JP2011252892A - Measuring instrument - Google Patents

Measuring instrument Download PDF

Info

Publication number
JP2011252892A
JP2011252892A JP2010128824A JP2010128824A JP2011252892A JP 2011252892 A JP2011252892 A JP 2011252892A JP 2010128824 A JP2010128824 A JP 2010128824A JP 2010128824 A JP2010128824 A JP 2010128824A JP 2011252892 A JP2011252892 A JP 2011252892A
Authority
JP
Japan
Prior art keywords
amount
received light
light
light reception
reception amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010128824A
Other languages
Japanese (ja)
Inventor
Noriyuki Kurihara
宣之 栗原
Tomonari Torii
友成 鳥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP2010128824A priority Critical patent/JP2011252892A/en
Publication of JP2011252892A publication Critical patent/JP2011252892A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring instrument that automatically corrects a measured value by discriminating a change of receiving light quantity caused by approach of a work-piece and a change of receiving light quantity caused by influence of adhesion of dust or the like.SOLUTION: The measuring instrument is composed of a reference receiving light quantity storage unit 32 for retaining a reference receiving light quantity A that shows a receiving light quantity when a work-piece W does not enter a measuring area 2, a measurement value calculation unit 33 for calculating a measurement value y showing an advancement amount of the work-piece W into the measuring area 2 based on a ratio of the reference receiving light quantity A and a receiving light quantity X, a reference receiving light quantity correction unit 38 for correcting the reference receiving light quantity A so that the ratio of the reference receiving light quantity A and the receiving light quantity X becomes closer to a predetermined value, and a change rate calculation unit 35 for obtaining a change rate of the receiving light quantity X corresponding to an advancing speed V of the work-piece W into the measuring area 2. The reference receiving light quantity correction unit 38 corrects the reference receiving light quantity A when the change rate is smaller than a predetermined threshold Th1 and the receiving light quantity X is larger than a threshold Th2 determined based on the reference receiving light quantity A.

Description

本発明は、測定器に係り、さらに詳しくは、ワークが通過する測定領域に検出光を照射する投光素子と、測定領域を介して検出光を受光し、測定領域に対するワークの進入量に応じた受光量を検出する受光素子とを備えた測定器の改良に関する。   The present invention relates to a measuring instrument. More specifically, the present invention relates to a light projecting element that irradiates detection light to a measurement region through which a workpiece passes, and the detection light received through the measurement region, in accordance with the amount of work entering the measurement region. The present invention relates to an improvement of a measuring instrument including a light receiving element that detects the amount of received light.

FA(Factory Automation)システムでは、搬送中のワークを検出する検出装置として、寸法測定器が用いられる。寸法測定器は、ワークが通過する測定領域に検出光を照射する投光素子と、測定領域を介して投光素子からの検出光を受光し、測定領域に対するワークの進入量に応じた受光量を検出する受光素子からなる(例えば、特許文献1)。一般に、受光素子により検出される受光量は、粉塵の付着によるレンズの汚れなどの影響により変動する。そこで、従来の寸法測定器では、測定領域に対するワークの進入量を示す測定値を求める際に、オペレータが操作したタイミングで取得された受光量に基づいて基準値を補正し、補正後の基準値を用いて測定値を算出していた。つまり、ワークが測定領域に未進入であるときに、オペレータが寸法測定器を操作して基準値を補正することにより、レンズの汚れの影響が補償された正しい測定値を得ることができる。   In an FA (Factory Automation) system, a dimension measuring instrument is used as a detection device that detects a workpiece being conveyed. The dimension measuring device receives the detection light from the light projecting element that irradiates the measurement light to the measurement area through which the work passes, and the amount of light received according to the amount of the work entering the measurement area. (For example, patent document 1). In general, the amount of light received detected by the light receiving element varies due to the influence of dirt on the lens due to the adhesion of dust. Therefore, in the conventional dimension measuring device, when obtaining a measurement value indicating the amount of work entering the measurement region, the reference value is corrected based on the received light amount acquired at the timing operated by the operator, and the corrected reference value The measured value was calculated using. In other words, when the workpiece has not entered the measurement area, the operator can operate the dimension measuring device to correct the reference value, thereby obtaining a correct measurement value in which the influence of lens contamination is compensated.

特開2000−35310号公報JP 2000-35310 A

しかしながら、上述した様な寸法測定器では、ワークが測定領域に未進入であるときのタイミングをオペレータが指示しなければならないので、基準値の補正処理を自動化することは困難であった。   However, in the dimension measuring instrument as described above, it is difficult for the operator to instruct the timing when the workpiece has not yet entered the measurement area, so that it is difficult to automate the reference value correction process.

本発明は、上記事情に鑑みてなされたものであり、粉塵の付着などがあっても正しい測定値を得ることができる測定器を提供することを目的とする。特に、ワークの進入による受光量の変化と粉塵の付着などの影響による受光量の変化とを識別して、自動的に測定値を補正することができる測定器を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the measuring device which can obtain a correct measured value, even if there exists adhesion of dust. In particular, it is an object of the present invention to provide a measuring device that can discriminate between a change in the amount of received light due to the entry of a workpiece and a change in the amount of received light due to the influence of dust adhesion and the like, and can automatically correct the measurement value.

第1の本発明による測定器は、ワークが通過する測定領域に平行光を照射する投光部と、上記測定領域を介して上記平行光を受光し、上記測定領域に対するワークの進入量に応じて変化する受光量を検出する受光部とを有する測定器であって、ワークが上記測定領域に進入していないときの受光量を示す基準受光量を保持する基準受光量記憶手段と、上記基準受光量及び上記受光部で検出した受光量の比に基づいて、上記測定領域に対するワークの進入量を示す測定値を算出する測定値算出手段と、上記基準受光量及び上記受光部で検出した受光量の比が予め定められた値に近づくように、上記基準受光量を補正する基準受光量補正手段と、ワークの上記測定領域への進入速度に応じた受光量の変化率を求める変化率算出手段とを備え、上記基準受光量補正手段が、上記変化率が、予め定められた第一の閾値よりも小さく、かつ、上記受光部で検出した受光量が、上記基準受光量に基づき定められる第二の閾値よりも大きい場合に、上記基準受光量を補正するように構成される。   A measuring instrument according to a first aspect of the present invention receives a light projecting unit that irradiates parallel light to a measurement region through which a work passes, and receives the parallel light through the measurement region, and according to the amount of work entering the measurement region. A reference light receiving unit for detecting a received light amount, and a reference received light amount storage means for holding a reference received light amount indicating a received light amount when the workpiece does not enter the measurement area, and the reference Based on the ratio of the amount of received light and the amount of received light detected by the light receiving unit, a measurement value calculating means for calculating a measured value indicating the amount of work entering the measurement area, and the light receiving amount detected by the reference received light amount and the light receiving unit Reference light amount correction means for correcting the reference light reception amount so that the ratio of the amounts approaches a predetermined value, and a change rate calculation for obtaining a change rate of the light reception amount according to the approach speed of the workpiece into the measurement area Means and The quasi-received light amount correcting means has the rate of change smaller than a predetermined first threshold value, and the received light amount detected by the light receiving unit is smaller than a second threshold value determined based on the reference received light amount. When it is larger, it is configured to correct the reference received light amount.

この測定器では、測定値算出手段により算出される測定値が、ワークが測定領域に進入していないとき、すなわち、未進入状態であるときの測定値に近づくように、基準受光量が自動的に補正される。その際、受光量の変化率が予め定められた第一の閾値よりも小さい場合に基準受光量の補正が行われるので、進入速度が一定値以上であるワークの進入による急峻な受光量の変化と、粉塵の付着などの影響による緩やかな(比較的遅い)受光量の変化とを識別して基準受光量を補正させることができる。また、受光量が基準受光量から求められる第二の閾値よりも大きい場合に基準受光量の補正が行われるので、一定サイズ以上のワークの進入による受光量の変化と、粉塵の付着などの影響による受光量の変化とを識別して基準受光量を補正させることができる。従って、ワークの進入による受光量の変化と粉塵の付着などの影響による受光量の変化とを識別して、自動的に測定値を補正することができる。   In this measuring instrument, the reference light reception amount is automatically set so that the measurement value calculated by the measurement value calculation means approaches the measurement value when the workpiece has not entered the measurement area, that is, when the workpiece is not yet entered. It is corrected to. At that time, when the rate of change in the amount of received light is smaller than a predetermined first threshold value, the reference amount of received light is corrected. Therefore, a sharp change in the amount of received light due to the entry of a workpiece whose approach speed is a certain value or more. And a gradual (relatively slow) change in received light amount due to the influence of dust adhesion or the like can be identified to correct the reference received light amount. In addition, when the received light amount is larger than the second threshold obtained from the reference received light amount, the reference received light amount is corrected, so the change in the received light amount due to the entry of a workpiece of a certain size or more and the influence of dust adhesion, etc. It is possible to correct the reference received light amount by discriminating the change in the received light amount due to. Accordingly, it is possible to identify the change in the amount of received light due to the entry of the workpiece and the change in the amount of received light due to the influence of dust adhesion, etc., and automatically correct the measurement value.

第2の本発明による測定器は、上記構成に加え、上記基準受光量補正手段は、上記基準受光量を補正する際に、補正量が予め定められた上限補正量を越えないように上記基準受光量の補正を行うように構成される。   The measuring device according to the second aspect of the present invention, in addition to the above-described configuration, may be configured such that the reference received light amount correction means corrects the reference received light amount so that the correction amount does not exceed a predetermined upper limit correction amount. It is configured to correct the amount of received light.

この様な構成によれば、基準受光量を補正する際の補正量を予め定められた上限補正量を越えない範囲に制限しているので、遅いワークが進入した場合でも、測定値の誤差が少なくて済む。   According to such a configuration, the correction amount when correcting the reference light reception amount is limited to a range that does not exceed a predetermined upper limit correction amount. Less is enough.

第3の本発明による測定器は、上記構成に加え、上記基準受光量補正手段が、上記受光部が検出した受光量が予め定められた補正限界受光量よりも小さい場合に、上記基準受光量の補正を行わないように構成される。この様な構成によれば、受光量の変化が小さい場合に、受光量の低下に追従して基準受光量がいつまでも補正され続けるのを抑制することができる。逆に言えば、受光量が予め定められた補正限界受光量以上である場合には、基準受光量の補正が行われる。   In addition to the above-described configuration, the measuring device according to a third aspect of the present invention is configured so that the reference received light amount correction unit includes the reference received light amount when the received light amount detected by the light receiving unit is smaller than a predetermined correction limit received light amount. The correction is not performed. According to such a configuration, when the change in the amount of received light is small, it is possible to prevent the reference received light amount from being corrected indefinitely following the decrease in the received light amount. In other words, when the amount of received light is greater than or equal to a predetermined correction limit amount of received light, the reference amount of received light is corrected.

第4の本発明による測定器は、上記構成に加え、上記基準受光量補正手段が、一定期間における上記変化率が第一の閾値未満となった場合に、上記基準受光量の補正を行うように構成される。この様な構成によれば、ノイズや温度変化の影響により受光量が大きく変動する場合であっても、ワークの進入による受光量の変化と、粉塵の付着などの影響による受光量の変化とを識別して基準受光量を正しく補正させることができる。また、基準受光量を補正するか否かの判断を安定化させることができる。   A measuring instrument according to a fourth aspect of the present invention is configured such that, in addition to the above configuration, the reference light reception amount correction unit corrects the reference light reception amount when the rate of change in a certain period is less than a first threshold value. Configured. According to such a configuration, even when the amount of received light fluctuates greatly due to the influence of noise or temperature change, the change in the amount of received light due to the entry of a workpiece and the change in the amount of received light due to the influence of dust adhesion etc. It is possible to correct the reference received light amount by identifying. In addition, it is possible to stabilize the determination of whether or not to correct the reference light reception amount.

第5の本発明による測定器は、上記構成に加え、上記基準受光量に一定比率を乗じることにより、第二の閾値を算出する閾値算出手段を備えて構成される。この様な構成によれば、基準受光量に追従させて第二の閾値を適切に設定することができる。   A measuring instrument according to a fifth aspect of the present invention includes a threshold value calculation means for calculating a second threshold value by multiplying the reference received light amount by a certain ratio in addition to the above configuration. According to such a configuration, the second threshold value can be appropriately set by following the reference received light amount.

第6の本発明による測定器は、上記構成に加え、上記一定比率に関するパラメータを入力するための操作入力手段を備え、上記閾値算出手段が、上記基準受光量及び上記パラメータに基づいて、第二の閾値を算出するように構成される。この様な構成によれば、ユーザは、ノイズと判断する受光量(測定値)に応じて第二の閾値を適切に設定することができる。   A measuring instrument according to a sixth aspect of the present invention comprises an operation input means for inputting a parameter relating to the constant ratio in addition to the configuration described above, and the threshold value calculation means is configured to output a second value based on the reference received light amount and the parameter. The threshold is calculated. According to such a configuration, the user can appropriately set the second threshold according to the amount of received light (measured value) determined as noise.

第7の本発明による測定器は、上記構成に加え、上記基準受光量補正手段が、上記変化率の絶対値と第一の閾値とを比較し、この比較結果に基づいて上記基準受光量の補正を行うように構成される。この様な構成によれば、受光量が低下する場合の閾値と増加する場合の閾値とが共通化されるので、構成を簡素化することができる。   In the measuring device according to the seventh aspect of the present invention, in addition to the above configuration, the reference light reception amount correction means compares the absolute value of the change rate with a first threshold value, and based on the comparison result, the reference light reception amount It is configured to make corrections. According to such a configuration, the threshold when the amount of received light decreases and the threshold when the amount of light received increase are made common, so that the configuration can be simplified.

第8の本発明による測定器は、上記構成に加え、上記測定値算出手段により算出された測定値を表示する測定値表示手段を備えて構成される。   A measuring instrument according to an eighth aspect of the present invention includes a measurement value display unit that displays the measurement value calculated by the measurement value calculation unit in addition to the above configuration.

本発明による測定器によれば、受光量の変化率が予め定められた第一の閾値よりも小さい場合に基準受光量の補正が行われるので、進入速度が一定値以上であるワークの進入による受光量の変化と、粉塵の付着などの影響による受光量の変化とを識別して基準受光量を補正させることができる。また、受光量が基準受光量から求められる第二の閾値よりも大きい場合に基準受光量の補正が行われるので、一定サイズ以上のワークの進入による受光量の変化と、粉塵の付着などの影響による受光量の変化とを識別して基準受光量を補正させることができる。従って、粉塵の付着などがあっても正しい測定値を得ることができる測定器を実現することができる。   According to the measuring instrument according to the present invention, when the rate of change in the amount of received light is smaller than a predetermined first threshold, the reference amount of received light is corrected. The reference received light amount can be corrected by discriminating the change in the received light amount and the change in the received light amount due to the influence of dust adhesion or the like. In addition, when the received light amount is larger than the second threshold obtained from the reference received light amount, the reference received light amount is corrected, so the change in the received light amount due to the entry of a workpiece of a certain size or more and the influence of dust adhesion, etc. It is possible to correct the reference received light amount by discriminating the change in the received light amount due to. Therefore, it is possible to realize a measuring instrument that can obtain a correct measurement value even if dust adheres.

本発明の実施の形態による測定器を含むワーク検出システムの一構成例を示した斜視図であり、測定器の一例として寸法測定器10が示されている。It is the perspective view which showed one structural example of the workpiece | work detection system containing the measuring device by embodiment of this invention, and the dimension measuring device 10 is shown as an example of a measuring device. 図1のワーク検出システムにおける寸法測定器10の動作の一例を模式的に示した説明図であり、測定領域2へのワークWの進入時の様子が示されている。FIG. 2 is an explanatory diagram schematically showing an example of the operation of the dimension measuring instrument 10 in the workpiece detection system of FIG. 1, and shows a state when the workpiece W enters the measurement region 2. 図1の寸法測定器10の動作の一例を模式的に示した説明図であり、検出された受光量に基づいて、基準受光量Aの補正が自動的に行われる様子が示されている。It is explanatory drawing which showed typically an example of operation | movement of the dimension measuring device 10 of FIG. 1, and the mode that the correction | amendment of the reference | standard light reception amount A is automatically performed based on the detected light reception amount is shown. 図1の寸法測定器10の一構成例を示したブロック図であり、コントローラ13内の機能構成の一例が示されている。FIG. 2 is a block diagram illustrating a configuration example of the dimension measuring instrument 10 in FIG. 1, illustrating an example of a functional configuration in the controller 13. 図1の寸法測定器10の動作の一例を示した図であり、一定サイズ以上のワークWが進入した場合の受光量X及び測定値yの変化の様子が示されている。It is the figure which showed an example of operation | movement of the dimension measuring device 10 of FIG. 1, and the mode of the light reception amount X and the measured value y when the workpiece | work W more than fixed size approached is shown. 図1の寸法測定器10の動作の一例を示した図であり、一定サイズ未満のゴミが付着した場合の受光量X及び測定値yの変化の様子が示されている。It is the figure which showed an example of operation | movement of the dimension measuring device 10 of FIG. 1, and the mode of change of the light reception amount X and the measured value y when the dust of less than a fixed size adheres is shown. 図1の寸法測定器10の動作の一例を示した図であり、一定値以上の進入速度VでワークWが進入する場合の受光量X及び測定値yの変化の様子が示されている。It is the figure which showed an example of operation | movement of the dimension measuring device 10 of FIG. 1, and the mode of the light reception amount X and the measured value y when the workpiece | work W approachs with the approach speed V more than a fixed value is shown. 図1の寸法測定器10の動作の一例を示した図であり、一定値未満の進入速度VでワークWが進入する場合の受光量X及び測定値yの変化の様子が示されている。It is the figure which showed an example of operation | movement of the dimension measuring device 10 of FIG. 1, and the mode of the light reception amount X and the measured value y when the workpiece | work W approachs with the approach speed V below a fixed value is shown. 図1の寸法測定器10の他の構成例を示した図である。It is the figure which showed the other structural example of the dimension measuring device 10 of FIG.

<ワーク検出システム>
図1は、本発明の実施の形態による測定器を含むワーク検出システムの一構成例を示した斜視図であり、測定器の一例として寸法測定器10が示されている。このワーク検出システムでは、ベルトコンベアBなどの搬送装置により搬送中のワークWが、寸法測定器10により検出される。ワークWは、測定対象物であり、概ね一定の進入速度Vで測定領域2を通過する。
<Work detection system>
FIG. 1 is a perspective view showing one configuration example of a workpiece detection system including a measuring instrument according to an embodiment of the present invention, and a dimension measuring instrument 10 is shown as an example of the measuring instrument. In this workpiece detection system, the workpiece measuring machine 10 is detected by the dimension measuring device 10 by a conveyor such as the belt conveyor B. The workpiece W is a measurement object and passes through the measurement region 2 at a substantially constant approach speed V.

寸法測定器10は、投光部11、受光部12及びコントローラ13からなる測定器であり、ワークWが通過する測定領域2に検出光1を照射し、測定領域2に対するワークWの進入量に応じた受光量を検出する。投光部11は、測定領域2に検出光1を照射するための投光素子と、その検出光1を平行光にするための光学レンズとを有する光源ユニットである。上記投光素子としては、LED(発光ダイオード)、LD(レーザダイオード)などの発光素子が用いられる。   The dimension measuring device 10 is a measuring device including a light projecting unit 11, a light receiving unit 12, and a controller 13, and irradiates the measurement light 2 to the measurement region 2 through which the workpiece W passes, and the amount of the workpiece W entering the measurement region 2. The amount of received light is detected. The light projecting unit 11 is a light source unit having a light projecting element for irradiating the measurement region 2 with the detection light 1 and an optical lens for making the detection light 1 parallel light. As the light projecting element, a light emitting element such as an LED (light emitting diode) or an LD (laser diode) is used.

受光部12は、測定領域2を介して投光部11からの検出光1を受光し、測定領域2に対するワークWの進入量に応じた受光量を検出するための受光素子及び集光レンズを有する受光量検出ユニットである。上記受光素子としては、例えば、単数のPD(フォトダイオード)が用いられる。なお、複数のPDやCCDを用いても良いが、単数の方がシステムを簡略化することができる。   The light receiving unit 12 receives the detection light 1 from the light projecting unit 11 through the measurement region 2, and includes a light receiving element and a condenser lens for detecting the amount of light received according to the amount of work W entering the measurement region 2. A received light amount detection unit. As the light receiving element, for example, a single PD (photodiode) is used. A plurality of PDs or CCDs may be used, but a single system can simplify the system.

検出光1は、平行光からなり、その任意の断面として、測定領域2が形成される。投光部11から出射された検出光1は、測定領域を介して受光部12の集光レンズに入射し、受光素子に集光される。つまり、ワークWが測定領域2に未進入であるときに、投光部11から受光部12に向けて出射された検出光1は、受光部12に略全入光している。   The detection light 1 is composed of parallel light, and a measurement region 2 is formed as an arbitrary cross section thereof. The detection light 1 emitted from the light projecting unit 11 enters the condensing lens of the light receiving unit 12 through the measurement region, and is collected on the light receiving element. That is, when the workpiece W has not yet entered the measurement area 2, the detection light 1 emitted from the light projecting unit 11 toward the light receiving unit 12 is substantially entirely incident on the light receiving unit 12.

この例では、測定領域2として、ワークWの進行方向に幅を有する矩形領域が形成されている。また、投光部11及び受光部12は、ヘッドユニットとして、ワークWの搬送路の近くに配置される。具体的には、投光部11及び受光部12が、ワークWを挟んで対向配置され、測定領域2を透過した検出光1が受光部12により受光される。   In this example, a rectangular region having a width in the traveling direction of the workpiece W is formed as the measurement region 2. In addition, the light projecting unit 11 and the light receiving unit 12 are disposed as a head unit near the conveyance path of the workpiece W. Specifically, the light projecting unit 11 and the light receiving unit 12 are arranged to face each other with the workpiece W interposed therebetween, and the detection light 1 transmitted through the measurement region 2 is received by the light receiving unit 12.

コントローラ13は、投光部11を駆動制御し、受光部12により検出された受光量に基づいて、測定領域2に対するワークWの進入量を示す測定値を算出する本体ユニットであり、測定値表示部21及び操作入力部22が設けられている。測定値表示部21は、算出された測定値を表示するための表示装置である。操作入力部22は、パラメータなどを入力するための入力装置である。算出された測定値は、PLC(プログラマブルロジックコントローラ)などの制御装置へ出力される。   The controller 13 is a main unit that drives and controls the light projecting unit 11 and calculates a measurement value indicating the amount of work W entering the measurement region 2 based on the amount of light received detected by the light receiving unit 12. A unit 21 and an operation input unit 22 are provided. The measurement value display unit 21 is a display device for displaying the calculated measurement value. The operation input unit 22 is an input device for inputting parameters and the like. The calculated measurement value is output to a control device such as a PLC (programmable logic controller).

図2(a)及び(b)は、図1のワーク検出システムにおける寸法測定器10の動作の一例を模式的に示した説明図であり、測定領域2へのワークWの進入時の様子が示されている。図2(a)には、測定領域2外から測定領域2内にワークWが一定の進入速度Vで進入する様子が示され、図2(b)には、その際の受光量の変化が示されている。   FIGS. 2A and 2B are explanatory views schematically showing an example of the operation of the dimension measuring instrument 10 in the workpiece detection system of FIG. 1, and how the workpiece W enters the measurement region 2. It is shown. FIG. 2A shows a state where the workpiece W enters from the outside of the measurement area 2 into the measurement area 2 at a constant approach speed V. FIG. 2B shows the change in the amount of received light at that time. It is shown.

受光部12により検出される受光量は、ワークWが測定領域2に進入していない状態において、概ね一定であり、ワークWが一定の進入速度Vで測定領域2内に進入している途中の状態において、一定の傾きで減少する。そして、ワークWの進入方向に関し、測定領域2の長さがワークWよりも長ければ、ワークWが測定領域2内を移動している状態において、受光量は、概ね一定である。   The amount of received light detected by the light receiving unit 12 is substantially constant in a state where the workpiece W has not entered the measurement region 2, and the workpiece W is in the middle of entering the measurement region 2 at a constant entry speed V. In state, it decreases with a constant slope. If the length of the measurement region 2 is longer than the workpiece W with respect to the entry direction of the workpiece W, the amount of received light is substantially constant when the workpiece W is moving in the measurement region 2.

この例では、ワークWが測定領域2に進入していない時刻0から時刻tまでの間、一定の受光量xである。また、ワークWが進入速度Vで測定領域2内に進入している途中の時刻tから時刻tまでの間に、受光量は、xからx(x<x)まで、一定の傾きで減少している。そして、ワークWが測定領域2内を移動している時刻t以降、一定の受光量xとなっている。 In this example, the light reception amount x 1 is constant from time 0 to time t 1 when the workpiece W does not enter the measurement region 2. Further, during the middle of the time t 1 at which the workpiece W is entered the measuring area 2 at approach speed V until time t 2, the amount of light received from x 1 to x 2 (x 2 <x 1), It decreases with a certain slope. Then, after the time t 2 when the workpiece W is moving in the measurement region 2, the light reception amount x 2 is constant.

コントローラ13により算出される測定値yは、ワークWが測定領域2に進入していないときの受光量を基準とし、この基準受光量Aと検出された受光量xとの比(x/A)から求められる。   The measurement value y calculated by the controller 13 is based on the amount of light received when the workpiece W has not entered the measurement region 2, and the ratio (x / A) between this reference amount of light received A and the amount of light received x detected. It is requested from.

例えば、測定値yは、受光量xが基準受光量Aと一致していれば、100%(又は1)と求められ、ワークWにより検出光1が完全に遮断され、受光量xが0であれば、0%(又は0)と求められる。或いは、測定領域2の長さが30mmであるヘッドユニットの場合、測定値yは、受光量xが基準受光量Aと一致していれば、30mmと求められ、ワークWにより検出光1が完全に遮断され、受光量xが0であれば、0mmと求められる。なお、遮蔽状態を100%としても良い。   For example, the measured value y is determined to be 100% (or 1) if the received light amount x matches the reference received light amount A, and the detection light 1 is completely blocked by the work W, and the received light amount x is 0. If there is, 0% (or 0) is obtained. Alternatively, in the case of a head unit in which the length of the measurement region 2 is 30 mm, the measured value y is obtained as 30 mm if the received light amount x matches the reference received light amount A. If the received light amount x is 0, 0 mm is obtained. The shielding state may be 100%.

<オートアジャスト>
図3は、図1の寸法測定器10の動作の一例を模式的に示した説明図であり、検出された受光量xに基づいて、基準受光量Aの補正が自動的に行われる様子が示されている。受光部12では、一定の時間間隔T1で繰返し受光量xが検出される。すなわち、受光量xの検出点3は、一定の時間間隔T1、例えば、T1=160μsで生成される。
<Auto adjustment>
FIG. 3 is an explanatory diagram schematically showing an example of the operation of the dimension measuring instrument 10 of FIG. 1, and the reference light receiving amount A is automatically corrected based on the detected light receiving amount x. It is shown. The light receiving unit 12 repeatedly detects the received light amount x at a constant time interval T1. That is, the detection point 3 of the received light amount x is generated at a constant time interval T1, for example, T1 = 160 μs.

寸法測定器10では、ノイズや温度変化の影響を低減させるために、一定時間T2内に検出された複数の受光量xに対し、その時間平均として平均受光量Xを求め、この平均受光量Xに基づいて測定値yが算出される。例えば、128個の検出点3から平均受光量Xが求められる。すなわち、平均受光量Xは、一定の時間間隔T2=20.48msで繰返し検出され、その検出点4は、T2ごとに生成される。   In order to reduce the influence of noise and temperature change, the dimension measuring instrument 10 obtains an average received light amount X as a time average of a plurality of received light amounts x detected within a predetermined time T2, and this average received light amount X The measured value y is calculated based on For example, the average received light amount X is obtained from 128 detection points 3. That is, the average received light amount X is repeatedly detected at a constant time interval T2 = 20.48 ms, and the detection point 4 is generated every T2.

測定値yは、平均受光量Xと基準受光量Aとの比から求められる。一方、基準受光量Aは、算出される測定値yが、ワークWが測定領域2に進入していないときの測定値に近づくように、補正される。基準受光量Aを補正する際の補正量は、平均受光量Xと基準受光量Aとの差分に基づいて定められる。   The measured value y is obtained from the ratio between the average received light amount X and the reference received light amount A. On the other hand, the reference received light amount A is corrected so that the calculated measurement value y approaches the measurement value when the workpiece W has not entered the measurement region 2. The correction amount for correcting the reference light reception amount A is determined based on the difference between the average light reception amount X and the reference light reception amount A.

ここでは、基準受光量Aに対するこの様な補正をアジャストと呼び、自動的に補正するオートアジャストを実行するためのアジャスト実行条件として、次の(1)〜(5)が要求される。
(1)平均受光量Xの変化率が、予め定められた閾値Th1以下である。
(2)平均受光量Xが、基準受光量Aから求められる閾値Th2以上である。
(3)平均受光量Xが、予め定められた補正限界受光量Th3以上である。
(4)条件(1)〜(3)が一定回数以上連続して満たされる。
(5)基準受光量Aの補正量は、予め定められた上限補正量Th5を越えない。
Here, such correction with respect to the reference received light amount A is referred to as adjustment, and the following (1) to (5) are required as adjustment execution conditions for executing automatic adjustment for automatic correction.
(1) The rate of change of the average amount of received light X is equal to or less than a predetermined threshold Th1.
(2) The average amount of received light X is equal to or greater than the threshold Th2 obtained from the reference amount of received light A.
(3) The average received light amount X is equal to or greater than a predetermined correction limit received light amount Th3.
(4) Conditions (1) to (3) are satisfied continuously for a certain number of times.
(5) The correction amount of the reference light reception amount A does not exceed a predetermined upper limit correction amount Th5.

平均受光量Xの変化率は、ワークWの測定領域2への進入速度Vに応じて変化し、現在の平均受光量Xと過去に検出された平均受光量Xとの差分から求められる。例えば、変化率は、{(現在の平均受光量X)−(過去に検出された平均受光量X)}/(現在の基準受光量A)から求められる。条件(1)では、この様な変化率と閾値Th1、例えば、Th1=0.3%とが比較される。   The change rate of the average received light amount X changes according to the approach speed V of the workpiece W to the measurement region 2 and is obtained from the difference between the current average received light amount X and the average received light amount X detected in the past. For example, the rate of change is obtained from {(current average received light amount X) − (average received light amount X detected in the past)} / (current reference received light amount A). In the condition (1), such a change rate is compared with a threshold Th1, for example, Th1 = 0.3%.

なお、変化率が正である場合に、変化率を正の閾値Th1(+)と比較し、変化率が負である場合に、変化率を負の閾値Th1(−)と比較する構成とし、変化率が、Th1(−)以上Th1(+)以下であることを条件(1)としても良いが、ここでは、構成を簡素化するために、変化率の絶対値を正の閾値Th1と比較し、変化率の絶対値が閾値Th1以下であることを条件(1)とする。   When the rate of change is positive, the rate of change is compared with a positive threshold Th1 (+), and when the rate of change is negative, the rate of change is compared with a negative threshold Th1 (−). The condition (1) may be that the rate of change is greater than or equal to Th1 (−) and less than or equal to Th1 (+). Here, in order to simplify the configuration, the absolute value of the rate of change is compared with the positive threshold value Th1. The condition (1) is that the absolute value of the change rate is equal to or less than the threshold value Th1.

閾値Th2は、ユーザが指定するパラメータと基準受光量Aとに基づいて定められ、基準受光量Aの値に応じて変化する。例えば、基準受光量Aの3%までの受光量変化をゴミの付着によるものと判断させる場合、閾値Th2は、現在の基準受光量Aの97%となる。補正限界受光量Th3としては、例えば、当初の基準受光量Aの80%と定められる。オートアジャストは、条件(1)〜(4)が全て満たされた場合に実行される。   The threshold value Th2 is determined based on the parameter specified by the user and the reference light reception amount A, and changes according to the value of the reference light reception amount A. For example, when it is determined that the change in the received light amount up to 3% of the reference received light amount A is due to dust adhesion, the threshold Th2 is 97% of the current reference received light amount A. The correction limit light reception amount Th3 is determined to be 80% of the initial reference light reception amount A, for example. The auto adjustment is executed when all of the conditions (1) to (4) are satisfied.

この例では、現在の平均受光量Xと、4回前、すなわち、81.92ms前に検出された平均受光量Xとの差分から変化率が求められる。そして、条件(1)〜(3)が連続して3回以上満たされた場合に、基準受光量Aの補正が実行される。   In this example, the rate of change is obtained from the difference between the current average received light amount X and the average received light amount X detected four times before, that is, 81.92 ms before. When the conditions (1) to (3) are continuously satisfied three times or more, the correction of the reference received light amount A is executed.

基準受光量Aを補正する際、平均受光量Xの変化率が予め定められた閾値Th4よりも大きければ、補正量が予め定められた上限補正量Th5を越えないように基準受光量Aの補正が行われる。つまり、基準受光量Aを補正する際の補正量は、予め定められた上限補正量Th5以下に制限されることが、アジャスト実行条件(5)である。例えば、Th4=Th5=当初の基準受光量Aの0.02%であり、変化率が閾値Th4よりも大きい場合、上限補正量Th5を越えない範囲で基準受光量Aの補正が行われる。一方、平均受光量Xの変化率が閾値Th4以下である場合には、平均受光量Xと基準受光量Aとの差分に応じた補正量で補正が行われる。   When correcting the reference light reception amount A, if the rate of change of the average light reception amount X is greater than a predetermined threshold Th4, the correction of the reference light reception amount A is performed so that the correction amount does not exceed the predetermined upper limit correction amount Th5. Is done. That is, the adjustment execution condition (5) is that the correction amount when correcting the reference light reception amount A is limited to a predetermined upper limit correction amount Th5 or less. For example, when Th4 = Th5 = 0.02% of the initial reference received light amount A and the rate of change is larger than the threshold Th4, the reference received light amount A is corrected within a range not exceeding the upper limit correction amount Th5. On the other hand, when the change rate of the average received light amount X is equal to or less than the threshold Th4, correction is performed with a correction amount corresponding to the difference between the average received light amount X and the reference received light amount A.

ここでは、測定値y、変化率及び閾値Th2を更新するサイクルと、基準受光量Aの補正を実行するか否かを判断するサイクルとが、平均受光量Xを更新するサイクルと同期しているものとする。つまり、平均受光量Xを更新するごとに、測定値yや変化率が更新され、アジャスト実行条件が満たされているか否かを判断する処理が行われる。   Here, the cycle for updating the measurement value y, the rate of change, and the threshold Th2 and the cycle for determining whether or not to correct the reference received light amount A are synchronized with the cycle for updating the average received light amount X. Shall. That is, every time the average received light amount X is updated, the measurement value y and the rate of change are updated, and processing for determining whether or not the adjustment execution condition is satisfied is performed.

<コントローラ>
図4は、図1の寸法測定器10の一構成例を示したブロック図であり、コントローラ13内の機能構成の一例が示されている。このコントローラ13は、測定値表示部21、操作入力部22、平均受光量算出部31、基準受光量記憶部32、測定値算出部33、受光量記憶部34、変化率算出部35、パラメータ記憶部36、閾値算出部37、基準受光量補正部38及び測定領域情報記憶部39により構成される。
<Controller>
FIG. 4 is a block diagram showing a configuration example of the dimension measuring instrument 10 of FIG. 1, and shows an example of a functional configuration in the controller 13. The controller 13 includes a measurement value display unit 21, an operation input unit 22, an average received light amount calculation unit 31, a reference received light amount storage unit 32, a measured value calculation unit 33, a received light amount storage unit 34, a change rate calculation unit 35, and a parameter storage. A unit 36, a threshold value calculation unit 37, a reference light reception amount correction unit 38, and a measurement area information storage unit 39.

平均受光量算出部31は、受光部12により検出された受光量xに基づいて、平均受光量Xを算出し、測定値算出部33、変化率算出部35及び基準受光量補正部38へ出力するとともに、受光量記憶部34に書き込む。基準受光量記憶部32には、ワークWが測定領域2に進入していないときの受光量を示す基準受光量Aが保持される。   The average received light amount calculation unit 31 calculates an average received light amount X based on the received light amount x detected by the light receiving unit 12, and outputs the average received light amount X to the measured value calculation unit 33, the change rate calculation unit 35, and the reference received light amount correction unit 38. At the same time, the received light amount is stored in the storage unit 34. The reference received light amount storage unit 32 stores a reference received light amount A indicating the received light amount when the workpiece W has not entered the measurement region 2.

測定値算出部33は、平均受光量Xと基準受光量Aとの比に基づいて、測定領域2に対するワークWの進入量を示す測定値yを算出し、測定値表示部21へ出力する。測定値yは、測定領域2に関する情報、例えば、測定領域2の幅や測定領域2の面積に基づいて算出される。この測定領域2に関する情報は、測定領域情報記憶部39に保持される。   The measurement value calculation unit 33 calculates a measurement value y indicating the amount of work W entering the measurement region 2 based on the ratio between the average light reception amount X and the reference light reception amount A, and outputs the measurement value y to the measurement value display unit 21. The measurement value y is calculated based on information about the measurement region 2, for example, the width of the measurement region 2 or the area of the measurement region 2. Information regarding the measurement region 2 is held in the measurement region information storage unit 39.

変化率算出部35は、ワークWの測定領域2への進入速度Vに応じた平均受光量Xの変化率を算出し、基準受光量補正部38へ出力する。平均受光量Xの変化率は、現在の平均受光量Xと、受光量記憶部34に保持されている過去の平均受光量Xとの差分に基づいて算出される。   The change rate calculation unit 35 calculates the change rate of the average received light amount X according to the entry speed V of the workpiece W into the measurement region 2 and outputs the change rate to the reference received light amount correction unit 38. The change rate of the average received light amount X is calculated based on the difference between the current average received light amount X and the past average received light amount X held in the received light amount storage unit 34.

パラメータ記憶部36には、操作入力部22により入力され、ワークWに基づいて決められるパラメータが保持される。閾値算出部37は、基準受光量Aと上記パラメータとに基づいて、閾値Th2を算出し、基準受光量補正部38へ出力する。具体的には、基準受光量Aに対し、パラメータ記憶部36に保持されているパラメータから求められる一定比率を乗算することにより、閾値Th2が得られる。或いは、基準受光量Aから一定値を減算することにより、閾値Th2が得られる。基準受光量Aから閾値Th2を求める方法としては、上述した方法以外のものであっても良い。   The parameter storage unit 36 holds parameters input by the operation input unit 22 and determined based on the workpiece W. The threshold value calculation unit 37 calculates the threshold value Th2 based on the reference light reception amount A and the above parameters, and outputs the threshold value Th2 to the reference light reception amount correction unit 38. Specifically, the threshold Th <b> 2 is obtained by multiplying the reference light reception amount A by a certain ratio obtained from the parameters stored in the parameter storage unit 36. Alternatively, the threshold value Th2 is obtained by subtracting a certain value from the reference received light amount A. As a method for obtaining the threshold value Th2 from the reference received light amount A, a method other than the method described above may be used.

閾値Th2は、基準受光量Aを補正するか否かを判断するための閾値であり、ユーザがノイズと判断するところの受光量からなる。この閾値Th2は、基準受光量Aに基づいて算出されることから、基準受光量Aに対して追従するパラメータである。   The threshold value Th2 is a threshold value for determining whether or not the reference received light amount A is to be corrected, and includes the received light amount that the user determines to be noise. The threshold Th2 is a parameter that follows the reference light reception amount A because it is calculated based on the reference light reception amount A.

基準受光量補正部38は、測定値算出部33により算出される測定値yが、ワークWが測定領域2に進入していないときの測定値に近づくように、基準受光量Aを補正し、基準受光量記憶部32内の基準受光量Aを更新する。具体的には、基準受光量Aと、平均受光量算出部31により算出された平均受光量Xとの比が予め定められた値、例えば、略1に近づくように、基準受光量Aの補正が行われる。つまり、基準受光量Aは、現在の受光量と略一致するように自動で補正される(後述する図6を参照)。   The reference light reception amount correction unit 38 corrects the reference light reception amount A so that the measurement value y calculated by the measurement value calculation unit 33 approaches the measurement value when the workpiece W does not enter the measurement region 2. The reference received light amount A in the reference received light amount storage unit 32 is updated. Specifically, the correction of the reference light reception amount A so that the ratio between the reference light reception amount A and the average light reception amount X calculated by the average light reception amount calculation unit 31 approaches a predetermined value, for example, approximately 1. Is done. That is, the reference received light amount A is automatically corrected so as to substantially match the current received light amount (see FIG. 6 described later).

基準受光量Aの補正は、アジャスト実行条件が満たされる場合に実行される。すなわち、基準受光量Aの補正は、平均受光量Xの変化率が予め定められた閾値Th1よりも小さく、かつ、平均受光量Xが閾値Th2よりも大きい場合に、実行される。ただし、平均受光量Xが予め定められた補正限界受光量Th3よりも小さい場合には、基準受光量Aの補正を行わない。   The correction of the reference light reception amount A is executed when the adjustment execution condition is satisfied. That is, the correction of the reference light reception amount A is executed when the rate of change of the average light reception amount X is smaller than a predetermined threshold value Th1 and the average light reception amount X is larger than the threshold value Th2. However, when the average received light amount X is smaller than a predetermined correction limit received light amount Th3, the reference received light amount A is not corrected.

また、基準受光量Aを補正する際には、変化率が予め定められた閾値Th4よりも大きければ、補正量が予め定められた上限補正量Th5を越えないように基準受光量Aの補正が行われる(後述する図8を参照)。   When correcting the reference light reception amount A, if the rate of change is greater than a predetermined threshold Th4, the correction of the reference light reception amount A is performed so that the correction amount does not exceed the predetermined upper limit correction amount Th5. Is performed (see FIG. 8 described later).

図5は、図1の寸法測定器10の動作の一例を示した図であり、一定サイズ以上のワークWが進入した場合の受光量X及び測定値yの変化の様子が示されている。以下の図5〜図8では、平均受光量Xを単に受光量Xと呼び、基準受光量A及び閾値Th2の初期値(デフォルト値)をそれぞれA1及びA2と記載し、補正限界受光量Th3をA3と記載している。また、受光量Xを表すグラフをB1、基準受光量Aを表すグラフをB2、閾値Th2を表すグラフをB3、補正限界受光量Th3を表すグラフをB4と記載している。   FIG. 5 is a diagram showing an example of the operation of the dimension measuring instrument 10 of FIG. 1, and shows how the received light amount X and the measured value y change when a workpiece W of a certain size or more enters. In FIG. 5 to FIG. 8, the average received light amount X is simply referred to as received light amount X, the initial values (default values) of the reference received light amount A and the threshold Th2 are described as A1 and A2, respectively, and the corrected limit received light amount Th3 is indicated. It is described as A3. In addition, a graph representing the received light amount X is described as B1, a graph representing the reference received light amount A is represented as B2, a graph representing the threshold value Th2 is represented as B3, and a graph representing the corrected limit received light amount Th3 is represented as B4.

ユーザがノイズと判断するところの受光量の下限値、すなわち、閾値Th2に対応する一定サイズ以上のワークW、例えば、直径1mmのワークWが測定領域2に進入した場合、グラフB1により表される受光量Xは、A1からA4まで低下する。受光量X=A4は、閾値Th2の初期値A2よりも小さく、また、時刻t11における受光量Xの変化率は、閾値Th1を越えている。 The lower limit of the amount of received light that the user determines to be noise, that is, a workpiece W of a certain size or more corresponding to the threshold Th2, for example, a workpiece W having a diameter of 1 mm, enters the measurement region 2 and is represented by a graph B1. The amount of received light X decreases from A1 to A4. Received light amount X = A4 is smaller than the initial value A2 of the threshold Th2, also the rate of change of the received light amount X at time t 11 is beyond the threshold value Th1.

すなわち、グラフB1により表される受光量Xは、ワークWが進入するまでの時刻0から時刻t11までの区間において、一定値X=A1、であり、時刻t11以降において、一定値X=A4である。時刻0から時刻t11までの区間は、アジャスト実行条件の(1)〜(4)が満たされ、基準受光量Aの補正が実行されるが、当初から受光量Xと基準受光量Aとが一致しているので、補正量はゼロとなっている。一方、時刻t11において、アジャスト実行条件の(1)、(2)及び(4)を満たさなくなり、また、時刻t11以降においても、アジャスト実行条件の(2)が満たされないので、基準受光量Aの補正は実行されない。 That is, the received light amount X represented by the graph B1 is in the interval from time 0 to the workpiece W enters to the time t 11, a constant value X = A1, at time t 11 after a constant value X = A4. Interval from time 0 to time t 11 is filled in the adjustment execution conditions (1) to (4), the correction of the reference received light amount A is executed, and the received light amount X and the reference received light amount A from the beginning Since they match, the correction amount is zero. At time t 11, the adjust execution condition (1), no longer satisfied (2) and (4), also at time t 11 after, since the adjust execution condition (2) is not satisfied, the reference amount of light received A correction is not performed.

このため、グラフB2及びB3は、時間軸に平行な直線となっている。なお、グラフB4は、補正限界受光量Th3が基準受光量Aの初期値A1から定められる固定値であるので、常に時間軸に平行な直線である。   For this reason, the graphs B2 and B3 are straight lines parallel to the time axis. The graph B4 is a straight line that is always parallel to the time axis because the correction limit light reception amount Th3 is a fixed value determined from the initial value A1 of the reference light reception amount A.

受光量Xと基準受光量Aとの比から求められる測定値yは、グラフB1と同様のグラフにより表され、時刻0から時刻t11までの区間で一定(y=a)であり、時刻t11以降において、a11(a11<a)となっている。この様に構成することにより、一定サイズ以上のワークWの進入による受光量Xの変化を識別することができる。つまり、一定サイズ以上のワークWが入ってきて、かつ、そのワークWが測定領域2内にそのまま留まったときには、オートアジャストを実行しないようにすることで、正しい測定値を得ることができる。 Measurements y obtained from the ratio of the received light quantity X and the reference received light amount A is represented by a graph similar to the graph B1, is constant in the interval from time 0 to time t 11 (y = a 1) , the time in t 11 or later, it has become a 11 (a 11 <a 1 ). With this configuration, it is possible to identify a change in the amount of received light X due to the entry of a workpiece W having a certain size or more. That is, when a work W of a certain size or more enters and the work W remains in the measurement area 2 as it is, a correct measurement value can be obtained by not performing auto-adjustment.

図6は、図1の寸法測定器10の動作の一例を示した図であり、一定サイズ未満のゴミが付着した場合の受光量X及び測定値yの変化の様子が示されている。一定サイズ未満のゴミ、例えば、直径0.5mmのゴミが付着した場合には、受光量Xが、A1からA5まで低下する。受光量X=A5は、閾値Th2の初期値A2よりも大きく、また、時刻t21における受光量Xの変化率は、閾値Th1を越えている。 FIG. 6 is a diagram showing an example of the operation of the dimension measuring instrument 10 of FIG. 1, and shows how the received light amount X and the measured value y change when dust less than a certain size adheres. When dust of less than a certain size, for example, dust with a diameter of 0.5 mm adheres, the amount of received light X decreases from A1 to A5. Received light amount X = A5 is greater than the initial value A2 of the threshold Th2, also the rate of change of the received light amount X at time t 21 is beyond the threshold value Th1.

すなわち、時刻t21において、受光量Xの変化率が閾値Th1よりも大きいため、アジャスト実行条件の(1)が満たされず、基準受光量Aの補正が実行されなくなっている。そして、時刻t21以降もしばらくの間は、アジャスト実行条件の(4)が満たされないので、補正は実行されないが、条件(4)を満たすようになる時刻t22以降は、基準受光量Aの補正が実行されている。従って、時刻t22から時刻t23までの区間では、基準受光量Aの補正の実行により、グラフB2及びB3が、一定の傾きで減少している。基準受光量Aが、時刻t22以後直ぐに受光量Xと一致するのではなく、徐々に減少しているのは、上述したアジャスト実行条件の(5)により、基準受光量Aを補正する際の補正量が制限されているからである。 That is, at time t 21, the rate of change of the received light amount X is larger than the threshold value Th1, not satisfied in the adjustment execution conditions (1), correction of the reference received light amount A is no longer being executed. Then, while even after the time t 21, since the adjust execution condition (4) is not satisfied, the correction is not executed, the condition (4) to become time t 22 after meet the, the reference received light amount A Correction has been performed. Thus, in a section from time t 22 to time t 23, the execution of the correction of the reference received light amount A, graph B2 and B3 have decreased with a constant gradient. Reference received light amount A at time t 22 instead of matching the subsequent immediately received light amount X, the are you gradually decreased, by (5) of the adjustment execution conditions described above, when correcting the reference received light amount A This is because the correction amount is limited.

測定値yは、時刻t21から時刻t22までの区間においてa21(a21<a)であるのに対し、時刻t22から時刻t23までの区間では、基準受光量Aの減少により一定の傾きで増加している。時刻t23以降は、受光量Xと基準受光量Aとが一致している。この様に構成することにより、一定サイズ未満のゴミの付着による受光量Xの変化を識別して基準受光量Aが現在の受光量Xと略一致するように自動で補正させることができる。 The measured value y is a 21 (a 21 <a 1 ) in the section from time t 21 to time t 22 , whereas in the section from time t 22 to time t 23 , the measurement value y is reduced. Increasing with a certain slope. After time t 23 is a light receiving amount X and the reference received light amount A match. With this configuration, it is possible to automatically change the reference received light amount A so that the reference received light amount A substantially matches the current received light amount X by identifying a change in the received light amount X due to adhesion of dust less than a certain size.

図7は、図1の寸法測定器10の動作の一例を示した図であり、一定値以上の進入速度VでワークWが進入する場合の受光量X及び測定値yの変化の様子が示されている。この図には、基準受光量Aを補正するか否かを判断するための閾値Th1に対応する一定値以上の進入速度V、例えば、5mm/sでワークWが測定領域2に進入する場合が示されている。グラフB1により表される受光量Xは、ワークWが測定領域2に進入していない時刻0から時刻t31までの区間と、時刻t38以降において、一定である(X=A1)。時刻t31から時刻t34までの区間は、ワークWが進入速度Vで測定領域2内に進入している途中の状態であり、受光量Xが一定の傾きで減少している。 FIG. 7 is a diagram showing an example of the operation of the dimension measuring instrument 10 of FIG. 1, and shows how the received light amount X and the measured value y change when the workpiece W enters at an approach speed V equal to or higher than a certain value. Has been. In this figure, there is a case where the workpiece W enters the measurement region 2 at an entry speed V equal to or higher than a certain value corresponding to the threshold value Th1 for determining whether or not to correct the reference received light amount A, for example, 5 mm / s. It is shown. Received light amount X represented by the graph B1 is a section from time 0 to the workpiece W does not enter the measurement region 2 to the time t 31, at time t 38 after a constant (X = A1). Interval from time t 31 to time t 34 is on the way the work W is entered the measuring area 2 at approach speed V state, the light receiving amount X is reduced with a constant gradient.

そして、受光量Xは、ワークWが測定領域2内を移動している時刻t34から時刻t35までの区間において、一定であり(X=A6)、ワークWが進入速度Vで測定領域2から退出している途中の状態である時刻t35から時刻t38までの区間において、一定の傾きで増加している。 The received light amount X is constant (X = A6) in the section from time t 34 to time t 35 in which the workpiece W is moving in the measurement region 2, and the workpiece W is at the approach speed V and the measurement region 2. in the interval from time t 35 in the middle of the state where the exit to the time t 38 from increasing at a constant gradient.

時刻0から時刻t31までの区間は、アジャスト実行条件(1)〜(4)が満たされ、基準受光量Aの補正が実行されるが、当初から受光量Xと基準受光量Aとが一致しているので、補正量はゼロとなっている。一方、時刻t31から時刻t38までの区間は、アジャスト実行条件が満たされないので、基準受光量Aの補正は実行されない。 In the interval from time 0 to time t 31 , the adjustment execution conditions (1) to (4) are satisfied and the correction of the reference light reception amount A is executed. As a result, the correction amount is zero. On the other hand, the interval from time t 31 to time t 38, since the adjustment execution conditions are not met, the correction of the reference received light amount A is not executed.

具体的には、時刻t31から、受光量Xが閾値Th2と一致する時刻t32までの区間において、条件(1)が満たされず、時刻t32から、受光量XがA3と一致する時刻t33までの区間において、条件(1)及び(2)が満たされない。また、時刻t33から、時刻t34、t35を経て、受光量XがA3と再度一致する時刻t36までの区間において、少なくとも条件(2)及び(3)が満たされないため、時刻t36から、受光量Xが閾値Th2と再度一致する時刻t37までの区間において、条件(1)及び(2)が満たされない。 Specifically, from the time t 31, in the section from time t 32 where the light receiving amount X coincides with the threshold value Th2, the condition (1) is not satisfied, from the time t 32, the time t of received light amount X coincides with A3 In the section up to 33 , the conditions (1) and (2) are not satisfied. In addition, since at least the conditions (2) and (3) are not satisfied in the section from time t 33 through time t 34 , t 35 to time t 36 when the received light amount X again coincides with A3, time t 36 from the section up to the time t 37 where the light receiving amount X coincides again with the threshold value Th2, the condition (1) and (2) is not satisfied.

そして、時刻t37から、受光量XがA1と一致する時刻t38までの区間において、条件(1)が満たされず、時刻t38以降もしばらくの間は条件(4)を満たさないので、補正は実行されない。このため、グラフB2及びB3は、時間軸に平行な直線となっている。 Then, from the time t 37, in the section from time t 38 where the light receiving amount X coincides with A1, the condition (1) is not satisfied, since a while even the time t 38 after does not satisfy the condition (4), the correction Is not executed. For this reason, the graphs B2 and B3 are straight lines parallel to the time axis.

また、測定値yは、グラフB1と同様のグラフにより表される。すなわち、測定値yは、時刻0から時刻t31までの区間と、時刻t38以降において、一定である(y=a)。時刻t31から時刻t34までの区間は、測定値yが一定の傾きで減少している。そして、測定値yは、時刻t34から時刻t35までの区間において、一定であり(y=a31)、時刻t35から時刻t38までの区間において、一定の傾きで増加している。 Further, the measured value y is represented by a graph similar to the graph B1. That is, the measurement value y is constant (y = a 1 ) in the section from time 0 to time t 31 and after time t 38 . Interval from time t 31 to time t 34, the measured value y is decreased with a constant gradient. Then, the measured value y is in the interval from time t 34 to time t 35, a constant (y = a 31), in the section from time t 35 to time t 38, has increased with a constant gradient.

この様に構成することにより、一定値以上の進入速度Vで測定領域2に進入するワークWに対し、ワークWの進入による受光量Xの変化を識別して基準受光量Aの補正を実行させることができる。   With this configuration, for the workpiece W that enters the measurement region 2 at an approach speed V that is equal to or greater than a certain value, the change in the received light amount X due to the entry of the workpiece W is identified and the reference received light amount A is corrected. be able to.

図8は、図1の寸法測定器10の動作の一例を示した図であり、一定値未満の進入速度VでワークWが進入する場合の受光量X及び測定値yの変化の様子が示されている。ワークWが一定値未満の進入速度V、例えば、4mm/sで測定領域2に進入する場合、グラフB1により表される受光量Xは、ワークWが測定領域2に進入していない時刻0から時刻t41までの区間と、時刻t48以降において、一定である(X=A1)。 FIG. 8 is a diagram showing an example of the operation of the dimension measuring instrument 10 of FIG. 1, and shows how the received light amount X and the measured value y change when the workpiece W enters at an approach speed V less than a certain value. Has been. When the workpiece W enters the measurement region 2 at an entry speed V less than a certain value, for example, 4 mm / s, the received light amount X represented by the graph B1 is from time 0 when the workpiece W does not enter the measurement region 2. and the section from time t 41, at time t 48 after a constant (X = A1).

時刻t41から時刻t43までの区間は、ワークWが進入速度Vで測定領域2内に進入している途中の状態であり、受光量Xが一定の傾きで減少している。そして、受光量Xは、ワークWが測定領域2内を移動している時刻t43から時刻t44までの区間において、一定であり(X=A6)、ワークWが進入速度Vで測定領域2から退出している途中の状態である時刻t44から時刻t48までの区間において、一定の傾きで増加している。 Section from time t 41 to time t 43 is on the way the work W is entered the measuring area 2 at approach speed V state, the light receiving amount X is reduced with a constant gradient. The amount of received light X is constant in the section from time t 43 to time t 44 when the workpiece W is moving in the measurement region 2 (X = A6). in the interval from time t 44 in the middle of the state where the exit to the time t 48 from increasing at a constant gradient.

時刻0から時刻t41までの区間と、時刻t49以降は、アジャスト実行条件の(1)〜(4)が満たされ、基準受光量Aの補正が実行されるが、受光量Xと基準受光量Aとが一致しているので、補正量はゼロとなっている。この区間では、測定値yはaである。 In the section from time 0 to time t 41 and after time t 49 , the adjustment execution conditions (1) to (4) are satisfied and the correction of the reference light reception amount A is executed. Since the amount A coincides with the amount A, the correction amount is zero. In this interval, the measurement value y is a 1.

一方、時刻t41から、受光量Xが閾値Th2と一致する時刻t42までの区間は、アジャスト実行条件(1)〜(4)が満たされ、基準受光量Aの補正が実行される。従って、この区間では、補正の実行により、グラフB2により表される基準受光量Aが、一定の傾きで減少している。ただし、アジャスト実行条件の(5)により、補正量が上限補正量Th5以下に制限されるので、グラフB2及びB3の傾きは、グラフB1の傾きよりもその絶対値が小さくなっている。測定値yは、時刻t42においてa41(a41<a)となっている。 On the other hand, from the time t 41, the interval up to time t 42 where the light receiving amount X coincides with the threshold value Th2, the adjustment execution conditions (1) to (4) is satisfied, correction of the reference received light amount A is executed. Therefore, in this section, the reference received light amount A represented by the graph B2 decreases with a constant slope by executing the correction. However, since the correction amount is limited to the upper limit correction amount Th5 or less by the adjustment execution condition (5), the slopes of the graphs B2 and B3 are smaller in absolute value than the slope of the graph B1. Measurements y has a a 41 (a 41 <a 1 ) at time t 42.

時刻t42から時刻t45までの区間では、受光量Xが閾値Th2未満となり、アジャスト実行条件の(2)が満たされなくなるので、基準受光量Aの補正は実行されない。そして、時刻t45以降に受光量Xが閾値Th2以上となり、条件(1)〜(3)を満たすようになっても、条件(4)が満たされるようになる時刻t46までの区間は、基準受光量Aの補正は実行されない。従って、時刻t42から時刻t46までの区間では、グラフB2及びB3が時間軸に平行な直線となり、測定値yは、受光量Xに比例して変化する。測定値yは、時刻t43から時刻t44においてa42(a42<a41)となっている。 In the interval from time t 42 to time t 45, the received light amount X is less than the threshold Th2, since the adjust execution condition (2) is not satisfied, correction of the reference received light amount A is not executed. Then, the received light amount X after time t 45 becomes the threshold Th2 or more, even when the meet the conditions (1) to (3), the interval up to time t 46 to become the condition (4) is satisfied, The correction of the reference received light amount A is not executed. Thus, in a section from time t 42 to time t 46, becomes a straight line parallel to the axis graphs B2 and B3 is the time, measured value y is changed in proportion to the amount of light received X. The measured value y is a 42 (a 42 <a 41 ) from time t 43 to time t 44 .

時刻t46から時刻t49までの区間は、アジャスト実行条件(1)〜(4)が満たされ、基準受光量Aの補正が実行される。従って、この区間では、補正の実行により、基準受光量Aが、一定の傾きで増加している。ただし、アジャスト実行条件の(5)により、補正量が上限補正量Th5以下に制限されるので、グラフB2及びB3の傾きは、グラフB1の傾きよりもその絶対値が小さくなっている。また、時刻t47から時刻t49までの区間では、受光量Xが基準受光量Aを越えているので、測定値yがaよりも大きくなっている。 Section from time t 46 to time t 49, the adjustment execution conditions (1) to (4) is satisfied, correction of the reference received light amount A is executed. Therefore, in this section, the reference received light amount A increases with a constant slope by performing correction. However, since the correction amount is limited to the upper limit correction amount Th5 or less by the adjustment execution condition (5), the slopes of the graphs B2 and B3 are smaller in absolute value than the slope of the graph B1. Further, in the section from time t 47 to time t 49 , the light reception amount X exceeds the reference light reception amount A, so the measured value y is larger than a 1 .

この様に構成することにより、基準受光量Aを補正する際の補正量が予め定められた上限補正量Th5を越えることはないので、進入速度Vの遅いワークWに対し、基準受光量Aの補正量が過大になるのを抑制することができる。つまり、基準受光量Aが誤って補正された場合であっても、基準受光量Aを補正する際の補正量を上限補正量Th5以下に制限しているので、基準受光量Aが適正な値から大きくずれるのを抑制することができる。   By configuring in this way, the correction amount when correcting the reference light reception amount A does not exceed a predetermined upper limit correction amount Th5. An excessive correction amount can be suppressed. That is, even when the reference light reception amount A is corrected by mistake, the correction amount when correcting the reference light reception amount A is limited to the upper limit correction amount Th5 or less, so the reference light reception amount A is an appropriate value. Can be prevented from greatly deviating.

より具体的に説明すると、図8は、ワークWが進入する場合であるので、グラフB2は、図7に示すように一定値であることが好ましい。しかし、アジャスト実行条件(1)を満たすことにより(ワークWが4mm/s以下で進入すると、アジャスト実行条件(1)を満たしてしまうことにより)、グラフB2が右肩下がりになっている。このため、ワークWが完全に進入したときの測定値a42には、誤差が含まれることになる。この誤差を少なくするために、アジャスト実行条件(5)が設けられている。この条件(5)が存在すれば、グラフB2が右肩下がりになるときに、その傾きが小さくなる。その結果、グラフB2に追従するグラフB3も緩やかな傾きで右肩下がりのグラフとなり、オートアジャストが実行されなくなるタイミング(時刻t42)を早めることができるので、測定値a42に含まれる誤差を少なくすることができる。 More specifically, since FIG. 8 shows a case where the workpiece W enters, the graph B2 is preferably a constant value as shown in FIG. However, when the adjustment execution condition (1) is satisfied (when the workpiece W enters at 4 mm / s or less, the adjustment execution condition (1) is satisfied), the graph B2 is downwardly sloping. For this reason, an error is included in the measurement value a 42 when the workpiece W has completely entered. In order to reduce this error, an adjustment execution condition (5) is provided. If this condition (5) exists, when the graph B2 falls to the right, the slope becomes small. As a result, the graph B3 that follows the graph B2 also has a gentle slope and a downward-sloping graph, and the timing at which auto-adjustment is not performed (time t 42 ) can be advanced, so the error included in the measured value a 42 Can be reduced.

なお、アジャスト実行条件の(1)における閾値Th1は、理想環境で言えば、0にすることが好ましい。このとき、図8におけるグラフB2は、図7におけるグラフB2のように、時間軸に平行な直線となり、測定値a42に誤差が含まれることはない(図7の測定値a31に誤差は含まれていない)。しかし、回路の特性や外乱光などの影響により、閾値Th1は0よりも大きな有限の値を持たざるを得ない。 Note that the threshold value Th1 in the adjustment execution condition (1) is preferably 0 in an ideal environment. At this time, the graph B2 in FIG. 8 becomes a straight line parallel to the time axis like the graph B2 in FIG. 7, and no error is included in the measured value a 42 (the measured value a 31 in FIG. Not included). However, the threshold value Th1 must have a finite value larger than 0 due to the influence of circuit characteristics, disturbance light, and the like.

具体的に説明すると、図8におけるグラフB1は、実際には直線ではなく、回路の特性や外乱光などの影響により変動した波線のような形になる。そして、ワークWの進入速度が遅い場合には、ワークWが進入したためにグラフB1が変動しているのか、或いは、外乱光等の影響によりグラフB1が変動しているのかを測定器側では見分けが付かない。そのため、外乱光等によりグラフB1が変動してもオートアジャストが実行されるようにするために、閾値Th1は有限の値を持たざるを得ない。   More specifically, the graph B1 in FIG. 8 is not actually a straight line, but has a shape of a wavy line that fluctuates due to the influence of circuit characteristics, disturbance light, or the like. And when the approach speed of the workpiece W is slow, the measuring instrument side distinguishes whether the graph B1 is fluctuating because the workpiece W has entered, or whether the graph B1 is fluctuating due to the influence of ambient light or the like. Is not attached. For this reason, the threshold value Th1 must have a finite value in order to execute auto-adjustment even if the graph B1 fluctuates due to ambient light or the like.

<寸法測定器の他の構成例>
図1では、寸法測定器10が、ワークWを挟んで対向配置された投光部11及び受光部12からなる場合の例について説明したが、本発明はこれに限られるものではない。例えば、ヘッドユニット14が、投光部11、受光部12及びハーフミラー5からなり、投光部11、受光部12及びハーフミラー5が、共通の筐体内に配置される寸法測定器10も本発明には含まれる。
<Other configuration examples of dimension measuring instrument>
In FIG. 1, the example in which the dimension measuring instrument 10 includes the light projecting unit 11 and the light receiving unit 12 arranged to face each other with the workpiece W interposed therebetween has been described, but the present invention is not limited to this. For example, the head unit 14 includes a light projecting unit 11, a light receiving unit 12, and a half mirror 5, and the dimension measuring device 10 in which the light projecting unit 11, the light receiving unit 12, and the half mirror 5 are arranged in a common housing is also provided. It is included in the invention.

図9は、図1の寸法測定器10の他の構成例を示した図である。この寸法測定器10は、投光部11、受光部12及びハーフミラー5からなるヘッドユニット14と、ミラー6と、コントローラ13により構成される。投光部11及びミラー6は、対向配置され、投光部11から出射された検出光は、ハーフミラー5を透過してミラー6により反射される。   FIG. 9 is a diagram showing another configuration example of the dimension measuring instrument 10 of FIG. The dimension measuring device 10 includes a head unit 14 including a light projecting unit 11, a light receiving unit 12, and a half mirror 5, a mirror 6, and a controller 13. The light projecting unit 11 and the mirror 6 are arranged to face each other, and the detection light emitted from the light projecting unit 11 passes through the half mirror 5 and is reflected by the mirror 6.

ミラー6により反射された検出光は、ハーフミラー5により反射され、受光部12に入射される。測定領域2は、ヘッドユニット14及びミラー6間に形成され、一定の進入速度Vで進入するワークWが検出される。   The detection light reflected by the mirror 6 is reflected by the half mirror 5 and enters the light receiving unit 12. The measurement area 2 is formed between the head unit 14 and the mirror 6, and a workpiece W entering at a constant entry speed V is detected.

本実施の形態によれば、受光量Xの変化率が予め定められた閾値Th1よりも小さい場合に基準受光量Aの補正が行われるので、進入速度Vが一定値以上であるワークWの進入による受光量変化と、粉塵の付着などの影響による受光量変化とを識別して基準受光量Aを補正させることができる。また、受光量Xが閾値Th2よりも大きい場合に基準受光量Aの補正が行われるので、一定サイズ以上のワークWの進入による受光量変化と、粉塵の付着などの影響による受光量変化とを識別して基準受光量Aを補正させることができる。従って、ワークWの進入による受光量の変化と粉塵の付着などの影響による受光量の変化とを識別して、自動的に測定値yを補正することができる。   According to the present embodiment, since the reference received light amount A is corrected when the rate of change of the received light amount X is smaller than a predetermined threshold Th1, the entry of the work W whose approach speed V is equal to or greater than a certain value. The reference light reception amount A can be corrected by discriminating between the light reception amount change due to and the light reception amount change due to the influence of dust adhesion and the like. Further, when the received light amount X is larger than the threshold Th2, the correction of the reference received light amount A is performed, so that the received light amount change due to the entry of the work W of a certain size or more and the received light amount change due to the influence of dust adhesion etc. The reference received light amount A can be corrected by identification. Therefore, it is possible to identify the change in the amount of received light due to the entry of the workpiece W and the change in the amount of received light due to the influence of dust adhesion, etc., and automatically correct the measurement value y.

また、受光量Xが予め定められた補正限界受光量Th3よりも小さい場合に、基準受光量Aの補正を行わないので、受光量Xの変化が小さい場合に、受光量Xの低下に追従して基準受光量Aがいつまでも補正され続けるのを抑制することができる。   Further, when the received light amount X is smaller than the predetermined correction limit received light amount Th3, the correction of the reference received light amount A is not performed, so that when the change in the received light amount X is small, the decrease in the received light amount X is followed. Thus, it is possible to prevent the reference received light amount A from being corrected indefinitely.

なお、本実施の形態では、平均受光量Xを更新するごとに、測定値yや変化率が更新され、アジャスト実行条件が満たされているか否かを判断する処理が行われる場合の例について説明したが、本発明はこれに限られるものではない。測定値yや変化率を更新するサイクルと、基準受光量Aの補正を実行するか否かを判断するサイクルとが、平均受光量を更新するサイクルと異なっていても良い。   In this embodiment, each time the average received light amount X is updated, the measurement value y and the rate of change are updated, and an example in which processing for determining whether or not the adjustment execution condition is satisfied is described. However, the present invention is not limited to this. The cycle for updating the measurement value y and the rate of change and the cycle for determining whether to correct the reference light reception amount A may be different from the cycle for updating the average light reception amount.

また、本実施の形態では、測定領域2を透過した検出光1を受光する透過型の寸法測定器の場合の例について説明したが、本発明はこれに限られるものではない。例えば、ワークWによって反射された検出光を受光する反射型の寸法測定器にも本発明は適用することができる。   Further, in the present embodiment, an example of a transmission type dimension measuring device that receives the detection light 1 transmitted through the measurement region 2 has been described, but the present invention is not limited to this. For example, the present invention can also be applied to a reflective dimension measuring device that receives detection light reflected by the workpiece W.

また、本実施の形態では、投光部11が発光している期間に受光部12で検出される受光量に基づいて基準受光量Aの補正が行われる場合の例について説明したが、基準受光量Aのゼロ点は、例えば、投光部11の消灯期間中に受光部12で検出される受光量に基づいて調整される。より具体的に説明すれば、投光部11は、検出光1を出射する発光期間と、検出光1が出射されない消灯期間とを交互に繰り返す。発光期間の繰返し間隔は、T1=160μsである。基準受光量Aの補正は、この発光期間内に検出された受光量xに基づいて行われる。これに対し、基準受光量Aのゼロ点の調整は、消灯期間中に検出された受光量xに基づいて行われ、基準受光量Aが受光量xと一致するように調整される。この様な基準受光量Aのゼロ点調整は、オートアジャストが実行されるタイミングで実行される。   In the present embodiment, an example in which the reference received light amount A is corrected based on the received light amount detected by the light receiving unit 12 during the period during which the light projecting unit 11 emits light has been described. The zero point of the amount A is adjusted based on the amount of received light detected by the light receiving unit 12 during the extinguishing period of the light projecting unit 11, for example. If it demonstrates more concretely, the light projection part 11 will repeat alternately the light emission period which radiate | emits the detection light 1, and the light extinction period when the detection light 1 is not radiate | emitted. The repetition interval of the light emission period is T1 = 160 μs. The correction of the reference light reception amount A is performed based on the light reception amount x detected during this light emission period. On the other hand, the zero point of the reference light reception amount A is adjusted based on the light reception amount x detected during the extinguishing period, and is adjusted so that the reference light reception amount A matches the light reception amount x. Such zero point adjustment of the reference received light amount A is executed at the timing when auto adjustment is executed.

1 検出光
2 測定領域
3,4 検出点
5 ハーフミラー
6 ミラー
10 寸法測定器
11 投光部
12 受光部
13 コントローラ
14 ヘッドユニット
21 測定値表示部
22 操作入力部
31 平均受光量算出部
32 基準受光量記憶部
33 測定値算出部
34 受光量記憶部
35 変化率算出部
36 パラメータ記憶部
37 閾値算出部
38 基準受光量補正部
39 測定領域情報記憶部
B1 受光量Xを表すグラフ
B2 基準受光量Aを表すグラフ
B3 閾値Th2を表すグラフ
B4 補正限界受光量Th3を表すグラフ
DESCRIPTION OF SYMBOLS 1 Detection light 2 Measurement area | region 3, 4 Detection point 5 Half mirror 6 Mirror 10 Dimension measuring device 11 Light projection part 12 Light reception part 13 Controller 14 Head unit 21 Measurement value display part 22 Operation input part 31 Average received light quantity calculation part 32 Reference light reception Amount storage unit 33 Measurement value calculation unit 34 Light reception amount storage unit 35 Change rate calculation unit 36 Parameter storage unit 37 Threshold calculation unit 38 Reference light reception amount correction unit 39 Measurement region information storage unit B1 Graph B2 indicating the light reception amount X Reference light reception amount A A graph B3 representing a threshold value Th2 A graph representing a correction limit light reception amount Th3

Claims (8)

ワークが通過する測定領域に平行光を照射する投光部と、上記測定領域を介して上記平行光を受光し、上記測定領域に対するワークの進入量に応じて変化する受光量を検出する受光部とを有する測定器であって、
ワークが上記測定領域に進入していないときの受光量を示す基準受光量を保持する基準受光量記憶手段と、
上記基準受光量及び上記受光部で検出した受光量の比に基づいて、上記測定領域に対するワークの進入量を示す測定値を算出する測定値算出手段と、
上記基準受光量及び上記受光部で検出した受光量の比が予め定められた値に近づくように、上記基準受光量を補正する基準受光量補正手段と、
ワークの上記測定領域への進入速度に応じた受光量の変化率を求める変化率算出手段とを備え、
上記基準受光量補正手段は、上記変化率が、予め定められた第一の閾値よりも小さく、かつ、上記受光部で検出した受光量が、上記基準受光量に基づき定められる第ニの閾値よりも大きい場合に、上記基準受光量を補正することを特徴とする測定器。
A light projecting unit that emits parallel light to a measurement region through which a workpiece passes, and a light receiving unit that receives the parallel light through the measurement region and detects the amount of received light that changes according to the amount of work entering the measurement region. A measuring instrument comprising:
A reference light reception amount storage means for holding a reference light reception amount indicating a light reception amount when the workpiece does not enter the measurement area;
Measurement value calculation means for calculating a measurement value indicating the amount of work entering the measurement region based on a ratio between the reference light reception amount and the light reception amount detected by the light receiving unit;
A reference light reception amount correcting means for correcting the reference light reception amount so that a ratio between the reference light reception amount and the light reception amount detected by the light receiving unit approaches a predetermined value;
A rate-of-change calculating means for obtaining a rate of change of the amount of received light according to the speed of entry of the workpiece into the measurement area,
The reference received light amount correcting means has a rate of change smaller than a predetermined first threshold value, and the received light amount detected by the light receiving unit is higher than a second threshold value determined based on the reference received light amount. A measuring instrument that corrects the reference amount of received light when the value is larger.
上記基準受光量補正手段は、上記基準受光量を補正する際に、補正量が予め定められた上限補正量を越えないように上記基準受光量の補正を行うことを特徴とする請求項1に記載の測定器。   2. The reference light reception amount correction unit corrects the reference light reception amount so that the correction amount does not exceed a predetermined upper limit correction amount when correcting the reference light reception amount. The measuring instrument described. 上記基準受光量補正手段は、上記受光部で検出した受光量が予め定められた補正限界受光量よりも小さい場合に、上記基準受光量の補正を行わないことを特徴とする請求項2に記載の測定器。   The reference light reception amount correction unit does not correct the reference light reception amount when the light reception amount detected by the light receiving unit is smaller than a predetermined correction limit light reception amount. Measuring instrument. 上記基準受光量補正手段は、一定期間における上記変化率が第一の閾値未満となった場合に、上記基準受光量の補正を行うことを特徴とする請求項1に記載の測定器。   The measuring device according to claim 1, wherein the reference light reception amount correction unit corrects the reference light reception amount when the rate of change in a certain period is less than a first threshold value. 上記基準受光量に一定比率を乗じることにより、第ニの閾値を算出する閾値算出手段を備えたことを特徴とする請求項1に記載の測定器。   2. The measuring instrument according to claim 1, further comprising a threshold value calculation means for calculating a second threshold value by multiplying the reference received light amount by a certain ratio. 上記一定比率に関するパラメータを入力するための操作入力手段を備え、
上記閾値算出手段は、上記基準受光量及び上記パラメータに基づいて、第二の閾値を算出することを特徴とする請求項5に記載の測定器。
Comprising an operation input means for inputting parameters relating to the fixed ratio,
6. The measuring device according to claim 5, wherein the threshold value calculation means calculates a second threshold value based on the reference received light amount and the parameter.
上記基準受光量補正手段は、上記変化率の絶対値と第一の閾値とを比較し、この比較結果に基づいて上記基準受光量の補正を行うことを特徴とする請求項1に記載の測定器。   2. The measurement according to claim 1, wherein the reference received light amount correction unit compares the absolute value of the change rate with a first threshold value, and corrects the reference received light amount based on the comparison result. vessel. 上記測定値算出手段により算出された測定値を表示する測定値表示手段を備えたことを特徴とする請求項1に記載の測定器。   2. The measuring instrument according to claim 1, further comprising measurement value display means for displaying the measurement value calculated by the measurement value calculation means.
JP2010128824A 2010-06-04 2010-06-04 Measuring instrument Pending JP2011252892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010128824A JP2011252892A (en) 2010-06-04 2010-06-04 Measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128824A JP2011252892A (en) 2010-06-04 2010-06-04 Measuring instrument

Publications (1)

Publication Number Publication Date
JP2011252892A true JP2011252892A (en) 2011-12-15

Family

ID=45416921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128824A Pending JP2011252892A (en) 2010-06-04 2010-06-04 Measuring instrument

Country Status (1)

Country Link
JP (1) JP2011252892A (en)

Similar Documents

Publication Publication Date Title
JP2008145158A (en) Optical displacement sensor and optical displacement gauge
EP3112899B1 (en) Photoelectric sensor
JP6173160B2 (en) Tape feeder
JP5974561B2 (en) Optical sensor and setting method for sensitivity adjustment control
JP6355014B2 (en) Optical position detection system, control device, position detection device, control program, and ranging system
JP2011252892A (en) Measuring instrument
TWI835520B (en) Measurement device and measurement method
JP2010262887A (en) Plasma measuring device
TW201321784A (en) Optical displacement sensor
JP2020053416A (en) Sensor system and tilt detection method
JP2019215223A (en) Detector and method for setting detector
TWI691166B (en) Photoelectric sensor
JP2007198911A (en) Distance measuring instrument
JP6394362B2 (en) Dust sensor and electrical equipment
JP2019133986A (en) Evaluation device, evaluation method and display device
JP2007124373A (en) Detection sensor and photoelectric sensor
JP7406724B2 (en) photoelectric sensor
KR20220130207A (en) How to set photoelectric sensors and thresholds
JP7513948B2 (en) Photoelectric Sensor
KR20170126042A (en) Vibration Correctable Surface Shape Measurement Device and Vibration Correcting Method Using the Same
JP5562199B2 (en) Photoelectric sensor
JP7483205B2 (en) Photoelectric Sensor
JP2012078175A (en) Detection device, control device, detection method of abnormal indication and program for detection of abnormal indication
JP2006019939A (en) Photoelectric sensor and water detector
JP2008298653A (en) Photoelectric sensor