JP2011252440A - Method of estimating temperature of honeycomb member and honeycomb member - Google Patents

Method of estimating temperature of honeycomb member and honeycomb member Download PDF

Info

Publication number
JP2011252440A
JP2011252440A JP2010126912A JP2010126912A JP2011252440A JP 2011252440 A JP2011252440 A JP 2011252440A JP 2010126912 A JP2010126912 A JP 2010126912A JP 2010126912 A JP2010126912 A JP 2010126912A JP 2011252440 A JP2011252440 A JP 2011252440A
Authority
JP
Japan
Prior art keywords
honeycomb member
alloy
measured
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010126912A
Other languages
Japanese (ja)
Other versions
JP5653656B2 (en
Inventor
Masaki Taneike
正樹 種池
Ikuo Okada
郁生 岡田
Taiji Torigoe
泰治 鳥越
Yoshio Fukui
嘉夫 福井
Osamu Ueda
修 上田
Daisuke Yoshida
大助 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010126912A priority Critical patent/JP5653656B2/en
Publication of JP2011252440A publication Critical patent/JP2011252440A/en
Application granted granted Critical
Publication of JP5653656B2 publication Critical patent/JP5653656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately estimate a temperature even during short-time operation or when the temperature is relatively low, while allowing impact to be applied to a honeycomb member.SOLUTION: The temperature estimating method comprises: a manufacturing process S11 of manufacturing the honeycomb member by incorporating a measured member formed of a second alloy, which changes a metallic state by heating as compared with a first alloy, into a honeycomb member body formed of the first alloy; a heating process S12 of heating the honeycomb member under a use environment; a metallic state parameter acquiring process S13 of determining a metallic state parameter indicating a change in metallic state by measuring the metallic state of the measured member among the heated honeycomb member; and a temperature estimating process S14 of estimating the use environment temperature by substituting the metallic state parameter determined in the metallic state parameter acquiring process S13 and known heating time in the heating process S12 in a relational expression of the predetermined heating temperature to the second alloy, heating time and the metallic state parameter.

Description

本発明は、ハニカム部材の温度推定方法及びハニカム部材に関するものである。   The present invention relates to a temperature estimation method for a honeycomb member and a honeycomb member.

周知のように、ガスタービンのうち燃焼ガスのエネルギーでロータを回転させるタービンにおいては、ケーシング内周部において静翼が周方向に配列された静翼列と、ロータ外周部において動翼が周方向に配列された動翼列とが軸方向に交互に配設された環状の流路が構成されている。そして、燃焼ガスが静翼列と動翼列とを順に通過していくことで、動翼列を通過する作動流体がロータに回転力を付与するようになっている。   As is well known, in a turbine in which a rotor is rotated by the energy of combustion gas among gas turbines, a stationary blade row in which stationary blades are arranged in a circumferential direction in a casing inner peripheral portion, and a moving blade in a circumferential direction in a rotor outer peripheral portion An annular flow path in which the moving blade rows arranged in a row are arranged alternately in the axial direction is configured. The combustion gas passes through the stationary blade row and the moving blade row in order, so that the working fluid passing through the moving blade row gives a rotational force to the rotor.

このようなガスタービンにおいては、動翼列及び静翼列が配設された環状の流路以外に作動流体が漏流しないように、例えば、各動翼の先端において周方向に延びるチップシュラウドとケーシングとの隙間をシールするように、ケーシングのうちチップシュラウドに対向する部分にハニカム部材を配設したものがある(下記特許文献1)。また、各静翼先端において周方向に延びる静翼シュラウドと、各動翼の基端側において周方向に延びる動翼プラットフォームとの隙間をシールするように、ハニカム部材を配設したものがある(下記特許文献2)。   In such a gas turbine, for example, a tip shroud extending in the circumferential direction at the tip of each rotor blade is provided so that the working fluid does not leak other than the annular flow path in which the rotor blade row and the stationary blade row are disposed. There is one in which a honeycomb member is disposed in a portion of the casing facing the chip shroud so as to seal a gap with the casing (Patent Document 1 below). Further, there is a honeycomb member disposed so as to seal a gap between a stationary blade shroud extending in the circumferential direction at each stationary blade tip and a moving blade platform extending in the circumferential direction on the proximal end side of each moving blade ( Patent Document 2) below.

特開平11−13404号公報Japanese Patent Laid-Open No. 11-13404 特開2006−77658号公報JP 2006-77658 A

ところで、上記のようなハニカム部材を用いた場合においてシール性を向上させるためには、実機に用いられたハニカム部材の使用環境温度を正確に把握して、各寸法値や材質選定にフィードバックを行うことが重要となる。   By the way, in order to improve the sealing performance when the honeycomb member as described above is used, the operating environment temperature of the honeycomb member used in the actual machine is accurately grasped, and feedback is made to each dimension value and material selection. It becomes important.

しかしながら、熱電対をハニカム部材に配設して温度を測定すると、動翼プラットフォームやチップシュラウドがハニカム部材に不測に接触した場合に、接触の衝撃で熱電対が破損してしまうという問題がある。   However, when the thermocouple is disposed on the honeycomb member and the temperature is measured, there is a problem that the thermocouple is damaged due to the impact of contact when the blade platform or the chip shroud unexpectedly contacts the honeycomb member.

また、ハニカム部材の材質(金属組成や金属組織)の変化から温度推定式(例えば、特開2009−264204号公報、特許第3935692号公報)を用いて温度を推定することも考えられるが、上記のようなハニカム部材には、高温環境下において材質の変化が生じ難い合金を用いることが通常であり、短時間運転や比較的に温度が低い場合には材質の変化が少なくなるために、温度を推定することが困難であるという問題がある。   In addition, it is conceivable to estimate the temperature using a temperature estimation formula (for example, JP 2009-264204 A, JP 3935692 A) based on a change in the material (metal composition or metal structure) of the honeycomb member. For such honeycomb members, it is normal to use an alloy that hardly changes in material in a high-temperature environment. There is a problem that it is difficult to estimate.

本発明は、このような事情を考慮してなされたもので、ハニカム部材へ加わる衝撃を許容し、かつ、短時間運転や比較的に温度が低い場合であっても正確に温度を推定すること課題とする。   The present invention has been made in consideration of such circumstances, and allows an impact applied to the honeycomb member and accurately estimates the temperature even when the operation is performed for a short time or when the temperature is relatively low. Let it be an issue.

上記目的を達成するために、本発明は以下の手段を採用している。
すなわち、本発明に係るハニカム部材の温度推定方法は、中空多角柱状セルの集合体からなるハニカム部材の使用環境温度を推定するハニカム部材の温度推定方法であって、第一の合金で形成されたハニカム部材本体に、前記第一の合金に比べて加熱によって金属状態が変化する第二の合金で形成された被測定部材を組み込んでハニカム部材を製作する製作工程と、前記ハニカム部材を使用環境下に設けて加熱させる被加熱工程と、加熱後の前記ハニカム部材のうち前記被測定部材の金属状態を測定して前記金属状態の変化を指し示す金属状態パラメータを求める金属状態パラメータ取得工程と、予め求められた前記第二の合金に対する加熱温度と加熱時間と前記金属状態パラメータとの関係式に、前記金属状態パラメータ取得工程において求めた金属状態パラメータと前記被加熱工程における既知の加熱時間とを代入して使用環境温度を推定する温度推定工程と、を有することを特徴とする。
この構成によれば、ハニカム部材本体を形成する第一合金に比べて加熱によって金属状態が変化する第二合金で形成された被測定部材を測定するので、第一合金の金属状態が変化し難くても、被測定部材の金属状態から使用環境温度を推定することができる。これにより、短時間運転や比較的に使用環境温度が低い場合であっても、第二合金の金属状態の変化に基づいて正確に使用環境温度を推定することができる。
また、被測定部材の金属状態パラメータから関係式を用いて使用環境温度を推定するので、ハニカム部材へ加わる衝撃を許容しつつ、ハニカム部材の使用環境温度を把握することができる。
In order to achieve the above object, the present invention employs the following means.
That is, the honeycomb member temperature estimation method according to the present invention is a honeycomb member temperature estimation method for estimating a use environment temperature of a honeycomb member composed of an assembly of hollow polygonal columnar cells, and is formed of the first alloy. A manufacturing process for manufacturing a honeycomb member by incorporating a member to be measured formed of a second alloy whose metal state changes by heating as compared with the first alloy into the honeycomb member body, and the honeycomb member in an environment in which the honeycomb member is used A heating process to be provided and heated, a metal condition parameter obtaining process for measuring a metal condition of the member to be measured among the heated honeycomb members and obtaining a metal condition parameter indicating the change in the metal condition, and obtaining in advance In the metal state parameter obtaining step, the relational expression between the heating temperature and the heating time for the second alloy obtained and the metal state parameter A temperature estimation step of estimating the known heating time by substituting a with ambient temperature in the meta metallic state parameter and the target heating step, characterized by having a.
According to this configuration, since the member to be measured formed of the second alloy whose metal state changes by heating is measured as compared to the first alloy forming the honeycomb member body, the metal state of the first alloy is less likely to change. However, the use environment temperature can be estimated from the metal state of the member to be measured. Thereby, even if it is a case where it is a short time driving | running or a use environment temperature is comparatively low, a use environment temperature can be estimated correctly based on the change of the metal state of a 2nd alloy.
Further, since the use environment temperature is estimated from the metal state parameter of the member to be measured using the relational expression, the use environment temperature of the honeycomb member can be grasped while allowing an impact applied to the honeycomb member.

また、前記製作工程は、前記セルの中心軸が延びるセル高さ方向において、前記被測定部材が前記ハニカム部材本体に対して同大の寸法となるように前記ハニカム部材を製作することを特徴とする。
この構成によれば、衝撃が加わる部位の金属状態の変化から、当該衝撃が加わる部位の使用環境温度を容易に把握することができる。
The manufacturing step is characterized in that the honeycomb member is manufactured such that the member to be measured has the same size as the honeycomb member main body in the cell height direction in which the central axis of the cell extends. To do.
According to this configuration, it is possible to easily grasp the use environment temperature of the portion to which the impact is applied from the change in the metal state of the portion to which the impact is applied.

また、前記第二の合金は、加熱によって減少する特定含有元素を有し、前記金属状態パラメータは、前記特定含有元素の濃度の減少量であり、前記関係式は、以下の関係式(1)であることを特徴とする。
T=−b/ln{(C/(a・t)}…(1)
但し、tは使用環境温度、Tは加熱時間、Cは第二の合金の特定含有元素の濃度の減少量、a・bは前記第二の合金の材料種による固有定数である。
この構成によれば、特定含有元素の濃度の減少量からハニカム部材の使用環境温度を推定するので、第二の合金として様々な合金を用いることができる。
Further, the second alloy has a specific content element that decreases by heating, the metal state parameter is a decrease amount of the concentration of the specific content element, and the relational expression is the following relational expression (1): It is characterized by being.
T = −b 1 / ln {(C / (a 1 · t)} (1)
Here, t is the use environment temperature, T is the heating time, C is the amount of decrease in the concentration of the specific element contained in the second alloy, and a 1 and b 1 are intrinsic constants depending on the material type of the second alloy.
According to this configuration, since the usage environment temperature of the honeycomb member is estimated from the amount of decrease in the concentration of the specific content element, various alloys can be used as the second alloy.

また、前記第二の合金は、加熱によって減少する特定含有元素を有し、前記金属状態パラメータは、前記特定含有元素の減少に伴う空孔密度の変化量であり、前記関係式は、以下の関係式(2)であることを特徴とする。
T=−b/ln{(H/(a・t)}…(2)
但し、tは使用環境温度、Tは加熱時間、Hは第二の合金の空孔密度の変化量、a・bは前記第二の合金の材料種による固有定数である。
この構成によれば、特定含有元素の減少に伴う空孔密度の変化量からハニカム部材の使用環境温度を推定するので、第二の合金として様々な合金を用いることができる。
In addition, the second alloy has a specific content element that decreases by heating, the metal state parameter is a change amount of pore density accompanying a decrease in the specific content element, and the relational expression is as follows: It is a relational expression (2).
T = −b 2 / ln {(H / (a 2 · t)} (2)
However, t is the ambient temperature, T is the heating time, H is the variation of the pore density of the second alloy, a 2 · b 2 is a specific constant dependent material species of the second alloy.
According to this configuration, since the use environment temperature of the honeycomb member is estimated from the amount of change in the pore density accompanying the decrease in the specific content element, various alloys can be used as the second alloy.

また、前記第二の合金は、前記特定含有元素としてアルミニウム、ニッケル、鉄、クロム及びチタンのうち少なくとも一つを有することを特徴とする。   The second alloy has at least one of aluminum, nickel, iron, chromium and titanium as the specific element.

また、前記第二の合金は、含有元素としてアルミニウムとニッケルとを有すると共にガンマプライム相が形成されており、前記金属状態パラメータは、加熱によって増大する前記ガンマプライム相の粒径の三乗した値と加熱前の前記ガンマプライム相の粒径の三乗した値との差であり、前記関係式は、以下の関係式(3)であることを特徴とする。
−r =c・exp(−d/T)・t…(3)
但し、tは使用環境温度、Tは加熱時間、rは加熱後のガンマプライム相の粒径、rは加熱前のガンマプライム相の粒径、c,dは前記第二の合金の材料種による固有定数である。
Further, the second alloy has aluminum and nickel as contained elements and a gamma prime phase is formed, and the metal state parameter is a value that is the cube of the particle size of the gamma prime phase that is increased by heating. And the value that is the cube of the particle size of the gamma prime phase before heating, and the relational expression is the following relational expression (3).
r 1 3 −r 0 3 = c · exp (−d / T) · t (3)
Where t is the ambient temperature, T is the heating time, r 1 is the particle size of the gamma prime phase after heating, r 0 is the particle size of the gamma prime phase before heating, and c and d are the materials of the second alloy An intrinsic constant by species.

また、本発明に係るハニカム部材は、中空多角柱状セルの集合体からなるハニカム部材であって、第一の合金で形成されたハニカム部材本体と、前記ハニカム部材本体に設けられ、前記第一の合金に比べて加熱によって金属状態が変化する第二の合金で形成された被測定部材と、を有することを特徴とする。
この構成によれば、温度推定式を用いることにより、ハニカム部材へ加わる衝撃を許容し、かつ、短時間運転や比較的に温度が低い場合であっても正確に温度を推定するができる。
Further, the honeycomb member according to the present invention is a honeycomb member composed of an aggregate of hollow polygonal columnar cells, the honeycomb member main body formed of a first alloy, provided on the honeycomb member main body, And a member to be measured formed of a second alloy whose metal state changes by heating as compared to the alloy.
According to this configuration, by using the temperature estimation formula, the impact applied to the honeycomb member is allowed, and the temperature can be accurately estimated even when the operation is performed for a short time or when the temperature is relatively low.

また、前記ハニカム部材本体は、平板状に形成された平板部及び夫々前記平板部から法線方向一方側に突出すると共に互いに間隔を空けて同一方向に延在する複数の突出部を有する波状板が複数積層され、且つ、積層方向に相互に隣接する二つの波状板のうち一方の前記突出部が他方の前記平板部に当接するように構成され、前記被測定部材は、前記積層方向において相互に隣接する二つの波状板の間に設けられていることを特徴とする。
この構成によれば、被測定部材が積層方向において相互に隣接する二つの波状板の間に設けられているので、比較的に簡素な構成で、ハニカム部材本体に被測定部材を組み込むことができる。また、セルの内部空間だけでなく、波状板の当接部の使用環境温度を把握することが可能となる。
The honeycomb member body includes a flat plate portion formed in a flat plate shape, and a corrugated plate having a plurality of protruding portions that protrude from the flat plate portion to one side in the normal direction and extend in the same direction at intervals from each other. Are stacked, and one of the two corrugated plates adjacent to each other in the stacking direction is in contact with the other flat plate portion, and the members to be measured are mutually connected in the stacking direction. Is provided between two corrugated plates adjacent to each other.
According to this configuration, since the member to be measured is provided between two corrugated plates adjacent to each other in the stacking direction, the member to be measured can be incorporated into the honeycomb member body with a relatively simple configuration. In addition, it is possible to grasp not only the internal space of the cell but also the use environment temperature of the contact portion of the corrugated plate.

また、前記ハニカム部材本体は、平板状に形成された平板部及び夫々前記平板部から法線方向に突出すると共に互いに間隔を空けて同一方向に延在する複数の突出部を有する波状板が複数積層され、且つ、積層方向に相互に隣接する二つの波状板のうち一方の前記突出部が他方の前記平板部に当接するように構成され、前記被測定部材は、前記波状板と同形に形成されて平板状に形成された被測定平板部及び夫々前記被測定平板部から法線方向一方側に突出すると共に互いに間隔を空けて同一方向に延在する複数の被測定突出部を有し、前記二つの波状板の間に設けられて前記被測定平板部が前記法線方向他方側の前記波状板の突出部に接合され、前記被測定突出部が前記法線方向一方側の前記波状板の平板部に接合されていることを特徴とする。
この構成によれば、波状板と被測定部材とが積層されてハニカム部材が形成されるので、セルの内部空間だけでなく、波状板の当接部の使用環境温度を把握することが可能となる。
さらに、セルの形状が変化せず、被測定部材を組み込むことによるハニカム部材の圧潰性能への影響を小さくすることができる。
The honeycomb member main body includes a flat plate portion formed in a flat plate shape and a plurality of corrugated plates each having a plurality of protrusion portions protruding in the normal direction from the flat plate portion and extending in the same direction at intervals from each other. One of the two corrugated plates that are stacked and adjacent to each other in the stacking direction is configured to abut against the other flat plate portion, and the member to be measured is formed in the same shape as the corrugated plate A flat plate portion to be measured, and a plurality of measured protrusion portions that protrude from the measured flat plate portion to one side in the normal direction and extend in the same direction at intervals from each other, The plate portion to be measured provided between the two corrugated plates is joined to the protruding portion of the corrugated plate on the other side in the normal direction, and the flat plate of the corrugated plate on the one side in the normal direction. It is characterized by being joined to the part That.
According to this configuration, since the corrugated plate and the member to be measured are laminated to form the honeycomb member, it is possible to grasp not only the internal space of the cell but also the use environment temperature of the contact portion of the corrugated plate. Become.
Furthermore, the shape of the cell does not change, and the influence on the crushing performance of the honeycomb member by incorporating the member to be measured can be reduced.

また、前記被測定部材は、前記セルの中心軸が延びるセル高さ方向における寸法が、前記ハニカム部材本体と略同大に形成されていることを特徴とする。
この構成によれば、衝撃が加わる部位の特定含有元素の濃度の減少量から、当該衝撃が加わる部位の使用環境温度を容易に把握することができる。
Further, the member to be measured is formed so that a dimension in a cell height direction in which a central axis of the cell extends is substantially the same as that of the honeycomb member main body.
According to this structure, the use environment temperature of the site | part to which the said impact is added can be easily grasped | ascertained from the decreasing amount of the density | concentration of the specific containing element of the site | part to which an impact is applied.

本発明に係るハニカム部材の温度推定方法によれば、ハニカム部材へ加わる衝撃を許容し、かつ、短時間運転や比較的に温度が低い場合であっても正確に温度を推定するができる。   According to the temperature estimation method for a honeycomb member according to the present invention, an impact applied to the honeycomb member is allowed, and the temperature can be accurately estimated even when the operation is performed for a short time or when the temperature is relatively low.

また、本発明に係るハニカム部材によれば、温度推定式を用いることにより、ハニカム部材へ加わる衝撃を許容し、かつ、短時間運転や比較的に温度が低い場合であっても正確に温度を推定するができる。   Further, according to the honeycomb member of the present invention, by using the temperature estimation formula, an impact applied to the honeycomb member is allowed, and the temperature is accurately controlled even in a short time operation or when the temperature is relatively low. I can estimate.

本発明の実施形態に係るガスタービン1の概略全体構成を示す図であって、ガスタービン1の半断面図である。1 is a diagram showing a schematic overall configuration of a gas turbine 1 according to an embodiment of the present invention, and is a half sectional view of the gas turbine 1. 本発明の実施形態に係るタービン4の要部Iの拡大断面図である。It is an expanded sectional view of the principal part I of the turbine 4 which concerns on embodiment of this invention. 本発明の実施形態に係る ハニカム部材30の概略構成斜視図である。1 is a schematic configuration perspective view of a honeycomb member 30 according to an embodiment of the present invention. 本発明の実施形態に係るハニカム部材30の要部拡大図であって、図3におけるII矢視図である。FIG. 4 is an enlarged view of a main part of the honeycomb member 30 according to the embodiment of the present invention, and is a view taken along arrow II in FIG. 3. 本発明の実施形態に係るハニカム部材の温度推定方法M1のフローチャートである。It is a flowchart of the temperature estimation method M1 of the honeycomb member which concerns on embodiment of this invention. 本発明の実施形態に係るハニカム部材の温度推定方法M2のフローチャートである。It is a flowchart of the temperature estimation method M2 of the honeycomb member which concerns on embodiment of this invention. 本発明の実施形態に係る ハニカム部材30の変形例を示す図である。It is a figure showing a modification of honeycomb member 30 concerning an embodiment of the present invention.

以下、図面を参照し、本発明の実施の形態について説明する。以下に説明する実施形態は、ガスタービンに用いられたハニカム部材の使用環境温度を推定するものである。以下においては、ガスタービン、ハニカム部材の構成を順に説明した後に、ハニカム部材の温度推定方法について説明をする。
(ガスタービン)
図1は、本発明の実施形態に係るガスタービン1の概略全体構成を示す図であって、ガスタービン1の半断面図である。
図1に示すように、ガスタービン1は、圧縮機2と複数の燃焼器3とタービン4とを備えている。圧縮機2は、空気を空気取込口から作動流体として取り込んで圧縮空気を生成する。複数の燃焼器3は、それぞれ圧縮機2に接続されており、圧縮機2から供給された圧縮空気に燃料を噴射して燃焼させ、高温・高圧の燃焼ガスを発生させる。タービン4は、燃焼器3から送り出された燃焼ガスの熱エネルギーをロータ6の回転エネルギーに変換して駆動力を発生させる。そして、この駆動力がロータ6に連結された発電機(不図示)に伝達されるようになっている。
Embodiments of the present invention will be described below with reference to the drawings. In the embodiment described below, the use environment temperature of the honeycomb member used in the gas turbine is estimated. In the following, the structure of the gas turbine and the honeycomb member will be described in order, and then the temperature estimation method for the honeycomb member will be described.
(gas turbine)
FIG. 1 is a diagram showing a schematic overall configuration of a gas turbine 1 according to an embodiment of the present invention, and is a half sectional view of the gas turbine 1.
As shown in FIG. 1, the gas turbine 1 includes a compressor 2, a plurality of combustors 3, and a turbine 4. The compressor 2 takes in air as a working fluid from an air intake and generates compressed air. Each of the plurality of combustors 3 is connected to the compressor 2 and injects fuel into the compressed air supplied from the compressor 2 to burn it, thereby generating high-temperature and high-pressure combustion gas. The turbine 4 converts the thermal energy of the combustion gas sent out from the combustor 3 into rotational energy of the rotor 6 to generate a driving force. This driving force is transmitted to a generator (not shown) connected to the rotor 6.

図2は、タービン4の要部Iの拡大断面図である。
タービン4は、タービン4の外部と内部とを区画するタービンケーシング5と、タービンケーシング5を挿通するロータ6と、タービンケーシング5内に軸方向に交互に配設された複数の静翼列7及び複数の動翼列10とを備えている。
FIG. 2 is an enlarged cross-sectional view of a main part I of the turbine 4.
The turbine 4 includes a turbine casing 5 that partitions the outside and the inside of the turbine 4, a rotor 6 that passes through the turbine casing 5, a plurality of stationary blade rows 7 that are alternately arranged in the axial direction in the turbine casing 5, and And a plurality of blade rows 10.

ロータ6は、タービン4を挿通した状態で回動可能に支持されており、それぞれ円盤状に形成されると共に軸方向に積層されたロータディスク6A〜6Dを有している。   The rotor 6 is rotatably supported while being inserted through the turbine 4, and has rotor disks 6 </ b> A to 6 </ b> D each formed in a disk shape and stacked in the axial direction.

各静翼列7は、タービンケーシング5の内周部において周方向に複数の静翼8が配列されて構成されている。各静翼列7における静翼8は、それぞれタービンケーシング5側からロータ6側に向けて延びており、ロータ6側における各先端が周方向に延びる静翼分割環9で連結されている。   Each stationary blade row 7 is configured by arranging a plurality of stationary blades 8 in the circumferential direction in the inner peripheral portion of the turbine casing 5. The stationary blades 8 in each stationary blade row 7 extend from the turbine casing 5 side toward the rotor 6 side, and each tip on the rotor 6 side is connected by a stationary blade split ring 9 extending in the circumferential direction.

各動翼列10は、ロータディスク6A〜6Dの各外周部において周方向に複数の動翼11が配列されて構成されている。動翼列10における各動翼11は、ロータ6側からタービンケーシング5側に向けて延びており、ロータ6側における基端に周方向に延びる動翼プラットフォーム12と、タービンケーシング5側における先端に周方向に延びるチップシュラウド13とを備えている。各動翼列10において、動翼11の動翼プラットフォーム12及びチップシュラウド13は、全体として環状に連続している。   Each rotor blade row 10 is configured by arranging a plurality of rotor blades 11 in the circumferential direction at each outer peripheral portion of the rotor disks 6A to 6D. Each rotor blade 11 in the rotor blade row 10 extends from the rotor 6 side toward the turbine casing 5 side. The rotor blade platform 12 extends in the circumferential direction to the proximal end on the rotor 6 side, and the distal end on the turbine casing 5 side. A tip shroud 13 extending in the circumferential direction is provided. In each moving blade row 10, the moving blade platform 12 and the tip shroud 13 of the moving blade 11 are continuous in an annular shape as a whole.

上記構成からなるタービン4は、図2に示すように、環状に連続した複数のチップシュラウド13とタービンケーシング5側との径方向の隙間、ロータ6の軸方向において重ねられた静翼分割環9の端部と動翼プラットフォーム12の端部との径方向の隙間、及び、静翼分割環9の先端とローターディスク(6A〜6D)との径方向の隙間に設けられたハニカム部材30を有している。   As shown in FIG. 2, the turbine 4 having the above configuration includes a plurality of annularly continuous tip shrouds 13 and a radial gap between the turbine casing 5 side, and a stationary blade split ring 9 that is overlapped in the axial direction of the rotor 6. And a honeycomb member 30 provided in the radial gap between the end of the rotor blade platform 12 and the end of the rotor blade platform 12 and the radial gap between the tip of the stationary blade split ring 9 and the rotor disks (6A to 6D). is doing.

(ハニカム部材)
図3は、ハニカム部材30の概略構成斜視図であり、図4は、図3におけるII矢視図である。
図3に示すように、ハニカム部材30は、中空六角柱状セルの集合体からなっている。
このハニカム部材30は、上記各径方向の隙間をシールして燃焼ガスの漏流を防止している。
(Honeycomb member)
3 is a schematic configuration perspective view of the honeycomb member 30, and FIG. 4 is a view taken along the arrow II in FIG.
As shown in FIG. 3, the honeycomb member 30 is composed of an aggregate of hollow hexagonal columnar cells.
The honeycomb member 30 seals the radial gaps to prevent combustion gas leakage.

図4に示すように、ハニカム部材30は、第一合金(第一の合金)A1で形成されたハニカム部材本体31と、ハニカム部材本体31に組み込まれて、第一合金A1に比べて加熱によって金属状態が変化する第二合金(第二の合金)A2で形成された被測定部材35とを有している。なお、金属状態とは、特定含有元素の濃度、空孔密度、ガンマプライム相の粒径をいう(いずれも後述する。)。   As shown in FIG. 4, the honeycomb member 30 includes a honeycomb member main body 31 formed of a first alloy (first alloy) A1, and is incorporated in the honeycomb member main body 31, and is heated by heating compared to the first alloy A1. A member to be measured 35 formed of a second alloy (second alloy) A2 whose metal state changes. In addition, a metal state means the density | concentration of a specific content element, a void density, and the particle size of a gamma prime phase (all are mentioned later).

図4に示すように、ハニカム部材本体31は、波状板32が法線方向(より具体的には、平板部32aにおける板面法線方向)に積層されて構成されている。
波状板32は、平板状に形成された平板部32a、及び、夫々平板部32aから法線方向一方側に突出すると共に互いに間隔を空けて同一方向に延在する複数の突出部32bを有している。なお、以下においては、図3及び図4に示すように、ハニカム部材30のセルの中心軸が延在する方向をセル高さ方向と、セル高さ方向と法線方向とに夫々交差する方向を配列方向という。
As shown in FIG. 4, the honeycomb member main body 31 is configured by laminating corrugated plates 32 in a normal direction (more specifically, a plate surface normal direction in the flat plate portion 32a).
The corrugated plate 32 has a flat plate portion 32a formed in a flat plate shape, and a plurality of protruding portions 32b that protrude from the flat plate portion 32a to one side in the normal direction and extend in the same direction at intervals from each other. ing. In the following, as shown in FIGS. 3 and 4, the direction in which the central axis of the cell of the honeycomb member 30 extends intersects the cell height direction and the cell height direction and the normal direction, respectively. Is called the array direction.

突出部32bは、等脚台形状に形成されており、上辺(短辺)に相当する部位の配列方向が平板部32aの寸法と同大になっている。
このような構成により、波状板32においては、突出部32bに区画されると共に法線方向他方側が開放された台形状空間と、平板部32aとこの平板部32aを挟む二つの突出部32bとで区画されると共に法線方向一方側が開放された台形状空間とが、一方向(配列方向)に交互に連続している。
なお、波状板32は、第一合金A1によって形成されているが、この第一合金A1については第二合金A2と共に後に詳述する。
The protruding portion 32b is formed in an isosceles trapezoidal shape, and the arrangement direction of the portion corresponding to the upper side (short side) is the same as the dimension of the flat plate portion 32a.
With such a configuration, in the corrugated plate 32, a trapezoidal space that is partitioned by the protruding portion 32b and that is open on the other side in the normal direction, and the flat plate portion 32a and the two protruding portions 32b that sandwich the flat plate portion 32a. The trapezoidal spaces that are partitioned and open on one side in the normal direction are alternately continued in one direction (arrangement direction).
The corrugated plate 32 is formed of the first alloy A1, and the first alloy A1 will be described in detail later together with the second alloy A2.

ハニカム部材本体31は、それぞれの法線方向を同一の方向に向けた波状板32が複数積層され、かつ、積層方向に相互に隣接する二つの波状板32のうち法線方向他方側の突出部32bが法線方向一方側の平板部32aに当接しており、この当接部がロー付けにより接合されている。このような構成により、積層方向に隣接する二つの台形状空間が合わさって各セルの六角柱状の空間が構成されている。   The honeycomb member main body 31 is formed by laminating a plurality of corrugated plates 32 each having a normal direction in the same direction, and a protrusion on the other side in the normal direction of two corrugated plates 32 adjacent to each other in the stacking direction. 32b is in contact with the flat plate part 32a on one side in the normal direction, and this contact part is joined by brazing. With such a configuration, two trapezoidal spaces adjacent in the stacking direction are combined to form a hexagonal columnar space for each cell.

被測定部材35は、第二合金A2で形成された平板状に部材であり、セル高さ方向の寸法が各波状板32と略同大に形成されている。この被測定部材35は、複数積層された波状板32のうち二つの波状板32に挟まれており、これら二つの波状板32のうち一方の突出部32bと他方の平板部32aとに接合されて六角柱状の空間を二分している。   The member to be measured 35 is a flat plate member formed of the second alloy A2, and the dimension in the cell height direction is substantially the same as each corrugated plate 32. The member to be measured 35 is sandwiched between two corrugated plates 32 among the plural corrugated plates 32, and is joined to one projecting portion 32b and the other flat plate portion 32a of the two corrugated plates 32. This bisects the hexagonal column space.

(ハニカム部材の温度推定方法、第一実施形態)
続いて、本発明の第一実施形態に係るハニカム部材の温度推定方法M1について、主に図5を用いて説明をする。
上述したように、ハニカム部材30は、第一合金A1で形成された波状板32が積層されたハニカム部材本体31と、第二合金A2で形成された被測定部材35とを有しているが、このハニカム部材の温度推定方法M1は、耐酸化性に優れる第一合金A1ではなく、第一合金A1よりも酸化し易い第二合金A2を利用し、この酸化によって変化する特定の特定含有元素の濃度の減少量を利用して、使用環境温度を推定するものである。
すなわち、第二合金A2は、同一の使用環境温度下において、第一合金A1に比べて合金表面に酸化被膜が形成され易い。このため、第一合金A1に比べて酸化被膜を形成する特定含有元素の減少量が多くなる。ここで、特定含有元素としては、アルミニウム、ニッケル、鉄、クロム及びチタンを挙げることができる。
第一合金A1と第二合金A2との組み合わせの具体例を示すと以下の表1のようになっている。
(Temperature Estimation Method for Honeycomb Member, First Embodiment)
Next, the honeycomb member temperature estimation method M1 according to the first embodiment of the present invention will be described mainly with reference to FIG.
As described above, the honeycomb member 30 includes the honeycomb member main body 31 in which the corrugated plates 32 formed of the first alloy A1 are stacked, and the member to be measured 35 formed of the second alloy A2. The honeycomb member temperature estimation method M1 uses the second alloy A2 that is easier to oxidize than the first alloy A1 instead of the first alloy A1 having excellent oxidation resistance, and the specific specific contained element that changes due to this oxidation. The ambient temperature is estimated by using the decrease in the concentration of the product.
That is, in the second alloy A2, an oxide film is more easily formed on the alloy surface than the first alloy A1 under the same use environment temperature. For this reason, compared with 1st alloy A1, the reduction amount of the specific content element which forms an oxide film increases. Here, examples of the specific element include aluminum, nickel, iron, chromium, and titanium.
Specific examples of combinations of the first alloy A1 and the second alloy A2 are shown in Table 1 below.

Figure 2011252440
Figure 2011252440

また、上記各合金の金属組成は、以下の表2のようになっている。なお、表2中において、「残」と表示したものは「残りの割合」を意味するものであり、全体から他の含有元素の割合の合算値を減算した値に相当する。   In addition, the metal composition of each of the above alloys is as shown in Table 2 below. In Table 2, “Remaining” indicates “remaining ratio”, and corresponds to a value obtained by subtracting the total value of the ratios of other contained elements from the whole.

Figure 2011252440
Figure 2011252440

なお、表1及び表2中において、「Haynes(ヘインズ)214」「Haynes230」「ハステロイX」は、ヘインズ社の登録商標である。また、「S45C」「NiCu30」「TAP6400」は、JIS規格で定められた合金である。   In Tables 1 and 2, “Haynes 214”, “Haynes 230”, and “Hastelloy X” are registered trademarks of Haynes. “S45C”, “NiCu30”, and “TAP6400” are alloys defined by JIS standards.

表2に示すように、第二合金A2においては、特定含有元素を複数含むものがあるが、各特定含有元素の減少量には相違がある。より具体的には、第二合金A2としてハステロイXを用いる場合にはクロム、Haynes230を用いる場合にはアルミニウム及びクロムの少なくとも一方、NW4402を用いる場合にはニッケル、TAPG6400を用いる場合にはチタン及びアルミニウムの少なくとも一方が、それぞれ他の特定含有元素よりも濃度の減少量が多くなる。つまり、表2に例示する合金を第二合金A2として用いる場合には、他の特定含有元素よりも濃度が減少する上述した特定含有元素を用いることで、使用環境温度をより正確に推定することが可能となる。なお、S45Cを用いる場合には鉄を用いればよい。
さらに、特定含有元素を複数含む合金については、各特定含有元素の濃度の減少量を用いて重畳的に温度を推定することが可能である。例えばハステロイXを用いる場合にはクロム及びニッケルのそれぞれの濃度の減少量を用いて温度を推定することが可能である。
As shown in Table 2, some of the second alloy A2 contains a plurality of specific contained elements, but there is a difference in the amount of reduction of each specific contained element. More specifically, when using Hastelloy X as the second alloy A2, at least one of aluminum and chromium when using Haynes 230, nickel when using NW4402, titanium and aluminum when using TAPG6400. At least one of the above has a reduced amount of concentration more than the other specific contained elements. That is, when the alloy illustrated in Table 2 is used as the second alloy A2, the use environment temperature is estimated more accurately by using the above-described specific containing element whose concentration is reduced as compared with other specific containing elements. Is possible. Note that iron may be used when S45C is used.
Further, for an alloy containing a plurality of specific contained elements, the temperature can be estimated in a superimposed manner using the amount of decrease in the concentration of each specific contained element. For example, in the case of using Hastelloy X, it is possible to estimate the temperature using the respective decrease amounts of chromium and nickel.

また、温度推定方法M1を用いてハニカム部材30の使用環境温度を推定するに際しては、予め第二合金A2に対する加熱温度と加熱時間と特定含有元素の濃度の減少量との関係式を求めておく。
より具体的には、予め第二合金A2の供試材に対して加熱試験を行って、加熱後の供試材から使用環境温度の推定に用いる特定含有元素の濃度を測定した後に、特定含有元素の濃度減少量を求め、この求めた濃度減少量と加熱試験における加熱時間と加熱温度との関係を以下の関係式(1)として同定する。
T=−b/ln{(C/(a・t)}…(1)
但し、tは使用環境温度、Tは加熱時間、Cは特定含有元素濃度の減少量、a・bは第二合金A2の材料種による固有定数である。
なお、この関係式(1)については、特開2009−264204号公報に記載されている。
In estimating the use environment temperature of the honeycomb member 30 by using the temperature estimation method M1, a relational expression between the heating temperature, the heating time, and the amount of decrease in the concentration of the specific content element for the second alloy A2 is obtained in advance. .
More specifically, after performing a heating test on the test material of the second alloy A2 in advance and measuring the concentration of the specific content element used for estimating the use environment temperature from the heated test material, the specific content The concentration reduction amount of the element is obtained, and the relationship between the obtained concentration reduction amount, the heating time in the heating test, and the heating temperature is identified as the following relational expression (1).
T = −b 1 / ln {(C / (a 1 · t)} (1)
However, t is the use environment temperature, T is the heating time, C is the amount of decrease in the concentration of the specific element, and a 1 and b 1 are eigen constants depending on the material type of the second alloy A2.
This relational expression (1) is described in Japanese Patent Application Laid-Open No. 2009-264204.

続いて、ハニカム部材の温度推定方法M1の実際の手順について説明する。
図5は、ハニカム部材の温度推定方法M1のフローチャートである。図5に示すように、ハニカム部材の温度推定方法M1は、製作工程S11と、被加熱工程S12と、特定含有元素濃度減少量取得工程(金属状態パラメータ取得工程)S13と、温度推定工程S14とを有している。
Next, an actual procedure of the honeycomb member temperature estimation method M1 will be described.
FIG. 5 is a flowchart of the honeycomb member temperature estimation method M1. As shown in FIG. 5, the honeycomb member temperature estimation method M1 includes a manufacturing process S11, a heated process S12, a specific element concentration reduction amount acquisition process (metal state parameter acquisition process) S13, and a temperature estimation process S14. have.

まず始めに、上述した構成からなるハニカム部材30を製作する(製作工程S11)。
例えば、波状板32を積層させて、相互に隣接する二つの波状板32のうち一方の突出部32bを他方の平板部32aに突き合わせ、この突き合わせた部分をスポット溶接等で仮止めする。一方、被測定部材35を挟む二つの波状板32については、一方の波状板32の突出部32bと他方の波状板32の平板部32aとで被測定部材35を挟み込んだ状態で仮止めする。そして、各仮止めした部分をロー付けすることでハニカム部材30を得ることができる。
なお、ハニカム部材本体31を積層して仮止めした後に、被測定部材35を挿入して被測定部材35を波状板32にロー付けしてハニカム部材30を得ることも可能である。
First, the honeycomb member 30 having the above-described configuration is manufactured (manufacturing step S11).
For example, the corrugated plates 32 are stacked, one projecting portion 32b of the two corrugated plates 32 adjacent to each other is butted against the other flat plate portion 32a, and the butted portion is temporarily fixed by spot welding or the like. On the other hand, the two corrugated plates 32 sandwiching the member to be measured 35 are temporarily fixed in a state where the member to be measured 35 is sandwiched between the protruding portion 32b of one corrugated plate 32 and the flat plate portion 32a of the other corrugated plate 32. And the honeycomb member 30 can be obtained by brazing each temporarily fixed part.
It is also possible to obtain the honeycomb member 30 by inserting the member to be measured 35 and brazing the member to be measured 35 to the corrugated plate 32 after the honeycomb member bodies 31 are laminated and temporarily fixed.

次に、製作工程S11で得たハニカム部材30をタービン4に配設してガスタービン1を駆動し、ハニカム部材30を加熱させる(被加熱工程S12)。より具体的には、環状に連続した複数のチップシュラウド13とタービンケーシング5側との径方向の隙間、及び、ロータ6の軸方向において重ねられた静翼分割環9の端部と動翼プラットフォーム12の端部との径方向の隙間にハニカム部材30を周方向に連続的に配設する。
なお、ハニカム部材30は、ハニカム部材の高さ方向がロータ6の径方向に向くようにして配設する。
Next, the honeycomb member 30 obtained in the manufacturing process S11 is disposed in the turbine 4 to drive the gas turbine 1, and the honeycomb member 30 is heated (heated process S12). More specifically, the radial gaps between the plurality of annular chip shrouds 13 and the turbine casing 5 side, and the ends of the stationary blade split ring 9 and the blade platform overlapped in the axial direction of the rotor 6 are arranged. The honeycomb member 30 is continuously arranged in the circumferential direction in the radial gap with the 12 end portions.
The honeycomb member 30 is disposed such that the height direction of the honeycomb member is directed to the radial direction of the rotor 6.

高温環境下に曝されてハニカム部材30が加熱されると、ハニカム部材本体31が含有する特定含有元素に比べて、被測定部材35が含有する特定含有元素が多く減少する。具体的には、被測定部材35の表面に特定含有元素の酸化被膜が形成され、これに応じて合金中の特定含有元素が減少する。
この際、ロータ6の熱膨張等によって動翼11が変位すると、回転する動翼11のチップシュラウド13、動翼プラットフォーム12又はロータディスク6A〜6Dでハニカム部材30(波状板32及び被測定部材35)が削られたり、圧潰されたりする。
When the honeycomb member 30 is heated by being exposed to a high temperature environment, the specific content element contained in the member to be measured 35 is decreased more than the specific content element contained in the honeycomb member body 31. Specifically, an oxide film of a specific content element is formed on the surface of the member 35 to be measured, and the specific content element in the alloy decreases accordingly.
At this time, when the rotor blade 11 is displaced due to thermal expansion of the rotor 6 or the like, the honeycomb member 30 (the corrugated plate 32 and the member to be measured 35) is moved by the tip shroud 13, the rotor blade platform 12 or the rotor disks 6A to 6D of the rotating rotor blade 11. ) Is cut or crushed.

次に、加熱後のハニカム部材30のうち被測定部材35の特定含有元素の濃度を測定し、予め測定した加熱前の特定含有元素の濃度から、測定した加熱後の特定含有元素の濃度を減算して特定含有元素の濃度の減少量を求める(特定含有元素濃度減少量取得工程S13)。
この際、特定含有元素の濃度の測定は、例えば、電子プローブ・マイクロアナライザー(EPMA:Electron Probe Micro Analyzer)を用いて測定することができる。
このEPMAは、加速した電子線を物質に照射(電子線による励起)させ、特性X線のスペクトルに注目して、電子線が照射されている微小領域(おおよそ1μm3)に於ける構成元素の比率(濃度)を分析する、固体の試料をほぼ非破壊で分析するものを用いている。なお、その他には走査型電子顕微鏡(Scanning Electron Microscope、SEM)に付属して使用されるエネルギー分散型X線分析装置(Energy Dispersive Spectroscopy )を用いて簡易に測定することもできる。
Next, the concentration of the specific element contained in the member to be measured 35 in the heated honeycomb member 30 is measured, and the measured concentration of the specific element after heating is subtracted from the pre-measured concentration of the specific element contained before heating. Then, a decrease amount of the concentration of the specific content element is obtained (specific content element concentration decrease amount acquisition step S13).
At this time, the concentration of the specific element can be measured using, for example, an electron probe microanalyzer (EPMA).
This EPMA irradiates a substance with an accelerated electron beam (excitation by an electron beam), paying attention to the spectrum of characteristic X-rays, and the ratio of constituent elements in a minute region (approximately 1 μm 3) irradiated with the electron beam Analyzing (concentration), a solid sample is analyzed almost non-destructively. In addition, it can also measure simply using the energy dispersive X-ray-analysis apparatus (Energy Dispersive Spectroscopy) used attached to a scanning electron microscope (Scanning Electron Microscope, SEM).

この特定含有元素の濃度の測定においては、先ず被測定部材35をセル高さ方向(図4参照)に切断して、表層近傍(被測定部材35の両表面に形成された酸化被膜近傍の基層)及び基層中央部の計三点の特定含有元素の濃度を測定し、平均値(平均濃度)を求めることが好ましい。つまり、特定含有元素の濃度は、表層近傍と基層中央部とでバラつきが生じることが多いが、被測定部材35の厚さ方向の複数箇所において特定含有元素を測定すると共にこの平均値を求めることでより正確な温度推定が可能となる。   In the measurement of the concentration of the specific element, first, the member to be measured 35 is cut in the cell height direction (see FIG. 4), and near the surface layer (the base layer near the oxide film formed on both surfaces of the member to be measured 35). ) And the concentration of a specific content element at a total of three points in the center of the base layer, and an average value (average concentration) is preferably obtained. That is, the concentration of the specific content element often varies between the vicinity of the surface layer and the central portion of the base layer, but the specific content element is measured at a plurality of locations in the thickness direction of the member to be measured 35 and the average value is obtained. Makes it possible to estimate temperature more accurately.

次に、予め求められた第二合金A2に対する加熱温度と加熱時間と特定含有元素の濃度の減少量との上記関係式(1)に、特定含有元素濃度減少量取得工程S13において求めた特定含有元素の濃度の減少量(C)と既知の加熱時間(T)とを代入して使用環境温度(t)を推定する(温度推定工程S14)。   Next, the specific content obtained in the specific content element concentration reduction amount acquisition step S13 in the relational expression (1) of the heating temperature, the heating time, and the specific content element reduction amount obtained in advance for the second alloy A2. The use environment temperature (t) is estimated by substituting the decrease amount (C) of the element concentration and the known heating time (T) (temperature estimation step S14).

以上説明したように、温度推定方法M1によれば、ハニカム部材本体31を形成する第一合金A1に比べて加熱によって特定含有元素の濃度が減少する第二合金A2で形成された被測定部材35を測定するので、ハニカム部材本体31が耐酸化性に優れる合金で形成されて特定含有元素の濃度が減少し難くても、被測定部材35の特定含有元素の濃度から使用環境温度を推定することができる。これにより、短時間運転や比較的に使用環境温度が低い場合であっても、被測定部材35の特定含有元素の濃度減少量に基づいて正確に使用環境温度を推定することができる。   As described above, according to the temperature estimation method M1, the member to be measured 35 formed of the second alloy A2 in which the concentration of the specific containing element is reduced by heating compared to the first alloy A1 forming the honeycomb member body 31. Therefore, even if the honeycomb member body 31 is formed of an alloy having excellent oxidation resistance and the concentration of the specific contained element is difficult to decrease, the use environment temperature is estimated from the concentration of the specific contained element of the member to be measured 35. Can do. Thereby, even if it is a short-time driving | running or a case where use environment temperature is comparatively low, use environment temperature can be estimated correctly based on the amount of density | concentration reduction | decrease of the specific content element of the to-be-measured member 35.

また、動翼プラットフォーム12やチップシュラウド13がハニカム部材30に不測に接触したとしても、被測定部材35の特定含有元素の濃度の減少量から関係式(1)を用いて使用環境温度を推定することが可能である。これにより、ハニカム部材30へ加わる衝撃を許容しつつ、ハニカム部材30の使用環境温度を把握することが可能になる。   Even if the rotor blade platform 12 and the chip shroud 13 unexpectedly contact the honeycomb member 30, the use environment temperature is estimated using the relational expression (1) from the amount of decrease in the concentration of the specific element contained in the member to be measured 35. It is possible. Thereby, it is possible to grasp the use environment temperature of the honeycomb member 30 while allowing the impact applied to the honeycomb member 30.

さらに、ハニカム部材30の高さ方向において、被測定部材35がハニカム部材本体31に対して同大の寸法となっているので、熱電対では測定が困難であった部位に対してもハニカム部材30の使用環境温度を正確に把握することができる。すなわち、ハニカム部材30のうちロータ6側(動翼プラットフォーム12やチップシュラウド13、ロータディスク6A〜6D)と近接する部位はロータ6側と接触し易いため、熱電対を用いて測定するのが困難である。しかしながら、接触後の被測定部材35からも使用環境温度の推定が可能であるので、ロータ6側に近接する部位の特定含有元素の濃度の減少量から、ロータ6側に近接する部位の使用環境温度を容易に把握することができる。   Furthermore, since the member to be measured 35 has the same size as the honeycomb member main body 31 in the height direction of the honeycomb member 30, the honeycomb member 30 can be applied to a portion that is difficult to measure with a thermocouple. It is possible to accurately grasp the operating environment temperature. That is, a portion of the honeycomb member 30 that is close to the rotor 6 side (the rotor blade platform 12, the tip shroud 13, and the rotor disks 6A to 6D) is easily in contact with the rotor 6 side, and thus is difficult to measure using a thermocouple. It is. However, since the use environment temperature can be estimated from the member to be measured 35 after the contact, the use environment of the part close to the rotor 6 side is determined from the decrease in the concentration of the specific element contained in the part close to the rotor 6 side. The temperature can be easily grasped.

さらに、被測定部材35の複数部位を複数連続的に測定することにより、使用環境温度の分布を容易に把握することができる。すなわち、熱電対を用いて使用環境温度の分布を得るためには多数の熱電対が必要となるが、温度推定方法M1によれば被測定部材35を複数連続的に測定するだけで、容易に温度分布を得ることができる。   Further, by continuously measuring a plurality of portions of the member 35 to be measured, it is possible to easily grasp the distribution of the use environment temperature. That is, a large number of thermocouples are required to obtain the distribution of the ambient temperature using the thermocouple, but according to the temperature estimation method M1, it is easy to simply measure a plurality of measured members 35 continuously. A temperature distribution can be obtained.

また、セルの内部空間だけでなく、波状板32の当接部(ロー付け部)の特定含有元素の濃度の減少量を求めることにより、波状板32の当接部の使用環境温度を把握することが可能となる。   In addition, the use environment temperature of the abutting portion of the corrugated plate 32 is grasped by obtaining the amount of decrease in the concentration of the specific element contained in the abutting portion (brazing portion) of the corrugated plate 32 as well as the internal space of the cell. It becomes possible.

なお、上述した温度推定方法M1においては、特定含有元素の濃度の減少量を用いる構成としたが、特定含有元素の減少に伴う第二合金A2中の空孔密度の変化量(金属状態パラメータ)であってもよい。
すなわち、特定含有元素を有する合金は、上述したように、表面に酸化層が形成されるが、酸化層の形成で消費された金属によって空孔が発生する。この場合においては、以下の関係式(2)を用いることにより、温度を推定することが可能である。
T=−b/ln{(H/(a・t)}…(2)
但し、tは使用環境温度、Tは加熱時間、Hは空孔密度の変化量、a・bは前記第二合金A2の材料種による固有定数である。なお、この関係式(2)は、特開2009−264204号公報等に記載されており、予め第二合金A2の供試材に対して加熱試験を行って、加熱後の供試材から使用環境温度の推定に用いる空孔密度を測定した後に、加熱前の空孔密度と測定した空孔密度とから空孔密度の変化量を求め、この求めた変化量と加熱試験における加熱時間と加熱温度との関係を関係式として同定したものである。
In the temperature estimation method M1 described above, the amount of decrease in the concentration of the specific content element is used. However, the amount of change in the void density in the second alloy A2 due to the decrease in the specific content element (metal state parameter). It may be.
In other words, as described above, an oxide layer is formed on the surface of an alloy having a specific content element, but voids are generated by the metal consumed in forming the oxide layer. In this case, the temperature can be estimated by using the following relational expression (2).
T = −b 2 / ln {(H / (a 2 · t)} (2)
Here, t is the ambient temperature, T is the heating time, H is the amount of change in the pore density, and a 2 · b 2 is an intrinsic constant depending on the material type of the second alloy A2. In addition, this relational expression (2) is described in JP 2009-264204 A, etc., and a heat test is performed on the test material of the second alloy A2 in advance, and the test material after heating is used. After measuring the hole density used to estimate the environmental temperature, obtain the amount of change in the hole density from the hole density before heating and the measured hole density, and the amount of change and the heating time and heating in the heating test. The relationship with temperature is identified as a relational expression.

(ハニカム部材の温度推定方法、第二実施形態)
続いて、本発明の第二実施形態に係るハニカム部材の温度推定方法M2を説明する。なお、上述した第一実施形態と同様の構成要素については、同一の符号を付してその説明を省略する。
(Temperature Estimation Method for Honeycomb Member, Second Embodiment)
Next, the honeycomb member temperature estimation method M2 according to the second embodiment of the present invention will be described. In addition, about the component similar to 1st embodiment mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

このハニカム部材の温度推定方法M2は、第二合金A2が含有元素としてアルミニウムとニッケルとを有すると共にガンマプライム相(NiAl,γ´相)が形成されている場合に適用することが可能である。
つまり、表2に例示した合金においては、第二合金A2に「Haynes230」を用いる場合にハニカム部材の温度推定方法M2を適用することが可能である。なお、この第二合金A2に対応する第一合金A1としては、表1に示すように、「Haynes214」を用いることができる。
This honeycomb member temperature estimation method M2 can be applied when the second alloy A2 has aluminum and nickel as contained elements and a gamma prime phase (Ni 3 Al, γ ′ phase) is formed. is there.
That is, in the alloys illustrated in Table 2, the honeycomb member temperature estimation method M2 can be applied when “Haynes 230” is used for the second alloy A2. As shown in Table 1, “Haynes 214” can be used as the first alloy A1 corresponding to the second alloy A2.

ハニカム部材の温度推定方法M2は、第一合金A1よりも酸化し易い第二合金A2を利用し、この酸化により変化するγ´相の粒径の変化(より具体的には、加熱後のガンマプライム相の粒径rの三乗r と加熱前のガンマプライム相の粒径rの三乗r との差である〈r −r 〉値)を利用して、使用環境温度を推定するものである。 The temperature estimation method M2 of the honeycomb member uses the second alloy A2 that is more easily oxidized than the first alloy A1, and changes the particle size of the γ ′ phase that changes due to this oxidation (more specifically, the gamma after heating). The <r 1 3 −r 0 3 > value), which is the difference between the prime phase particle size r 1 cubed r 1 3 and the gamma prime phase particle size r 0 cubed r 0 3 before heating, is used. In this way, the operating environment temperature is estimated.

また、温度推定方法M2を用いてハニカム部材30の使用環境温度を推定するに際しては、予め第二合金A2に対する加熱温度と加熱時間と〈r −r 〉値との関係式を求めておく。
より具体的には、予め第二合金A2の供試材に対して加熱試験を行って、加熱後のγ´相の粒径(r)を測定した後に加熱前のγ´相の粒径(r)に基づいて〈r −r 〉値を求め、この求めた〈r −r 〉値と加熱試験における加熱時間と加熱温度との関係を関係式(3)として同定する。
−r =c・exp(−d/T)・t…(3)
但し、tは使用環境温度、Tは加熱時間、rは加熱後のγ´相の粒径、rは加熱前のγ´相の粒径、c・dは第二合金A2の材料種による固有定数である。
なお、この関係式(3)に関しては、特許第3935692号等に記載されている。
Further, when estimating the operating environment temperature of the honeycomb member 30 using the temperature estimation method M2, a relational expression between the heating temperature and the heating time for the second alloy A2 and the <r 1 3 −r 0 3 > value is obtained in advance. Keep it.
More specifically, a heat test is performed on the specimen of the second alloy A2 in advance, and after measuring the particle diameter (r 1 ) of the γ ′ phase after heating, the particle diameter of the γ ′ phase before heating is measured. Based on (r 0 ), the <r 1 3 -r 0 3 > value is obtained, and the relationship between the obtained <r 1 3 -r 0 3 > value, the heating time and the heating temperature in the heating test is expressed by a relational expression (3 ).
r 1 3 −r 0 3 = c · exp (−d / T) · t (3)
Where t is the ambient temperature, T is the heating time, r 1 is the particle size of the γ ′ phase after heating, r 0 is the particle size of the γ ′ phase before heating, and cd is the material type of the second alloy A2. Is an intrinsic constant.
This relational expression (3) is described in Japanese Patent No. 3935692.

続いて、ハニカム部材の温度推定方法M2の実際の手順について説明する。
図6は、ハニカム部材の温度推定方法M2のフローチャートである。図6に示すように、ハニカム部材の温度推定方法M2は、製作工程S11と、被加熱工程S12と、〈r −r 〉値取得工程(金属状態パラメータ取得工程)S23と、温度推定工程S24とを有している。
Next, the actual procedure of the honeycomb member temperature estimation method M2 will be described.
FIG. 6 is a flowchart of the honeycomb member temperature estimation method M2. As shown in FIG. 6, the honeycomb member temperature estimation method M <b> 2 includes a manufacturing process S <b> 11, a heated process S <b> 12, a <r 1 3 −r 0 3 > value acquisition process (metal state parameter acquisition process) S <b> 23, a temperature. And an estimation step S24.

まず始めに、上述した構成からなるハニカム部材30を製作する(製作工程S11)。
次に、製作工程S11で得たハニカム部材30をタービン4に配設してガスタービン1を駆動し、ハニカム部材30を加熱させる(被加熱工程S12)。高温環境下に曝されてハニカム部材30が加熱されると、被測定部材35のγ´相の粒径が増大する(r→r)。
First, the honeycomb member 30 having the above-described configuration is manufactured (manufacturing step S11).
Next, the honeycomb member 30 obtained in the manufacturing process S11 is disposed in the turbine 4 to drive the gas turbine 1, and the honeycomb member 30 is heated (heated process S12). When the honeycomb member 30 is heated by being exposed to a high temperature environment, the particle diameter of the γ ′ phase of the member to be measured 35 increases (r 0 → r 1 ).

次に、加熱後のハニカム部材30のうち被測定部材35のγ´相の粒径を測定し、予め測定した加熱前のγ´相の粒径を三乗した値から、測定したγ´相の粒径の三乗した値を減算して〈r −r 〉値を求める(〈r −r 〉値取得工程S23)。
この際、γ’相の粒径(平均粒径)の測定は、例えば、走査型電子顕微鏡(Scanning Electron Microscope、SEM)で観察し、画像処理により求めることができる。
Next, the particle diameter of the γ ′ phase of the member to be measured 35 in the honeycomb member 30 after heating is measured, and the measured γ ′ phase is calculated from the value obtained by cubed the particle diameter of the γ ′ phase before heating measured in advance. The value obtained by subtracting the cubed value of the particle diameter is obtained as a <r 1 3 -r 0 3 > value (<r 1 3 -r 0 3 > value acquisition step S23).
At this time, the particle diameter (average particle diameter) of the γ ′ phase can be measured by, for example, observing with a scanning electron microscope (SEM) and image processing.

次に、予め求められた第二合金A2に対する加熱温度と加熱時間と〈r −r 〉値との関係式(3)に、〈r −r 〉値取得工程S23において求めた〈r −r 〉値と既知の加熱時間(T)とを代入して使用環境温度(t)を推定する(温度推定工程S24)。 Next, the relational expression (3) between the heating temperature and heating time for the second alloy A2 determined in advance and the <r 1 3 −r 0 3 > value is set to <r 1 3 −r 0 3 > value acquisition step S23. Substituting the <r 1 3 -r 0 3 > value obtained in step 1 and the known heating time (T), the use environment temperature (t) is estimated (temperature estimation step S24).

以上説明したように、ハニカム部材の温度推定方法M2によっても、ハニカム部材の温度推定方法M1と同様の効果を得ることできる。   As described above, the honeycomb member temperature estimation method M2 can achieve the same effect as the honeycomb member temperature estimation method M1.

なお、上述した実施の形態において示した動作手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上述した実施形態においては、被測定部材35を平板状に形成して二つの波状板32で挟み込む構成としたが、波状板と同様の構成にした被測定部材36を波状板32と同様に積層させてもよい。
すなわち、図7に示すように、波状板32と同形に形成されて平板状に形成された被測定平板部36a及び夫々被測定平板部36aから法線方向一方側に突出すると共に互いに間隔を空けて同一方向に延在する複数の被測定突出部36bを形成した被測定部材36を、二つの波状板32の間に設け、被測定平板部36aを法線方向他方側の波状板32(図7における32A)の突出部32bに接合し、被測定突出部36bを法線方向一方側の波状板32(図7における32B)の平板部32aに接合する構成としてもよい。
Note that the operation procedure shown in the above-described embodiment, various shapes and combinations of the constituent members, and the like are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
For example, in the embodiment described above, the member to be measured 35 is formed in a flat plate shape and sandwiched between the two corrugated plates 32, but the member to be measured 36 having the same configuration as the corrugated plate is the same as the corrugated plate 32. May be laminated.
That is, as shown in FIG. 7, the measured flat plate portion 36a is formed in the same shape as the corrugated plate 32, and protrudes from the measured flat plate portion 36a to one side in the normal direction and is spaced from each other. The measured member 36 having a plurality of measured projecting portions 36b extending in the same direction is provided between the two corrugated plates 32, and the measured flat plate portion 36a is the corrugated plate 32 on the other side in the normal direction (see FIG. 7 may be joined to the flat plate portion 32a of the corrugated plate 32 on one side in the normal direction (32B in FIG. 7).

このように、波状板32と被測定部材36とを同形状にすることで、ハニカム部材30の製造を容易にすることができると共に、被測定部材36を組み込むことによるハニカム部材30の圧潰性能への影響を小さくすることができる。また、セルの内部空間だけでなく、波状板32の当接部(ロー付け部)の使用環境温度を把握することが可能となる。
また、ただ単にセルの内部空間に片状の被測定部材を設ける構成としても構わない。
Thus, by making the corrugated plate 32 and the member to be measured 36 the same shape, the honeycomb member 30 can be easily manufactured, and the crushing performance of the honeycomb member 30 by incorporating the member to be measured 36 can be improved. The influence of can be reduced. Further, it becomes possible to grasp not only the internal space of the cell but also the use environment temperature of the contact portion (brazing portion) of the corrugated plate 32.
Alternatively, a configuration in which a piece-like member to be measured is simply provided in the internal space of the cell may be employed.

また、上述した実施形態においては、ハニカム部材30を六角柱状のセルとしたが、六角柱状以外の他の多角柱状のセルとしてもよい。
また、上述した実施の形態においては、ガスタービンに用いられるハニカム部材について本発明を適用したが、他の流体機械に用いられているハニカム部材についてその使用環境温度を良好に推定することが可能である。
In the embodiment described above, the honeycomb member 30 is a hexagonal column-shaped cell, but may be a polygonal column-shaped cell other than the hexagonal column-shaped cell.
In the above-described embodiment, the present invention is applied to the honeycomb member used in the gas turbine. However, it is possible to satisfactorily estimate the use environment temperature of the honeycomb member used in another fluid machine. is there.

30…ハニカム部材
31…ハニカム部材本体
32(32A、32B)…波状板
32a…平板部
32b…突出部
35,36…被測定部材
36a…被測定平板部
36b…被測定突出部
A1…第一合金(第一の合金)
A2…第二合金(第二の合金)
M1,M2…温度推定方法
S11…製作工程
S12…被加熱工程
S13…特定含有元素濃度減少量取得工程(金属状態パラメータ取得工程)
S23…〈r −r 〉値取得工程(金属状態パラメータ取得工程)
S14,S24…温度推定工程
DESCRIPTION OF SYMBOLS 30 ... Honeycomb member 31 ... Honeycomb member main body 32 (32A, 32B) ... Corrugated plate 32a ... Flat plate part 32b ... Projection part 35, 36 ... Measured member 36a ... Measured flat plate part 36b ... Measured projection part A1 ... 1st alloy (First alloy)
A2 ... Second alloy (second alloy)
M1, M2 ... temperature estimation method S11 ... production process S12 ... heated process S13 ... specific element concentration reduction amount acquisition step (metal state parameter acquisition step)
S23 ... <r 1 3 -r 0 3 > value acquisition step (metal state parameter acquisition step)
S14, S24 ... temperature estimation step

Claims (10)

中空多角柱状セルの集合体からなるハニカム部材の使用環境温度を推定するハニカム部材の温度推定方法であって、
第一の合金で形成されたハニカム部材本体に、前記第一の合金に比べて加熱によって金属状態が変化する第二の合金で形成された被測定部材を組み込んでハニカム部材を製作する製作工程と、
前記ハニカム部材を使用環境下に設けて加熱させる被加熱工程と、
加熱後の前記ハニカム部材のうち前記被測定部材の金属状態を測定して前記金属状態の変化を指し示す金属状態パラメータを求める金属状態パラメータ取得工程と、
予め求められた前記第二の合金に対する加熱温度と加熱時間と前記金属状態パラメータとの関係式に、前記金属状態パラメータ取得工程において求めた金属状態パラメータと前記被加熱工程における既知の加熱時間とを代入して使用環境温度を推定する温度推定工程と、
を有することを特徴とするハニカム部材の温度推定方法。
A method for estimating a temperature of a honeycomb member for estimating a use environment temperature of the honeycomb member composed of an aggregate of hollow polygonal cells,
A manufacturing process for manufacturing a honeycomb member by incorporating a member to be measured formed of a second alloy whose metal state changes by heating as compared with the first alloy into a honeycomb member body formed of the first alloy. ,
A heated process in which the honeycomb member is provided and heated in a use environment; and
A metal state parameter obtaining step for obtaining a metal state parameter indicating a change in the metal state by measuring a metal state of the member to be measured among the honeycomb members after heating;
In the relational expression of the heating temperature and heating time for the second alloy obtained in advance and the metal state parameter, the metal state parameter obtained in the metal state parameter obtaining step and the known heating time in the heated step are A temperature estimation step for substituting and estimating the operating environment temperature;
A method for estimating the temperature of a honeycomb member, comprising:
前記製作工程は、前記セルの中心軸が延びるセル高さ方向において、前記被測定部材が前記ハニカム部材本体に対して同大の寸法となるように前記ハニカム部材を製作することを特徴とする請求項1に記載のハニカム部材の温度推定方法。   The manufacturing step is characterized in that the honeycomb member is manufactured such that the member to be measured has the same size as the honeycomb member main body in a cell height direction in which a central axis of the cell extends. Item 2. A method for estimating the temperature of a honeycomb member according to Item 1. 前記第二の合金は、加熱によって減少する特定含有元素を有し、
前記金属状態パラメータは、前記特定含有元素の濃度の減少量であり、
前記関係式は、以下の関係式(1)であることを特徴とする請求項1又は2に記載のハニカム部材の温度推定方法。
T=−b/ln{(C/(a・t)}…(1)
但し、tは使用環境温度、Tは加熱時間、Cは第二の合金の特定含有元素の濃度の減少量、a・bは前記第二の合金の材料種による固有定数である。
The second alloy has a specific element that decreases by heating,
The metal state parameter is a decrease amount of the concentration of the specific contained element,
The said relational expression is the following relational expression (1), The temperature estimation method of the honeycomb member of Claim 1 or 2 characterized by the above-mentioned.
T = −b 1 / ln {(C / (a 1 · t)} (1)
Here, t is the use environment temperature, T is the heating time, C is the amount of decrease in the concentration of the specific element contained in the second alloy, and a 1 and b 1 are intrinsic constants depending on the material type of the second alloy.
前記第二の合金は、加熱によって減少する特定含有元素を有し、
前記金属状態パラメータは、前記特定含有元素の減少に伴う空孔密度の変化量であり、
前記関係式は、以下の関係式(2)であることを特徴とする請求項1又は2に記載のハニカム部材の温度推定方法。
T=−b/ln{(H/(a・t)}…(2)
但し、tは使用環境温度、Tは加熱時間、Hは第二の合金の空孔密度の変化量、a・bは前記第二の合金の材料種による固有定数である。
The second alloy has a specific element that decreases by heating,
The metal state parameter is an amount of change in vacancy density accompanying a decrease in the specific content element,
The said relational expression is the following relational expression (2), The temperature estimation method of the honeycomb member of Claim 1 or 2 characterized by the above-mentioned.
T = −b 2 / ln {(H / (a 2 · t)} (2)
However, t is the ambient temperature, T is the heating time, H is the variation of the pore density of the second alloy, a 2 · b 2 is a specific constant dependent material species of the second alloy.
前記第二の合金は、前記特定含有元素としてアルミニウム、ニッケル、鉄、クロム及びチタンのうち少なくとも一つを有することを特徴とする請求項3又は4に記載のハニカム部材の温度推定方法。   5. The temperature estimation method for a honeycomb member according to claim 3, wherein the second alloy has at least one of aluminum, nickel, iron, chromium, and titanium as the specific contained element. 前記第二の合金は、含有元素としてアルミニウムとニッケルとを有すると共にガンマプライム相が形成されており、
前記金属状態パラメータは、加熱によって増大する前記ガンマプライム相の粒径の三乗した値と加熱前の前記ガンマプライム相の粒径の三乗した値との差であり、
前記関係式は、以下の関係式(3)であることを特徴とする請求項1又は2に記載のハニカム部材の温度推定方法。
−r =c・exp(−d/T)・t…(3)
但し、tは使用環境温度、Tは加熱時間、rは加熱後のガンマプライム相の粒径、rは加熱前のガンマプライム相の粒径、c,dは前記第二の合金の材料種による固有定数である。
The second alloy has aluminum and nickel as contained elements and a gamma prime phase is formed,
The metal state parameter is a difference between a cubed value of the particle size of the gamma prime phase that is increased by heating and a cubed value of the particle size of the gamma prime phase before heating,
The said relational expression is the following relational expression (3), The temperature estimation method of the honeycomb member of Claim 1 or 2 characterized by the above-mentioned.
r 1 3 −r 0 3 = c · exp (−d / T) · t (3)
Where t is the ambient temperature, T is the heating time, r 1 is the particle size of the gamma prime phase after heating, r 0 is the particle size of the gamma prime phase before heating, and c and d are the materials of the second alloy An intrinsic constant by species.
中空多角柱状セルの集合体からなるハニカム部材であって、
第一の合金で形成されたハニカム部材本体と、
前記ハニカム部材本体に設けられ、前記第一の合金に比べて加熱によって金属状態が変化する第二の合金で形成された被測定部材と、
を有することを特徴とするハニカム部材。
A honeycomb member comprising an assembly of hollow polygonal column cells,
A honeycomb member body formed of a first alloy;
A member to be measured, which is provided in the honeycomb member main body, and is formed of a second alloy whose metal state is changed by heating compared to the first alloy;
A honeycomb member comprising:
前記ハニカム部材本体は、平板状に形成された平板部及び夫々前記平板部から法線方向一方側に突出すると共に互いに間隔を空けて同一方向に延在する複数の突出部を有する波状板が複数積層され、且つ、積層方向に相互に隣接する二つの波状板のうち一方の前記突出部が他方の前記平板部に当接するように構成され、
前記被測定部材は、前記積層方向において相互に隣接する二つの波状板の間に設けられていることを特徴とする請求項7に記載のハニカム部材。
The honeycomb member main body includes a flat plate portion formed in a flat plate shape, and a plurality of corrugated plates each having a plurality of protrusion portions that protrude from the flat plate portion to one side in the normal direction and extend in the same direction at intervals. One of the two corrugated plates that are stacked and adjacent to each other in the stacking direction is configured to abut against the other flat plate portion,
The honeycomb member according to claim 7, wherein the member to be measured is provided between two corrugated plates adjacent to each other in the stacking direction.
前記ハニカム部材本体は、平板状に形成された平板部及び夫々前記平板部から法線方向に突出すると共に互いに間隔を空けて同一方向に延在する複数の突出部を有する波状板が複数積層され、且つ、積層方向に相互に隣接する二つの波状板のうち一方の前記突出部が他方の前記平板部に当接するように構成され、
前記被測定部材は、前記波状板と同形に形成されて平板状に形成された被測定平板部及び夫々前記被測定平板部から法線方向一方側に突出すると共に互いに間隔を空けて同一方向に延在する複数の被測定突出部を有し、前記二つの波状板の間に設けられて前記被測定平板部が前記法線方向他方側の前記波状板の突出部に接合され、前記被測定突出部が前記法線方向一方側の前記波状板の平板部に接合されていることを特徴とする請求項7に記載のハニカム部材。
The honeycomb member body includes a flat plate portion formed in a flat plate shape and a plurality of corrugated plates each protruding in the normal direction from the flat plate portion and having a plurality of protruding portions extending in the same direction at intervals from each other. And one of the two corrugated plates adjacent to each other in the laminating direction is configured such that the one projecting portion comes into contact with the other flat plate portion,
The member to be measured is formed in the same shape as the corrugated plate, and the plate portion to be measured is formed into a flat plate shape and protrudes from the plate portion to be measured to one side in the normal direction and is spaced from each other in the same direction. A plurality of projecting protrusions to be measured, provided between the two corrugated plates, the measured flat plate portion being joined to the projecting portion of the corrugated plate on the other side in the normal direction, and the measured projecting portions; The honeycomb member according to claim 7, wherein is bonded to a flat plate portion of the corrugated plate on one side in the normal direction.
前記被測定部材は、前記セルの中心軸が延びるセル高さ方向における寸法が、前記ハニカム部材本体と略同大に形成されていることを特徴とする請求項7から9のうちいずれか一項に記載のハニカム部材。   10. The measurement object according to claim 7, wherein a dimension in a cell height direction in which a central axis of the cell extends is substantially the same as that of the honeycomb member main body. The honeycomb member according to 1.
JP2010126912A 2010-06-02 2010-06-02 Method for estimating temperature of honeycomb member and honeycomb member Active JP5653656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010126912A JP5653656B2 (en) 2010-06-02 2010-06-02 Method for estimating temperature of honeycomb member and honeycomb member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126912A JP5653656B2 (en) 2010-06-02 2010-06-02 Method for estimating temperature of honeycomb member and honeycomb member

Publications (2)

Publication Number Publication Date
JP2011252440A true JP2011252440A (en) 2011-12-15
JP5653656B2 JP5653656B2 (en) 2015-01-14

Family

ID=45416544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126912A Active JP5653656B2 (en) 2010-06-02 2010-06-02 Method for estimating temperature of honeycomb member and honeycomb member

Country Status (1)

Country Link
JP (1) JP5653656B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151996A (en) * 2014-02-19 2015-08-24 三菱日立パワーシステムズ株式会社 Turbine member temperature estimation method
JP2015535565A (en) * 2012-11-21 2015-12-14 ゼネラル・エレクトリック・カンパニイ Turbine shroud mounting and sealing configuration

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143705U (en) * 1987-03-12 1988-09-21
JPH0163873U (en) * 1987-10-20 1989-04-24
JP2001123803A (en) * 1999-10-21 2001-05-08 Toshiba Corp Sealing device, steam turbine having the device, and power generating plant
JP2002130263A (en) * 2000-10-31 2002-05-09 Ntn Corp Bearing with temperature sensor
JP2002538302A (en) * 1999-03-03 2002-11-12 シーメンス ウエスチングハウス パワー コーポレイション High temperature erosion resistant and wear resistant composite thermal barrier coating
JP2003201567A (en) * 2001-10-16 2003-07-18 Snecma Moteurs Method of providing protection by aluminizing metal parts constituted at least partially by honeycomb structure
JP2009264204A (en) * 2008-04-23 2009-11-12 Mitsubishi Heavy Ind Ltd Method for evaluation of thin-wall alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143705U (en) * 1987-03-12 1988-09-21
JPH0163873U (en) * 1987-10-20 1989-04-24
JP2002538302A (en) * 1999-03-03 2002-11-12 シーメンス ウエスチングハウス パワー コーポレイション High temperature erosion resistant and wear resistant composite thermal barrier coating
JP2001123803A (en) * 1999-10-21 2001-05-08 Toshiba Corp Sealing device, steam turbine having the device, and power generating plant
JP2002130263A (en) * 2000-10-31 2002-05-09 Ntn Corp Bearing with temperature sensor
JP2003201567A (en) * 2001-10-16 2003-07-18 Snecma Moteurs Method of providing protection by aluminizing metal parts constituted at least partially by honeycomb structure
JP2009264204A (en) * 2008-04-23 2009-11-12 Mitsubishi Heavy Ind Ltd Method for evaluation of thin-wall alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535565A (en) * 2012-11-21 2015-12-14 ゼネラル・エレクトリック・カンパニイ Turbine shroud mounting and sealing configuration
JP2015151996A (en) * 2014-02-19 2015-08-24 三菱日立パワーシステムズ株式会社 Turbine member temperature estimation method

Also Published As

Publication number Publication date
JP5653656B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
US7584669B2 (en) Method for recording microstructural changes in a component
JP6010431B2 (en) System and method for estimating operating temperature of a turbomachine
JP2017020501A (en) Systems and methods for turbine blade repair
CA2675435C (en) Specimen collecting method and blade temperature estimating method
JP5653656B2 (en) Method for estimating temperature of honeycomb member and honeycomb member
JP4716329B2 (en) Life management method of thermal barrier coating
US20190178387A1 (en) Seal
Kim et al. A method for predicting the delamination life of thermal barrier coatings under thermal gradient mechanical fatigue condition considering degradation characteristics
Alvin et al. Extreme temperature coatings for future gas turbine engines
Yoon et al. Failure analysis of the defect-induced blade damage of a compressor in the gas turbine of a cogeneration plant
CN111896458A (en) Method for analyzing thermal corrosion performance of nickel-based single crystal superalloy
Lara-Curzio et al. Test facility for screening and evaluating candidate materials for advanced microturbine recuperators
Sporer et al. Alloy selection for honeycomb gas path seal systems
JP5173554B2 (en) Evaluation method for thin-walled alloys
JP2022119572A (en) Turbine component, turbine and method for manufacturing turbine component
JP5885625B2 (en) Transition piece damage repair method and transition piece
US10808712B2 (en) Interference fit with high friction material
Parent-Simard et al. Effect of surface roughness induced by laser powder bed fusion additive manufacturing in a mini-channel heat exchanger
US8662849B2 (en) Component of a turbine bucket platform
US11319879B2 (en) Manufacturing method of turbine casing
Cottom et al. Component Demonstration and Engine Validation of Solution Precursor Plasma Spray (SPPS) Yttrium Aluminum Garnet (YAG) Thermal Barrier Coatings: Part II
Matthews et al. Engine Testing of an Advanced Alloy for Microturbine Primary Surface Recuperators
JPH08160035A (en) Method and apparatus for controlling life of high temperature part of gas turbine
US7476078B2 (en) Rotor with core surrounded by shielding rings
Matthews et al. Comparison of three microturbine primary surface recuperator alloys

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141119

R151 Written notification of patent or utility model registration

Ref document number: 5653656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151