured capacity is shown in Table 3 together with the theoretical capacity and capacity ratio (measured capacity × 100 / theoretical capacity) of each positive electrode.

セルを更に、0.1mAの電流で4Vまで充電を行い、リチウムを脱離させた状態とした。この状態の正極を取り出しCuKα線を用いた粉末X線回折測定を行い、リチウム脱離前後の正極活物質の格子定数(a軸、b軸及びc軸)を求めた。
a軸、b軸及びc軸を積算することでリチウム脱離前後の格子体積を算出し、体積変化率=(A−B)×100/Aの式で体積変化率を算出した(Aはリチウム脱離前の結晶格子体積、Bはリチウム脱離後の結晶格子体積を意味する)。
充電前後の格子定数、格子体積及び体積変化率を表3に示す。
The cell was further charged to 4 V with a current of 0.1 mA, and lithium was desorbed. The positive electrode in this state was taken out and subjected to powder X-ray diffraction measurement using CuKα rays to determine the lattice constants (a axis, b axis and c axis) of the positive electrode active material before and after lithium desorption.
The lattice volume before and after lithium desorption was calculated by integrating the a-axis, b-axis, and c-axis, and the volume change rate was calculated by the formula: volume change rate = (A−B) × 100 / A (A is lithium Crystal lattice volume before desorption, B means crystal lattice volume after lithium desorption).
Table 3 shows the lattice constant, the lattice volume, and the volume change rate before and after charging.

Figure 2011253629
Figure 2011253629

(二次電池の評価)
得られた試料について以下の方法で、二次電池を作成した。A1〜A5及びB1〜B4をそれぞれ約1g秤量しメノウ乳鉢にて粉砕し、これに導電剤として約10wt%のアセチレンブラックと、結着剤として約10wt%のテフロン(登録商標)樹脂粉末とを混合した。
この混合物をN−メチル−2−ピロリドンに溶解してスラリー状にし、これを厚さ20μmのアルミニウム箔の両面にドクターブレード法で塗布した。塗布量としては約5mg/cm2となるようした。この塗膜を乾燥した後に、プレスを行って正極を作製した。
(Evaluation of secondary battery)
A secondary battery was prepared for the obtained sample by the following method. About 1 g of each of A1 to A5 and B1 to B4 are weighed and pulverized in an agate mortar, and about 10 wt% acetylene black as a conductive agent and about 10 wt% Teflon (registered trademark) resin powder as a binder. Mixed.
This mixture was dissolved in N-methyl-2-pyrrolidone to form a slurry, which was applied to both surfaces of an aluminum foil having a thickness of 20 μm by a doctor blade method. The coating amount was about 5 mg / cm 2 . After drying this coating film, pressing was performed to produce a positive electrode.

負極活物質として、天然黒鉛粉末又はチタン酸リチウム(Li4Ti512)を使用した。この負極活物質に結着剤として約10wt%のテフロン(登録商標)樹脂粉末を混合した。更に負極活物質にチタン酸リチウムを使用する場合には、10wt%のアセチレンブラックを導電剤として更に混合した。この混合物をN−メチル−2−ピロリドンに溶解してスラリー状にし、これを厚さ20μmの銅箔の両面に塗布し、乾燥した後に、プレスを行って負極を作製した。
上記のようにして作製した正極と負極をそれぞれ30mm×30mmの大きさに切り抜き、電池の電流導入端子として正極には幅3mm、長さ50mmのアルミニウム製タブを、負極には幅3mm、長さ50mm銅製タブを溶接した。
As the negative electrode active material, natural graphite powder or lithium titanate (Li 4 Ti 5 O 12 ) was used. About 10 wt% of Teflon (registered trademark) resin powder was mixed with this negative electrode active material as a binder. Further, when lithium titanate was used as the negative electrode active material, 10 wt% acetylene black was further mixed as a conductive agent. This mixture was dissolved in N-methyl-2-pyrrolidone to form a slurry, which was applied to both sides of a copper foil having a thickness of 20 μm, dried, and then pressed to produce a negative electrode.
The positive electrode and the negative electrode produced as described above were cut out to a size of 30 mm × 30 mm, respectively, and the positive electrode was provided with a 3 mm wide and 50 mm long aluminum tab as the battery current introduction terminal, and the negative electrode was 3 mm wide and long. A 50 mm copper tab was welded.

これらの正極と負極との間に多孔質ポリエチレン製のセパレータを挟んだ。得られた積層体を、電池外装として2枚の金属箔に熱可塑性樹脂を貼り付けたラミネート膜の間に挟み、周囲を熱溶着することにより密封した。なおこのラミネートには電解質注入用の開口部が設けられている。
開口部に1モル/リットルのLiPF6を溶解させた50体積%のエチレンカーボネートと50体積%のジエチルカーボネートとを電解質として含浸させた。次いで、開口部を封止して図4に示す二次電池を得た。図4は二次電池の概略断面図である。図4中、1は正極、2は負極、3はセパレータ、4は正極及び負極タブ、5はラミネートを意味する。
A porous polyethylene separator was sandwiched between the positive electrode and the negative electrode. The obtained laminate was sandwiched between a laminate film in which a thermoplastic resin was bonded to two metal foils as a battery exterior, and the periphery was sealed by heat welding. The laminate is provided with an opening for electrolyte injection.
The opening was impregnated with 50% by volume of ethylene carbonate in which 1 mol / liter of LiPF 6 was dissolved and 50% by volume of diethyl carbonate as an electrolyte. Next, the opening was sealed to obtain a secondary battery shown in FIG. FIG. 4 is a schematic cross-sectional view of a secondary battery. In FIG. 4, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is a positive electrode and a negative electrode tab, and 5 is a laminate.

このように作製した電池を25℃の環境下で充放電した。充電電流は0.3mAとし、電池の電位が4Vに到達した時点で充電を終了させた。充電が終了後0.3mAで放電を行い電池の電位が2.0Vに到達した時点で放電を終了した。更に0.3mAの電流にて充放電を繰返し、100回目の放電容量を計測し、下記の式にて容量保持率を求めた。結果を表4に示す。
容量保持率=100回目の放電容量/初回の放電容量
The battery thus produced was charged and discharged in an environment at 25 ° C. The charging current was 0.3 mA, and the charging was terminated when the battery potential reached 4V. After charging was completed, discharging was performed at 0.3 mA, and discharging was completed when the battery potential reached 2.0V. Furthermore, charging / discharging was repeated at a current of 0.3 mA, the discharge capacity at the 100th time was measured, and the capacity retention rate was obtained by the following formula. The results are shown in Table 4.
Capacity retention = 100th discharge capacity / first discharge capacity

Figure 2011253629
Figure 2011253629

表4には、リチウムサイト中の鉄の占有率が5%以下であるA1〜A5の正極活物質は、B1〜B4の正極活物質に比べて、負極活物質の種類や充放電温度が同じであれば、高い放電容量と優れた容量保持率を有する二次電池を与えることが明らかに示されている。
また、体積変化率が4%以下、0.075≦x≦0.25、0.15≦y≦0.50、2x=y及び0.7以上の強度比A/Bを更に満たせば、95%以上の高い容量保持率と、良好なサイクル特性を有する二次電池を与えることが明らかに示されている。
Table 4 shows that the positive electrode active materials A1 to A5 in which the occupation ratio of iron in the lithium site is 5% or less have the same type and charge / discharge temperature of the negative electrode active material as compared to the positive electrode active materials B1 to B4. Then, it is clearly shown that a secondary battery having a high discharge capacity and an excellent capacity retention rate is provided.
If the volume change rate is 4% or less, 0.075 ≦ x ≦ 0.25, 0.15 ≦ y ≦ 0.50, 2x = y and an intensity ratio A / B of 0.7 or more is satisfied, 95 It is clearly shown to give a secondary battery with a high capacity retention of more than% and good cycle characteristics.

1:正極
2:負極
3:セパレータ
4:正極及び負極タブ
5:ラミネート
1: Positive electrode 2: Negative electrode 3: Separator 4: Positive electrode and negative electrode tab 5: Laminate

Claims (11)

下記一般式(1)
Li1-aFe1-x+ax1-ySiy4 …(1)
(但し、式中、MはZr、Sn、Y、及びAlから選択される少なくとも1種の金属元素であり、xは0.05≦x<1であり、yは0.05≦y<1であり、aは0≦a≦0.05である(但し、aはCuKα線を線源に用いた粉末X線回折パターンからリートベルト解析を用いて求められるリチウムサイト中の鉄の占有比))
で表される組成を有することを特徴とする正極活物質。
The following general formula (1)
Li 1-a Fe 1-x + a M x P 1-y Si y O 4 (1)
(Wherein, M is at least one metal element selected from Zr, Sn, Y, and Al, x is 0.05 ≦ x <1, and y is 0.05 ≦ y <1. Where a is 0 ≦ a ≦ 0.05 (where a is the occupation ratio of iron in the lithium site determined by Rietveld analysis from a powder X-ray diffraction pattern using CuKα rays as a radiation source) )
The positive electrode active material characterized by having the composition represented by these.
前記正極活物質が、5%以下の体積変化率を有する請求項1に記載の正極活物質。   The positive electrode active material according to claim 1, wherein the positive electrode active material has a volume change rate of 5% or less. 前記Mが、+4価の価数を有する請求項1又は2に記載の正極活物質。   The positive electrode active material according to claim 1, wherein the M has a valence of +4. 前記正極活物質は、MがZrである組成を有する請求項1〜3のいずれか1つに記載の正極活物質。   The positive electrode active material according to claim 1, wherein the positive electrode active material has a composition in which M is Zr. 前記正極活物質が、0.05≦x≦0.25の範囲のxで規定される組成を有する請求項1〜4のいずれか1つに記載の正極活物質。   The positive electrode active material according to claim 1, wherein the positive electrode active material has a composition defined by x in a range of 0.05 ≦ x ≦ 0.25. 前記正極活物質が、0.10≦y≦0.50の範囲のyで規定される組成を有する請求項1〜5のいずれか1つに記載の正極活物質。   The positive electrode active material according to claim 1, wherein the positive electrode active material has a composition defined by y in a range of 0.10 ≦ y ≦ 0.50. 前記正極活物質が、2x=yの組成を有する請求項1〜6のいずれか1つに記載の正極活物質。   The positive electrode active material according to claim 1, wherein the positive electrode active material has a composition of 2x = y. 前記正極活物質が、CuKα線を用いたX線回折パターンにおいて、0.7以上のピーク強度(A)と(B)との比(A/B)(但し、ピーク強度(A)は25.4〜25.6度付近の(111)面と(201)面由来のピーク強度を、ピーク強度(B)は20.5〜21.0度付近の(101)面由来のピーク強度を意味する)を有する請求項1〜7のいずれか1つに記載の正極活物質。   In the X-ray diffraction pattern using CuKα rays, the positive electrode active material has a ratio (A / B) of peak intensity (A) to (B) of 0.7 or more (provided that the peak intensity (A) is 25. The peak intensity derived from the (111) plane and the (201) plane near 4 to 25.6 degrees, and the peak intensity (B) refers to the peak intensity derived from the (101) plane near 20.5 to 21.0 degrees. 8) The positive electrode active material according to any one of claims 1 to 7. 前記正極活物質が、炭素で被覆された表面を有する請求項1〜8のいずれか1つに記載の正極活物質。   The positive electrode active material according to claim 1, wherein the positive electrode active material has a surface coated with carbon. 請求項1〜9のいずれか1つに記載の正極活物質と、導電材と、バインダーとを含むことを特徴とする正極。   A positive electrode comprising the positive electrode active material according to claim 1, a conductive material, and a binder. 請求項1〜9のいずれか1つに記載の正極活物質を含む正極と、負極と、電解質と、セパレータとを有することを特徴とする非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising a positive electrode including the positive electrode active material according to claim 1, a negative electrode, an electrolyte, and a separator.
JP2010124760A 2010-05-31 2010-05-31 Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery Expired - Fee Related JP5463208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010124760A JP5463208B2 (en) 2010-05-31 2010-05-31 Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010124760A JP5463208B2 (en) 2010-05-31 2010-05-31 Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2011253629A true JP2011253629A (en) 2011-12-15
JP5463208B2 JP5463208B2 (en) 2014-04-09

Family

ID=45417412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010124760A Expired - Fee Related JP5463208B2 (en) 2010-05-31 2010-05-31 Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5463208B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022790A (en) * 2010-07-12 2012-02-02 Sharp Corp Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2014069207A1 (en) * 2012-10-31 2014-05-08 シャープ株式会社 Positive-electrode active substance, positive electrode, and non-aqueous electrolyte secondary cell
WO2014175352A1 (en) * 2013-04-26 2014-10-30 シャープ株式会社 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery comprising same
WO2014175350A1 (en) * 2013-04-26 2014-10-30 シャープ株式会社 Lithium ion secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085015A (en) * 1997-03-25 2000-07-04 Hydro-Quebec Lithium insertion electrode materials based on orthosilicate derivatives
JP2001307726A (en) * 2000-04-24 2001-11-02 Yuasa Corp Electrode material and battery using the same
JP2002198050A (en) * 2000-12-27 2002-07-12 Denso Corp Positive electrode active material and nonaqueous electrolyte secondary battery
JP2005519451A (en) * 2002-03-06 2005-06-30 ヴァレンス テクノロジー インコーポレーテッド Alkali / transition metal phosphate and electrode active material related thereto
JP2009170401A (en) * 2007-12-19 2009-07-30 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
WO2010134579A1 (en) * 2009-05-22 2010-11-25 シャープ株式会社 Positive pole active material, positive pole, and nonaqueous secondary cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085015A (en) * 1997-03-25 2000-07-04 Hydro-Quebec Lithium insertion electrode materials based on orthosilicate derivatives
JP2001307726A (en) * 2000-04-24 2001-11-02 Yuasa Corp Electrode material and battery using the same
JP2002198050A (en) * 2000-12-27 2002-07-12 Denso Corp Positive electrode active material and nonaqueous electrolyte secondary battery
JP2005519451A (en) * 2002-03-06 2005-06-30 ヴァレンス テクノロジー インコーポレーテッド Alkali / transition metal phosphate and electrode active material related thereto
JP2009170401A (en) * 2007-12-19 2009-07-30 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
WO2010134579A1 (en) * 2009-05-22 2010-11-25 シャープ株式会社 Positive pole active material, positive pole, and nonaqueous secondary cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022790A (en) * 2010-07-12 2012-02-02 Sharp Corp Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2014069207A1 (en) * 2012-10-31 2014-05-08 シャープ株式会社 Positive-electrode active substance, positive electrode, and non-aqueous electrolyte secondary cell
JP5957536B2 (en) * 2012-10-31 2016-07-27 シャープ株式会社 Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
WO2014175352A1 (en) * 2013-04-26 2014-10-30 シャープ株式会社 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery comprising same
WO2014175350A1 (en) * 2013-04-26 2014-10-30 シャープ株式会社 Lithium ion secondary battery
JPWO2014175352A1 (en) * 2013-04-26 2017-02-23 シャープ株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same

Also Published As

Publication number Publication date
JP5463208B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5843766B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5271975B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP5370937B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5551019B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5132727B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
EP2187467B1 (en) Cathode active material, cathode, and nonaqueous secondary battery
WO2014010476A1 (en) Electrode for lithium secondary cell, method for manufacturing same, lithium secondary cell, and method for manufacturing same
JP5451671B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5451681B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5463208B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP5548523B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP5847204B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5463222B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
US9373844B2 (en) Positive electrode active substance containing lithium-containing metal oxide
JP5539802B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, cathode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2014021395A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries
JP5463207B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP6416082B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JP2016015197A (en) Positive electrode and nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5463208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees