JP2011252866A - Three-dimensional shape measuring apparatus, three-dimensional shape measuring additional apparatus, and three-dimensional shape measuring method - Google Patents

Three-dimensional shape measuring apparatus, three-dimensional shape measuring additional apparatus, and three-dimensional shape measuring method Download PDF

Info

Publication number
JP2011252866A
JP2011252866A JP2010128339A JP2010128339A JP2011252866A JP 2011252866 A JP2011252866 A JP 2011252866A JP 2010128339 A JP2010128339 A JP 2010128339A JP 2010128339 A JP2010128339 A JP 2010128339A JP 2011252866 A JP2011252866 A JP 2011252866A
Authority
JP
Japan
Prior art keywords
light
dimensional shape
illumination
receiving element
specific color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010128339A
Other languages
Japanese (ja)
Other versions
JP5471853B2 (en
Inventor
Sunao Niitsuma
素直 新妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010128339A priority Critical patent/JP5471853B2/en
Publication of JP2011252866A publication Critical patent/JP2011252866A/en
Application granted granted Critical
Publication of JP5471853B2 publication Critical patent/JP5471853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To derive a three-dimensional shape of a measured object with high accuracy and reliability without influencing the visibility of the measured object and work efficiency for a person while ensuring continuity of illumination light.SOLUTION: A three-dimensional shape measuring apparatus 110 comprises: a projection light source 150 which projects light of a specific color onto a measured object 102; a light receiving element 160 which receives reflected light of the specific color in reflected light reflected by the measured object and forms projection images; a signal generating unit 170 which generates a binarized control signal; an illumination controlling unit 162 which turns off an illumination device 120a which emits light including the specific color while the control signal indicates a first state, among a plurality of illumination devices 120a, 120b and 120c that emit illumination light to the measured object; a projection image formation controlling unit 172 which makes the light receiving element form projection images while the control signal indicates the first state; and a three-dimensional shape deriving unit 176 which derives the three-dimensional shape of the measured object based on the projection images formed by the light receiving element.

Description

本発明は、被測定物に光を投射したときの反射光を用いて被測定物の3次元形状を測定する3次元形状測定装置、3次元形状測定付加装置および3次元形状測定方法に関する。   The present invention relates to a three-dimensional shape measurement apparatus, a three-dimensional shape measurement addition apparatus, and a three-dimensional shape measurement method for measuring a three-dimensional shape of a measurement object using reflected light when light is projected onto the measurement object.

簡易な構成で測定精度が高い3次元形状の測定装置として光切断法による3次元形状測定装置が従来から知られている。かかる光切断法による3次元形状測定装置では、まず、測定対象である被測定物に、スリット形状の光であるスリット光を投射し、被測定物の反射光を投影した投影像を形成する。そして、3次元形状測定装置は、投影像に出現した、スリット光の反射光である光切断像の3次元空間の位置(3次元位置)を特定することで被測定物の3次元形状を導出する。   2. Description of the Related Art Conventionally, a three-dimensional shape measuring apparatus using a light cutting method is known as a three-dimensional shape measuring apparatus having a simple configuration and high measurement accuracy. In such a three-dimensional shape measuring apparatus using the light cutting method, first, slit light, which is slit-shaped light, is projected onto a measurement object to be measured, and a projection image is formed by projecting reflected light of the measurement object. Then, the three-dimensional shape measuring apparatus derives the three-dimensional shape of the object to be measured by specifying the position (three-dimensional position) of the light section image that is reflected light of the slit light, which appears in the projection image. To do.

3次元形状の測定時において、被測定物には、上述した測定のためのスリット光の他に、人が測定作業を行うための照明光も照射される。すると、照明光も被測定物で反射され背景光(環境光)として上述のスリット光の反射光に重畳されるため、3次元形状測定装置では、形成された投影像からスリット光の反射光による光切断像のみを抽出することが困難になり、3次元形状の測定精度が低下する。特に近年では、人の作業効率や安全性の向上を図るため照明光の強度がより強くなる傾向にあり、光切断像の抽出もより困難になりつつある。   At the time of measuring a three-dimensional shape, the object to be measured is irradiated with illumination light for a person to perform a measurement operation in addition to the slit light for measurement described above. Then, since the illumination light is also reflected by the object to be measured and is superimposed on the reflected light of the slit light as background light (environmental light), the three-dimensional shape measurement apparatus uses the reflected light of the slit light from the formed projection image. It becomes difficult to extract only the light section image, and the measurement accuracy of the three-dimensional shape is lowered. Particularly in recent years, the intensity of illumination light tends to become stronger in order to improve human work efficiency and safety, and the extraction of a light section image is becoming more difficult.

そこで、1の被測定物の反射光を異なる2つの方向に設けられた受光素子で受光し、2つの投影像のうち有効な測定結果が得られない一方の投影像を他方で補間して被測定物の3次元形状を測定する技術が知られている(例えば、特許文献1)。また、光の投射の有無に応じて投影像を2回取得し、投射有りの投影像から投射無しの投影像を減算して背景光を排除する技術も提案されている(例えば、特許文献2)。   Therefore, the reflected light of one object to be measured is received by light receiving elements provided in two different directions, and one of the two projected images for which an effective measurement result cannot be obtained is interpolated on the other to be measured. A technique for measuring a three-dimensional shape of a measurement object is known (for example, Patent Document 1). Further, a technique has been proposed in which a projection image is acquired twice according to the presence or absence of light projection, and background light is eliminated by subtracting a projection image without projection from a projection image with projection (for example, Patent Document 2). ).

特開平2−223809号公報JP-A-2-223809 特開2009−19884号公報JP 2009-19884 A

上述した特許文献1の技術では、同一の部分に対して異なるタイミングで形成された2つの投影像のうち、有効な測定結果を得ることができない投影像を排除しているので、測定精度を高めることができる。しかし、かかる技術は、照明光の反射光の影響が比較的少ない投影像を採用しているに過ぎず、例えば、照明光の反射光の強度が時間に拘わらず一様に強い場合には良好な結果を得ることができなかった。また、投影像の投影処理や選択処理が増えるとそれに伴って計算処理負荷が高くなり、高コスト化を招いていた。さらに、特許文献2の技術では、投射有りの投影像と投射無しの投影像との取得タイミングが異なるため、被測定物やその背景が移動または変形している場合や、照明光の反射光の強度が変化する場合に背景光を正確に排除することができず誤差が生じていた。   In the technique of Patent Document 1 described above, a projection image from which an effective measurement result cannot be obtained is excluded from two projection images formed at different timings on the same portion, so that the measurement accuracy is improved. be able to. However, such a technique only employs a projection image in which the influence of the reflected light of the illumination light is relatively small. For example, it is good when the intensity of the reflected light of the illumination light is uniformly strong regardless of time. I was not able to get a good result. In addition, as the number of projection processing and selection processing for projected images increases, the calculation processing load increases accordingly, resulting in higher costs. Furthermore, in the technique of Patent Document 2, since the acquisition timings of the projected image with projection and the projected image without projection are different, the measured object or its background is moved or deformed, or the reflected light of the illumination light When the intensity changes, the background light cannot be accurately excluded and an error occurs.

また、照明光の反射光の影響を削減するため、3次元形状測定装置や被測定物が設置される部屋の照明を完全に消灯して暗室化することも考えられる。しかし、暗室内では被測定物の視認性や人の作業効率が著しく低下するのみならず、暗室への被測定物の出し入れすら困難になる。   Moreover, in order to reduce the influence of the reflected light of illumination light, it is also conceivable to completely turn off the illumination of the room where the three-dimensional shape measuring apparatus and the object to be measured are installed to make a dark room. However, in the dark room, not only the visibility of the object to be measured and the work efficiency of the person are significantly reduced, but also it becomes difficult to put the object to be measured in and out of the dark room.

そこで、本願発明者は、投影像を形成するタイミングと、照明装置が照明光を照射するタイミングに着目し、投影像が形成されている間のみ照明装置を消灯することで、被測定物の視認性や人の作業効率に影響を与えることなく、高精度かつ確実に被測定物の3次元形状を導出できることを見出した。ここでは、照明装置を消灯する時間を、点灯している時間に比べて非常に短く設定しているため、測定者は、照明装置が一時的に消灯していることを意識することもない。   Therefore, the inventor of the present application pays attention to the timing of forming the projection image and the timing at which the illumination device irradiates illumination light, and turns off the illumination device only while the projection image is formed, thereby visually recognizing the object to be measured. It has been found that the three-dimensional shape of the object to be measured can be derived with high accuracy and reliability without affecting the performance and human work efficiency. Here, since the time for turning off the lighting device is set to be very short compared to the time during which the lighting device is turned on, the measurer is not aware that the lighting device is temporarily turned off.

しかし、3次元形状測定装置と照明装置を共用する他の電気機器が、照明装置の連続した照射を前提としている場合、上述したように照明装置を間欠的に消灯する技術を不用意に採用すると、電気機器が本来の機能を発揮しない事態も生じ得る。また、照明装置が間欠的に消灯していることが周知されていない場合、そのような他の電気機器に対して、測定者が本来の機能を発揮しない原因を把握できないことすら考えられる。   However, when other electrical equipment that shares the 3D shape measuring device and the lighting device is based on the premise of continuous illumination of the lighting device, if the technique for turning off the lighting device intermittently as described above is inadvertently adopted There may also be a situation where the electrical device does not perform its original function. Moreover, when it is not known that the lighting device is intermittently turned off, it is possible that the cause that the measurer does not perform the original function cannot be grasped against such other electric devices.

本発明は、このような課題に鑑み、照明光の連続性を確保し、被測定物の視認性や人の作業効率に影響を与えることなく、高精度かつ確実に被測定物の3次元形状を導出することが可能な、3次元形状測定装置、3次元形状測定付加装置および3次元形状測定方法を提供することを目的としている。   In view of such a problem, the present invention ensures the continuity of illumination light, and does not affect the visibility of the object to be measured and the work efficiency of the person, and accurately and reliably the three-dimensional shape of the object to be measured. It is an object of the present invention to provide a three-dimensional shape measuring device, a three-dimensional shape measuring additional device, and a three-dimensional shape measuring method.

上記課題を解決するために、本発明の3次元形状測定装置は、被測定物に特定色の光を投射する投光源と、被測定物で反射された反射光のうち特定色の反射光を受光し投影像を形成する受光素子と、2値化された制御信号を生成する信号生成部と、被測定物に照明光を照射する複数の照明装置のうち特定色を含む照明光を照射する照明装置を、制御信号が第1状態を示す間消灯する照明制御部と、制御信号が第1状態を示す間に、受光素子に投影像を形成させる投影像形成制御部と、受光素子で形成された投影像に基づいて被測定物の3次元形状を導出する3次元形状導出部とを備えることを特徴とする。   In order to solve the above-described problems, a three-dimensional shape measuring apparatus of the present invention is a projection light source that projects light of a specific color onto an object to be measured, and reflected light of a specific color among reflected light reflected by the object to be measured. A light receiving element that receives light to form a projection image, a signal generation unit that generates a binarized control signal, and irradiates illumination light including a specific color among a plurality of illumination devices that irradiate the measurement object with illumination light The illumination device is formed by an illumination control unit that turns off while the control signal indicates the first state, a projection image formation control unit that forms a projection image on the light receiving element while the control signal indicates the first state, and the light receiving element. And a three-dimensional shape deriving unit for deriving a three-dimensional shape of the object to be measured based on the projected image.

照明制御部は、特定色を含まない照明光を照射する照明装置を、制御信号が第1状態を示していない間に、制御信号が第1状態を示す時間に相当する時間、消灯してもよい。   The illumination control unit may turn off the illumination device that emits illumination light that does not include the specific color for a time corresponding to the time when the control signal indicates the first state while the control signal does not indicate the first state. Good.

複数の照明装置は、互いに色が異なる照明光を照射し、照明光を加法混色すると白色光となるとしてもよい。   The plurality of illumination devices may emit white light when irradiated with illumination light having different colors and additively mixed with illumination light.

3次元形状導出部は、受光素子で形成された投影像の受光量が所定の閾値以上であるか否かに基づいて被測定物の3次元形状を導出してもよい。   The three-dimensional shape deriving unit may derive the three-dimensional shape of the object to be measured based on whether or not the amount of received light of the projected image formed by the light receiving element is equal to or greater than a predetermined threshold.

照明制御部は、特定色を含む照明光の単位時間の発光量を、全時間に対する特定色を含む照明光を照射する照明装置を消灯する時間の占有率を相殺する分だけ大きく設定してもよい。   The illumination control unit may set the light emission amount of the illumination light including the specific color per unit time so as to offset the occupation ratio of the time to turn off the illumination device that irradiates the illumination light including the specific color with respect to the entire time. Good.

上記課題を解決するために、本発明の3次元形状測定付加装置は、被測定物に特定色の光を投射する投光源と、被測定物で反射された反射光のうち特定色の反射光を受光し投影像を形成する受光素子と、受光素子で形成された投影像に基づいて被測定物の3次元形状を導出する3次元形状導出部とを有する3次元形状測定装置に付加する3次元形状測定付加装置であって、2値化された制御信号を生成する信号生成部と、被測定物に照明光を照射する複数の照明装置のうち特定色を含む照明光を照射する照明装置を、制御信号が第1状態を示す間消灯する照明制御部と、制御信号が第1状態を示す間に、受光素子に投影像を形成させる投影像形成制御部とを備えることを特徴とする。   In order to solve the above-described problem, a three-dimensional shape measurement addition device according to the present invention includes a light projecting light source that projects light of a specific color onto an object to be measured, and reflected light of a specific color among reflected light reflected by the object to be measured. 3 is added to a three-dimensional shape measuring apparatus having a light receiving element that receives the light and forms a projection image, and a three-dimensional shape deriving unit that derives the three-dimensional shape of the object to be measured based on the projection image formed by the light receiving element. Dimensional shape measurement addition device, a signal generation unit that generates a binarized control signal, and an illumination device that irradiates illumination light including a specific color among a plurality of illumination devices that irradiate the measurement object with illumination light And an illumination control unit that turns off while the control signal indicates the first state, and a projection image formation control unit that forms a projection image on the light receiving element while the control signal indicates the first state. .

上記課題を解決するために、本発明の他の3次元形状測定装置は、被測定物に特定色の光を投射する投光源と、被測定物で反射された反射光のうち特定色の反射光を受光する受光素子と、2値化された制御信号を生成する信号生成部と、被測定物に照明光を照射する複数の照明装置のうち特定色を含む照明光を照射する照明装置を、制御信号が第1状態を示す間消灯する照明制御部と、制御信号が第1状態を示す間に、投光源に特定色の光を投射させ、受光素子に特定色の反射光を受光させる投影像形成制御部と、投光源の投射時点と受光素子の受光時点との差分時間に基づいて被測定物の3次元形状を導出する3次元形状導出部とを備えることを特徴とする。   In order to solve the above-mentioned problem, another three-dimensional shape measuring apparatus of the present invention includes a light source that projects light of a specific color onto a measurement object, and a reflection of a specific color among reflected light reflected by the measurement object. A light receiving element that receives light, a signal generation unit that generates a binarized control signal, and an illumination device that irradiates illumination light including a specific color among a plurality of illumination devices that illuminate a measurement object with illumination light The illumination control unit that is turned off while the control signal indicates the first state, and while the control signal indicates the first state, the light source emits the light of the specific color and the light receiving element receives the reflected light of the specific color And a projection image formation control unit, and a three-dimensional shape deriving unit that derives a three-dimensional shape of the object to be measured based on a difference time between a projection time of the light projecting light source and a light reception time of the light receiving element.

上記課題を解決するために、被測定物に特定色の光を投射する投光源と、被測定物で反射された反射光のうち特定色の反射光を受光し投影像を形成する受光素子とを含む3次元形状測定装置を用いて3次元形状の測定を行う本発明の3次元形状測定方法は、2値化された制御信号を生成し、制御信号が第1状態を示す間、被測定物に照明光を照射する複数の照明装置のうち特定色を含む照明光を照射する照明装置を消灯すると共に受光素子で投影像を形成し、制御信号が第2状態を示す間、特定色を含む照明光を照射する照明装置を点灯すると共に受光素子の投影像の形成を停止し、受光素子で形成された投影像に基づいて被測定物の3次元形状を導出することを特徴とする。   In order to solve the above problems, a light projecting light source that projects light of a specific color onto the object to be measured, and a light receiving element that receives the reflected light of the specific color among the reflected light reflected by the object to be measured and forms a projected image; The three-dimensional shape measuring method of the present invention for measuring a three-dimensional shape using a three-dimensional shape measuring apparatus including a signal generates a binarized control signal, and while the control signal indicates the first state, the measurement target Among the plurality of illumination devices that irradiate the object with illumination light, the illumination device that illuminates illumination light including a specific color is turned off and a projected image is formed by the light receiving element, and the specific color is displayed while the control signal indicates the second state. The illumination device for irradiating the illumination light is turned on, the formation of the projection image of the light receiving element is stopped, and the three-dimensional shape of the object to be measured is derived based on the projection image formed by the light receiving element.

上述した3次元形状測定装置の技術的思想に基づく構成要素やその説明は、当該3次元形状測定付加装置および当該3次元形状測定方法にも適用可能である。   The above-described components based on the technical idea of the three-dimensional shape measuring apparatus and the description thereof can be applied to the three-dimensional shape measurement adding apparatus and the three-dimensional shape measuring method.

本発明によれば、照明光の連続性を確保し、被測定物の視認性や人の作業効率に影響を与えることなく、高精度かつ確実に被測定物の3次元形状を導出することが可能となる。   According to the present invention, it is possible to secure the continuity of illumination light and derive the three-dimensional shape of the measurement object with high accuracy and reliability without affecting the visibility of the measurement object and the work efficiency of the person. It becomes possible.

3次元形状測定システムの概略的な接続関係を示した説明図である。It is explanatory drawing which showed the schematic connection relation of the three-dimensional shape measurement system. 3次元形状測定装置の概略的な構成を説明するための説明図である。It is explanatory drawing for demonstrating the schematic structure of a three-dimensional shape measuring apparatus. 3次元形状導出部による3次元形状の導出を説明するための説明図である。It is explanatory drawing for demonstrating derivation | leading-out of the three-dimensional shape by a three-dimensional shape derivation | leading-out part. 被測定物上の任意の点の3次元位置の導出を説明した説明図である。It is explanatory drawing explaining derivation | leading-out of the three-dimensional position of the arbitrary points on a to-be-measured object. 光透過フィルタの設定を説明するためのスペクトル分布図である。It is a spectrum distribution figure for demonstrating the setting of a light transmissive filter. 照明装置の消灯タイミングと受光素子に投影像を形成させるタイミングを説明するためのタイムチャートである。It is a time chart for demonstrating the light extinction timing of an illuminating device, and the timing which forms a projection image in a light receiving element. 照明装置の消灯タイミングと受光素子に投影像を形成させる他のタイミングを説明するためのタイムチャートである。It is a time chart for demonstrating the extinction timing of an illuminating device, and the other timing which forms a projection image in a light receiving element. 受光量の絶対値を利用した3次元形状測定装置を例示した説明図である。It is explanatory drawing which illustrated the three-dimensional shape measuring apparatus using the absolute value of received light quantity. 3次元形状測定付加装置の概略的な構成を示す構成図である。It is a block diagram which shows schematic structure of a three-dimensional shape measurement addition apparatus. 3次元形状測定方法の全体的な流れを示したフローチャートである。It is the flowchart which showed the whole flow of the three-dimensional shape measuring method.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

被測定物の特に表面の3次元形状を測定するには、被測定物の表面における任意の複数の点の3次元位置(または3次元座標)を導出しなければならない。ここでは、そのような被測定物の表面における点の3次元位置を、例えば、三角測量法を応用して求める。三角測量法は、三角形の1辺の長さと、その端部における2の夾角または端部で交わる他の2辺の長さのいずれか一方が分かれば他方も求められ、その2辺の交点の位置を特定することができる測定方法である。   In order to measure the three-dimensional shape of the surface of the object to be measured, it is necessary to derive the three-dimensional positions (or three-dimensional coordinates) of arbitrary points on the surface of the object to be measured. Here, the three-dimensional position of the point on the surface of the object to be measured is obtained by applying, for example, a triangulation method. In the triangulation method, if one of the length of one side of a triangle and the length of two depressions at the end or the other two sides intersecting at the end is known, the other is also obtained. This is a measurement method capable of specifying a position.

ここでは、このような三角測量法を用いた3次元形状の測定方法の一例として光切断法を挙げ、被測定物の視認性や人の作業効率に影響を与えることなく、高精度かつ確実に被測定物の3次元形状を導出する3次元形状測定システム100を提案し、その後、具体的な3次元形状測定方法を詳述する。   Here, the optical cutting method is given as an example of a method for measuring a three-dimensional shape using such a triangulation method, and it is highly accurate and reliable without affecting the visibility of the object to be measured and human work efficiency. A three-dimensional shape measurement system 100 for deriving the three-dimensional shape of the object to be measured is proposed, and then a specific three-dimensional shape measurement method is described in detail.

(3次元形状測定システム100)
図1は、3次元形状測定システム100の概略的な接続関係を示した説明図である。図1(a)に示すように、3次元形状測定システム100は、3次元形状測定装置110と、照明装置120とを含んで構成される。
(3D shape measurement system 100)
FIG. 1 is an explanatory diagram showing a schematic connection relationship of the three-dimensional shape measurement system 100. As shown in FIG. 1A, the three-dimensional shape measurement system 100 includes a three-dimensional shape measurement device 110 and an illumination device 120.

3次元形状測定装置110は、被測定物102にスリット光を投射し、被測定物102の反射光により投影像112を形成して、投影像112に出現した光切断像114の3次元位置を特定する。また、3次元形状測定装置110では、このようなスリット光を、図1(a)中、白抜き矢印で示したように、スリット光(スリット)の長手方向と垂直となる方向に推移(揺動)させ、被測定物102全体に関して投影像112を順次形成することで、被測定物102の表面全体の3次元形状を導出する。当該3次元形状測定装置110の設置場所は特に限定されない。   The three-dimensional shape measuring apparatus 110 projects slit light on the object 102 to be measured, forms a projection image 112 by reflected light of the object 102 to be measured, and determines the three-dimensional position of the light section image 114 that appears in the projection image 112. Identify. Further, in the three-dimensional shape measuring apparatus 110, such slit light transitions (swings) in a direction perpendicular to the longitudinal direction of the slit light (slit) as shown by a white arrow in FIG. And the projection image 112 is sequentially formed with respect to the entire object to be measured 102, thereby deriving the three-dimensional shape of the entire surface of the object to be measured 102. The installation location of the three-dimensional shape measuring apparatus 110 is not particularly limited.

照明装置120は、人が測定作業や各種作業を行うため、被測定物102を含む作業領域を照射する。かかる照明装置120としては、点灯と消灯とを比較的高速に切換可能な光源を用いる。ここでは、その典型例として、高速応答、低消費電力、長寿命等の理由で近年広く利用されているLED(Light Emitting Diode)照明を用いる。また、本実施形態では、互いに発光色が異なるLEDをそれぞれ備える複数の照明装置120(120a、120b、120c)が設けられ、それぞれが独立した駆動電源122(122a、122b、122c)によって駆動される。具体的に、照明装置120には、図1(b)に示すように、1つのLEDパッケージに、例えば、赤色(Red)、緑色(Green)、青色(Blue)の3原色の発光体が並置されたマルチチップ型LED124が複数並設されている。このような3原色の発光体がそれぞれ照明装置120a、120b、120cに対応している。そして、3原色の発光体全てが発光することで加法混色により照明光として白色光を得ることができる。以下の説明では、複数の照明装置120として、このような赤緑青の3原色による照明装置120a、120b、120cを例に挙げるが、照明装置120の数は2以上の任意の数で構成することができる。また、本来、3つの照明装置120a、120b、120cは、図1(b)に示したように一体的に形成され得るが、理解を容易にするため、それぞれが独立した照明装置120a、120b、120cとして説明している。   The illumination device 120 irradiates a work area including the device under test 102 so that a person can perform measurement work and various work. As such an illuminating device 120, a light source that can be switched on and off at a relatively high speed is used. Here, as a typical example, LED (Light Emitting Diode) illumination that has been widely used in recent years for reasons such as high-speed response, low power consumption, and long life is used. In the present embodiment, a plurality of illumination devices 120 (120a, 120b, 120c) each including LEDs having different emission colors are provided, and each is driven by an independent drive power source 122 (122a, 122b, 122c). . Specifically, as shown in FIG. 1B, the lighting device 120 includes, for example, light emitters of three primary colors of red (Red), green (Green), and blue (Blue) in one LED package. A plurality of the multi-chip type LEDs 124 are arranged in parallel. Such three primary color light emitters correspond to the illumination devices 120a, 120b, and 120c, respectively. Further, white light can be obtained as illumination light by additive color mixing because all three primary color light emitters emit light. In the following description, the lighting devices 120a, 120b, and 120c using the three primary colors of red, green, and blue are exemplified as the plurality of lighting devices 120. However, the number of the lighting devices 120 may be an arbitrary number of two or more. Can do. In addition, originally, the three lighting devices 120a, 120b, and 120c can be integrally formed as shown in FIG. 1B, but in order to facilitate understanding, each of the lighting devices 120a, 120b, It is described as 120c.

上記複数の照明装置120a、120b、120cの設置位置は、室内の天井としてもよいし、被測定物102近辺の任意の位置としてもよく、数にも制限はない。また、被測定物102が比較的小さい場合、光を遮蔽して暗室化した箱内に被測定物102を配置し、その箱内のみを照射するように複数の照明装置120a、120b、120cを配置してもよい。   The installation positions of the plurality of lighting devices 120a, 120b, and 120c may be indoor ceilings or arbitrary positions near the object to be measured 102, and the number is not limited. When the device under test 102 is relatively small, the devices under test 102 are arranged in a box that is shielded from light and darkened, and a plurality of illumination devices 120a, 120b, and 120c are provided so as to irradiate only the inside of the box. You may arrange.

また、複数の照明装置120a、120b、120cそれぞれに独立して電力を供給する複数の駆動電源122(122a、122b、122c)は、複数の照明装置120a、120b、120cそれぞれの高速切換を実現するため、供給電力を高速に開閉することが可能な電源である。例えば、複数の照明装置120a、120b、120cとして上記3原色のLED照明を採用した場合、駆動電源122も同数(3つ)準備され、3つの駆動電源122a、122b、122cは、それぞれ、商用電源を変圧、整流および平滑化した直流電力や定電圧の蓄電池による直流電力を用い、ゲート隔離型バイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)やパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等の半導体電力制御素子を通じて、その直流電力を高速に開閉する。ここで、3つの照明装置120a、120b、120cが組み合わされた照明ユニットが複数設けられている場合、照明装置120a、120b、120cに対する3つの駆動電源122a、122b、122cの組み合わせも複数準備し、共通のゲート信号によって上記の半導体電力制御素子を制御し、同一の発光色に関する照明装置120の点灯と消灯のタイミングを同期させる。また、複数の照明装置120a、120b、120cとしてLEDを用いなかった場合であっても、既存の駆動電源の構成や電力供給方式を変更することで、複数の照明装置120a、120b、120cそれぞれの点灯と消灯とを高速に切り換えることができる。   The plurality of drive power supplies 122 (122a, 122b, 122c) that supply power independently to each of the plurality of lighting devices 120a, 120b, 120c realize high-speed switching of each of the plurality of lighting devices 120a, 120b, 120c. Therefore, the power supply can open and close the supplied power at high speed. For example, when the three primary color LED lights are employed as the plurality of lighting devices 120a, 120b, and 120c, the same number (three) of driving power sources 122 are prepared, and the three driving power sources 122a, 122b, and 122c are commercial power sources, respectively. Power control, rectification and smoothing DC power or DC power from a constant voltage storage battery, semiconductor power control such as insulated gate bipolar transistor (IGBT) and power MOSFET (Metal Oxide Semiconductor Field Effect Transistor) The DC power is opened and closed at high speed through the element. Here, when a plurality of lighting units in which three lighting devices 120a, 120b, 120c are combined are provided, a plurality of combinations of three driving power sources 122a, 122b, 122c for the lighting devices 120a, 120b, 120c are prepared, The semiconductor power control element is controlled by a common gate signal to synchronize the lighting and extinguishing timings of the lighting device 120 for the same emission color. Moreover, even if it is a case where LED is not used as several illuminating device 120a, 120b, 120c, by changing the structure and power supply system of the existing drive power supply, each of several illuminating device 120a, 120b, 120c Switching on and off can be performed at high speed.

本実施形態の3次元形状測定システム100では、複数の照明装置120a、120b、120cが並行して照射される下で、3次元形状測定装置110により被測定物102の3次元形状を測定する。以下、3次元形状測定装置110の詳細な構成を説明する。   In the three-dimensional shape measurement system 100 of the present embodiment, the three-dimensional shape measurement device 110 measures the three-dimensional shape of the object 102 under irradiation with a plurality of illumination devices 120a, 120b, and 120c in parallel. Hereinafter, a detailed configuration of the three-dimensional shape measuring apparatus 110 will be described.

(3次元形状測定装置110)
図2は、3次元形状測定装置110の概略的な構成を説明するための説明図である。3次元形状測定装置110は、投光源150と、第1光学系152と、投光源推移部154と、第2光学系156と、電子シャッタ158と、受光素子160と、照明制御部162と、保持部164と、中央制御部166とを含んで構成される。ここでは説明の便宜のため省略するが、投光源150、第1光学系152、投光源推移部154、第2光学系156、電子シャッタ158、受光素子160等は3次元形状測定装置110のハウジングに固定されている。
(3D shape measuring device 110)
FIG. 2 is an explanatory diagram for explaining a schematic configuration of the three-dimensional shape measuring apparatus 110. The three-dimensional shape measurement apparatus 110 includes a light projecting light source 150, a first optical system 152, a light projecting light source transition unit 154, a second optical system 156, an electronic shutter 158, a light receiving element 160, an illumination control unit 162, A holding unit 164 and a central control unit 166 are included. Although omitted here for convenience of explanation, the light projecting light source 150, the first optical system 152, the light projecting light source transition unit 154, the second optical system 156, the electronic shutter 158, the light receiving element 160 and the like are the housing of the three-dimensional shape measuring apparatus 110. It is fixed to.

投光源150は、特定色、例えば赤色のレーザダイオード等で構成され、被測定物102にレーザ光を投射(出射)する。ここで、レーザ光の投射タイミングは、連続的または間欠的とすることができる。ここでは特定色として、レーザ光に一般的に採用される赤色を用いているが、発光色に制限はない。また、ここでは1の波長による単色が採用されているが、複数の波長による合成色を用いることもできる。   The light projecting light source 150 is composed of a specific color, for example, a red laser diode, and projects (emits) laser light onto the object to be measured 102. Here, the projection timing of the laser light can be continuous or intermittent. Here, red, which is generally employed for laser light, is used as the specific color, but the emission color is not limited. In addition, although a single color with one wavelength is employed here, a composite color with a plurality of wavelengths can be used.

第1光学系152は、例えば、シリンドリカルレンズで構成され、投光源150から出射されたレーザ光を扇状に放射したスリット光を形成する。ここでは、レーザ光を拡散することでスリット光を形成しているが、レーザ光のスポット光を走査することでスリット光を形成するとしてもよい。   The first optical system 152 is formed of, for example, a cylindrical lens, and forms slit light that radiates the laser light emitted from the light projecting light source 150 in a fan shape. Here, the slit light is formed by diffusing the laser light, but the slit light may be formed by scanning the spot light of the laser light.

投光源推移部154は、動力源168を通じて、第1光学系152によって形成されたスリット光を、図2中、白抜き矢印で示したように、スリット光の長手方向と垂直となる方向に推移させる。例えば、投光源150と第1光学系152とを一体的に形成してギア(図示せず)に固定し、動力源168により駆動されるピニオン(図示せず)をギアに噛合させてスリット光を推移させたり、スリット光をミラー(図示せず)で反射し、ミラーを動力源168で回転させることによりスリット光を推移させるように構成する。こうして、被測定物102全体に順次スリット光を当てることができる。   The light projecting light source transition unit 154 shifts the slit light formed by the first optical system 152 through the power source 168 in a direction perpendicular to the longitudinal direction of the slit light, as indicated by a white arrow in FIG. Let For example, the light projecting light source 150 and the first optical system 152 are integrally formed and fixed to a gear (not shown), and a pinion (not shown) driven by a power source 168 is meshed with the gear so as to slit light. Or the slit light is reflected by a mirror (not shown), and the mirror is rotated by a power source 168 to change the slit light. In this way, it is possible to sequentially apply slit light to the entire object to be measured 102.

第2光学系156は、1枚のレンズまたは複数のレンズを組み合わせて構成され、スリット光が被測定物102表面で反射した反射光(反射像)を受光素子160に結像させる。また、本実施形態においては、第2光学系156に、レーザ光の反射光のうち、特定色の反射光のみを透過する(特定色以外の反射光を遮断する)光透過フィルタを設けている。かかる光透過フィルタの設定手順に関しては後ほど詳述する。また、光透過フィルタを後述する電子シャッタ158や受光素子160に設けることもでき、さらに、後述する受光素子160が、その特性上、特定色の光のみに感度を有する(特定色のみ検出する)場合、この光透過フィルタを省略することもできる。   The second optical system 156 is configured by combining one lens or a plurality of lenses, and forms reflected light (reflected image) reflected by the slit light on the surface of the measurement object 102 on the light receiving element 160. In the present embodiment, the second optical system 156 is provided with a light transmission filter that transmits only the reflected light of the specific color (blocks the reflected light other than the specific color) out of the reflected light of the laser light. . The setting procedure of the light transmission filter will be described in detail later. Further, a light transmission filter can be provided in the electronic shutter 158 and the light receiving element 160 described later, and the light receiving element 160 described later has sensitivity only to light of a specific color (detects only a specific color) due to its characteristics. In this case, this light transmission filter can be omitted.

電子シャッタ158は、第2光学系156を透過した反射光の受光素子160への導光状態(透過状態または非透過状態)を制御する。本実施形態では、後述する照明制御部162が、特定色の照明光を照射する照明装置120aを点灯させている間、電子シャッタ158を非透過状態にし、同照明装置120aを消灯させている間のみ透過状態とする。このように電子シャッタ158の透過時間を制限することで、照明装置120aにおける特定色の照明光による被測定物102の反射光の影響を削減することができる。   The electronic shutter 158 controls the light guide state (transmission state or non-transmission state) of the reflected light transmitted through the second optical system 156 to the light receiving element 160. In the present embodiment, while the lighting control unit 162 described later turns on the lighting device 120a that emits illumination light of a specific color, the electronic shutter 158 is in a non-transmissive state and the lighting device 120a is turned off. Only the transmission state. By limiting the transmission time of the electronic shutter 158 in this way, it is possible to reduce the influence of the reflected light of the object to be measured 102 due to the illumination light of a specific color in the illumination device 120a.

受光素子160は、CCD(Charge Coupled Device)や消費電力の少ないCMOS(Complementary Metal Oxide Semiconductor)等による2次元光電変換素子で構成され、電子シャッタ158が透過状態となっている間、被測定物102の表面で生じる反射光のうち、特定色(ここでは赤色)の反射光を光電変換した電荷を蓄積する。かかる電荷の蓄積は、例えば、受光素子160の画素単位で行われ、画素全体で2次元の投影像112を形成する。本実施形態では、理解を容易にするため、電子シャッタ158の透過状態と非透過状態という表現を用いることとする。電子シャッタ158の透過状態とは、受光素子160において光電変換した電荷の蓄積が行われる状態のことであり、電子シャッタ158の透過状態において受光された光は、受光素子160において投影像112の形成に寄与する。反対に、電子シャッタ158の非透過状態とは、受光素子160において光電変換した電荷の蓄積が行われていない状態のことであり、電子シャッタ158の非透過状態において受光された光は、受光素子160において投影像112の形成に寄与しない。   The light receiving element 160 is constituted by a two-dimensional photoelectric conversion element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) with low power consumption, and while the electronic shutter 158 is in a transmissive state, the DUT 102 is measured. Among the reflected light generated on the surface of the light, the charge obtained by photoelectric conversion of the reflected light of a specific color (here, red) is accumulated. Such charge accumulation is performed in units of pixels of the light receiving element 160, for example, and a two-dimensional projection image 112 is formed by the entire pixels. In the present embodiment, in order to facilitate understanding, the expressions of the transmission state and the non-transmission state of the electronic shutter 158 are used. The transmission state of the electronic shutter 158 is a state in which the photoelectrically converted charges are accumulated in the light receiving element 160, and the light received in the transmission state of the electronic shutter 158 forms the projection image 112 in the light receiving element 160. Contribute to. On the contrary, the non-transmission state of the electronic shutter 158 is a state in which the photoelectric conversion charge is not accumulated in the light receiving element 160, and the light received in the non-transmission state of the electronic shutter 158 is the light receiving element. 160 does not contribute to the formation of the projected image 112.

このようにして形成された被測定物102の投影像112によって、後述する3次元形状導出部176は、受光素子160に入射した反射光の受光角を把握することができ、その受光角と投光源150の投光角とを用いて3次元形状を導出する。ここで、反射光は、正確には、被測定物102表面における散乱光の一部であるが、説明の便宜上、単に反射光といった表現を用いることとする。   From the projection image 112 of the object to be measured 102 formed in this way, the three-dimensional shape deriving unit 176 described later can grasp the light reception angle of the reflected light incident on the light receiving element 160, and the light reception angle and projection A three-dimensional shape is derived using the projection angle of the light source 150. Here, the reflected light is precisely a part of the scattered light on the surface of the object 102 to be measured, but for convenience of explanation, the expression simply reflected light is used.

本実施形態では、照明制御部162が3つの照明装置120a、120b、120cを点灯させている間、電子シャッタ158が非透過状態となるので、受光素子160で照明光の反射光を受光することなく、照明装置120aを消灯させている間のみ電子シャッタ158が透過状態となるので、投光源150による特定色の光および照明装置120b、120cの照明光の反射光のみを受光できる。しかし、照明装置120b、120cの照明光の反射光は、上述した光透過フィルタによって遮断される。したがって、照明光に関するすべての反射光を排除できるので、高精度かつ確実に被測定物102の3次元形状を導出することが可能となる。   In this embodiment, since the electronic shutter 158 is in a non-transmissive state while the lighting control unit 162 lights the three lighting devices 120a, 120b, and 120c, the light receiving element 160 receives the reflected light of the illumination light. In addition, since the electronic shutter 158 is in a transmissive state only while the illumination device 120a is turned off, only the light of a specific color from the light projecting light source 150 and the reflected light of the illumination light of the illumination devices 120b and 120c can be received. However, the reflected light of the illumination light from the illumination devices 120b and 120c is blocked by the light transmission filter described above. Therefore, since all the reflected light related to the illumination light can be excluded, the three-dimensional shape of the object 102 to be measured can be derived with high accuracy and reliability.

照明制御部162は、後述する信号生成部170によって生成される2値化された制御信号が第1状態を示す間、3つの照明装置120a、120b、120cのうち特定色を含む照明光を照射する照明装置120aを消灯する。例えば、制御信号が、50Hzの周波数であり、継続時間1msecの第1状態と19msecの第2状態を交互に繰り返す場合、照明制御部162は、制御信号が第2状態を示す間はすべての照明装置120a、120b、120cを点灯し、20msec毎に1回、第1状態である1msecの間だけ照明装置120aのみを消灯する。このとき他の照明装置120b、120cは点灯状態を維持している。ここでは、照明装置120aが消灯し、照明装置120b、120cが点灯している時間が、照明装置120a、120b、120cすべてが点灯している時間に比べて非常に短いので、照明装置120aのみ消灯している状態が測定者に意識されることはない。また、消灯とはいっても他の照明装置120b、120cは継続的に点灯しているので、照明装置120として十分な発光量を確保でき、被測定物102の視認性や人の作業効率に影響を及ぼすことがない。   The illumination control unit 162 irradiates illumination light including a specific color among the three illumination devices 120a, 120b, and 120c while the binarized control signal generated by the signal generation unit 170 described later indicates the first state. The lighting device 120a to be turned off is turned off. For example, when the control signal has a frequency of 50 Hz and the first state having a duration of 1 msec and the second state having a duration of 19 msec are alternately repeated, the illumination control unit 162 performs all the illumination while the control signal indicates the second state. The devices 120a, 120b, and 120c are turned on, and only the lighting device 120a is turned off once every 20 msec for 1 msec in the first state. At this time, the other lighting devices 120b and 120c maintain the lighting state. Here, since the illumination device 120a is turned off and the illumination devices 120b and 120c are lit for a very short time compared to the illumination devices 120a, 120b and 120c are all lit, only the illumination device 120a is turned off. The measurer is not conscious of the state that is doing. In addition, since the other lighting devices 120b and 120c are lit continuously even though they are turned off, it is possible to secure a sufficient amount of light emission as the lighting device 120, which affects the visibility of the object to be measured 102 and the human work efficiency. Will not affect.

また、当該3次元形状測定装置110と照明装置120を共用する電気機器であって、照明装置120の連続した照射を前提としている電気機器がある場合、例えば、照明装置120自体を、照明光を変調して継続的な光空間伝送(通信)を行う光空間伝送装置として機能させたり、照明光のエネルギーを他のエネルギーに連続して変換する装置や、照明光やその反射光によって人の有無を判断する人感センサ等がある場合に、照明装置120による照明光の照射を完全に断ち切れない(消灯できない)ことがある。本実施形態では、照明装置120aが消灯している間も、他の照明装置120b、120cが継続的に点灯しているので、上記のような電気機器の本来の機能を損なうこともない。したがって、測定者は、自身の視認性と共に、他の電気機器の安定動作も確保することが可能となる。   In addition, when there is an electrical device that shares the three-dimensional shape measuring apparatus 110 and the illumination device 120 and is premised on continuous illumination of the illumination device 120, for example, the illumination device 120 itself Functions as an optical space transmission device that modulates and performs continuous optical space transmission (communication), devices that continuously convert the energy of illumination light into other energy, and presence / absence of people by illumination light and its reflected light When there is a human sensor or the like for determining whether or not there is a case, irradiation of illumination light by the illumination device 120 may not be completely cut off (cannot be turned off). In the present embodiment, since the other lighting devices 120b and 120c are continuously turned on even while the lighting device 120a is turned off, the original function of the electric device as described above is not impaired. Therefore, the measurer can ensure the stable operation of other electric devices as well as his / her visibility.

ここで、照明装置120aの点灯や消灯に遅延を伴う場合、照明装置120aの消灯時間を確保するため、照明制御部162は、制御信号が第2状態から第1状態に反転する時点より遅延時間分早く照明装置120aの消灯を開始してもよい。こうすることで、制御信号が第1状態を示している間、照明装置120aを完全に消灯することができる。   Here, when the lighting device 120a is turned on and off with a delay, the lighting control unit 162 delays the control signal from the time when the control signal is inverted from the second state to the first state in order to ensure the lighting time of the lighting device 120a. The lighting device 120a may be turned off quickly. By doing so, the illumination device 120a can be completely turned off while the control signal indicates the first state.

本実施形態では、被測定物102の視認性や人の作業効率に影響を与えることなく、被測定物102の3次元形状を導出することを目的としている。そこで、照明制御部162は、照明装置120aの点灯状態、すなわち照明装置120a、120b、120cすべての点灯状態を比較的長時間確保することで、被測定物102の視認性や人の作業効率を維持し、また、被測定物102の3次元形状を測定するため、被測定物102の視認性や人の作業効率に影響を与えない範囲で照明装置120aのみを短時間だけ消灯している。   The object of the present embodiment is to derive the three-dimensional shape of the device under test 102 without affecting the visibility of the device under test 102 or the work efficiency of a person. Therefore, the illumination control unit 162 ensures the lighting state of the lighting device 120a, that is, the lighting states of all the lighting devices 120a, 120b, and 120c for a relatively long time, thereby improving the visibility of the object 102 to be measured and the human work efficiency. In order to maintain and measure the three-dimensional shape of the device under test 102, only the illumination device 120a is turned off for a short time within a range that does not affect the visibility of the device under test 102 or the work efficiency of a person.

ここで、照明制御部162は、照明装置120aの照明光の単位時間の発光量を、照明装置120aを消灯する時間と点灯する時間を合わせた全時間に対する、照明装置120aを消灯する時間の占有率(比率)を相殺する分だけ大きく設定することができる。例えば、上述した50Hz(周期20msec)で1msecだけ照明装置120aを消灯する場合、占有率(照明装置120aが消灯する時間/全時間)は、1/20となり、単純に照明装置120aの消灯を繰り返すと、照明装置120aのみに着目した発光量は(1−1/20)=19/20に減衰してしまう。そこで、照明制御部162は、消灯の影響を相殺すべく、照明装置120aの発光量のみを20/19倍に増幅するように設定する。こうして、照明装置120aに関しても、他の照明装置120b、120c同様、照明装置120aを消灯せず連続して点灯した場合と等しい発光量を確保することができ、均一な白色光を得られると共に、被測定物102の視認性や人の作業効率への影響を最低限に抑えることが可能となる。   Here, the illumination control unit 162 occupies the light emission amount of the illumination light of the illumination device 120a per unit time with respect to the total time including the illumination time of the illumination device 120a and the illumination time of the illumination device 120a. The rate (ratio) can be set to be large enough to cancel. For example, when the lighting device 120a is turned off for 1 msec at 50 Hz (cycle of 20 msec) described above, the occupation ratio (time for turning off the lighting device 120a / total time) becomes 1/20, and the lighting device 120a is simply turned off repeatedly. Then, the light emission amount focused only on the lighting device 120a is attenuated to (1-1 / 20) = 19/20. Therefore, the illumination control unit 162 is set to amplify only the light emission amount of the illumination device 120a by 20/19 times in order to cancel the influence of the extinction. Thus, as with the other lighting devices 120b and 120c, the lighting device 120a can secure the same amount of light emission as when the lighting device 120a is continuously turned on without turning off, and uniform white light can be obtained. It is possible to minimize the influence on the visibility of the object to be measured 102 and human work efficiency.

保持部164は、半導体メモリ、不揮発性RAM、フラッシュメモリ、HDD(Hard Disk Drive)等で構成され、後述する記憶制御部174の制御指令に基づいて、中央制御部166から送信された1または複数の投影像112を保持する。   The holding unit 164 includes a semiconductor memory, a non-volatile RAM, a flash memory, an HDD (Hard Disk Drive), and the like, and one or more transmitted from the central control unit 166 based on a control command of a storage control unit 174 described later. The projected image 112 of the image is held.

中央制御部166は、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む半導体集積回路により、3次元形状測定装置110全体を管理および制御する。また、本実施形態において、中央制御部166は、信号生成部170と、投影像形成制御部172と、記憶制御部174と、3次元形状導出部176としても機能する。   The central control unit 166 manages and controls the entire three-dimensional shape measuring apparatus 110 by a semiconductor integrated circuit including a central processing unit (CPU), a ROM storing a program, a RAM as a work area, and the like. In the present embodiment, the central control unit 166 also functions as the signal generation unit 170, the projection image formation control unit 172, the storage control unit 174, and the three-dimensional shape derivation unit 176.

信号生成部170は、第1状態と第2状態とに2値化され、第1状態の占有時間が第2状態の占有時間より短い矩形状の制御信号を生成する。具体的に、信号生成部170は、上述したような周期的な制御信号を生成する場合、図示しないタイマおよびカウンタに周波数および第1状態を継続する継続時間を設定し、1ショットの矩形インパルスの制御信号を生成する場合、図示しないタイマに第2状態から第1状態への反転時刻を設定する。また、このような周期的な制御信号や1ショットの制御信号に限らず、規則的または不規則に変化する様々な矩形信号を制御信号として採用することができる。ここでは、タイマやカウンタを設定し、ハードウェアで制御信号を生成する例を挙げているが、ソフトウェア割り込みを利用して中央制御部166内で制御信号を生成することもできる。また、本実施形態では、制御信号の第1状態と第2状態とを離散信号のハイレベルとローレベル(正論理)に対応させているが、ローレベルとハイレベル(負論理)に対応させてもよい。   The signal generator 170 is binarized into a first state and a second state, and generates a rectangular control signal in which the occupation time of the first state is shorter than the occupation time of the second state. Specifically, when generating the periodic control signal as described above, the signal generation unit 170 sets a frequency and a duration for continuing the first state in a timer and a counter (not shown), and generates a one-shot rectangular impulse. When generating the control signal, a reversal time from the second state to the first state is set in a timer (not shown). Further, not only such a periodic control signal and one-shot control signal, but also various rectangular signals that change regularly or irregularly can be adopted as the control signal. Here, an example is given in which a timer and a counter are set and a control signal is generated by hardware. However, a control signal can also be generated in the central control unit 166 using a software interrupt. In this embodiment, the first state and the second state of the control signal are associated with the high level and low level (positive logic) of the discrete signal, but are associated with the low level and high level (negative logic). May be.

信号生成部170が周期的な制御信号を生成する場合、その時間配分は大凡以下のようにして定めることができる。まず、投光源150のレーザ光の強度と被測定物102との距離に応じ、受光素子160において被測定物102の反射光による投影像112を形成するのに必要な時間が決まり、その時間が制御信号の第1状態の継続時間となる。また、照明装置120aの消灯が被測定物102の視認性や人の作業効率に影響を与えない範囲で、投影像112を十分な回数取得できるように周波数が決定される。   When the signal generator 170 generates a periodic control signal, the time distribution can be determined as follows. First, according to the intensity of the laser light from the light projecting light source 150 and the distance to the object to be measured 102, the time required for forming the projection image 112 by the reflected light of the object to be measured 102 in the light receiving element 160 is determined. This is the duration of the first state of the control signal. In addition, the frequency is determined so that the projection image 112 can be acquired a sufficient number of times within a range in which turning off of the lighting device 120a does not affect the visibility of the object to be measured 102 or the human work efficiency.

したがって、投光源150のレーザ光の強度を強くできれば、その分、第1状態の継続時間を短くすることもでき、ひいては投影像112の単位時間当たりの取得回数を増やし、測定完了までの総時間を短縮することも可能となる。このとき、電子シャッタ158の反応速度や照明装置120aの点灯と消灯との切換による遅延時間等も考慮して、制御信号が設定されるとしてもよい。   Therefore, if the intensity of the laser light of the light projecting light source 150 can be increased, the duration of the first state can be shortened accordingly, and as a result, the number of acquisitions per unit time of the projection image 112 is increased, and the total time until the measurement is completed. Can be shortened. At this time, the control signal may be set in consideration of a reaction speed of the electronic shutter 158, a delay time due to switching between lighting and extinguishing of the lighting device 120a, and the like.

投影像形成制御部172は、制御信号が第1状態を示す間に、受光素子160に投影像112を形成させる。ここでは、電子シャッタ158の導光状態を制御して受光素子160の投影像112を形成させる例を挙げて説明するが、かかる場合に限られず、投影像形成制御部172は、受光素子160に蓄積された電荷のリセット信号によって電荷の蓄積開始タイミングを制御する等、様々な方法で受光素子160に投影像112を形成させるタイミングを制御することができる。   The projection image formation control unit 172 causes the light receiving element 160 to form the projection image 112 while the control signal indicates the first state. Here, an example in which the light guide state of the electronic shutter 158 is controlled to form the projected image 112 of the light receiving element 160 will be described. However, the present invention is not limited to this, and the projection image formation control unit 172 includes the light receiving element 160. The timing at which the light receiving element 160 forms the projection image 112 can be controlled by various methods, such as controlling the charge accumulation start timing by a reset signal of the accumulated charge.

このようにして生成された制御信号を通じて、照明装置120aの消灯タイミングと受光素子160に投影像112を形成させるタイミングとを同期させる。   The turn-off timing of the illumination device 120a and the timing at which the light receiving element 160 forms the projection image 112 are synchronized through the control signal generated in this way.

また、受光素子160に投影像112を形成させるタイミングが予め定まっている場合、その投影像112を形成させるタイミングを提供する手段が信号生成部170に相当する。したがって、投影像形成制御部172は、信号生成部170から提供される制御信号としての、予め定められた投影像112を形成させるタイミングを受け、受光素子160に投影像112を形成させることとなる。また、照明制御部162は、その投影像112を形成させるタイミング(制御信号)で照明装置120aを消灯させる。   In addition, when the timing at which the light receiving element 160 forms the projection image 112 is determined in advance, the means for providing the timing at which the projection image 112 is formed corresponds to the signal generation unit 170. Therefore, the projection image formation control unit 172 receives the timing for forming a predetermined projection image 112 as a control signal provided from the signal generation unit 170, and causes the light receiving element 160 to form the projection image 112. . Further, the illumination control unit 162 turns off the illumination device 120a at the timing (control signal) at which the projection image 112 is formed.

さらに、その逆のパターンとして、照明装置120aの消灯タイミングが予め定まっている場合、その照明装置120aの消灯タイミングを提供する手段が信号生成部170に相当する。したがって、照明制御部162は、信号生成部170から提供される制御信号としての予め定められた照明装置120aの消灯タイミングを受け、照明装置120aを消灯することとなる。また、投影像形成制御部172は、その照明装置120aの消灯タイミング(制御信号)で受光素子160に投影像112を形成させる。   Furthermore, when the turn-off timing of the lighting device 120a is determined in advance as a reverse pattern, means for providing the turn-off timing of the lighting device 120a corresponds to the signal generation unit 170. Accordingly, the illumination control unit 162 turns off the illumination device 120a in response to a predetermined turn-off timing of the illumination device 120a as a control signal provided from the signal generation unit 170. Further, the projection image formation control unit 172 causes the light receiving element 160 to form the projection image 112 at the turn-off timing (control signal) of the illumination device 120a.

本実施形態の目的は、照明装置120aの点灯と受光素子160の投影像112の形成とを時間軸において排他的に実行することである。したがって、信号生成部170は、かかる目的を達成できれば、様々な他のタイミングを基準に制御信号を形成することができる。このとき、基準とする他のタイミングで信号生成部170が制御信号を生成することとなる。   The object of the present embodiment is to exclusively execute lighting of the illumination device 120a and formation of the projection image 112 of the light receiving element 160 on the time axis. Therefore, if the signal generation unit 170 can achieve such an object, the signal generation unit 170 can form a control signal based on various other timings. At this time, the signal generation unit 170 generates a control signal at another reference timing.

また、投光源150のレーザ光に関しては、連続的に投射可能であることを説明したが、受光素子160に投影像112を形成させるタイミングに合わせて、投光源150にレーザ光を間欠的に投射させてもよい。このように投光源150の出射時間を削減することで、無駄な消費電力を削減し、その分発光量を高めることもできる。この場合、投光源150の駆動電源にも制御信号が提供され、投光源150は、電子シャッタ158が非透過状態となっている間、レーザ光の投射を止め、電子シャッタ158が透過状態となるタイミングでレーザ光の投射を開始(再開)する。   Further, it has been described that the laser light from the light projecting light source 150 can be projected continuously. However, the laser light is intermittently projected onto the light projecting light source 150 in accordance with the timing at which the light receiving element 160 forms the projection image 112. You may let them. By reducing the emission time of the light projecting light source 150 in this way, useless power consumption can be reduced and the amount of light emission can be increased accordingly. In this case, a control signal is also provided to the driving power source of the light projecting light source 150, and the light projecting light source 150 stops the projection of the laser light while the electronic shutter 158 is in a non-transmissive state, and the electronic shutter 158 is in a transmissive state. Laser light projection starts (restarts) at the timing.

また、受光素子160が投影像112を形成し始めるのに遅延を伴う場合、電荷の蓄積時間を確保すべく、その遅延時間分、制御信号が第2状態から第1状態に反転する時点より早く電子シャッタ158を透過状態とすることもできる。   In addition, when the light receiving element 160 starts to form the projection image 112 with a delay, in order to ensure the charge accumulation time, the delay time is earlier than the time when the control signal is inverted from the second state to the first state. The electronic shutter 158 can be in a transmissive state.

記憶制御部174は、制御信号が第1状態から第2状態に反転した後、すなわち、投影像形成制御部172が電子シャッタ158を非透過状態とした後で、受光素子160に蓄積された投影像112を読み出し、そのときの投光源150の投光角と関連付けて順次保持部164に記憶する。   After the control signal is inverted from the first state to the second state, that is, after the projection image formation control unit 172 sets the electronic shutter 158 in the non-transmissive state, the storage control unit 174 stores the projection accumulated in the light receiving element 160. The image 112 is read out and sequentially stored in the holding unit 164 in association with the projection angle of the projection light source 150 at that time.

3次元形状導出部176は、被測定物102全体に渡る光切断像114を取得すべく、予め定められた回数分、投影像112が形成されると、保持部164に保持された複数の投影像112に基づいて被測定物102の3次元形状を導出する。具体的に、3次元形状導出部176は、受光素子160で形成された投影像112の各画素における受光量(受光強度)が所定の閾値以上であるか否かに基づいて光切断像114のみを抽出し、その光切断像114の投影像112に対する相対的位置から、光切断像114上の点の3次元位置を求め、被測定物102の3次元形状を導出する。   The three-dimensional shape deriving unit 176 performs a plurality of projections held by the holding unit 164 when the projection image 112 is formed a predetermined number of times in order to obtain the light section image 114 over the entire object to be measured 102. Based on the image 112, the three-dimensional shape of the DUT 102 is derived. Specifically, the three-dimensional shape deriving unit 176 performs only the light section image 114 based on whether or not the light reception amount (light reception intensity) in each pixel of the projection image 112 formed by the light receiving element 160 is greater than or equal to a predetermined threshold value. Is extracted, the three-dimensional position of the point on the light section image 114 is obtained from the relative position of the light section image 114 with respect to the projection image 112, and the three-dimensional shape of the object 102 to be measured is derived.

図3は、3次元形状導出部176による3次元形状の導出を説明するための説明図である。受光素子160で形成された複数の投影像112のうち、例えば、スリット光の投光角が図1の状態であった場合の任意の投影像112が図3(a)のようになったと仮定する。投影像112には、被測定物102におけるスリット光の反射光である光切断像114が投影される。このとき投影像112内の、光切断像114の長手方向と垂直の方向の任意のライン116における各画素の受光量は、図3(b)のようになる。図3(b)は、横軸がライン116の画素に相当する位置であり、縦軸がその画素毎の受光量を示している。   FIG. 3 is an explanatory diagram for explaining the derivation of the three-dimensional shape by the three-dimensional shape derivation unit 176. Among the plurality of projection images 112 formed by the light receiving element 160, for example, it is assumed that an arbitrary projection image 112 when the projection angle of the slit light is in the state of FIG. 1 is as shown in FIG. To do. On the projected image 112, a light section image 114 that is a reflected light of the slit light on the object to be measured 102 is projected. At this time, the received light amount of each pixel in an arbitrary line 116 in the direction perpendicular to the longitudinal direction of the light section image 114 in the projection image 112 is as shown in FIG. In FIG. 3B, the horizontal axis is a position corresponding to the pixel of the line 116, and the vertical axis indicates the amount of light received for each pixel.

従来では、スリット光の反射光に、3つの照明装置120a、120b、120cすべての照明光の反射光も含まれ、第2光学系156に設けられた光透過フィルタによって特定色のみを透過させたとしても、その特定色を含む照明光を照射する照明装置120aによる反射光が重畳されるので、特定色の受光量の分布は、図3(c)のようになっていた。かかる図3(c)の分布では、光切断像114に相当する画素A(図3(a)参照)において、スリット光の反射光が、照明光、特に特定色の照明光の反射光に加算され、相対的に受光量が高くなるが、このような照明光の反射光の受光量は事前には予測困難であり、照明光の反射光の受光量が揺動して不規則となることもあるので、その位置を判別するための閾値を一意に設定できず、スリット光の反射光のみを抽出するのは困難であった。本実施形態では、図3(b)の如く、投影像112の形成において照明光のうち対象となる特定色の照明光の反射光を排除しているので、スリット光の光切断像114のみが受光分布として現れ、測定者は、その光切断像114の受光量を想定することができる。したがって、例えば、図3(b)の如く、想定される受光量の半分の位置に閾値を設定することで、3次元形状測定装置110は、確実かつ容易に光切断像114のみを抽出することができ、高精度で3次元形状を測定することが可能となる。続いて、抽出された光切断像114から3次元位置を導出する流れを説明する。   Conventionally, reflected light of slit light includes reflected light of all three illumination devices 120a, 120b, and 120c, and only a specific color is transmitted by a light transmission filter provided in the second optical system 156. However, since the reflected light from the illumination device 120a that irradiates illumination light including the specific color is superimposed, the distribution of the amount of received light of the specific color is as shown in FIG. In the distribution of FIG. 3C, the reflected light of the slit light is added to the reflected light of the illumination light, particularly the illumination light of a specific color, in the pixel A corresponding to the light section image 114 (see FIG. 3A). However, the amount of reflected light of illumination light is difficult to predict in advance, and the amount of reflected light of illumination light oscillates and becomes irregular. Therefore, the threshold value for determining the position cannot be set uniquely, and it is difficult to extract only the reflected light of the slit light. In the present embodiment, as shown in FIG. 3B, since the reflected light of the illumination light of a specific color as a target is excluded from the illumination light in the formation of the projection image 112, only the light cut image 114 of the slit light is obtained. Appearing as a received light distribution, the measurer can assume the amount of light received by the light-cut image 114. Therefore, for example, as shown in FIG. 3B, by setting the threshold at a position that is half of the assumed amount of received light, the three-dimensional shape measuring apparatus 110 can extract only the light section image 114 reliably and easily. It is possible to measure a three-dimensional shape with high accuracy. Next, a flow for deriving a three-dimensional position from the extracted light section image 114 will be described.

図4は、被測定物102上の任意の点の3次元位置の導出を説明した説明図である。例えば、図4(a)の投影像112の光切断像114上における任意の点Aを対象とすると、3次元形状導出部176は、投影像112に基づいて、点AのY軸方向(図4中右側に示す)の座標Y、および、点Aに相当する被測定物102の点と受光素子160とを結ぶ線分と、受光素子160と投光源150とを結ぶ線分とが為す夾角である受光角θを導出できる。また、投影像112には、投光源150の投光角(スリット光が当たっている点と投光源150とを結ぶ線分と、受光素子160と投光源150とを結ぶ線分とが為す夾角)θも関連付けられて保持されている。したがって、受光素子160と投光源150との距離Lが予め把握されていれば、点Aは、図4(b)のように、1辺(距離L)とその端部の夾角(受光角θ、投光角θ)が特定された三角形の頂点となり、3次元形状導出部176は、三角測量法に基づき、計算またはテーブルを参照することによって、X軸方向の座標XおよびZ軸方向の座標Zを導出することが可能となる。こうして点Aに関する3次元位置として座標(X、Y、Z)が求まる。このように、光切断法では、受光素子160で形成された投影像112と、投光源150と受光素子160との相対位置とに基づいて、被測定物102の3次元形状を求めることができる。 FIG. 4 is an explanatory diagram for explaining the derivation of the three-dimensional position of an arbitrary point on the device under test 102. For example, when an arbitrary point A on the light section image 114 of the projection image 112 of FIG. 4A is targeted, the three-dimensional shape deriving unit 176 performs the Y-axis direction of the point A (see FIG. coordinates Y a are shown) in 4 right and makes a line segment connecting the points of the object to be measured 102 corresponding to the point a and the light receiving element 160, a line segment connecting the light receiving element 160 and the projection light source 150 is The light receiving angle θ R that is the depression angle can be derived. Further, the projection image 112 includes a projection angle of a light projection angle of the light projecting light source 150 (a line segment connecting the point where the slit light hits and the light projecting light source 150 and a line segment connecting the light receiving element 160 and the light projecting light source 150) ) Θ S is also associated and held. Therefore, if the distance L between the light receiving element 160 and the light projecting light source 150 is known in advance, the point A is one side (distance L) and the depression angle (light receiving angle θ) of one side (distance L) as shown in FIG. R 3 , the projection angle θ S ) becomes the apex of the specified triangle, and the three-dimensional shape deriving unit 176 refers to the X-axis coordinate X A and Z axis by referring to the calculation or the table based on the triangulation method. It becomes possible to derive the coordinate Z A of the direction. Thus, coordinates (X A , Y A , Z A ) are obtained as a three-dimensional position related to the point A. As described above, in the light cutting method, the three-dimensional shape of the DUT 102 can be obtained based on the projection image 112 formed by the light receiving element 160 and the relative position between the light projecting light source 150 and the light receiving element 160. .

このとき被測定物102と受光素子160とを結ぶ線分と、被測定物102と投光源150とを結ぶ線分とが為す夾角は、180°未満の任意の角度をとることができる。かかる夾角は、大きいほど、3次元形状の導出精度を高めることができるが、光切断像114が被測定物102の突出構造に隠れて取得できなかったり、光切断像114の幅を十分確保できなくなったりするので、ここでは上記夾角を約60°としている。   At this time, the depression angle formed by the line segment connecting the object to be measured 102 and the light receiving element 160 and the line segment connecting the object to be measured 102 and the light projecting light source 150 can be any angle less than 180 °. The larger the depression angle, the higher the accuracy of deriving the three-dimensional shape. However, the light section image 114 cannot be obtained because it is hidden behind the protruding structure of the object 102, and the width of the light section image 114 can be secured sufficiently. In this case, the depression angle is set to about 60 °.

本実施形態は、投影像112を形成する段階に工夫が凝らされ、1の投光角に対して複数の投影像を生成したり、その複数の投影像を選択または合成したりする付加的な処理が無いので、3次元形状導出部176の計算処理負荷が増大することもない。   This embodiment is devised at the stage of forming the projection image 112, and generates a plurality of projection images for one projection angle, or selects or combines the plurality of projection images. Since there is no processing, the calculation processing load of the three-dimensional shape deriving unit 176 does not increase.

(第2光学系156に設けられた光透過フィルタの設定)
以上説明した3次元形状測定装置110において、第2光学系156で用いられる光透過フィルタの具体的な設定手順を説明する。
(Setting of light transmission filter provided in second optical system 156)
In the three-dimensional shape measuring apparatus 110 described above, a specific setting procedure of a light transmission filter used in the second optical system 156 will be described.

図5は、光透過フィルタの設定を説明するためのスペクトル分布図である。ここでは、横軸に波長、縦軸に正規化した出力が示される。まず、投光源150のレーザ光の色(特定色)が決定すると、その特定色のスペクトル180を含む照明装置120aの発光色(ここでは赤色)の発光分布182aと、照明装置120aの照明光と加法混色すると白色になる照明装置120b、120cの発光色(ここでは緑色、青色)の発光分布182b、182cが決定される。したがって、照明装置120aの色とその他の照明装置120b、120cの合成色とは互いに補色の関係となる。   FIG. 5 is a spectrum distribution diagram for explaining the setting of the light transmission filter. Here, the horizontal axis indicates the wavelength, and the vertical axis indicates the normalized output. First, when the color (specific color) of the laser light of the light projecting light source 150 is determined, the light emission distribution (182a) of the illuminating device 120a including the spectrum 180 of the specific color (here, red), the illumination light of the illuminating device 120a, and The light emission distributions 182b and 182c of the light emission colors (here, green and blue) of the illumination devices 120b and 120c that become white when additive color mixing is performed are determined. Therefore, the color of the lighting device 120a and the combined color of the other lighting devices 120b and 120c are complementary to each other.

ここでは、レーザ光と同色の照明光が、一部の照明装置120によっては照射されない状態を創り出せれば足りる。したがって、先に複数の照明装置120を決めて、その内の1の照明装置120にのみ含まれる色をレーザ光の色として採用することもできる。   Here, it is sufficient to create a state in which illumination light having the same color as the laser light is not irradiated by some illumination devices 120. Therefore, it is also possible to determine a plurality of illumination devices 120 in advance, and adopt a color included in only one of the illumination devices 120 as the color of the laser light.

光透過フィルタは、レーザ光を透過し、かつ他の照明装置120b、120cの照射光を遮断しなければならない。したがって、光透過フィルタは、一般に干渉フィルタや色素を用いたフィルタ等による帯域通過フィルタ(BPF:Band Pass Filter)が用いられ、他の照明装置120b、120cの発光分布182b、182cを極力遮断し、かつ、レーザダイオードのスペクトル180を十分に透過できるようにその通過帯域184が決定される(図5参照)。   The light transmission filter must transmit the laser light and block the irradiation light of the other illumination devices 120b and 120c. Therefore, the light transmission filter generally uses a band pass filter (BPF: Band Pass Filter) such as an interference filter or a filter using a pigment, and blocks the light emission distributions 182b and 182c of the other lighting devices 120b and 120c as much as possible. In addition, the pass band 184 is determined so that the spectrum 180 of the laser diode can be sufficiently transmitted (see FIG. 5).

ここでは、加法混色により白色光を得る例を挙げて説明したが、最終的な合成色は白色に限らず、任意の色を設定することができる。また、照明装置120aとして、特定色の照明光を照射するとしているが、レーザ光の特定色さえ含んでいれば単色または複合色の様々な光源を用いることができる。さらに、他の照明装置120b、120cもレーザ光の特定色さえ含まなければ、その色や数に制限はない。   Here, an example in which white light is obtained by additive color mixing has been described, but the final composite color is not limited to white, and an arbitrary color can be set. In addition, although the illumination device 120a emits illumination light of a specific color, various light sources of a single color or a composite color can be used as long as the specific color of laser light is included. Furthermore, as long as the other illumination devices 120b and 120c do not include even the specific color of the laser light, the color and number of the illumination devices 120b and 120c are not limited.

(測定タイミング1)
続いて、3次元形状測定装置110における測定タイミングを具体的に示す。
(Measurement timing 1)
Next, the measurement timing in the three-dimensional shape measuring apparatus 110 will be specifically shown.

図6は、照明装置120a、120b、120cの消灯タイミングと受光素子160に投影像112を形成させるタイミングを説明するためのタイムチャートである。特に図6(a)は3次元形状を導出するまでの全体的なタイミングを、図6(b)はその測定中の投光源150が任意の投光角にある場合の1回の投影像112の読み出しタイミングを示している。   FIG. 6 is a time chart for explaining the turn-off timing of the illumination devices 120a, 120b, and 120c and the timing at which the light receiving element 160 forms the projection image 112. In particular, FIG. 6A shows the overall timing until a three-dimensional shape is derived, and FIG. 6B shows a single projection image 112 when the projection light source 150 being measured is at an arbitrary projection angle. The read timing is shown.

3次元形状の測定において、信号生成部170が図6(a)および(b)に示すような2値化された制御信号を生成すると、照明制御部162は、制御信号が第2状態を示す間、照明装置120aを点灯し、第1状態を示す間、照明装置120aを消灯する。このとき、他の照明装置120b、120cは、点灯状態を維持している。また、投影像形成制御部172は、制御信号が第2状態を示している間、電子シャッタ158を非透過状態にし、制御信号が第2状態から第1状態に反転する直前に受光素子160の光の蓄積をリセットし、制御信号が第1状態を示している間、透過状態にして受光素子160に反射光を導光する。こうして、受光素子160は、電子シャッタ158が透過状態となっている間のみ特定色の光を蓄積することができる。   In the measurement of the three-dimensional shape, when the signal generation unit 170 generates a binarized control signal as shown in FIGS. 6A and 6B, the illumination control unit 162 indicates that the control signal indicates the second state. During this period, the lighting device 120a is turned on, and the lighting device 120a is turned off while the first state is indicated. At this time, the other lighting devices 120b and 120c maintain the lighting state. The projection image formation control unit 172 sets the electronic shutter 158 in the non-transmissive state while the control signal indicates the second state, and immediately before the control signal is inverted from the second state to the first state, The accumulation of light is reset, and the reflected light is guided to the light receiving element 160 in the transmissive state while the control signal indicates the first state. Thus, the light receiving element 160 can accumulate light of a specific color only while the electronic shutter 158 is in the transmissive state.

ここでは、制御信号が第1状態を示している間、照明装置120aは消灯しているので、第2光学系156を透過し、かつ、電子シャッタ158が導光した反射光にはスリット光の反射光しか含まれておらず、受光素子160では、図3(b)のように光切断像114と他の部分とで受光量の差が鮮明になる投影像112が蓄積される。また、本実施形態では、このような投影像112を、受光素子160による1回の投影で取得するので、被測定物102やその背景が移動または変形している場合や、照明光の反射光の強度が変化する場合であっても、光切断像114を高精度かつ確実に抽出することが可能となる。   Here, since the illumination device 120a is turned off while the control signal indicates the first state, the reflected light transmitted through the second optical system 156 and guided by the electronic shutter 158 includes slit light. Only the reflected light is included, and in the light receiving element 160, as shown in FIG. 3B, a projected image 112 in which the difference in the amount of received light is clear between the light section image 114 and other portions is accumulated. Further, in the present embodiment, such a projection image 112 is acquired by a single projection by the light receiving element 160, so that the measured object 102 or the background thereof is moved or deformed, or the reflected light of illumination light. Even when the intensity of the light changes, the light section image 114 can be extracted with high accuracy and reliability.

そして、制御信号が第1状態から第2状態に反転すると、記憶制御部174は、受光素子160で蓄積された電荷による投影像112を読み出し、スリット光の投光角と関連付けて保持部164に保持する。予定された回数、投影像112を形成し、被測定物102全体に渡る光切断像114を取得すると、3次元形状導出部176は、保持部164に保持された複数の投影像112に基づいて被測定物102の3次元形状を導出する。また、3次元形状導出部176は、被測定物102全体に渡る光切断像114の取得の完了を待たずに、取得された光切断像114に基づいて、随時、被測定物102の3次元形状を導出することもできる。   Then, when the control signal is inverted from the first state to the second state, the storage control unit 174 reads the projection image 112 based on the electric charge accumulated in the light receiving element 160 and associates it with the light projection angle of the slit light to the holding unit 164. Hold. When the projected image 112 is formed a predetermined number of times and the light section image 114 over the entire object to be measured 102 is acquired, the three-dimensional shape deriving unit 176 is based on the plurality of projected images 112 held by the holding unit 164. A three-dimensional shape of the DUT 102 is derived. In addition, the three-dimensional shape deriving unit 176 does not wait for the completion of the acquisition of the light section image 114 over the entire object 102 to be measured, based on the acquired light section image 114, as needed. The shape can also be derived.

ここでは、照明装置120aの消灯と、電子シャッタ158の透過状態とを同時に変化させる例を挙げて説明したが、本実施形態は、かかる場合に限られず、照明装置120aの点灯状態と電子シャッタ158の透過状態とが時間軸で排他的になればよく、例えば、照明装置120aが消灯した後、反射光が安定するのを待って電子シャッタ158を透過状態にしてもよい。   Here, the example in which the lighting device 120a is turned off and the transmission state of the electronic shutter 158 is changed at the same time has been described. However, the present embodiment is not limited to this case, and the lighting state of the lighting device 120a and the electronic shutter 158 are changed. For example, the electronic shutter 158 may be in a transmissive state after the illumination device 120a is turned off and the reflected light is stabilized after the illuminating device 120a is extinguished.

また、ここでは、電子シャッタ158の透過状態と、受光素子160の投影像112の形成とが同時に行われると仮定しているが、これも同時に行われる場合に限られず、電子シャッタ158の透過状態中に受光素子160が投影像112を形成すればよく、電子シャッタ158が非透過状態から透過状態に完全に移行するのを待って受光素子160の投影像112の形成を開始してもよい。また、電子シャッタ158の代わりに機械式シャッタを用いる場合、機械式シャッタが完全に開口するには時間を要するため、その遅延時間分受光素子160の投影像形成開始時点を遅らせるか機械式シャッタの開口時点を早めることで対応してもよい。このように機械式シャッタを用いる場合、開閉を伴うシャッタの代わりに、回転体にスリットを設け、回転体の回転に伴ってスリットの間のみ透過状態となる機構を利用してもよい。   Here, it is assumed that the transmission state of the electronic shutter 158 and the formation of the projection image 112 of the light receiving element 160 are performed at the same time, but this is not limited to the simultaneous operation, and the transmission state of the electronic shutter 158 is also performed. The light receiving element 160 may form the projection image 112 therein, and the formation of the projection image 112 of the light receiving element 160 may be started after the electronic shutter 158 completely shifts from the non-transmissive state to the transmissive state. Further, when a mechanical shutter is used instead of the electronic shutter 158, it takes time for the mechanical shutter to be fully opened. Therefore, the projection image formation start time of the light receiving element 160 is delayed by the delay time or the mechanical shutter is not operated. You may respond by making the opening time point early. When a mechanical shutter is used in this way, a mechanism may be used in which a slit is provided in a rotating body instead of a shutter that is opened and closed, and a transmission state is provided only between the slits as the rotating body rotates.

また、照明装置120aの消灯時間、電子シャッタ158を透過状態とする時間、および、受光素子160で投影像112を形成する時間を1msecとして説明したが、投光源150と、被測定物102との距離に応じてその時間を随時変更してもよい。例えば、投光源150および受光素子160と被測定物102との距離が離れている場合、被測定物102に到達する光量も少なく、受光素子160で受光する反射光の光量も弱まる。したがって、投影像形成制御部172は、電子シャッタ158を透過状態にする時間を長くし、受光素子160で光を蓄積する時間を増やして、測定に必要な受光量を確保する。さらに、同一の被測定物102においても、投光源150や受光素子160との距離が異なる場合、それに合わせて距離が短いところは短時間だけ透過状態にし、距離が長いところは長時間、透過状態とすることもできる。   In addition, the lighting time of the illumination device 120a, the time for setting the electronic shutter 158 in the transmission state, and the time for forming the projection image 112 by the light receiving element 160 have been described as 1 msec. You may change the time at any time according to distance. For example, when the distance between the light projecting light source 150 and the light receiving element 160 and the object to be measured 102 is large, the amount of light reaching the object to be measured 102 is small, and the amount of reflected light received by the light receiving element 160 is also weakened. Therefore, the projection image formation control unit 172 increases the time for which the electronic shutter 158 is in the transmissive state and increases the time for accumulating light in the light receiving element 160 to ensure the amount of received light necessary for measurement. Further, even in the same object to be measured 102, when the distance from the light projecting light source 150 and the light receiving element 160 is different, the short distance is set to the transmission state for a short time, and the long distance is the transmission state for a long time. It can also be.

(測定タイミング2)
上述した例において、照明制御部162は、3次元形状測定装置110による測定中に、特定色を含む照明光を照射する照明装置120aのみを消灯しているが、特定色を含まない照明装置120b、120cを、制御信号が第2状態を示している間に、制御信号が第1状態を示す時間に相当する時間、消灯してもよい。
(Measurement timing 2)
In the example described above, the illumination control unit 162 turns off only the illumination device 120a that emits illumination light including a specific color during measurement by the three-dimensional shape measurement apparatus 110, but the illumination device 120b does not include a specific color. 120c may be turned off for a time corresponding to the time when the control signal indicates the first state while the control signal indicates the second state.

図7は、照明装置120a、120b、120cの消灯タイミングと受光素子160に投影像112を形成させる他のタイミングを説明するためのタイムチャートである。図6同様、図7(a)は3次元形状を導出するまでの全体的なタイミングを、図7(b)はその測定中の投光源150が任意の投光角にある場合の1回の投影像112の読み出しタイミングを示している。   FIG. 7 is a time chart for explaining the turn-off timings of the lighting devices 120a, 120b, and 120c and other timings at which the light receiving element 160 forms the projection image 112. As in FIG. 6, FIG. 7A shows the overall timing until a three-dimensional shape is derived, and FIG. 7B shows one time when the light source 150 being measured is at an arbitrary light projection angle. The readout timing of the projection image 112 is shown.

3次元形状の測定において、信号生成部170が図7(a)および(b)に示すような2値化された制御信号を生成すると、照明制御部162は、図6同様、制御信号が第2状態を示す間、照明装置120aを点灯し、第1状態を示す間、照明装置120aを消灯する。また、投影像形成制御部172は、制御信号が第2状態を示している間、電子シャッタ158を非透過状態にし、制御信号が第2状態から第1状態に反転する直前に受光素子160の光の蓄積をリセットし、制御信号が第1状態を示している間、透過状態にして受光素子160に特定色の反射光を導光する。   In the measurement of the three-dimensional shape, when the signal generation unit 170 generates a binarized control signal as shown in FIGS. 7A and 7B, the illumination control unit 162 receives the control signal as in FIG. The lighting device 120a is turned on while two states are shown, and the lighting device 120a is turned off while showing the first state. The projection image formation control unit 172 sets the electronic shutter 158 in the non-transmissive state while the control signal indicates the second state, and immediately before the control signal is inverted from the second state to the first state, The accumulation of light is reset, and while the control signal indicates the first state, the reflected light of a specific color is guided to the light receiving element 160 in the transmissive state.

このとき、照明制御部162は、第1状態を示す間、他の照明装置120b、120cを点灯しているが、第2状態を示す間に、照明装置120aが消灯した時間に相当する時間だけ他の照明装置120b、120cを消灯する。ただし、図7(b)に示すように、照明装置120bの消灯時間と照明装置120cの消灯時間とを重複させない。このように、3つの照明装置120a、120b、120cをそれぞれ重複しないようにまた均一に消灯することで、それぞれの発光量を等しくして、安定した白色光を得ることができる。このとき、3つの照明装置120a、120b、120cで加法混色した発光色が厳密な白色と異なる場合、他の照明装置120b、120cの消灯時間を微調整することで白色とすることができる。また、3つの照明装置120a、120b、120cの消灯時間を排他的に構成することで、一時的に消灯している照明装置120は、多くても1つとなり、その時点の発光量を、3つの照明装置120a、120b、120cすべてを照射したときの2/3倍とすることができ、被測定物102の視認性や人の作業効率に影響を与えない十分な発光量を確保することが可能となる。   At this time, the illumination control unit 162 lights the other lighting devices 120b and 120c while showing the first state, but only the time corresponding to the time when the lighting device 120a is turned off while showing the second state. The other lighting devices 120b and 120c are turned off. However, as shown in FIG. 7B, the turn-off time of the lighting device 120b and the turn-off time of the lighting device 120c are not overlapped. In this way, the three lighting devices 120a, 120b, and 120c are turned off uniformly so as not to overlap each other, so that the respective light emission amounts can be made equal and stable white light can be obtained. At this time, when the light emission color additively mixed by the three lighting devices 120a, 120b, and 120c is different from strict white, it can be made white by finely adjusting the turn-off time of the other lighting devices 120b and 120c. In addition, by exclusively configuring the turn-off times of the three lighting devices 120a, 120b, and 120c, the number of lighting devices 120 that are temporarily turned off is at most one. The illumination device 120a, 120b, 120c can be 2/3 times that when all the illumination devices 120a, 120b, and 120c are irradiated, and a sufficient amount of light emission that does not affect the visibility of the object to be measured 102 and human work efficiency can be ensured. It becomes possible.

そして、制御信号が第1状態を示している間、照明装置120aは消灯しているので、図6同様、第2光学系156を通過し、かつ、電子シャッタ158が導光した反射光にはスリット光の反射光しか含まれておらず、受光素子160では、図3(b)のように光切断像114と他の部分とで受光量の差が鮮明になる投影像112が蓄積される。ここで照明装置120b、120cの消灯タイミングが記憶制御部174の投影像112の読み出しタイミングと重なっているが、読み出しタイミングを回避して照明装置120b、120cを消灯させてもよい。   Since the illumination device 120a is turned off while the control signal indicates the first state, the reflected light that passes through the second optical system 156 and is guided by the electronic shutter 158 is similar to FIG. Only the reflected light of the slit light is included, and the light receiving element 160 accumulates a projection image 112 in which the difference in the amount of received light is clear between the light cut image 114 and other portions as shown in FIG. . Here, the turn-off timing of the lighting devices 120b and 120c overlaps the read timing of the projection image 112 of the storage control unit 174. However, the lighting devices 120b and 120c may be turned off while avoiding the read timing.

(投射パターンによる他の3次元形状計測装置)
上述した実施形態では、理解を容易にするため、被測定物102にレーザ光を投射したときの反射光を用いて被測定物102の3次元形状を測定する3次元形状測定装置として、光切断法による3次元形状測定装置110を説明した。しかし、本実施形態の3次元形状測定装置は、光切断法に限らず、特定色の照明光の反射光が不利に働く点で共通する様々な光の投射パターンを用いた測定方法、例えば、スポット法、繰り返しパターン法、符号化パターン法(空間コード化法)、モアレ法等にも適用することができる。
(Other three-dimensional shape measuring device by projection pattern)
In the above-described embodiment, in order to facilitate understanding, as a three-dimensional shape measuring apparatus that measures the three-dimensional shape of the device under test 102 using reflected light when laser light is projected onto the device under test 102, optical cutting is performed. The three-dimensional shape measuring apparatus 110 by the method has been described. However, the three-dimensional shape measurement apparatus according to the present embodiment is not limited to the light cutting method, but a measurement method using various light projection patterns that are common in that the reflected light of the illumination light of a specific color works disadvantageously, for example, The present invention can also be applied to spot methods, repetitive pattern methods, coding pattern methods (spatial coding methods), moire methods, and the like.

スポット法は、光切断法におけるスリット光をスポット光に置き換えたものであり、1つの投影像について1の点の3次元位置を特定することができる。繰り返しパターン法では、光切断法におけるスリット光を規則的に並べてマルチスリット光としたり、正方形や円を規則的に並べて投射パターンを形成したり、市松模様のような規則的な投射パターンを用いたりして、反射光により3次元形状を特定する。符号化パターン法では、被測定物102を含む測定空間の各点を2進数コードで符号化し、その符号に合わせて明暗のピッチを倍々に変化させたパターン光を投射して、投影像の少ない形成回数(空間の分離数をnとするとlogn以上の整数)で3次元形状を特定している。モアレ法は、被測定物102と投光源150との間に格子マスクを配置し、かかる格子を通った光がなす明暗のパターンが、受光素子160による投影像にモアレ縞を形成し、このモアレ縞によって3次元形状を特定することができる。 The spot method replaces slit light in the light cutting method with spot light, and can specify the three-dimensional position of one point for one projection image. In the repetitive pattern method, the slit light in the light cutting method is regularly arranged to be multi-slit light, the projection pattern is formed by regularly arranging squares and circles, or a regular projection pattern such as a checkered pattern is used. Then, the three-dimensional shape is specified by the reflected light. In the encoding pattern method, each point in the measurement space including the device under test 102 is encoded with a binary code, and pattern light in which the light and dark pitches are doubled in accordance with the code is projected to reduce the projected image. The three-dimensional shape is specified by the number of times of formation (an integer greater than or equal to log 2 n where n is the number of space separations). In the moire method, a grating mask is arranged between the object to be measured 102 and the light projecting light source 150, and a light and dark pattern formed by light passing through the grating forms moiré fringes on a projected image by the light receiving element 160. A three-dimensional shape can be specified by the stripes.

(光時間差による3次元形状計測装置)
さらに本実施形態は、上述した反射光の有無を判断し三角測量法を用いて3次元形状を導出する3次元形状測定に限らず、光レーザ法(光時間差法)のような光時間差を用いた3次元形状測定にも適用できる。具体的に、光レーザ法では、上述した三角測量法と異なり、投光源150と受光素子160とを極力近づけ、投光源150の出射方向と受光素子160の入射方向とが略同軸に配置される。そして、光レーザ法では、投光源150から光を出射し、受光素子160が反射光を入射した際にその光の出射から入射までの時間(飛行時間)を測定し、測定した時間に光速を乗じることにより、投光源150から被測定物102までの距離と被測定物102から受光素子160までの距離の和を求め、その和の半分を被測定物102の距離とすることで、3次元形状を特定することができる。
(Three-dimensional shape measuring device by optical time difference)
Furthermore, the present embodiment is not limited to the above-described three-dimensional shape measurement that determines the presence or absence of reflected light and derives a three-dimensional shape using a triangulation method, and uses an optical time difference such as an optical laser method (optical time difference method). It can also be applied to 3D shape measurement. Specifically, in the optical laser method, unlike the triangulation method described above, the light projecting light source 150 and the light receiving element 160 are made as close as possible, and the emission direction of the light projecting light source 150 and the incident direction of the light receiving element 160 are arranged substantially coaxially. . In the optical laser method, light is emitted from the light projecting light source 150, and when the light receiving element 160 receives reflected light, the time from the light emission to the incidence (flight time) is measured, and the speed of light is set at the measured time. By multiplying, the sum of the distance from the light projecting light source 150 to the object to be measured 102 and the distance from the object to be measured 102 to the light receiving element 160 is obtained, and half of the sum is set as the distance of the object to be measured 102, so that The shape can be specified.

このとき、反射光の受光時点を特定する上で、特定色の照明光の反射光をレーザ光の反射光と誤認してしまうと、被測定物102の正確な距離を導出できない。そこで、本実施形態では、反射光が入射するタイミングで照明装置120aを消灯する。具体的に、投影像形成制御部172は、制御信号が第1状態を示す間に、投光源150に投射させ、受光素子160にその反射光を受光させる。このとき投影像形成制御部172は、投光源150が投射を開始してから受光素子160が受光を完了するまでの所定時間に渡って、電子シャッタ158を継続して透過状態とする。また、照明制御部162は、制御信号が第1状態を示す間、照明装置120aを消灯する。そして、3次元形状導出部176は、投光源150の投射時点と受光素子の受光時点との差分時間に基づいて被測定物102の3次元形状を導出する。ここでは、照明光の反射光が削減されるので、レーザ光の反射光の受光時点を正確に特定でき、被測定物102の正確な距離を測定できる。また、光の飛行時間は短いので照明装置120aの消灯が被測定物102の視認性や人の作業効率に影響を及ぼすこともない。   At this time, if the reflected light of the illumination light of a specific color is mistaken as the reflected light of the laser light in specifying the reception time point of the reflected light, the accurate distance of the object to be measured 102 cannot be derived. Therefore, in this embodiment, the illumination device 120a is turned off at the timing when the reflected light is incident. Specifically, the projection image formation control unit 172 causes the light projecting light source 150 to project while the control signal indicates the first state, and causes the light receiving element 160 to receive the reflected light. At this time, the projection image formation control unit 172 keeps the electronic shutter 158 in a transmissive state for a predetermined time from when the light projecting light source 150 starts projection until the light receiving element 160 completes light reception. In addition, the illumination control unit 162 turns off the illumination device 120a while the control signal indicates the first state. The three-dimensional shape deriving unit 176 derives the three-dimensional shape of the measurement object 102 based on the difference time between the projection time of the light projecting light source 150 and the light reception time of the light receiving element. Here, since the reflected light of the illumination light is reduced, the reception time of the reflected light of the laser light can be accurately specified, and the accurate distance of the object 102 to be measured can be measured. In addition, since the time of flight of light is short, turning off the illumination device 120a does not affect the visibility of the object to be measured 102 or the human work efficiency.

(さらに他の3次元形状測定装置)
また、上述した光切断法による3次元形状測定装置110では、投影像112の光量を閾値と比較することで、光切断像114を抽出したが、それに限らず、3次元形状導出部176は、受光素子160で形成された投影像112の受光量の絶対値や波長に基づいて被測定物102の3次元形状を導出することもできる。
(Further other three-dimensional shape measuring device)
Further, in the above-described three-dimensional shape measuring apparatus 110 using the light section method, the light section image 114 is extracted by comparing the light amount of the projection image 112 with a threshold value. The three-dimensional shape of the DUT 102 can also be derived based on the absolute value or wavelength of the amount of light received in the projection image 112 formed by the light receiving element 160.

図8は、受光量の絶対値を利用した3次元形状測定装置190を例示した説明図である。図8(a)に示すように、3次元形状測定装置190は、上述した3次元形状測定装置110と実質的に同じ構成を有し、第1光学系192がシリンドリカルレンズではあるものの、光の遮光度が段階的に異なる点で3次元形状測定装置110と相違する。したがって、第1光学系192を通過したレーザ光は、図8(a)に示すように、特定色ではあるが、光量の異なる複数のスリット光となり、被測定物102の表面に投射する。このとき、投影像112には図8(b)のように異なる受光量による縞模様が形成される。したがって、投影像112の任意のライン116における各画素の受光量は、図8(c)のようになる。図8(c)は、図3(b)同様、横軸がライン116の画素に相当する位置であり、縦軸がその画素毎の受光量を示している。   FIG. 8 is an explanatory diagram illustrating a three-dimensional shape measuring apparatus 190 using the absolute value of the amount of received light. As shown in FIG. 8A, the three-dimensional shape measuring apparatus 190 has substantially the same configuration as the above-described three-dimensional shape measuring apparatus 110, and although the first optical system 192 is a cylindrical lens, It is different from the three-dimensional shape measuring apparatus 110 in that the degree of shading differs step by step. Therefore, as shown in FIG. 8A, the laser light that has passed through the first optical system 192 becomes a plurality of slit lights having different amounts of light, although having a specific color, and is projected onto the surface of the object 102 to be measured. At this time, a striped pattern with different amounts of received light is formed in the projected image 112 as shown in FIG. Therefore, the amount of light received by each pixel in an arbitrary line 116 of the projected image 112 is as shown in FIG. In FIG. 8C, as in FIG. 3B, the horizontal axis represents the position corresponding to the pixel of the line 116, and the vertical axis represents the amount of received light for each pixel.

本実施形態では、投影像112の形成において特定色の照明光の反射光を排除しているので、図8(c)の如く、スリット光の反射光のみが段階的な受光分布として現れ、その受光量の段階的な受光分布から、光量の異なる複数のスリット光が被測定物102のいずれに当たっているかを、閾値1〜4と比較することで容易に特定できる。また、当該3次元形状測定装置190の場合、1回分の投影像112で複数のスリット光に関して測定することができるので、測定に費やす総時間を短縮することも可能となる。図8では、理解を容易にするためスリット光の光量を4段階で示したが、投光源150の発光量と受光素子160における受光量の検出精度に応じて、それ以上のスリット光を形成できるのは言うまでもない。   In this embodiment, since the reflected light of the illumination light of a specific color is excluded in the formation of the projection image 112, only the reflected light of the slit light appears as a stepwise light reception distribution as shown in FIG. From the stepwise light distribution of the amount of received light, it can be easily specified by comparing with threshold values 1 to 4 which one of the measured objects 102 is irradiated with a plurality of slit lights having different light amounts. Further, in the case of the three-dimensional shape measuring apparatus 190, since it is possible to measure a plurality of slit lights with one projection image 112, it is possible to reduce the total time spent for measurement. In FIG. 8, the light amount of the slit light is shown in four stages for easy understanding, but more slit light can be formed according to the detection accuracy of the light emission amount of the light projecting light source 150 and the light reception amount of the light receiving element 160. Needless to say.

(3次元形状測定付加装置200)
上述した実施形態では、新たに3次元形状測定装置110を形成する例を挙げたが、既存の3次元形状測定装置10に付加的に本実施形態を適用することもできる。
(Three-dimensional shape measurement additional device 200)
In the above-described embodiment, an example in which the three-dimensional shape measuring apparatus 110 is newly formed has been described. However, the present embodiment can be additionally applied to the existing three-dimensional shape measuring apparatus 10.

図9は、3次元形状測定付加装置200の概略的な構成を示す構成図である。3次元形状測定付加装置200は、パーソナルコンピュータ等の計算機や組み込み用のボードコンピュータで構成され、照明制御部162と、中央制御部202における信号生成部170と、投影像形成制御部172とを含んで構成される。かかる照明制御部162と、信号生成部170と、投影像形成制御部172とは、3次元形状測定装置110の構成要素と実質的に機能が同一なので同一の符号を付して重複説明を省略する。   FIG. 9 is a configuration diagram showing a schematic configuration of the three-dimensional shape measurement adding device 200. The three-dimensional shape measurement adding device 200 is configured by a computer such as a personal computer or a built-in board computer, and includes an illumination control unit 162, a signal generation unit 170 in the central control unit 202, and a projection image formation control unit 172. Consists of. Since the illumination control unit 162, the signal generation unit 170, and the projection image formation control unit 172 have substantially the same functions as the components of the three-dimensional shape measuring apparatus 110, the same reference numerals are given and redundant description is omitted. To do.

信号生成部170は、例えば、3次元形状測定付加装置200としてのパーソナルコンピュータのタイマおよびカウンタを用いて動作し、3次元形状測定装置110同様、第1状態と第2状態とに2値化され、第1状態の占有時間が第2状態の占有時間より短い制御信号を生成する。そして、照明制御部162は、信号生成部170が生成した制御信号が第1状態を示す間、複数の照明装置120a、120b、120cのうち特定色を含む照明光を照射する照明装置120aのみを消灯する。また、投影像形成制御部172は、制御信号が第1状態を示す間に、例えば、電子シャッタ158等を制御して、既存の3次元形状測定装置10の受光素子160に投影像112を形成させる。また、信号生成部170は、3次元形状測定装置110同様、既存の3次元形状測定装置10において、受光素子160に投影像112を形成させるタイミングが予め定まっている場合、その投影像112を形成させるタイミングを提供する手段に相当する信号生成部170から投影像112を形成させるタイミング(制御信号)を受けて、照明制御部162は、その投影像112を形成させるタイミングで照明装置120aを消灯させる。   The signal generation unit 170 operates using, for example, a timer and a counter of a personal computer as the three-dimensional shape measurement adding device 200, and is binarized into a first state and a second state, like the three-dimensional shape measurement device 110. The control signal is generated in which the occupation time of the first state is shorter than the occupation time of the second state. And while the control signal which the signal generation part 170 produced | generated shows the 1st state, the illumination control part 162 is only the illumination apparatus 120a which irradiates the illumination light containing a specific color among several illumination device 120a, 120b, 120c. Turns off. Further, the projection image formation control unit 172 controls the electronic shutter 158 and the like to form the projection image 112 on the light receiving element 160 of the existing three-dimensional shape measuring apparatus 10 while the control signal indicates the first state. Let Similarly to the three-dimensional shape measurement apparatus 110, the signal generation unit 170 forms the projection image 112 when the timing at which the light receiving element 160 forms the projection image 112 is predetermined in the existing three-dimensional shape measurement apparatus 10. In response to the timing (control signal) for forming the projection image 112 from the signal generation unit 170 corresponding to the means for providing the timing for the illumination, the illumination control unit 162 turns off the illumination device 120a at the timing for forming the projection image 112. .

このような3次元形状測定付加装置200を既存の3次元形状測定装置10に接続することで、被測定物102の視認性や人の作業効率に影響を与えることなく、高精度かつ確実に被測定物102の3次元形状を導出することが可能となる。   By connecting such a three-dimensional shape measurement additional device 200 to the existing three-dimensional shape measurement device 10, it is possible to reliably and accurately cover the object to be measured 102 without affecting the visibility of the object 102 and the work efficiency of a person. It is possible to derive the three-dimensional shape of the measurement object 102.

(3次元形状測定方法)
また、被測定物102に光を投射したときの反射光による投影像112に基づいて被測定物102の3次元形状を測定する3次元形状測定方法も提供される。以下、このような3次元形状測定方法を詳細に説明する。
(Three-dimensional shape measurement method)
Also provided is a three-dimensional shape measurement method for measuring the three-dimensional shape of the measurement object 102 based on the projection image 112 of the reflected light when light is projected onto the measurement object 102. Hereinafter, such a three-dimensional shape measurement method will be described in detail.

図10は、3次元形状測定方法の全体的な流れを示したフローチャートである。図10に示すように、3次元形状測定装置110の信号生成部170は、2値化された制御信号を生成する(S200)。   FIG. 10 is a flowchart showing the overall flow of the three-dimensional shape measuring method. As shown in FIG. 10, the signal generator 170 of the three-dimensional shape measuring apparatus 110 generates a binarized control signal (S200).

そして、照明制御部162および投影像形成制御部172は、制御信号が第1状態を示しているか否か判定し(S202)、第1状態を示していれば(S202におけるYES)、照明制御部162は、被測定物102に照明光を照射する複数の照明装置120a、120b、120cのうち特定色を含む照明光を照射する照明装置120aを消灯し(S204)、投影像形成制御部172は、受光素子160で投影像112を形成する(S206)。また、制御信号が第1状態を示していなければ、すなわち、第2状態を示していれば(S202におけるNO)、照明制御部162は、特定色を含む照明光を照射する照明装置120aを点灯し(S208)、投影像形成制御部172は、受光素子160での投影像112の形成を停止する(S210)。かかる制御信号が第2状態を示しているとき、照明制御部162は、特定色を含まない照明装置120b、120cを、制御信号が第1状態を示す時間に相当する時間、消灯してもよい。   Then, the illumination control unit 162 and the projection image formation control unit 172 determine whether or not the control signal indicates the first state (S202). If the control signal indicates the first state (YES in S202), the illumination control unit 162 turns off the illumination device 120a that irradiates illumination light including a specific color among the plurality of illumination devices 120a, 120b, and 120c that illuminate the object 102 to be measured (S204), and the projection image formation control unit 172 The projected image 112 is formed by the light receiving element 160 (S206). If the control signal does not indicate the first state, that is, if the control signal indicates the second state (NO in S202), the illumination control unit 162 turns on the illumination device 120a that emits illumination light including a specific color. Then, the projection image formation control unit 172 stops the formation of the projection image 112 by the light receiving element 160 (S210). When the control signal indicates the second state, the illumination control unit 162 may turn off the illumination devices 120b and 120c that do not include the specific color for a time corresponding to the time when the control signal indicates the first state. .

そして、すべての投影像112を取得したか否か判断され(S212)、まだ投影像112を取得してない投光角が残っていれば(S212におけるNO)、制御信号生成ステップS200からを繰り返す。予定された回数、投影像112を形成し、被測定物102全体の光切断像を取得すると、投影像112がすべて取得されたと判断され(S212におけるYES)、3次元形状導出部176は、受光素子で形成された投影像112に基づいて被測定物102の3次元形状を導出する(S214)。   Then, it is determined whether or not all the projection images 112 have been acquired (S212). If there is a projection angle that has not yet acquired the projection images 112 (NO in S212), the control signal generation step S200 is repeated. . When the projected image 112 is formed a predetermined number of times and a light section image of the entire object to be measured 102 is acquired, it is determined that all the projected image 112 has been acquired (YES in S212), and the three-dimensional shape deriving unit 176 receives the light. Based on the projection image 112 formed by the element, the three-dimensional shape of the DUT 102 is derived (S214).

こうして、3次元形状測定方法においても、被測定物102の視認性や人の作業効率に影響を与えることなく、高精度かつ確実に被測定物102の3次元形状を導出することが可能となる。   Thus, even in the three-dimensional shape measurement method, it is possible to derive the three-dimensional shape of the measurement object 102 with high accuracy and certainty without affecting the visibility of the measurement object 102 and the human work efficiency. .

上述した、3次元形状測定装置110、190の技術的思想に基づく構成要素やその説明は、3次元形状測定付加装置200や3次元形状測定方法にも適用可能である。   The above-described components based on the technical idea of the three-dimensional shape measuring apparatuses 110 and 190 and the description thereof can also be applied to the three-dimensional shape measurement adding apparatus 200 and the three-dimensional shape measuring method.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

なお、本明細書の3次元形状測定方法における各工程は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的あるいはサブルーチンによる処理を含んでもよい。   Note that each step in the three-dimensional shape measurement method of the present specification does not necessarily have to be processed in time series in the order described in the flowchart, and may include processing in parallel or by a subroutine.

本発明は、被測定物に光を投射したときの反射光を用いて被測定物の3次元形状を測定する3次元形状測定装置、3次元形状測定付加装置および3次元形状測定方法に利用することができる。   The present invention is used in a three-dimensional shape measuring device, a three-dimensional shape measuring addition device, and a three-dimensional shape measuring method for measuring a three-dimensional shape of a measured object using reflected light when light is projected onto the measured object. be able to.

10、110、190 …3次元形状測定装置
102 …被測定物
112 …投影像
120(120a、120b、120c) …照明装置
150 …投光源
160 …受光素子
162 …照明制御部
170 …信号生成部
172 …投影像形成制御部
176 …3次元形状導出部
200 …3次元形状測定付加装置
DESCRIPTION OF SYMBOLS 10, 110, 190 ... Three-dimensional shape measuring apparatus 102 ... Object to be measured 112 ... Projection image 120 (120a, 120b, 120c) ... Illuminating device 150 ... Projection light source 160 ... Light receiving element 162 ... Illumination control part 170 ... Signal generation part 172 ... Projected image formation control unit 176 ... 3D shape deriving unit 200 ... 3D shape measurement adding device

Claims (8)

被測定物に特定色の光を投射する投光源と、
前記被測定物で反射された反射光のうち前記特定色の反射光を受光し投影像を形成する受光素子と、
2値化された制御信号を生成する信号生成部と、
前記被測定物に照明光を照射する複数の照明装置のうち前記特定色を含む照明光を照射する照明装置を、前記制御信号が第1状態を示す間消灯する照明制御部と、
前記制御信号が第1状態を示す間に、前記受光素子に投影像を形成させる投影像形成制御部と、
前記受光素子で形成された投影像に基づいて前記被測定物の3次元形状を導出する3次元形状導出部と、
を備えることを特徴とする3次元形状測定装置。
A light source that projects light of a specific color on the object to be measured;
A light receiving element that receives the reflected light of the specific color among the reflected light reflected by the object to be measured, and forms a projected image;
A signal generator for generating a binarized control signal;
An illumination control unit that turns off the illumination device that emits illumination light including the specific color among the plurality of illumination devices that illuminate the object to be measured; and the control signal indicates the first state; and
A projection image formation control unit configured to form a projection image on the light receiving element while the control signal indicates the first state;
A three-dimensional shape deriving unit for deriving a three-dimensional shape of the object to be measured based on a projection image formed by the light receiving element;
A three-dimensional shape measuring apparatus comprising:
前記照明制御部は、前記特定色を含まない照明光を照射する照明装置を、前記制御信号が第1状態を示していない間に、前記制御信号が第1状態を示す時間に相当する時間、消灯することを特徴とする請求項1に記載の3次元形状測定装置。   The illumination control unit is configured to illuminate an illumination device that emits illumination light that does not include the specific color, while the control signal does not indicate the first state, the time corresponding to the time when the control signal indicates the first state, The three-dimensional shape measuring apparatus according to claim 1, wherein the three-dimensional shape measuring apparatus is turned off. 前記複数の照明装置は、互いに色が異なる照明光を照射し、該照明光を加法混色すると白色光となることを特徴とする請求項1または2に記載の3次元形状測定装置。   3. The three-dimensional shape measuring apparatus according to claim 1, wherein the plurality of illuminating devices emit illumination light having different colors and become white light when the illumination light is additively mixed. 4. 前記3次元形状導出部は、前記受光素子で形成された投影像の受光量が所定の閾値以上であるか否かに基づいて前記被測定物の3次元形状を導出することを特徴とする請求項1から3のいずれか1項に記載の3次元形状測定装置。   The three-dimensional shape deriving unit derives the three-dimensional shape of the object to be measured based on whether or not the amount of received light of the projection image formed by the light receiving element is equal to or greater than a predetermined threshold value. Item 4. The three-dimensional shape measuring apparatus according to any one of Items 1 to 3. 前記照明制御部は、前記特定色を含む照明光の単位時間の発光量を、全時間に対する前記特定色を含む照明光を照射する照明装置を消灯する時間の占有率を相殺する分だけ大きく設定することを特徴とする請求項1に記載の3次元形状測定装置。   The illumination control unit sets the light emission amount of the illumination light including the specific color per unit time so as to offset the occupation ratio of the time to turn off the illumination device that irradiates the illumination light including the specific color with respect to the entire time. The three-dimensional shape measuring apparatus according to claim 1. 被測定物に特定色の光を投射する投光源と、該被測定物で反射された反射光のうち特定色の反射光を受光し投影像を形成する受光素子と、該受光素子で形成された投影像に基づいて該被測定物の3次元形状を導出する3次元形状導出部とを有する3次元形状測定装置に付加する3次元形状測定付加装置であって、
2値化された制御信号を生成する信号生成部と、
前記被測定物に照明光を照射する複数の照明装置のうち前記特定色を含む照明光を照射する照明装置を、前記制御信号が第1状態を示す間消灯する照明制御部と、
前記制御信号が第1状態を示す間に、前記受光素子に投影像を形成させる投影像形成制御部と、
を備えることを特徴とする3次元形状測定付加装置。
A light projecting light source that projects light of a specific color onto the object to be measured, a light receiving element that receives reflected light of a specific color among the reflected light reflected by the object to be measured, and forms a projected image, and the light receiving element. A three-dimensional shape measurement adding device for adding to a three-dimensional shape measuring device having a three-dimensional shape deriving unit for deriving a three-dimensional shape of the object to be measured based on the projected image,
A signal generator for generating a binarized control signal;
An illumination control unit that turns off the illumination device that emits illumination light including the specific color among the plurality of illumination devices that illuminate the object to be measured; and the control signal indicates the first state; and
A projection image formation control unit configured to form a projection image on the light receiving element while the control signal indicates the first state;
A three-dimensional shape measurement adding device comprising:
被測定物に特定色の光を投射する投光源と、
前記被測定物で反射された反射光のうち前記特定色の反射光を受光する受光素子と、
2値化された制御信号を生成する信号生成部と、
前記被測定物に照明光を照射する複数の照明装置のうち前記特定色を含む照明光を照射する照明装置を、前記制御信号が第1状態を示す間消灯する照明制御部と、
前記制御信号が第1状態を示す間に、前記投光源に前記特定色の光を投射させ、前記受光素子に前記特定色の反射光を受光させる投影像形成制御部と、
前記投光源の投射時点と前記受光素子の受光時点との差分時間に基づいて前記被測定物の3次元形状を導出する3次元形状導出部と、
を備えることを特徴とする3次元形状測定装置。
A light source that projects light of a specific color on the object to be measured;
A light receiving element that receives the reflected light of the specific color among the reflected light reflected by the object to be measured;
A signal generator for generating a binarized control signal;
An illumination control unit that turns off the illumination device that emits illumination light including the specific color among the plurality of illumination devices that illuminate the object to be measured; and the control signal indicates the first state; and
While the control signal indicates the first state, a projection image formation control unit that causes the light source to project the light of the specific color and causes the light receiving element to receive the reflected light of the specific color;
A three-dimensional shape deriving unit for deriving a three-dimensional shape of the object to be measured based on a difference time between a projection time of the light projecting light source and a light reception time of the light receiving element;
A three-dimensional shape measuring apparatus comprising:
被測定物に特定色の光を投射する投光源と、該被測定物で反射された反射光のうち特定色の反射光を受光し投影像を形成する受光素子とを含む3次元形状測定装置を用いて3次元形状の測定を行う3次元形状測定方法であって、
2値化された制御信号を生成し、
前記制御信号が第1状態を示す間、前記被測定物に照明光を照射する複数の照明装置のうち前記特定色を含む照明光を照射する照明装置を消灯すると共に前記受光素子で投影像を形成し、該制御信号が第2状態を示す間、該特定色を含む照明光を照射する照明装置を点灯すると共に該受光素子の投影像の形成を停止し、
前記受光素子で形成された投影像に基づいて前記被測定物の3次元形状を導出することを特徴とする3次元形状測定方法。
A three-dimensional shape measuring apparatus including a light projecting light source that projects light of a specific color onto an object to be measured, and a light receiving element that receives the reflected light of a specific color among the reflected light reflected by the object to be measured and forms a projected image A three-dimensional shape measurement method for measuring a three-dimensional shape using
Generate a binarized control signal;
While the control signal indicates the first state, the illumination device that emits the illumination light including the specific color is turned off among the plurality of illumination devices that irradiate the measurement object with illumination light, and a projection image is displayed by the light receiving element. And turning on the illumination device that emits illumination light including the specific color while the control signal indicates the second state, and stopping the formation of the projection image of the light receiving element,
A three-dimensional shape measuring method, wherein a three-dimensional shape of the object to be measured is derived based on a projection image formed by the light receiving element.
JP2010128339A 2010-06-03 2010-06-03 Three-dimensional shape measuring device, three-dimensional shape measuring additional device, and three-dimensional shape measuring method Active JP5471853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010128339A JP5471853B2 (en) 2010-06-03 2010-06-03 Three-dimensional shape measuring device, three-dimensional shape measuring additional device, and three-dimensional shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128339A JP5471853B2 (en) 2010-06-03 2010-06-03 Three-dimensional shape measuring device, three-dimensional shape measuring additional device, and three-dimensional shape measuring method

Publications (2)

Publication Number Publication Date
JP2011252866A true JP2011252866A (en) 2011-12-15
JP5471853B2 JP5471853B2 (en) 2014-04-16

Family

ID=45416900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128339A Active JP5471853B2 (en) 2010-06-03 2010-06-03 Three-dimensional shape measuring device, three-dimensional shape measuring additional device, and three-dimensional shape measuring method

Country Status (1)

Country Link
JP (1) JP5471853B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048622A (en) * 2014-06-27 2014-09-17 嘉善天慧光电科技有限公司 Portable self-adaptation light source back-focusing transmission structure of image three-dimensional reconstruction instrument
JP2017026580A (en) * 2015-07-28 2017-02-02 株式会社ミツトヨ Auxiliary device of measuring device
WO2018211663A1 (en) * 2017-05-18 2018-11-22 株式会社Pfu Measurement device, measurement method, determination method, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0164269U (en) * 1987-10-19 1989-04-25
JPH01282410A (en) * 1988-05-09 1989-11-14 Omron Tateisi Electron Co Curved surface nature inspection device
JPH1078308A (en) * 1996-09-03 1998-03-24 Taiyo Yuden Co Ltd Inspecting device for appearance of electronic parts
JP2001147494A (en) * 1999-11-22 2001-05-29 Kyocera Mita Corp Image forming device
JP2004317126A (en) * 2003-04-10 2004-11-11 Renesas Technology Corp Solder printer
EP2154650A1 (en) * 2008-08-12 2010-02-17 IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A. 3D time-of-flight camera system and position/orientation calibration method therefor
JP2011226850A (en) * 2010-04-16 2011-11-10 Ihi Corp Three-dimensional shape measurement device, three-dimensional shape measurement addition device, and three-dimensional shape measurement method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0164269U (en) * 1987-10-19 1989-04-25
JPH01282410A (en) * 1988-05-09 1989-11-14 Omron Tateisi Electron Co Curved surface nature inspection device
JPH1078308A (en) * 1996-09-03 1998-03-24 Taiyo Yuden Co Ltd Inspecting device for appearance of electronic parts
JP2001147494A (en) * 1999-11-22 2001-05-29 Kyocera Mita Corp Image forming device
JP2004317126A (en) * 2003-04-10 2004-11-11 Renesas Technology Corp Solder printer
EP2154650A1 (en) * 2008-08-12 2010-02-17 IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A. 3D time-of-flight camera system and position/orientation calibration method therefor
JP2011226850A (en) * 2010-04-16 2011-11-10 Ihi Corp Three-dimensional shape measurement device, three-dimensional shape measurement addition device, and three-dimensional shape measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048622A (en) * 2014-06-27 2014-09-17 嘉善天慧光电科技有限公司 Portable self-adaptation light source back-focusing transmission structure of image three-dimensional reconstruction instrument
JP2017026580A (en) * 2015-07-28 2017-02-02 株式会社ミツトヨ Auxiliary device of measuring device
WO2018211663A1 (en) * 2017-05-18 2018-11-22 株式会社Pfu Measurement device, measurement method, determination method, and program

Also Published As

Publication number Publication date
JP5471853B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
US10999564B2 (en) Projection system
US10674124B2 (en) Projection system
KR102163728B1 (en) Camera for depth image measure and method of measuring depth image using the same
US10368056B2 (en) Depth data detection and monitoring apparatus
JP2020202182A (en) Luminaire and projection device
JP5682134B2 (en) Three-dimensional shape measuring device, three-dimensional shape measuring additional device, and three-dimensional shape measuring method
CN103576428B (en) There is the laser projection system of safety protecting mechanism
US20140111616A1 (en) Structured light 3D scanner with refractive non-absorbing pattern forming element
US10970802B2 (en) Imaging device and imaging method selecting a pixel having a lowest brightness
RU2617912C2 (en) Distance assessment using lighting devices with split beam
JP5471853B2 (en) Three-dimensional shape measuring device, three-dimensional shape measuring additional device, and three-dimensional shape measuring method
GB2492848A (en) Optical distance measurement
EP3273685A1 (en) Projection system
JP6964223B2 (en) Projection system and projection method
WO2018229831A1 (en) Endoscope system
CN105034929A (en) Irradiation apparatus
JP2007535065A (en) Optical input device and method for measuring relative motion of object and optical input device
CN109373208A (en) Blanket lamp, more projection carpet lamp group parts and optic path method for vehicle
CN202661384U (en) Optical testing device
CN108240800A (en) The method for measurement of surface topography
CN105258655A (en) Apparatus and method for reconstructing a three-dimensional profile of a target surface
JP2016018559A (en) Imaging system for object detection
JP2020079773A (en) Radar mounting lighting fixture unit and laser radar device
JP2018200211A (en) Optical measuring system
JP2023095239A (en) Illuminating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5471853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250